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Optimal Experiment Design for the Identification of One Module in the
Interconnection of Locally Controlled Systems

F. Morelli1, X. Bombois1, H.Hjalmarsson2, L. Bako1 and K. Colin1

Abstract

In this paper, we consider the problem of designing the least costly experiment that leads to a sufficiently accurate estimate
of one module in a network of locally controlled systems. A module in such a network can be identified by exciting the
corresponding local closed loop system. Such an excitation signal will not only perturb the input/output of the to-be-identified
module, but also other modules due to the interconnection. Consequently, the cost of the identification can be expressed as
the sum of the influence of the excitation signal on the inputs and outputs of all locally controlled systems. We develop a
methodology to design the spectrum of the excitation signal in such a way that this cost is minimized while guaranteeing a
certain accuracy for the identified model. We also propose an alternative identification configuration which can further reduce
the propagation of the excitation signal to other modules and we make steps to robustify this optimal experiment design problem
with respect to the cost of the identification.

I. INTRODUCTION

Nowadays, applications of dynamic networks are more and more widespread. The interconnection of locally controlled
systems is a particular type of networked system: each system/agent has its own control strategy, while at the same time it
shares information with the other agents in order to reach a global objective [1]. A typical example may be a group of drones
following a common target [2]. The interconnection of locally controlled systems can be found in civil applications, e.g.
Automated Highway Systems [3], as well as in post-emergency scenario e.g. [4]. In these applications, undesired behaviour
of one system affects the behaviour of the others, thus possibly degrading the global behaviour of the network. This situation
is particularly critical when these systems operate in a dangerous environment, as in a post-emergency scenario [4]. In these
situations, when we notice that the performance of one local controller degrades, we need to redesign it using an appropriate
model, obtained while the network is operating.

System Identification provides techniques for obtaining a model for a system directly from experimental data [5], thus
providing a suitable model for designing a controller [6]. An external excitation signal is added to the input of the system for
a fixed time, then the input-output data are collected and the model is obtained by means of an identification criterion, as in
Prediction Error Methods. These methods have been extended only recently to networked systems [7], providing conditions
for obtaining a consistent estimate of only one module inside the network [8]. Under certain conditions we can define an
uncertainty region associated to the model, containing the true system [5], which can be used to design a controller that
robustly ensures the network performance [9]. This uncertainty region can be shaped by a proper design of the external
excitation signal used during the experiment.

In all the situations where we cannot stop all the systems in the network, performing an identification experiment will alter
the normal behaviour of the system, thus affecting the whole network. In order to reduce the effect of the excitation signal
on the normal behavior of the network, we extend in this paper the concept of least costly experiment design introduced in
[6]. More precisely, we consider the case where one single module of the network has to be identified and we determine the
excitation signal for this identification which induces the least perturbation on the global behaviour of the network, while
guaranteeing a certain level of accuracy for the identified model. The induced perturbation (i.e. the cost of the identification)
is defined as the sum of the influence of the excitation signal on the input and the output of each module.

Building upon the concept of stealth identification that we introduced in [10], we also propose a new identification
configuration that will further reduce the cost due to the propagation of the excitation signal applied to the to-be-identified
module towards the other modules. This is achieved via an initial model of the to-be-identified system that is used to remove
an estimate of the contribution of the excitation signal from the signal that will be propagated to the other modules. This is
a new application of the stealth identification concept since, in [10], it was introduced as a tool to enable classical optimal
experiment design in a loop where the controller is not Linear Time Invariant (LTI). Moreover, another contribution of the
present paper is to robustify the stealth approach by considering the uncertainty of this initial model and its influence on
the cost of the identification.

Notations: C is the set of complex numbers. For z∈C, |z| is the modulus of z. For d1,d2, . . . ,dn ∈R, D= diag{d1,d2, . . . ,dn}
denotes the diagonal matrix D ∈ Rn×n with the elements d1,d2, . . . ,dn on its main diagonal.
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II. SYSTEM IDENTIFICATION FOR LOCALLY CONTROLLED SYSTEM

A. Interconnection of Locally Controlled Systems

Let us consider a network made of Nm modules, where each module Ni contains a Linear Time Invariant (LTI) system Si,
described by a Single Input, Single Output (SISO) discrete-time stable transfer function G0,i(z). Its output, yi(t), is affected
by a disturbance vi(t) =H0,i(z)ei(t), where ei(t) is a white noise of variance σ2

i and H0,i(z) is a stable linear transfer function,
assumed to be monic and minimum-phase. The system is operated in closed loop by means of a local LTI controller Ki(z)
such that the output follows a local reference yre f ,i(t), as in Fig. 1. We can describe a generic Ni, i = 1, . . . ,Nm, as:{

yi(t) = G0,i(z)ui(t)+ vi(t)
ui(t) = Ki(z)

(
yre f ,i(t)− yi(t)

) (1)

Each module Ni is made of the system Si and its closed-loop controller Ki(z), as in Fig. 1. The true system of each
module is denoted by Si = {G0,i,H0,i}, while the modules are denoted by Ni = {Ki,Si}.

Ki(z) G0;i(z)
yi(t)

vi(t)r(t)

+
−+

+
yref;i(t)

To the network

From the network

ui(t)

Fig. 1. Representation of a single module Ni

While we can describe each module independently using (1), the local reference yre f ,i(t) depends on the output signals of
the other modules inside the network [2]. This dependence can be described using a graph representation, see e.g. Fig. 2,
where each node represents a module and the edges represent the communication links between them. A consensus strategy
[1] determines how the information, coming from the nodes, is used for computing yre f ,i(t).

Let us consider, as an illustrative example, the network depicted in Fig. 2, where yre f ,i(t), i = 1, . . . ,Nm, is computed as
the average of the entering output signals, e.g. yre f ,3(t) =

y2(t)+y5(t)
2 in Fig. 2. Moreover, each output yi(t) must follow a

global reference re fext(t), given to only certain nodes in the network. Let A ∈ RNm×Nm be the adjacency matrix associated
to the graph, defined such that its i, jth entry is 1 if there exists a directed edge from the node j to the node i. Let
d(i) be the in-degree of the ith node, defined as the number of directed edges entering the node i, and D ∈ RNm×Nm

the in-degree matrix, defined as D = diag{d(1),d(2), . . . ,d(Nm)}. By grouping the signals yre f ,i(t) in a column vector
ȳre f (t) =

(
yre f ,1(t),yre f ,2(t), . . . ,yre f ,Nm(t)

)T and the output signals in a column vector ȳ(t) = (y1(t),y2(t), . . . ,yNm(t))
T , we

can write this consensus strategy as:
ȳre f (t) = Ad ȳ(t)+Bre fext(t) (2)

where Ad is the normalized adjacency matrix, defined as Ad = D−1A, and B is the input matrix for the global external
reference signal re fext(t) (B = (1,0, . . . ,0)T for the network in Fig. 2). Despite the simplicity of this example, a general
consensus strategy can always be written in this form [2]. It is important to note that each module Ni is independently
described by (1), but the presence of a term obtained through a consensus strategy (2) couples the behaviour of the modules
[2]. Then the input signal ui(t) of Ni depends also on the output yk(t) of each module Nk having a path to Ni.

B. Identification of One Module

In this paper, we will suppose that we need to (re-)identify one of the Nm modules of the network. In the sequel,
the index of this particular module will be denoted by l ∈ {1,2, . . . ,Nm} and the remaining modules will be denoted by
k ∈ {1,2, . . . ,Nm}\ l. The index i ∈ {1,2, . . . ,Nm} will be used when we refer to every module in general. For identification
purpose, we excite the module l using a (sufficiently exciting) excitation signal r(t), then (1) for ul(t) in Nl is modified to:

ul(t) = r(t)+Kl(z)
(
yre f ,l(t)− yl(t)

)
(3)

while uk(t) remains as in (1) for k 6= l.
As shown in [9], we can use Prediction Error (PE) identification to identify the system Sl in the network by using a

set of input-output experimental data ZN = {ul(t),yl(t) t = 1, . . . ,N}. Indeed, using a full-order parametric model structure



1 2 3

4 5 6

refext(t) y1(t)
y2(t)

y3(t)

y4(t) y2(t) y3(t) y5(t)

y4(t)

y5(t)

y5(t) y6(t)

Fig. 2. Example of graph representation of the network, each node represents a module Ni and the edges represent the communication link between the
modules

M = {G(z,θl),H(z,θl)}, θl ∈ Rn, we can deduce a consistent estimate θ̂N,l of θ0,l , named true parameter vector1, using
the following PE criterion:

θ̂N,l = argmin
θl

1
N

N

∑
t=1

ε
2(t,θl) (4)

ε(t,θl) = H−1(z,θl)(yl(t)−G(z,θl)ul(t))

Moreover, this consistent estimate is asymptotically normally distributed around θ0,l , with asymptotic covariance Pθ , [5].
It is shown in [9] that P−1

θ
can be written as an affine function of Φr(ω), the power spectrum of the excitation r(t). This

function is dependent on θ0, made up of the concatenation of the true parameter vectors θ0,i of all modules (i = 1, . . . ,Nm).
Consequently we denote the inverse of the covariance matrix as P−1

θ
(Φr,θ0).

Remark 1: For simplicity we will suppose that re fext(t) = 0 only during the identification experiment [9].

III. OPTIMAL EXPERIMENT DESIGN

In this paper, we consider the following optimal experiment design problem:
Problem 1 (Optimal experiment design):

For an identification of duration N, described in Section II-B, determine the power spectrum Φr of the excitation signal r(t)
leading to the smallest identification cost, while guaranteeing that the identified parameter vector is sufficiently accurate.

The accuracy requirement will be of the form P−1
θ

(Φr,θ0) > Radm [11]. As far as the identification cost is concerned,
we will extend the notion of cost introduced in [6] to the network case. For this purpose, it is important to note that the
excitation signal r(t) will not only influence the module Nl , but will also influence the other modules Nk, via (2). Therefore
we define the identification cost as:

J(Φr,θ0) =
Nm

∑
i=1

(
Pyr,i(Φr,θ0)+ηuPur,i(Φr,θ0)

)
(5)

where yr,i and ur,i are the parts of yi and ui, i∈ {1, . . . ,Nm}, induced by the excitation signal r(t) of spectrum Φr(ω) and ηu is
an user chosen scalar. Finally, given a signal h(t), which is a filtered version of r(t) via a transfer function F(z,θ) parametrized
by a vector θ ∈Rn i.e. h(t) = F(z,θ)r(t), the notation Ph(Φr,θ) denotes the power of h(t) i.e. 1

2π

∫
π

−π
|F(e jω ,θ)|2Φr(ω)dω .

The transfer function between r(t) and the signals yr,i (resp ur,i) may depend on all the systems Si and thus on the whole
vector θ0. Note that, in (5), the elements Pyr,i and Pur,i , corresponding to a module Ni to whom Nl does not have a path
will be identically zero.

As in [6], the cost J(Φr,θ0) is affine in the decision variable Φr and we already mentioned that this is also the case for
P−1

θ
(Φr,θ0). Consequently, if we replace θ0 by an initial estimate, we can derive the optimal power spectrum using convex

optimization.
However, replacing the true θ0 by an initial estimate has two important consequences: the obtained accuracy could be

lower than the expected one and the entailed cost of the experiment could be higher. As pointed out in [12], the second
consequence may be the most critical in practice. Consequently, in this paper, we will try to reduce as much as possible the
risk of this second consequence by robustifying the cost J of our optimal experiment design problem with respect to the
uncertainty of the initial estimate. It is important to note that Pyr,l (resp Pur,l ) will be much larger than Pyr,k (resp Pur,k )
due to the network attenuation. Moreover, Pyr,l and Pur,l will be mainly influenced by the dynamic of the lth module.
Consequently, even though we could extend our results to take into account the uncertainties of all initial estimates, we will

1θ0,l is s.t. G(z,θ0,l) = G0,l(z) and H(z,θ0,l) = H0,l(z) [5]



only consider the uncertainty of the initial estimate θinit,l of θ0,l to robustify the cost. This means that we will still replace
the true parameter vectors θ0,k, k 6= l, in (5) by their initial estimates θinit,k. By doing this, J and the functions involved in
its definition become functions of only θ0,l and Φr, so we can rewrite (5):

J(Φr,θ0,l) =
Nm

∑
i=1

(
Pyr,i(Φr,θ0,l)+ηuPur,i(Φr,θ0,l)

)
(6)

To define the uncertainty of θinit,l , we suppose that this initial estimate has been determined via an initial identification
experiment with covariance matrix Pinit . Consequently, we know that θ0,l lies, with an user-chosen probability level β , in
the following ellipsoidal region Uinit :

Uinit :=
{

θl |(θl−θinit,l)
T P−1

init (θl−θinit,l)≤ χβ

}
(7)

where χβ is s.t. Pr(χ2(n)≤ β ) = χβ .
Finally, we can reformulate the optimal experiment design problem as follows:
Problem 2 (Robust optimal experiment design):

Determine the power spectrum Φr(ω) of the signal r(t) which solves the following minimization problem:

minΦr ,γ γ

J(Φr,θl)≤ γ ∀θl ∈Uinit (8)
P−1

θ
(Φr,θinit)≥ Radm (9)

where J(θl ,Φr) is defined in (6) and θinit is the initial estimate of the whole parameter vector θ0.
Observe that, as already mentioned, only the cost J is robustified, since for the accuracy constraint in (9) we have replaced

θ0 by its initial estimate θinit . Indeed, we need to robustify the cost in order to prevent undesired behaviour of the network,
but, if the new model does not respect the accuracy requirement, it is sufficient to perform another identification experiment.

Remark 2: Note that the matrix Radm can be defined as Radm,des−P−1
init , where Radm,des represents the desired accuracy and

Pinit is the covariance matrix of the initial estimate. In this case, the estimate obtained from the to-be-designed experiment
will be combined with the initial estimate θinit,l , leading to the final estimate of θ0,l (see e.g. [13]).

Remark 3: The existing tools in Robust Experiment Design literature are based on Taylor approximations [13], [12], or on
a Monte-Carlo like approach [14], [6], thus not completely ensuring that the actual cost will be below the minimized one. The
solution presented above, considering only the uncertainty of the to-be-identified module, is obviously fully exact when there
is only one module in the network i.e. when we are in the classical closed-loop identification setting. In Section IV we will
present a procedure that will allow to solve Problem 2 by replacing (8) by a convex constraint implying (8). Consequently, if
we use this procedure in the single closed-loop case, it provides us a tool that, unlike the methods involving approximations,
will guarantee us that the cost will remain below a certain threshold.

Besides proposing a method to solve the above problem using convex optimization, we also propose an identification
experiment configuration which allows to reduce even further the cost related to the modules Nk i.e. to reduce the propagation
of the effects of r(t) through the network. For this purpose, we use the concept, introduced in [10], of Stealth Identification.
In [10], we used this configuration in order to enable classical optimal experiment design in a closed-loop configuration
when the controller is not LTI. Here it will be used as a tool to reduce the propagation of the excitation signal to the other
modules.

Now we present how to use the concept of Stealth Identification for this purpose. The closed-loop in the to-be-identified
module Nl is modified as follows:

yl(t) = G0,l(z)ul(t)+ vl(t)

ul(t) = r(t)+Kl(z)
(
yre f ,l(t)− x(t)

)
(10)

x(t) = yl(t)−Ginit,l(z)r(t) (11)

where Ginit,l(z) = Gl(z,θinit,l), with θinit,l the initial estimate of θ0,l . The modified loop is represented in Fig 3, where r(t)
is the to-be-designed excitation signal. As before, we collect N input-output data points in ZN = {yl(t),ul(t) t = 1, . . . ,N}
in order to identify θ̂N,l using (4). The signal x(t), defined in (11) as the difference between the output signal yl(t) and
Ginit,l(z)r(t), is used by the controller Kl instead of yl(t). Moreover, x(t) will be used to compute ȳre f (t) as well:

ȳre f (t) = Ad ȳx(t) (12)

where ȳT
x (t) = (y1(t), . . . ,yl−1(t),x(t),yl+1(t), . . . ,yNm(t)). Let us recall that the signal re fext(t) = 0 during the identification

experiment.
In order to explain this new configuration, let us first consider the ideal case where Ginit,l = G0,l . In this ideal case, the

signal x(t) is independent of the excitation r(t) (i.e. the transfer function between r(t) and x(t) is identically zero). Since
x(t) is used in (12) to compute ȳre f (t), the excitation r(t) will therefore have no influence on yk(t) (k 6= l) and uk(t) (k 6= l).
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Fig. 3. Stealth Configuration in the module Nl

In the non-ideal case, assuming Uinit to be small enough, the transfer function between r(t) and x(t) is of course nonzero,
but the influence of r(t) on x(t) will generally be smaller than the influence on yl(t) in the original configuration. This is
specially the case when the power spectrum Φr is designed to reduce the cost J(Φr,θ0). Consequently, it makes sense to
consider the robust optimal experiment design problem, but to apply it when the network follows this new configuration.
From a mathematical point-of-view, both problems are equivalent (for what concern the complexity), but it is expected that
the optimal cost will be smaller when using the stealth configuration (at least if the uncertainty Uinit is small enough).

Remark 4: We have already mentioned the novel use of the Stealth configuration as a difference with our earlier contribution
[10]. Another important difference is also the fact that the spectrum of the excitation signal will be optimized while taking
into account the uncertainty of Ginit,l . In [10], this spectrum was designed under the assumption Ginit,l = G0,l .

IV. ROBUSTIFICATION OF THE COST
In order to convexify the robust optimal experiment design problem, presented in the previous section, we only have to

replace the constraint (8) by a convex one, ensuring that (8) holds. To this aim, we restrict our attention to signals r(t)
given by the summation of a finite number of nω sine signals, with known frequencies ωm and phases φm, but unknown
amplitudes Am, m = 1, . . . ,nω . Then the signal r(t) and its power spectrum Φr(ω) are given by:{

r(t) = ∑
nω

m=1 Am sin(ωmt +φm)

Φr(ω) = ∑
nω

m=1
πA2

m
2 (δ (ω−ωm)+δ (ω +ωm))

(13)

where δ (ω) is the Dirac’s delta function.
To develop the convex relaxation mentioned above, let us first rewrite the network configuration by focusing only on the

excitation r(t), since the noises do not play any role in (6). Then, recalling our previous assumption that only the uncertainty
on θinit,l is taken into account, the networked system in the stealth configuration can be described as follows, for θl ∈Uinit :

yr,l(t) = G(z,θl)ur,l(t)

yr,k(t) = Ginit,k(z)ur,k(t) ∀k 6= l

xr(t) = yr,l(t)−Ginit,l(z)r(t)

ur,l(t) = r(t)+Kl(z)
(
yre f ,r,l(t)− xr(t)

)
(14)

ur,k(t) = Kk(z)
(
yre f ,r,k(t)− yr,k(t)

)
∀k 6= l

ȳre f ,r(t) = Ad ȳx,r(t)

ȳT
x,r(t) =

(
yr,1(t), . . . ,yrl−1(t),xr(t),yr,l+1(t), . . . ,yr,Nm(t)

)
where Ginit,k(z) = Gk(z,θinit,k) (k 6= l) is the initial model for the system Sk and the additional subscript r, e.g. in yr,l(t),
denotes the part of the original signal, e.g. yl(t), given by the excitation signal r(t). In the non-stealth configuration we just
have to pose xr(t) = yr,l(t) in the above equations.

We have seen in [15] that most of the black-box parametrizations used in identification lead to a parametrization G(z,θl)
which is an LFT in θl [16]. Using the system of equations above, we can rewrite the transfer function between r(t) and
any yr,i(t) (resp ur,i(t)) as an LFT in θl . This e.g. means that we can determine p(t) and q(t) such that the transfer function
between r(t) and yr,i(t) (resp ur,i(t)) can be written as:(

p(t)
yr,i(t)

)
= My,i(z)

(
q(t)
r(t)

)
q(t) = θl p(t) (15)

for a given matrix of transfer functions My,i(z) (resp Mu,i(z)) that does not depend on θl . For the LFT representations we
will use the notations yr,i(t) = F (My,i(z),θl)r(t) and ur,i(t) = F (Mu,i(z),θl)r(t).



Let us recall also that, given an LFT F (Mh(z),θ), we developed in [15] convex tools to exactly compute the quantity
αU

h (ω) at a given frequency ω:
α

U
h (ω) = max

θ∈U
|F (Mh(e jω),θ)|2 (16)

where U is an ellipsoidal uncertainty region e.g. defined as in (7). We can also deduce the following result:
Proposition 1: Consider a signal h(t), which is a filtered version of r(t), defined as in (13), by means of the transfer

function F (Mh(z),θ), which is an LFT in a vector θ . Consider an uncertainty region U defined as in (7). Let us define
Ph(Φr,θ) as the power of h(t) for a given θ :

Ph(Φr,θ) =
1

2π

∫
π

−π

|F (Mh(e jω),θ)|2Φr(ω)dω (17)

Then, given αU
h (ω) defined as in (16), the constraint Ph(Φr,θ)≤ γ ∀θ ∈U holds if:

nω

∑
m=1

A2
m

2
α

U
h (ωm)≤ γ (18)

Proof: Given the uncertainty region U , defined as in (7), and the signal r(t), defined as in (13), the constraint
Ph(Φr,θ)≤ γ ∀θ ∈U holds if and only if the following constraint holds:

max
θ∈U

nω

∑
m=1

A2
m

2
|F (Mh(e jωm),θ)|2 ≤ γ (19)

Recalling the definition (16), it is immediate to see that:

max
θ∈U

nω

∑
m=1

A2
m

2
|F (Mh(e jωm),θ)|2 ≤

nω

∑
m=1

A2
m

2
α

U
h (ωm) (20)

Consequently, if (18) holds, then (19) holds and thus Ph(Φr,θ)≤ γ ∀θ ∈U .
Using Proposition 1, we will be able to replace the constraint (8) in Problem 2 by a constraint similar to (18), which is

linear in the square A2
m of the to-be-determined amplitudes of the signal r(t). This leads to the following convex optimization

problem to tackle the experiment design problem defined in Problem 1.
Problem 3 (Robust optimal experiment design):

Determine the amplitudes A2
m, m = 1, . . . ,nω , of the signal r(t), defined as (13), which solve the following minimization

problem:

minA2
1,...,A

2
nω

,γ γ

∑
nω

m=1
A2

m
2 ∑

Nm
i=1

(
α

Uinit
yr,i (ωm)+ηuα

Uinit
ur,i (ωm)

)
≤ γ (21)

P−1
θ

(A2
1, . . . ,A

2
nω
,θinit)≥ Radm (22)

A2
m ≥ 0 m = 1, . . . ,nω (23)

where the terms α
Uinit
yr,i (resp α

Uinit
ur,i ) are computed as in (16), for the signals yr,i (resp ur,i) and the uncertainty region Uinit ,

and where P−1
θ

(A2
1, . . . ,A

2
nω
,θinit) is the affine function in A2

m (m = 1, . . . ,nω ), obtained by replacing Φr with (13) in the
expression P−1

θ
(Φr,θinit).

The constraint (21) is also linear in the decision variables A2
m and in γ . Thus Problem 3 is a convex optimization problem,

which can be solved efficiently by standard optimization techniques [17].

V. SIMULATION RESULTS

Here we report an example in order to illustrate our results. We consider an interconnection of locally controlled systems,
whose topology is depicted in Fig. 2 and each module has the same ARX system [18]:

yi(t) =
z−3B0(z)

A0(z)
ui(t)+

1
A0(z)

ei(t)

with A0(z) = 1−1.99185z−1 +2.20265z−2−1.84083z−3 +0.89413z−4 and B0(z) = 0.10276−0.18123z−1.
All white noises ei(t) have the same variance σ2

i = 0.5 and we suppose that every module is actuated using the
same controller Ki(z) =

KB(z)
KA(z)

with KB(z) = 0.03742−0.06719z−1 +0.06995z−2−0.03814z−3−0.02546z−4 +0.06323z−5−
0.04707z−6 +0.03222z−7 and KA(z) = 1−3.348z−1 +5.953z−2−7.163z−3 +6.143z−4−3.705z−5 +1.368z−6−0.2482z−7.
We consider that it is needed to re-identify the system S5 in the module N5 and that all the modules Ni have the same
initial model:

yi(t) =
z−3Bi,init(z)

Ai,init(z)
ui(t)+

1
Ai,init(z)

ei(t)



with Bi,init(z) = 0.08068−0.1671z−1 and Ai,init(z) = 1−1.995z−1 +2.187z−2−1.804z−3 +0.8764z−4.
We consider that Radm,des is defined such that the new model must satisfy a requirement on the sensitivity function of the

to-be-redesigned controller [6] and that Radm is computed as in Remark 2. An initial uncertainty region is available, as in
(7), with a β = 95% confidence level. We consider a fixed experiment length N = 1000, the weight ηu = 1 and an excitation
signal r(t) as in (13), with nω = 50 harmonics taken as equally spaced points in the frequency span

[
10−2,π

]
(rad/s).

Stealth Configuration. We use the available initial model to modify N5 as in Fig. 3 (Stealth Configuration). Then we solve
Problem 3 using the LMI solver provided in the Robust Control toolbox in Matlab. The solution of the problem provides
an optimal power spectrum Φr,opt , completely defined by the squared amplitudes A2

opt,m, and an optimal cost γopt = 1.831.
In order to check the validity of our results, we perform the identification experiment with the designed excitation signal.

Then we identify a new model G5(z, θ̂N,5), along with the covariance matrix for θ̂N,5, and we observe that θ̂N,5 and its
covariance matrix satisfy the accuracy requirement. In order to verify our robustification approach, we decide to compare
γopt with the actual cost J(Φr,opt ,θ0) computed as in (5) using Φr,opt and θ0, which is here known. We observe that the actual
cost J(θ0) = 1.6558 remains below the robust optimal one. It is interesting to look also at the effect that the identification
experiment induces in each module. To this aim, we define a local cost J̃i and a local actual cost Ji, for a generic module
Ni as:

J̃i =
nω

∑
m=1

A2
opt,m

2

(
α

Uinit
yr,i

(ωm)+ηuα
Uinit
ur,i

(ωm)
)

(24)

Ji = Pyr,i(Φr,opt ,θ0)+ηuPur,i(Φr,opt ,θ0) (25)

where Pyr,i(Φr,opt ,θ0) (resp Pur,i(Φr,opt ,θ0)) is the power of the signal yr,i(t) (resp ur,i(t)), computed with Φr,opt and θ0.
In Table I we observe that the local costs Ji remain below the robust ones J̃i, due to the fact that the uncertainties associated

to the modules Nk play really a little role in the determination of the cost, as we have previously assumed. Note that the
costs for N1 are equal to 0, since in our setting this module does not receive any information.

TABLE I
ACTUAL Ji AND ROBUSTIFIED J̃i LOCAL COSTS

N1 N2 N3 N4 N5 N6
J̃i 0 6.3 10−7 2.3 10−4 2.3 10−4 1.8296 9.3 10−4

Ji 0 1.3 10−7 4 10−5 4 10−5 1.6556 1.6 10−4

Comparison between Stealth and Non Stealth Configuration. We solve Problem 3 using the LMI solver provided in the
Robust Control toolbox in Matlab, but without modifying the module N5, thus in a Non Stealth Configuration as in Fig. 1.

In order to verify the effectiveness of the Stealth Configuration, we check whether the robust costs are lower using the
Stealth Configuration. To this aim, we have defined the cost reduction in Stealth Configuration with respect to the Non
Stealth one as:

CR =
J̃NS− J̃S

J̃NS ×100 (26)

where J̃NS and J̃S are the robustified costs obtained in the Non Stealth and Stealth configuration respectively. We obtain a
cost reduction CR = 1.2% for the global cost, while CR for the local costs are listed in Table II. It is interesting that the
Stealth Configuration has a little effect on the cost of the to-be-identified module, but its effectiveness is important when
looking at the other modules, thus proving to be an important tool for attenuating the effects of the excitation signal on the
rest of the network. Again, CR for N1 is equal to 0, since in our setting this module does not receive any information.

TABLE II
COST REDUCTION CR OBTAINED FOR EACH LOCAL COST J̃i .

Module N1 N2 N3 N4 N5 N6
CR [%] 0 93.5 93.9 93.9 0.02 93.9

VI. CONCLUSIONS
This paper represents a first contribution towards the extension of the least costly experiment design paradigm [6] to a

networked case. Moreover, the Stealth Configuration has been here extended to consider also the uncertainty of the initial
model and used here as tool for reducing the propagation of the excitation signal through the network, providing really
promising results when using an uncertainty region that is small enough. Finally, the result in Proposition 1 constitutes a
tool to exactly robustify the optimal experiment design with respect to its cost if we consider the single closed-loop case.
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