

Comparison of the chondrogenic potential of mesenchymal stem cells derived from bone marrow and umbilical cord blood intended for cartilage tissue engineering

Romain Contentin, Thomas Branly, Julien Pestel, Miranda Concari, Mélanie Desancé, Sandrine Jacquet, Lelia Bertoni, Fabrice Audigié, Magali Demoor, Philippe Galéra

▶ To cite this version:

Romain Contentin, Thomas Branly, Julien Pestel, Miranda Concari, Mélanie Desancé, et al.. Comparison of the chondrogenic potential of mesenchymal stem cells derived from bone marrow and umbilical cord blood intended for cartilage tissue engineering. Matrix Biology Europe MBE, 2018, Manchester, United Kingdom. hal-02294814

HAL Id: hal-02294814 https://hal.archives-ouvertes.fr/hal-02294814

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EdNBISE

Ecole doctorale Normande

Biologie Intégrative, Santé, Environnement

1. Proliferative

capacity

BTG BIOTARGEN

Romain Contentin^{1†}, Thomas Branly^{1†}, Julien Pestel¹, Miranda Concari¹, Mélanie Desancé¹, Sandrine Jacquet², Lélia Bertoni², Fabrice Audigié², Magali Demoor¹ & Philippe Galéra¹

1. Unit BioTARGen, Team OErAGen EA 7450, UFR Santé, University of Caen Normandy, 14032 Caen, France.

2. Center of Imaging and Research on Locomotor Affections in Equines, Veterinary school of Alfort, University of Paris-East, 14430 Goustranville, France.

[†]Contributed equally

Introduction

Articular cartilage is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Cartilage tissue engineering/cell therapy offer new insights to cure these articular disorders. Since the first generation of cartilage tissue engineering led to a poor quality cartilage rich in the hyaline cartilage atypical type I collagen, it has been followed with improved generations. One way to improve these strategies was to diversify the cell type used. Mesenchymal stem cells (MSC) are considered as an interesting cell type in order to produce a hyaline cartilage substitute. This study aimed to compare umbilical cord blood (UCB) and bone marrow (BM) derived MSC.

BM and UCB MSC were isolated and then amplified in monolayer culture. We characterized MSC by assessing their proliferative and multipotence capacities, and the presence of cluster of differentiation (CD) characteristic of MSC. Then, we compared MSC at their basal state and after a chondrogenic differentiation, which consisted of culture in hypoxia or normoxia in a biomaterial, with chondrogenic factors (BMP-2, TGF-ß1). Criteria used to compare MSC were the mRNA level and protein amount of several osteogenic (osteocalcin/Runx2), hypertrophic (type X collagen) and chondrogenic markers (type II collagen). Furthermore, we analysed the extracellular matrix(ECM) composition/structure by immunochemistry.

Results

MSC isolation

Equine UCB was collected by venipuncture of the umbilical veins and equine BM was collected from sternal puncture in a cohort of horses with ages ranging from 2 to 4 years. Then, MSC were isolated by density gradient centrifugation with Ficoll followed with a seed of the interphase in a plastic flask filled with an isolation medium to select cells which were able to adhere and form colonies, the MSC. After the appearance of several colonies, cells were detached using trypsin/EDTA and then reseeded at 5000 cells/cm².

MSC characterization

3. Multilineage

capacity

1 Do

Chondrocytes

Adipocytes

 \bigcirc

Osteoblasts

Ø

2. MSC

immunophenotyping

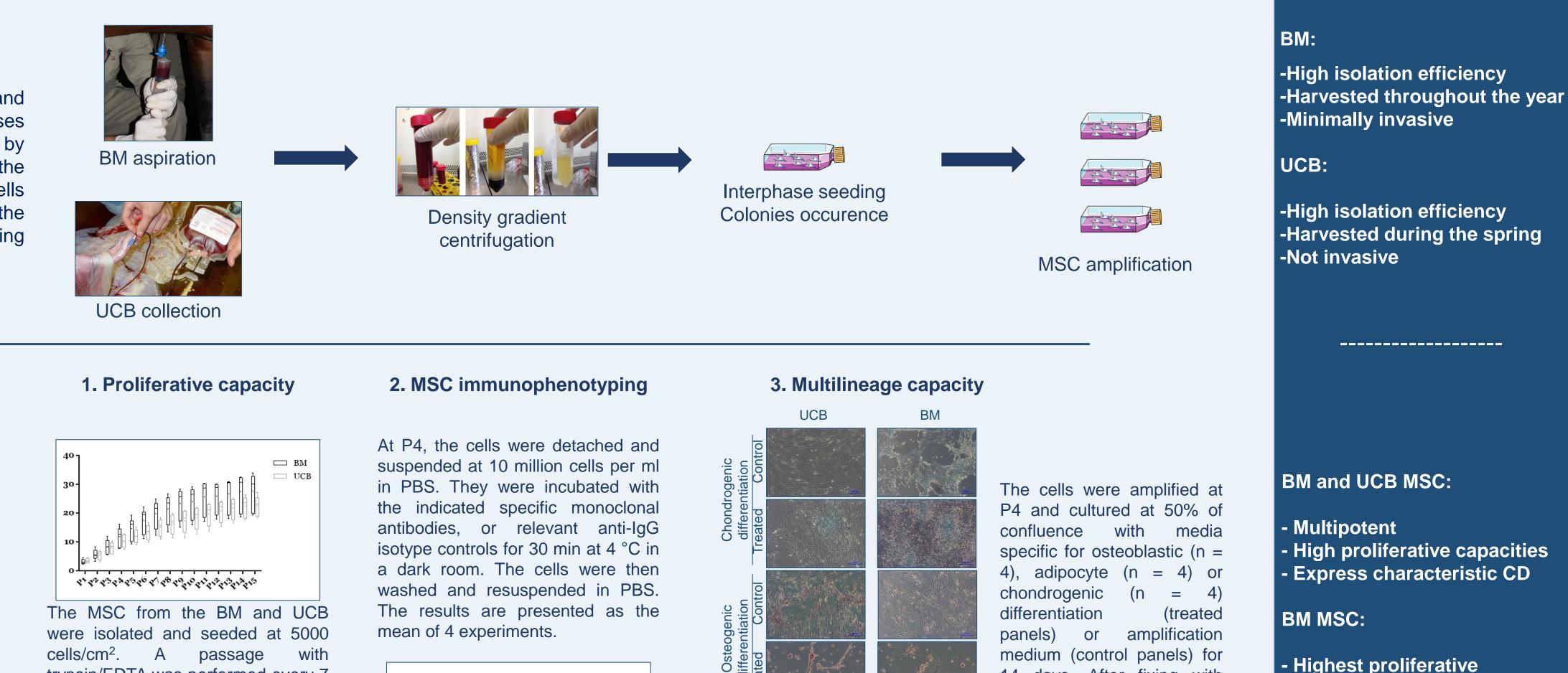
6 b

CD34-

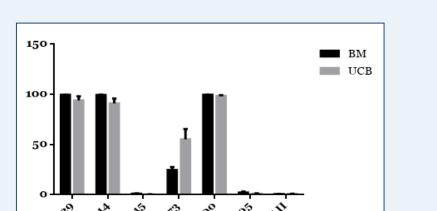
CD45-

Type II

MHC-


CD29+

CD44+


CD73-

CD90+

CD105-

trypsin/EDTA was performed every 7 days, followed by counting and reseeding at the same cell density (n = 4). The significance of the results was evaluated using a Mann Whitney test (*p < 0.05, **p < 0.01,

14 days. After fixing with paraformaldehyde, cells

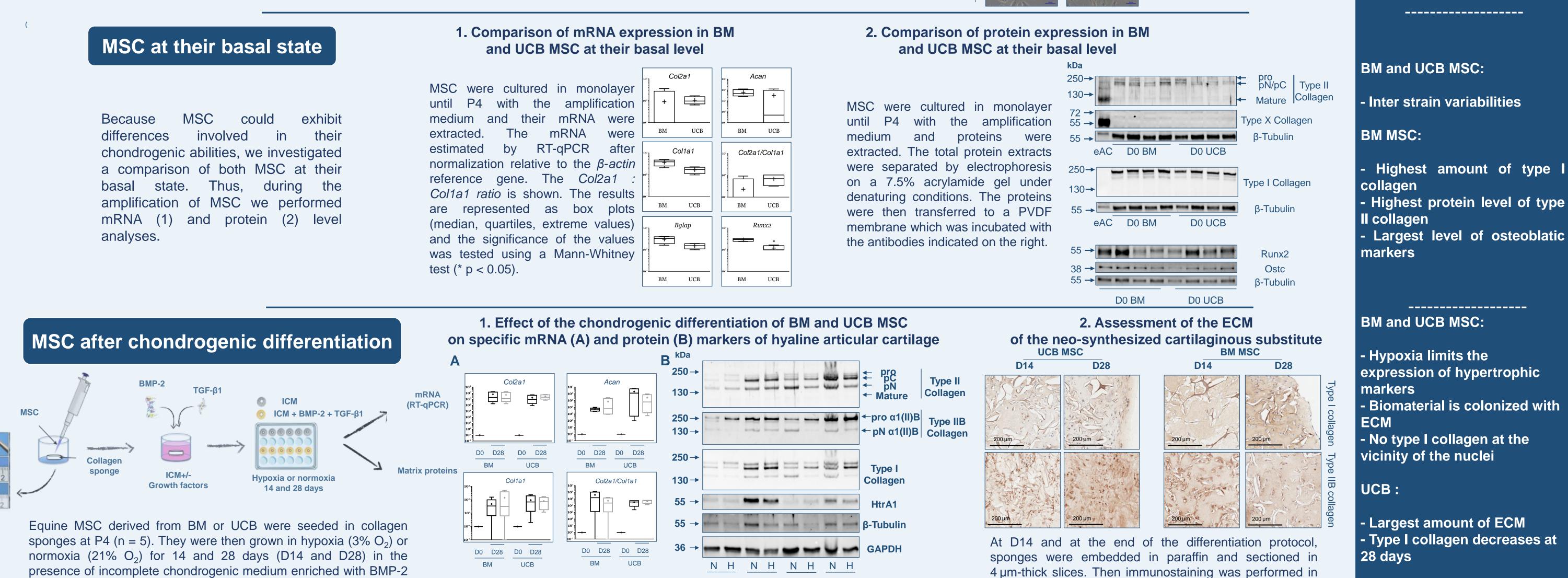
red.

- Highest proliferative capacities

- Strongest abilities to differentiate into adipocytes

***p < 0.001).

UP29 UP44 UP45 UP13 UP90 UP105 NHCH


deposits, lipid droplets and sulfated proteoglycans.

were stained with Alizarin

blue to respectively reveal

the presence of calcium

Oil Red O and Alcian

(50 ng/ml) and TGF-β1 (10 ng/ml). The D0 condition corresponds to MSC cultured in monolayer at P4 with the amplification medium and the equine articular cartilage (eAC) condition corresponds to the protein extracted from healthy cartilage.

D14 D28 D14 D28 UCB BM UCB

(A) mRNA levels were estimated by RT-qPCR after normalization relative to the β -actin reference gene. The results are represented as box plots (median, quartiles, extreme values) and the significance of the values was tested using a Mann-Whitney test (* p < 0.05). (B) The total protein extracts were separated by electrophoresis on a 7.5% acrylamide gel under denaturing conditions. The proteins were then transferred to a PVDF membrane which was incubated with the antibodies indicated on the right. N : Normoxia, H : Hypoxia

order to detect type I collagen or type IIB collagen.

- Lower expression of HtrA1 - Lower protein amount of type I collagen

BM:

Conclusions

Although samples of BM and UCB allow the isolation of cells possessing MSC characteristic, differences can be observed between the two sources without predicting a better chondrogenic potential for a MSC source rather the other. mRNA and protein analyses of undifferentiated MSC suggest a stronger possibility for BM MSC to synthesize collagens compared to UCB MSC, which is attractive considering their use in cartilage tissue engineering. Nevertheless, BM MSC express also a higher amount of hyaline cartilage atypical molecules such as osteocalcin and type collagen, to a greater extent than UCB MSC. Both MSC were able to produce a hyaline like cartilage matrix upon a chondrogenic differentiation protocol. However, considering that type I collagen is the major unwanted component in the *in vitro* cartilage synthesis, BM MSC seem to be the best MSC candidate for cartilage tissue engineering with the *in vitro* chondrogenic differentiation protocol used here. However, the decrease of the type I collagen protein amount only observed in UCB MSC at D28, even if it remains higher than BM MSC, could only be the beginning of the decrease. Thus, by lenghtening the time of the chondrogenic differentiation protocol, UCB could also be an attractive MSC source for cartilage tissue engineering.

