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A genome‑wide association study explores 
the genetic determinism of host resistance 
to Salmonella pullorum infection in chickens
Xinghua Li1, Changsheng Nie1, Yuchen Liu1, Yu Chen2, Xueze Lv2, Liang Wang2, Jianwei Zhang2, Kaiyang Li2, 
Yaxiong Jia3, Liping Ban4*, Zhonghua Ning1* and Lujiang Qu1* 

Abstract 

Background:  Salmonella infection is a serious concern in poultry farming because of its impact on both economic 
loss and human health. Chicks aged 20 days or less are extremely vulnerable to Salmonella pullorum (SP), which 
causes high mortality. Furthermore, an outbreak of SP infection can result in a considerable number of carriers 
that become potential transmitters, thus, threatening fellow chickens and offspring. In this study, we conducted a 
genome-wide association study (GWAS) to detect potential genomic loci and candidate genes associated with two 
disease-related traits: death and carrier state.

Methods:  In total, 818 birds were phenotyped for death and carrier state traits through a SP challenge experiment, 
and genotyped by using a 600 K high-density single nucleotide polymorphism (SNP) array. A GWAS using a single-
marker linear mixed model was performed with the GEMMA software. RNA-sequencing on spleen samples was car-
ried out for further identification of candidate genes.

Results:  We detected a region that was located between 33.48 and 34.03 Mb on chicken chromosome 4 and was 
significantly associated with death, with the most significant SNP (rs314483802) accounting for 11.73% of the phe-
notypic variation. Two candidate genes, FBXW7 and LRBA, were identified as the most promising genes involved in 
resistance to SP. The expression levels of FBXW7 and LRBA were significantly downregulated after SP infection, which 
suggests that they may have a role in controlling SP infections. Two other significant loci and related genes (TRAF3 
and gga-mir-489) were associated with carrier state, which indicates a different polygenic determinism compared 
with that of death. In addition, genomic inbreeding coefficients showed no correlation with resistance to SP within 
each breed in our study.

Conclusions:  The results of this GWAS with a carefully organized Salmonella challenge experiment represent an 
important milestone in understanding the genetics of infectious disease resistance, offer a theoretical basis for breed-
ing SP-resistant chicken lines using marker-assisted selection, and provide new information for salmonellosis research 
in humans and other animals.
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Background
Salmonella infection is a serious concern in poultry farm-
ing. On the one hand, systemic salmonellosis results in 
considerable animal mortality and reduced poultry pro-
duction. On the other hand, poultry is a major global res-
ervoir of nontyphoidal Salmonellae, which is one of the 
most important pathogens that cause foodborne illnesses 
[1]. Pullorum disease is an acute poultry infectious dis-
ease that is caused by the chicken-restricted facultative 
intracellular gram-negative bacterium, Salmonella pul-
lorum (SP). This disease usually results in high mortality 
of chicks less than 20  days old, especially in developing 
countries where cleaning and disinfection procedures 
are usually not effective [2]. SP infection generally leads 
to three disease outcomes: the most susceptible birds 
die within about 2 to 20  days showing typical SP infec-
tion symptoms such as hepatosplenomegaly, white diar-
rhea and cecal cores [3]; some chicks survive by clearing 
the pathogen through a series of immune responses; and 
other chicks develop a carrier state with SP present in 
their splenic macrophages for a long period of time [4]. 
These carriers can transmit the pathogen to other chick-
ens horizontally or to their offspring via the eggs [5].

In many developed countries, the pullorum disease 
has been eradicated from commercial flocks by culling 
infected birds. However, this method does not work well 
in most developing countries due to the emergence of 
novel bacterial strains [6], poor hygienic conditions, and 
limited technology; in addition, there are restrictions on 
the use of antibiotics in food animal production. Thus, 
there is need for an alternative sustainable strategy to 
control the disease in farm animals. In addition to novel 
vaccines and food additives, selective breeding of animals 
based on the development of chicken genomic data is 
becoming a promising approach to improve their resist-
ance to infectious diseases [7].

Host genetic factors have been reported to play an 
important role in the resistance of animals to Salmo-
nella infection in many studies [8–14]. Previously, we 
estimated the heritability of the death and carrier state 
traits based on an elaborately designed challenge experi-
ment [3]. The results showed low-to-moderate herit-
abilities (0.09 to 0.32) in different chicken lines, which 
means these traits are heritable. However, the molecular 
mechanism that underlies the genetic resistance to SP 
remains largely unknown. In recent years, genome-wide 
association studies (GWAS) have been widely used to 
identify the genetic architecture of many disease traits 
in chickens [15–18]. However, only a few GWAS have 
been carried out on infectious diseases because it is dif-
ficult and expensive to obtain accurate phenotypes for 
large populations; furthermore, the results of an infec-
tion are affected by many factors such as bacterial dosage, 

maternal antibodies, and the environment [19], which are 
difficult to control.

To the best of our knowledge, no large-scale GWAS 
has been performed to identify genomic loci and candi-
date genes for death and carrier state, through a carefully 
organized SP challenge test. In this study, 818 pure-bred 
chicks were genotyped with a commercial 600  K high-
density single nucleotide polymorphism (SNP) array [20]. 
A GWAS using a single-marker linear mixed model and 
302,927 SNPs allowed us to detect genomic regions that 
are associated with resistance to SP. The identified can-
didate genes were evaluated based on their functional 
annotation and expression level. The potential mecha-
nisms of these genes in immunity to infection in chickens 
are discussed.

Methods
Animals and phenotyping
For this study, 842 chicks from three pure lines were 
available, namely 384 Rhode Island Red, 381 Dwarf 
Chicken, and 77 Beijing You individuals. Rhode Island 
Red (RIR) is an intensively selected commercial breed, 
Dwarf Chicken (DW) is a synthetic layer line, and Bei-
jing You (BY) is a Chinese local chicken breed. These 
animals all came from our previous SP challenge experi-
ment [3]. Briefly, SP pathogen-free and antibody-free 
chicks were orally inoculated with 4.8 × 107 colony form-
ing units (CFU) SP strain 533 culture at 4 days of age and 
then raised in negative pressure isolators up to 40 days of 
age. All chicks had free access to sterile water and food, 
and the environment was managed such that it remained 
the same for all the birds in the experiment. Three dif-
ferent disease-related traits, i.e. death, clearance and 
carrier-state, were measured and used as SP resistance 
phenotypes. First, chicks that died with visible signs of 
SP infection symptoms (white diarrhea and splenomeg-
aly) were classified as the most susceptible. In the case of 
chicks that survived the challenge, the carrier-state was 
analyzed by plating spleen homogenates on MacConkey 
agar medium under sterile conditions to determine bac-
terial load. The identity of the pathogen was confirmed 
by Sanger sequencing of the SP specific ipaJ gene [21] 
after PCR amplification with the following primers: sense 
5′-ATT​AAC​AGG​AGG​AGG​CTG​G-3′; antisense 5′-CCA​
TTC​CCA​AAA​GCC​TGC​AT-3′. More details on how the 
population was established and on the bacterial challenge 
process are in our previous report [3].

Genotyping, quality control and imputation
We isolated individual genomic DNA from blood or 
muscle samples by the classical phenol–chloroform pro-
cedure. DNA integrity was verified by agarose gel elec-
trophoresis and purity was checked by A260/280 ratio 
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using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific™). In total, 842 qualified individual 
genomic DNA samples were genotyped using the Affy-
metrix 600  K chicken high-density array (Affymetrix, 
Inc. Santa Clara, CA, USA). For SNP calling and initial 
quality control, the raw genotyping data (CEL files) were 
analyzed by using the software Axiom Analysis Suite 3.1 
following the Best Practices Workflow. Only the samples 
with a dish quality control (DQC) of 0.82 or more and a 
call rate higher than 95% were retained for subsequent 
analyses. The SNP QC metrics were set to the default 
values recommended by Affymetrix, except that only 
“PolyHighResolution” SNPs were included in our analy-
sis. Furthermore, we excluded SNPs with unknown or 
repeated physical positions with an ad hoc R script. SNPs 
on the sex chromosomes were also discarded because 
the current statistical methods are not powerful enough 
to detect associations between phenotypes and sex-
related genotypes. After these QC steps, 818 samples and 
452,291 SNPs remained. A Hardy–Weinberg equilibrium 
(HWE) test was conducted within each breed, and 62,450 
variants that deviated from HWE (P < 1 × 10−5) were fil-
tered out. To increase the power of the association analy-
sis, we removed 85,140 SNPs because of their low level 
of variation among subpopulations (i.e. SNPs that were 
monomorphic in any one of the three breeds), and 1774 
SNPs with a minor allele frequency (MAF) lower than 
0.05 using PLINK v1.90 [22]. Missing genotypes were 
imputed based on information from the remaining SNP 
genotypes for each subpopulation separately, according 
to the software Beagle Version 4 [23]. In total, 818 sam-
ples and 302,927 SNPs were included in the subsequent 
genome-wide association analysis.

Statistical analysis
Population structure and relatedness are major sources 
of confounding effects in genetic association studies [24]. 
The most popular method for GWAS that include related 
individuals is the linear mixed model (LMM) method 
because of its effectiveness in controlling population 
stratification bias and reducing the inflation from many 
small genetic effects (polygenic background) [25–31]. In 
this study, we assessed population structure by conduct-
ing a principal component analysis (PCA) implemented 
in the PLINK package. Considering that clusters of SNPs 
in high linkage disequilibrium may bias the PCA results, 
first we pruned the full SNP set to 23,870 independ-
ent SNPs using the—indep-pairwise 25 5 0.2 command 
parameters in PLINK. Then, we used these unlinked 
SNPs to calculate the top three principal components 
(PC) that were used as covariates in the mixed model. 
Furthermore, a pairwise kinship matrix was built using 
the pruned SNPs.

A single-marker univariate linear mixed model was 
used for testing associations between the results of SP 
infection and the qualified SNPs. The disease phenotype 
was divided into two binary traits: death (200 deaths 
vs. 618 survivals) and carrier-state (161 carriers vs. 457 
clearance). Both death and carrier-state were analyzed 
using the following model:

where y denotes the trait values for death or carrier-state, 
namely either ‘0’ or ‘1’; W is a matrix of covariates (i.e. 
fixed effects that contain the top three PC, genotyping 
batch and a column of 1s) that control population struc-
ture and batch effect; α is a vector of corresponding coef-
ficients that includes the intercept; x is a vector of SNP 
genotypes; β is the corresponding effect of SNPs; u is a 
vector of random polygenic effects with a covariance 
structure that follows a normal distribution 
u ∼ N

(

0,KVg

)

 , where K is a genomic relationship matrix 
derived from independent SNPs and Vg is the polygenic 
additive variance; and ε is a vector of random errors. The 
association analysis was performed using the GEMMA 
v0.96 software [30]. The Wald test statistic 
Fwald = β̂2/Var

(

β̂

)

 was used to test the null hypothesis 
β = 0 for each SNP. The Manhattan and quantile–quan-
tile (Q–Q) plots were drawn with the “qqman” package in 
R. Moreover, correction for population stratification was 
evaluated by calculating the genomic inflation factor λ 
with the “GenABEL” package [32].

We calculated genome-wide significance P-value 
thresholds with the simpleM method implemented in 
a R script for multiple testing correction [33]. simpleM 
calculation resulted in 72,648 independent effective tests 
and the genome-wide and suggestive significance values 
were then calculated as 6.88 × 10−7 (0.05/72,648) and 
1.38 × 10−5 (1.00/72,648), respectively. The contribu-
tion of significant SNPs to the phenotypic variance was 
estimated by a restricted maximum likelihood (REML) 
method implemented in the GCTA v1.91 software [34]. 
Linkage disequilibrium (LD) analysis was performed for 
the significant SNPs using the solid spin algorithm imple-
mented in Haploview version 4.2 [35].

Identification of candidate genes
Candidate genes for resistance to SP were identified 
based on functional annotation and expression level 
data. First, we performed functional annotation by 
searching for candidate genes within 500 kb regions on 
either side of the lead significant SNP with the help of 
the Variant Effect Predictor [36] and Biomart tools sup-
ported by Ensembl (http://www.ensem​bl.org) using the 
Gallus_gallus-5.0 genes dataset. Then, we investigated 

y = Wα+ xβ+ u + ε,

http://www.ensembl.org
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the biological functions of these candidate genes on 
PubMed (https​://www.ncbi.nlm.nih.gov/pubme​d).

Gene expression analysis
The gene expression levels in the spleen of infected and 
mock-infected birds (54 samples) were determined by 
RNA-Seq (three replicates) at three time points [4, 10 
and 21  days post-infection (dpi)] for the three breeds. 
Spleen tissue was sampled and immediately preserved 
in RNAlater (Ambion) at room temperature for 24  h 
and then at − 20  °C until RNA extraction. Total RNA 
was extracted using the Trizol reagent (Invitrogen, 
Carlsbad, CA, USA) following the manufacturer’s pro-
tocol. Libraries for each sample were prepared and 
sequenced on an Illumina HiSeq 2500 platform (Illu-
mina Inc., San Diego, CA, USA), and 150  bp paired-
end reads were generated. Raw reads were filtered and 
trimmed using fastp (version 0.19.1) [37]. Clean reads 
were mapped to the chicken reference genome (gal-
Gal5) using the HISAT2 program [38]. Reads mapped 
to a gene were counted with featureCounts [39] against 
the gene annotation from Ensembl database. The gene 
counts were normalized by the Bioconductor pack-
age DESeq2 [40] and differential expression P-values 
of candidate genes were then calculated with default 
parameters. To evaluate the correlation between time 
and gene expression levels of the control group, we 
conducted regression analysis by fitting the linear 
model with the function implemented in the R software 
version 3.5.1 (Foundation for Statistical Computing, 
Vienna, Austria).

Genomic inbreeding analysis
Inbreeding has long been reported to affect fitness traits 
such as resistance to disease [41–45]. To investigate the 
relationship between inbreeding and resistance to SP, we 
estimated the genomic inbreeding coefficients by meas-
uring the genome-wide distribution of runs of homozy-
gosity (ROH) using the PLINK software. The genomic 
inbreeding coefficient FROH was calculated as the propor-
tion of the genome which is found in runs of homozygo-
sity. The total physical length of all autosomes from the 
first to the last SNP is 930,016,100 bp. A ROH is defined 
as a segment of consecutive homozygous DNA that meets 
the following criteria: (1) a minimum size of 1000 kb and 
at least 50 homozygous SNPs; (2) a maximum of five 
missing SNPs allowed in a ROH; (3) a maximum of one 
heterozygous SNP per ROH, so that ROH segments are 
not disrupted by an occasional heterozygous SNP; and 
(4) a maximum gap between SNPs of 1000 kb to ensure 
that SNP density does not affect a ROH.

Results
Phenotype statistics and population structure
The details of the results of the SP challenge were previously 
reported [3]. Briefly, mortality rates for the RIR, BY, and DW 
chicks reached 25.1, 8.3, and 22.7%, respectively, and the cor-
responding carrier-state levels in the spleens were equal to 
17.9, 0.6, and 15.8%, which indicate that BY chicks are more 
resistant to SP infection than DW and RIR chicks. Only part 
of the chicks that participated in the SP challenge test were 
genotyped. Since nearly all the BY chicks that survived could 
clear the pathogen (except three), we did not genotype the car-
riers in this breed. In the group of chicks that died, only the 
individuals that had conclusive symptoms and for which high 
quality DNA was available were genotyped. Furthermore, in 
the group of chicks that cleared the pathogen, we removed 
randomly some individuals to match the corresponding phe-
notype proportion. In total, 842 samples were genotyped and 
after a series of strict quality control procedures, 24 samples 
were eliminated because of a low genotyping call rate. Thus, 
the final GWAS population consisted of 818 samples (392 
males and 426 females). The phenotypic composition of each 
line is given in Table 1. Based on the PCA plot (Fig. 1), three 
subpopulations are clearly distinguished, which indicates that 
population stratification can be accounted for in the linear 

Table 1  Phenotype composition of the three chicken lines 
used in the GWAS

BY Beijing You, DW Dwarf Chicken, RIR Rhode Island Red. These are the number 
of chicks that died, carried and cleared the pathogen, respectively

Breed Died Carrier state Clearance Total

BY 27 0 50 77

DW 89 77 198 364

RIR 84 84 209 377

Total 200 161 457 818

Fig. 1  PCA plot for population structure. The red, green and blue 
dots represent BY, DW and RIR individuals, respectively

https://www.ncbi.nlm.nih.gov/pubmed
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mixed model of the GWAS by including these principal com-
ponents as covariates in the analysis.

GWAS for the death trait
The Manhattan and Q–Q plots for the death trait are in 
Fig. 2a. The single-marker analysis identified 42 SNPs that 

were significantly associated with death at the suggestive 
association threshold. Of these 42 SNPs, 17 genome-
wide significant SNPs spanned a narrow 0.55 Mb region 
(33.48–34.03 Mb) on chicken chromosome GGA4 (GGA 
for Gallus gallus), which was the highest peak. Based 
on SNP annotation (Table  2), we found that 10 of the 

Fig. 2  GWAS results for death. a Manhattan plot and Q–Q plot. Each dot on this figure corresponds to a SNP within the dataset, while the 
horizontal red and blue lines denote the genome-wide significance (6.88 × 10−7) and suggestive significance thresholds (1.38 × 10−5), respectively. 
The Manhattan plot contains − log10 observed P-values for genome-wide SNPs (y-axis) plotted against their corresponding position on each 
chromosome (x-axis), while the Q–Q plot contains expected − log10-transformed P-values plotted against observed − log10-transformed P-values. 
b LD plots for significant SNPs
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significant SNPs were located at intergenic regions, five 
were in introns and two were upstream of the coding 
sequences. Through a REML analysis implemented in the 
GCTA software, we found that the most significant SNP, 
i.e. rs314483802, (P = 4.38 × 10−10; intergenic) explained 
11.73% of the phenotypic variance. An LD analysis 
revealed that all the genome-wide significant SNPs were 
in high LD (Fig. 2b), which makes it difficult to identify 
causal SNPs. The genomic control inflation factor (λ) cal-
culated for the death trait was equal to 1.08, which is a 
little higher than the ideal value of 1 and indicates a mild 
but acceptable population stratification. We identified 
three genes that involved the eight upstream and intronic 
SNPs: family with a sequence similarity 160 member A1 
(FAM160A1), F-box and WD repeat domain containing 
7 (FBXW7), and LPS responsive beige-like anchor protein 
(LRBA). FAM10A1 is a protein coding gene about which 
little is known in the literature. FBXW7 modulates the 
NF-κB signaling pathway by targeting NF-κB2 for ubiq-
uitination and destruction [46, 47]. NF-κB is one of the 
most important signaling pathways of the inflammation 
and immune system. According to Fukushima et al. [47], 
the depletion of Fbw7 (synonymous to FBXW7) in mice 
leads to reduced NF-κB activity and perturbed T cell 

differentiation. Thus, FBXW7 is a very promising can-
didate gene that may affect immune response after SP 
infection. LRBA is an important gene that is involved in 
a syndrome of immune deficiency and autoimmunity. 
Deleterious mutations in LRBA cause defects in B cell 
activation and autophagy, and can increase susceptibility 
to apoptosis [48]. Furthermore, a new study has recently 
linked LRBA to the NF-κB immune pathway [49].

Our gene expression data provided further evidence 
that supports implication of these candidate genes during 
a SP infection. As shown in Fig. 3, expression of FBXW7 
was significantly downregulated after SP infection at all 
three time points in RIR chicks. Although this down-
regulation was not significant in BY chicks and was sig-
nificant at 21 dpi in DW chicks, overall the same trend 
was observed in the three lines. Expression of LRBA 
was downregulated at a later time post-infection in all 
three lines. Interestingly, these two genes showed a time-
dependent expression in the control group. To confirm 
this, we performed a regression analysis of gene expres-
sion levels and time (see Fig.  4) that showed that the 
expression levels of LRBA and FBXW7 are positively cor-
related with time, which is consistent with the fact that 
the chicks are considerably more resistant to SP when 

Table 2  Genome-wide significant SNPs for death and suggestive significant SNPs for carrier-state

Trait SNP GGA​ Position P-value Annotation Gene

Death rs316916108 4 33,478,824 2.11E−08 Upstream LRBA

rs315352777 4 33,538,092 5.85E−07 intergenic

rs315824851 4 33,548,952 3.72E−08 Intergenic

rs314483802 4 33,552,203 4.38E−10 Intergenic

rs313220844 4 33,553,077 4.38E−10 Intergenic

rs312359707 4 33,554,042 3.72E−08 Intergenic

rs313807513 4 33,571,056 6.25E−08 Intergenic

rs316981702 4 33,610,050 3.96E−09 Intron FAM160A1

rs14448652 4 33,616,458 2.73E−08 Intron FAM160A1

rs315488527 4 33,644,936 4.80E−08 Intron FAM160A1

rs314369582 4 33,746,779 5.43E−07 Intergenic

rs314592872 4 33,768,246 3.61E−07 Intergenic

rs317151264 4 33,782,635 4.02E−07 Intergenic

rs13514687 4 33,873,598 7.70E−08 Intergenic

rs16387631 4 33,960,862 4.64E−07 Intron FBXW7

rs313841618 4 33,973,296 3.16E−07 Intron FBXW7

rs15536382 4 34,031,794 3.73E−07 Upstream FBXW7

rs313296110 4 43,491,648 2.53E−07 Intergenic

rs317612144 4 43,491,692 2.39E−07 Intergenic

rs318239967 4 43,491,742 3.30E−07 Intergenic

rs313303913 4 44,551,373 2.05E−07 Upstream GPM6A

Carrier-state rs312524326 5 50,147,152 9.52E−06 Intergenic

rs312970356 2 23,295,087 9.65E−06 Intergenic

rs317601331 5 49,848,247 1.09E−05 Intergenic
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they are more than 20 days old. Our results provide more 
evidence that FBXW7 and LRBA are associated with 
resistance to SP.

GWAS for the carrier state
In the GWAS for the carrier-state trait, the linear mixed 
model GWAS could not identify genome-wide signifi-
cant SNPs. However, three SNPs were above the level 
of suggestive significance (Fig.  5). The genomic control 
inflation factor (λ) for carrier-state was equal to 1.07, 
which is similar to the value found for death. Two of 
these three potential SNPs are located on GGA5 and the 
other one on GGA2. The rs312524326 SNP on GGA5 
was located close to several candidate genes includ-
ing the TNF receptor associated factor 3 gene (TRAF3). 

TRAF3 participates in the signal transduction of CD40, 
a member of the TNFR family that is important for the 
activation of immune response [50]. Besides, TRAF3 
controls the activation of the canonical and alterna-
tive NF-κB signaling pathway via the lymphotoxin beta 
receptor [51]. In our experiments, the expression level of 
TRAF3 was up-regulated at 4 dpi in all three lines; how-
ever, it showed no difference at later times (Fig.  3). The 
SNP on GGA2 (rs312970356) was close to the miRNA 
gga-mir-489. Expression of gga-mir-489 increases in 
CD30hi cells and is connected to Marek’s disease herpes-
virus infection [52]. We used the miRDB tool [53, 54] to 
predict the target genes for gga-mir-489 and found that 
one of the predicted target genes was FAS associated fac-
tor 1 (FAF1) with a high target score of 98. The protein 
encoded by FAF1 binds to the FAS antigen (TNFRSF6) 

Fig. 3  Candidate gene expression levels (normalized counts) in the three chicken lines (BY, DW and RIR) at three time points (4, 10, 21 dpi)
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and can initiate apoptosis or enhance apoptosis via the 
FAS antigen. Down-regulation of FAF1 can activate the 
TNF-α/NF-κB signaling pathway [55]. We found that the 
expression of FAF1 was up-regulated at 4 dpi in BY and 
RIR chicks after SP infection in our study (Fig. 3).

Runs of homozygosity
We found that FROH did not differ between the traits ana-
lyzed here (Fig. 6), but the DW and BY chicks that died of 
SP infection showed the lowest values. In contrast, at the 
breed level, all comparisons of genomic inbreeding coef-
ficient involving the RIR breed were significant.

Discussion
Salmonella infections are a serious health risk to both 
humans and animals. In humans, typhoid fever outbreaks 
occur every few years and cause significant morbid-
ity and mortality [56]. A human GWAS for Salmonella 
resistance conducted between infected individuals and 
a large control population reported a significant associa-
tion with the MHC region [57]. Non-human research has 
the potential advantage of obtaining accurate phenotypes 
through bacterial challenge tests. However, only a few 
successful studies have been reported on infectious dis-
eases owing to the difficulty in phenotyping the affected 
individuals and the complex genetic architecture of dis-
eases. With the development of animal genomics, more 

domestic animals are being used as models for biomedi-
cal research [58].

To the best of our knowledge, this is one of the few 
large-scale GWAS, which have been carried out on both 
the death and carrier-state traits following a well-organ-
ized SP challenge experiment. We investigated the genet-
ics of resistance to SP in 818 pure-bred chicks from three 
chicken lines by genotyping 302,927 SNPs from a high-
density chip and performing a GWAS. Although difficult, 
it would be highly useful to find a general mechanism 
of disease resistance among populations; towards this 
aim, we used three chicken lines with different genetic 
backgrounds. We identified a strong association at a 
region that was located between 33.48 and 34.03 Mb on 
GGA4 for death, and two suggestive signals on GGA5 
and GGA2 for carrier state. Combining the biological 
functions of the genes found in these regions and RNA-
seq data, we identified four candidate genes that could 
account for resistance to SP, namely FBXW7 and LRBA 
for death, and TRAF3 and gga-mir-489 (targeting FAF1) 
for carrier state. Interestingly, these four genes have been 
reported to participate in the NF-κB signaling pathway 
[47, 49, 51, 55], which suggests that this pathway may play 
a central role in the host’s resistance to SP infection. As a 
major transcription factor, NF-κB regulates many genes 
that are involved in both the innate and adaptive immune 
response [59]. Because SP is an intracellular bacterium, 
we suspect that the T cell development process related to 

Fig. 4  Regression analysis between gene normalized counts and time. The analysis was conducted using a linear model for a LRBA, lipopolysacchari
de-responsive and beige-like anchor protein and b FBXW7, F-box and WD repeat domain containing 7 
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the NF-κB signaling pathway may constitute the under-
lying mechanism of resistance to SP and thus deserves 
more research.

Until now, many Salmonella resistance genes have been 
identified in fowl [19], for example, TLR4 and SLC11A1. 
However, most of these studies were carried out within 
a single population. A GWAS performed across multiple 
populations can increase the power to detect novel loci 
and achieve a higher mapping resolution than in previ-
ous studies [60–62]. The regions and gene candidates 
reported in our study have not been detected in previ-
ous studies on resistance to Salmonella infection, which 
may be explained by the fact that we used different 
chicken lines and Salmonella strains. The immunobiol-
ogy of typhoidal and non-typhoidal Salmonella diseases 
differs substantially [63], and these diseases correspond 
to different host genetic resistances; thus, it is impor-
tant to compare the mechanisms for different Salmonella 
diseases. Our study provided new data for the genetic 
determinism of typhoidal Salmonella resistance. Because 

disease resistance is a complex trait, it is likely that there 
are many more disease-related genes that could not be 
identified here due to the limited sample size.

The candidate genes identified in our study showed 
a time- and breed-related expression, which might be 
linked to different development stages of the affected 
individual. Analysis of the expression data reveals the 
complexity of the transcription of these genes at the dif-
ferent time points and in the different breeds. In the SP 
challenge test, the BY chicks were the most resistant to 
SP; however, RIR chicks (the most susceptible breed) 
showed more consistent results at different time points. 
Interestingly, the association between the candidate 
genes and resistance to SP was stronger in the RIR chicks 
with high susceptibility.

BY is a local breed of chickens with the highest level 
of resistance to the disease and the lowest inbreeding 
coefficient; DW is a synthetic line with both a low level 
of resistance to and a low inbreeding coefficient; RIR is 
the most intensively-selected line with a low level of 

Fig. 5  Manhattan plot and Q–Q plot for carrier-state. Each dot on this figure corresponds to a SNP within the dataset, while the horizontal blue line 
denotes the suggestive significance thresholds (1.38 × 10−5)
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resistance to SP and a high inbreeding coefficient. Many 
studies have reported that inbreeding is associated with 
disease resistance [43, 64–66], which is not the case in 
our study. One of the reasons could be that inbreeding 
depression in farm animals is more complex and different 
from that in wild populations.

Considerably more research is required before we can 
completely understand the genetics of any complex trait, 
especially traits that concern elaborate immunological 
functions. In this study, we show the feasibility of using 
a domestic animal for mapping the genomic regions that 
underlie an infectious disease and for providing new 
information that will be useful in subsequent compara-
tive immunology studies. The genetic determinism of 
immunity is extremely complex and shaped by the contri-
bution of multiple genes and environmental factors [67]. 
Therefore, more GWAS on domestic animals will help 
identify genes that are involved in the immunity mecha-
nisms occurring during infectious diseases.

Conclusions
Our GWAS on death and carrier state after SP infection 
identified new loci and genes associated with resistance 
to SP. The NF-κB signaling pathway is likely to play a 

central role in immunity against SP. These results pro-
vide new information on the genetic determinism of the 
resistance to infectious diseases; offer theoretical basis 
for breeding SP-resistant chicks using marker-assisted 
selection; and provide new data for research on salmo-
nellosis in humans and other animals.
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