
HAL Id: hal-01874969
https://hal.archives-ouvertes.fr/hal-01874969v2

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic allocation optimization in A/B tests using
classification-based preprocessing

Emmanuelle Claeys, Pierre Gancarski, Myriam Maumy-Bertrand, Hubert
Wassner

To cite this version:
Emmanuelle Claeys, Pierre Gancarski, Myriam Maumy-Bertrand, Hubert Wassner. Dynamic alloca-
tion optimization in A/B tests using classification-based preprocessing. 2019. �hal-01874969v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/231943127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01874969v2
https://hal.archives-ouvertes.fr

Dynamic allocation optimization in A/B tests using
classification-based preprocessing

EMMANUELLE CLAEYS, University of Strasbourg
PIERRE GANÇARSKI, University of Strasbourg
MYRIAM MAUMY BERTRAND, University of Strasbourg
HUBERT WASSNER, AB Tasty, France

In traditional A/B testing, for instance on two webpages A and B, the objective is to decide which
of these two pages is the best. To do that, a frequentist test can be used in which each page is
randomly or alternatively chosen and applied to incoming website visitors for a given time. However,
one problem with this approach is the non-adaptivity of the test. For example, if one page quickly
appears as having a very stronger positive or negative impact than the other one, the test could be
stopped earlier. One way to avoid this is to apply a bandit-based algorithm. Such an algorithm is
able to automatically decides if a page should be chosen and applied more often than the other
one. This approach, called dynamic allocation, allows to add adaptivity to the A/B test. However,
bandit theory by traditional methods requires assumptions which are not always verified in reality.
This is mainly due to the fact that the subjects tested are not homogeneous. We present our new
method that finds the best variation for homogenous groups in a short period of time.

CCS Concepts: • Transactions on Interactive Intelligent Systems;

Additional Key Words and Phrases: Bandit strategies, Classification, A/B Testing, Conditional
inference tree, UCB strategies, Non-linear bandit, Regret minimization

ACM Reference Format:
Emmanuelle Claeys, Pierre Gançarski, Myriam Maumy Bertrand, and Hubert Wassner. 2019.
Dynamic allocation optimization in A/B tests using classification-based preprocessing. ACM Trans.
Interact. Intell. Syst. , (2019), 33 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Evaluating the impact of a decision in regards to a quantifiable reward is a recurring problem
in many industrial, medical or other applications. For instance, introducing new tools or
new protocols in a production process often impacts the quality and/or quantity of the
production. In marketing, changing a specific page on a website can influence the visitor’s
behaviour. So when the decision consists in choosing between two or more variations, a way

Authors’ addresses: Emmanuelle Claeys, claeys@unistra.fr, University of Strasbourg, 7 Rue René Descartes,
Strasbourg, 67084; Pierre Gançarski, University of Strasbourg, 7 Rue René Descartes, Strasbourg, 67084,
gancarski@unistra.fr; Myriam Maumy Bertrand, University of Strasbourg, 7 Rue René Descartes, Strasbourg,
67084, mmaumy@math.unistra.fr; Hubert Wassner, AB Tasty, 3 Impasse de la Planchette, 75003 Paris,
Paris, France, hubert@abtasty.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2160-6455/2019/-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Claeys et al.

to evaluate the impact of the modification is to use A/B tests1. An A/B test begins with
an exploration phase which aims to compare the performance of each variation in order to
highlight the best ones (i.e., the optimal) according to a given criterion.

The objective is to evaluate the performance of different alternatives (called variations),
for example, of the same page of an e-commerce site. To do this, each visitor (called item) is
assigned to a variation (i.e., the web page that is presented to the visitor).

Then the result of the visit (called reward), for example a purchase, the amount of money
spent or the number of clicks, is observed. At the end of the exploration phase, the user
(e.g., the e-commerce company) takes a decision according to the rewards obtained using
a given criterion depending on the objective (e.g., Increasing of the cumulative purchase
value). The user can then proceed to the exploitation phase: setting the winning variation(s)
as default into production, for every visitor. Tab 1 gives some examples of such A/B tests.

User Item Variation Reward Objective
E-commerce compagny Visitor Webpages Purchase value Global value
Car compagny Car order Product chain Car quality Quality average
Medical protocol Patient Treatment Individual healing Healing rate

Table 1. Examples of A/B tests

Detecting and quantifying differences between variations is the main challenge of A/B testing.
One way to carry out the exploration phase is the frequentist approach. It is based on a static
allocation and defines explicit ratios of allocation of the items to the different variations.

However, a real-world exploration phase implies eventually assigning an item to a non-best
(referred as non-optimal) variation, automatically leading to a loss of earnings. The difference
between the potential reward from the optimal variation and the actual reward is called
regret. This means that each time an item is not assigned to the optimal variation, the
cumulative regret increases. Handling the cumulative regret in order to limit it, while ensuring
that the optimal solution is found, is the second challenge.

Experiments have shown that strategies based on dynamic allocation [36] that uses
probabilistic criteria based on the comparison of the empirical reward distribution of each
variation provide better results in terms of cumulative regret, as well as being faster at
determining the best variation. In this context, methods implementing such strategies have
been proposed and are mainly based on the bandit paradigm [17, 25, 33]. They have proved
their ability to find optimal variation in the general case. But they often fail when the reward
obtained by an item depends on both the variation and the item itself [28]. For instance, in
web marketing, visitors (test subjects) naturally tend to click and buy differently, according
to their own financial resources or their geographical localization. Consequently, contextual
bandits have been developed to consider items characteristics and improve the strategy of
dynamic allocation. Nevertheless, in a lot of cases, items belong to natural groups (e.g.,
social class, gender . . .). And the reward distribution of a variation often differs according
to this belonging. For example, people belonging to a higher class (double income, home
owners,...) can easier purchase an expensive thing than unemployed people. So, people from
the first group can be impacted by the modification of the webpage whereas people from the
second group not.
1For simplicity we define an A/B test as a test that can have more than two alternatives.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 3

In [3] the author indicates that website visitors groups are generally persistent over the
time, and the choice of variation displayed seems to have a low impact even if it exists, on
the behavior.

In fact, sub populations may have different behavior, but when a sub population is too
small the specific effect may be hard to measure. For example, a visitor with a low interest
(or low financial resources) continues to no buy anything whatever version A or B of the
displayed page. Thus, the ratio of people impacted by the modification can be very low.
In this case, detect the very low decreasing or growing of cumulative reward appears as
difficult.

It is therefore interesting, if not essential, for the user to study the impact of the modifi-
cations on each of these groups independently. Unfortunately, these groups are difficult to
determine because they depend on the type of e-commerce: for example, "natural" groups
related to sport may be completely different from those related to arts or politics. A solution
to overcome this problem is to use data mining tools such as clustering or regression methods
for example, on the items using their characteristics. Note that considering that A/B test
users often perform several tests sequentially, extract these groups upstream seems more
relevant than start from scratch at each test. Finally, this segmentation of items into groups
can also help the user to define the modifications to be tested.

In this paper we propose an original A/B testing method, called Ctree-Ucb, which,
instead of using a contextual bandit, is based on the use of several non-contextual bandits,
each dedicated to a particular group of items. Our proposal consist to automatically create
homogeneous groups by a conditional inference method in a pre-processing step to the A/B
test (step 1).

These groups are created according to the objective of the test using information from
previous items already subjected to the original variation (A) supposed implemented before
the test. These information are obtained rewards, items characteristics, temporal information,
. . .

In the A/B test itself (step 2), the method defines as many non-contextual bandits as
there are groups. Each bandit aims to find the optimal variation associated to its group.
To do that, each new item is classified in a group before be transmitted to the associated
bandit.

The remainder of this paper is organized as follows. Section 2 presents the bandit model
with an illustrative example. Based on this example, Section 3 gives a comprehensive review
of the literature on the existing approaches and focuses on contextual strategies able to
take into account the characteristics of the items. Section 4.2 details the proposed methods.
Sections 5, 6 and 7 analyze and discuss the results obtained with this method on real data
from the company AB Tasty 2. Finally the conclusions of the study are done in Section 8.

2 A/B TEST AND BANDIT PARADIGM
2.1 A/B testing
Suppose that a marketing team has to decide whether the ‘picture A’ or ’picture B’ should
be used on a webpage. Traditional techniques (such as frequentist test) trial each version by
splitting incoming users into two groups during a given time. Each group only show a version
of the page (𝑃𝐴 or 𝑃𝐵). At the end of the test, the team can decide which version is the best
one. One problem with this approach is the non-adaptivity of the test [27]. For example, if
a version quickly appears as strongly better than the other one or if the behaviors of the
2https://www.abtasty.com

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

https://www.abtasty.com

4 Claeys et al.

visitors are the same independently of the shown version, the test could be concluded early.
As introduced in Section 1, a bandit model is a good way to solve this problem: each time 𝑡
a user 𝑐𝑡 arrives on the webpage, the bandit algorithm chooses an arm 𝑎 in 𝒜 := {𝑃𝐴, 𝑃𝐵}
and the reward 𝑋𝑐𝑡,𝑎=𝐴𝑡 is reaped (for instance, it equals to 1 if the user purchases the
product and 0 otherwise). The main characteristic of a bandit algorithm is that the ratio
of allocation of the items to the different versions is automatically adjusted: the algorithm
automatically decides when one version should be more often selected than the other one. It
is a real gain because the ability to provide an automatical stop can be directly added to the
A/B test. For instance, the test stops when the items are affected at 90% to a same version.

2.2 The bandit model
The notion of bandit was introduced by Lai and Robbins, [26] under the name of multi bandit
but we use here only the term bandit to simplify the reading. It’s defined as "a problem
in which a fixed limited set of resources must be allocated between competing (alternative)
choices in a way that maximizes their expected gain, when each choice’s properties are only
partially known at the time of allocation, and may become better understood as time passes
or by allocating resources to the choice" [18].

In concrete terms, by analogy with casino slot machines, it is a matter of choosing, for a
player, on a machine with several arms, the one presenting, for him, the best expectation of
gain. Then, after playing and reaping the gain, the player updates the gain estimates on
each arm of the machine. The player’s goal is to find the best arm, called optimal arm, with
as few tries as possible.

Let 𝒜 be a set of possible arms (with |𝒜| ∈ N+) and 𝑎* the optimal arm. The goal of a
bandit is to find the 𝑎* as quickly as possible in order to limit the cumulative regret. This
regret is the sum, for each item, of the difference between the rewards obtained with 𝑎*

and those observed with the chosen arm. Let 𝑋𝐴𝑡,𝑡 be the reward obtained by the arm 𝐴𝑡

selected at the iteration 𝑡 (corresponding to the 𝑡-th item). 𝑟𝑡 is the simple regret at iteration
𝑡, defined by:

𝑟𝑡 = max
𝑎∈𝒜

[𝑋𝑎,𝑡]−𝑋𝐴𝑡,𝑡 (1)

and 𝑅𝑛 is the cumulative regret after 𝑛 iterations, defined by:

𝑅𝑛 =

𝑛∑︁
𝑡=1

max
𝑎∈𝒜

[𝑋𝑎,𝑡]−
𝑛∑︁

𝑡=1
𝑋𝐴𝑡,𝑡 (2)

.
The challenge is to find the best dynamic allocation strategy 𝜋. However, this depends on

the application context, i.e. the potential rewards of each item on each arm. However, these
rewards distributions are unknown and will be estimated. The better these estimates, the
better the allocation. Concretely, with each new item 𝑐𝑡, only one arm 𝑎𝑡 ∈ 𝒜 is chosen, and
therefore only its reward distribution 𝜈𝑎𝑡 = P[𝑋|𝑎𝑡] : 𝑎𝑡 ∈ 𝒜 is updated.

It is for this purpose that the bandit updates the distributions according to the items
submitted to the arms and the rewards obtained. However, this update is tricky because it
can only be done on the selected arm.

Algorithm 1 summarizes a bandit algorithm. It considers an infinite stopping time. In
practice a stopping criterion is chosen according to the use case.

Recall that, since the best dynamic allocation strategy finds 𝑎* the quickest (and gets a
low cumulative convergent regret), the challenge here is to find it.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 5

Algorithm 1 Bandit algorithm
Require: Assign at least one item to each arm 𝑎 ∈ 𝒜

1: loop
2: Receive an item 𝑐𝑡

3: Assign 𝑐𝑡 to an arm 𝐴𝑡 depending on its distribution 𝜈𝐴𝑡 and a strategy 𝜋
4: Receive a 𝑋𝑐𝑡,𝐴𝑡 reward
5: Update 𝜈𝐴𝑡

Output: A sequence of arm choices and rewards

For the rest of the article the following notations will be used:
∙ Due to randomized reward from arm distribution, the regret 𝑅𝑛 may be re-written as:

𝑅𝑛 = 𝑛𝜇𝑎* −
𝑛∑︁

𝑡=1
[𝑋𝐴𝑡,𝑡] (3)

∙ E[𝑅𝑛] is the average regret [5], defined by:

E[𝑅𝑛] = E[
𝑛∑︁

𝑡=1
max
𝑎∈𝒜

[𝑋𝑎,𝑡]−
𝑛∑︁

𝑡=1
𝑋𝐴𝑡,𝑡] (4)

= 𝜇𝑎* − E[
𝑛∑︁

𝑡=1
𝑋𝐴𝑡,𝑡]

∙ 𝜇𝑎 is the (unknown) actual reward average of 𝑎 (under stationary hypothesis) and �̂�𝑎,𝑡

its average estimate at time (or iteration) 𝑡 corresponding to the 𝑡-th item tested.
∙ 𝑎* the optimal arm (to be determined) and 𝜇𝑎* its reward average.
∙ ∆𝑎 = 𝜇𝑎* − 𝜇𝑎 is the difference between the real average of 𝑎* and the real average of

𝑎.
∙ 𝑇𝑎 (𝑡) is the number of times where the arm 𝑎 is chosen at 𝑡.

The previous notations is used in the rest of the paper conditionally, i.e. for a group 𝑘 of
observed items. For instance, the notation 𝑅𝑛,𝑘 = 𝑛𝜇𝑎*,𝑘 −

∑︀𝑛
𝑡=1[𝑋𝐴𝑡,𝑡|𝑘] defines the regret

for a group 𝑘 of items.

Some proprieties. As the user is looking for the arm with the highest average 𝑎*, if the
probability distributions are identical it can lead to a simple non-zero regret although the
bandit systematically assigns 𝑎*. Cumulative regret increases over time, with the following
theoretical guarantees:

Theorem 2.1 (Agrawal et al (1989)). Let 𝑘 and 𝑘′ be some groups of item such as
𝑘 ∪ 𝑘′ = 𝒦 where 𝒦 represent the whole population of item and 𝑘 ∩ 𝑘′ = ∅. Assume 𝑘 is
the most represented group (can be considered as the true group) where 𝜈𝑎*,𝑘 = 𝜈𝑎*,𝑘′ and
𝑎*

𝑘 , 𝑎*
𝑘′ .

lim
𝑛→+∞

𝑅𝑛

log 𝑛
≥

∑︁
𝑎∈𝒜

𝜇𝑎*,𝑘 − 𝜇𝑎,𝑘

𝐾𝐿(𝜈𝑎,𝑘||𝜈𝑎,𝑘′)

Where 𝐾𝐿(.||.) is the Kullback–Leibler divergence between two distributions.

In [37], Salomon and Audibert proposes an non asymptotic bound such as:

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

6 Claeys et al.

Theorem 2.2 (Salomon and Audibert (2011)). Assume that 𝜈𝑎*,𝑘 , 𝜈𝑎*,𝑘′ and 𝑎*
𝑘 , 𝑎*

𝑘′

or ∃𝑎 ∈ 𝒜 : P[𝑑𝜈𝑎,𝑘

𝑑𝜈𝑎,𝑘′
(𝑋) > 0] = 0. Then if 𝑎*

𝑘∪𝑘′ is the only unique best arm in the environment
𝒦, then for any 𝛽 > 0 it holds for some positive constants 𝐶 and 𝐶′

∀𝑛∀𝑎 , 𝑎*
𝑘∪𝑘′ P[𝑇𝑎 (𝑛) ≥

𝐶 log 𝑛

min𝑎∈𝒜 ∆2
𝑎,𝑘∪𝑘′

] ≤ 𝐶′𝑛−𝛽

We present in the following section different bandit strategies. Two approaches are possible,
the first one is a non-informative approach (only rewards are observed), the second is a
contextual approach (item characteristics are considered before the assignment).

3 STATE OF THE ART
3.1 Non informative strategy
The quickest way to find the find the best arm is to assume that this arm is the best for
the majority of items and so apply a non informative strategy which consists to choose the
allocated arm independently of the characteristics of the item.

A bandit strategy is defined in two parts. The first one assumes that the distribution of all
arm rewards follow the same law (like the Bernoulli distribution with Thompson sampling
Algorithm [38, 43] or the Gaussian law Ucb [2]) or otherwise makes no assumptions. The
other part of a bandit strategy is the mathematical model applied to limit regrets. Some of
them are greedy where the best arm (based on previous observations) is chosen according to
a predefined probability (such as Epsilon-Greedy Algorithm [42]) or adaptive (for example
Softmax exploration [44]). According to these two parts, a bandit strategy is defined.
The following section describes one of the most commonly used non-contextual approaches.

3.1.1 Ucb strategy. The Ucb method is a non informative method based on an optimistic
Bayesian strategy (upper bounds of estimate averages): The principle of its 𝜋 strategy is to
use an overestimation of the empirical average �̂�𝑎 for each arm 𝑎, the total number of items
and their allocation on the different arms, to assign a new item to an arm. Concretely, an
arm is chosen if it is promising (because its estimated average is high) or/and few explored.

In fact, the �̂�𝐴𝑡 estimators may be no relevant at the beginning of the test, due to the
small number of items considered [24]. To get around this difficulty, [2] proposes to calculate
an overestimation of this average, called the upper confidence bound, as the value most
probably higher than the real value of the average. The authors justify their proposition by
a policy known as "optimistic in the face of uncertainty" and offers good results.

This upper bound is the sum of the empirical average rewards obtained so far and an
exploration bonus (also known as the confidence interval). It depends on the number of
items assigned and observed. The more observations an arm makes, the more the arm bonus
decreases. If 𝜈𝑎 is Gaussian for all 𝑎, this bound always be upper than the real average.
Thus, the authors define the upper bounds of each arm by:

𝑈𝑝𝑝𝑒𝑟Ucb (𝑎, 𝑡) = 𝛼

√︃
2 * 𝑙𝑜𝑔(𝑡)

𝑇𝑎 (𝑡)
(5)

where 𝑇𝑎 (𝑡) is the number of times the arm 𝑎 has been chosen and 𝛼 is given by the user.
In the initial version of Ucb, 𝛼 = 1 but in practice it has been shown that the optimal
choice of this value depends on the arm distibutions [7].

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 7

The 𝜋 algorithm consists in choosing the arm with the highest upper bound. After each
assignation, �̂�𝐴𝑡 is updated and its bound is reduced (see equation 5). As the confidence
interval depends of 𝑇𝑎 (𝑡), the higher 𝑇𝑎 (𝑡) the less the overestimation: the overestimation of
the chosen arm’s average decreases, to be equal to its real average. The upper bounds of the
unchosen arms remain unchanged.

Figure 1 shows an example of evolution of the confidence bound for five arms according
to the number of submitted items.

in Ucb how, over time, the adaptive arm bounds decrease with regard to the number of
items tested.

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

E
xp

ec
ta

tio
n

2 2 2 2

2

(a) after 10 items tested

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

E
xp

ec
ta

tio
n

11 20 9 13 47

(b) after 100 items tested

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Bandit

E
xp

ec
ta

tio
n

13 45 21 84 237

(c) after 400 items tested
The red points are the real averages. Black crosses are the estimated averages.

Fig. 1. Confidence bound evolution according to number of times an arm has been chosen by Ucb

The Ucb algorithm is reported in Appendix A and achieves an average regret defined by:

E[𝑅𝑡] =
∑︁

𝑎∈𝒜∖{𝑎*}

(𝜇𝑎* − 𝜇𝑎)E[𝑇𝑎 (𝑡)] (6)

To prove the logarithmic convergence of cumulative regret, in [2, 37], the authors define
the upper bound of average regret as:

E[𝑅𝑡] ≤ 12
∑︁

𝑎∈𝒜∖{𝑎*}

log (𝑡)

∆𝑘
(7)

which can by reformulated, using Cauchy Schwarz inequality, as:

E[𝑅𝑡] ≤ 12
∑︁

𝑎∈𝒜∖{𝑎*}

log (𝑡)

∆𝑘

E[𝑅𝑡] ≤
√︂

8|𝒜|𝑡(log 𝑡 +
𝜋2

3) (8)

As refers in Equ. 8, for 𝑡 the total number of items given, an asymptotic bound of regret
is guaranteed over time. Requiring only the average of the arms and the number of items
assigned to each of them, this algorithm offers a low complexity and allows the user to obtain
a choice quickly. In [6], reader can found more details about properties of Ucb strategy.
Variants of the Ucb algorithm have been proposed to improve the theoretical bound in
[1, 15, 16].

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

8 Claeys et al.

3.1.2 Limit of Ucb strategy. The Ucb algorithm is really efficient when the actual distribution
of rewards is Gaussian, assumption which can be checked retrospectively using a static
allocation. Unfortunately, experiments have shown that this assumption is rarely validated.
In fact, the upper bound is not reliable. Consequently, Ucb requires more items to find 𝑎*.
Moreover, if the reward can present extreme values, the convergence can be very long. But,
it is proved that the UCB finally find 𝑎*. And so, Despite these imperfections, as Ucb focus
on the reward average that leads to a low complexity and as it is generally well understood
by the user of an A/B test, it globally responds to the problems of interpretability and
limited computation time.

The remain problem is that 𝑎* can be not respond to the objective of the A/B test (find
which and for whom, as quickly as possible, is the best variation). Indeed, suppose that it
exists two sub-groups of items having different responses to the test. For instance, in the
medical field, an alternative treatment may be efficient for the elderly and not for young
people. In marketing, a page can be optimal only for smartphone users. In this case, the
𝜈𝑎 is very far from a Gaussian distribution. Thus, recent approaches assume that 𝜈𝑎 is a
mixture of Gaussian especially in contextual-based strategies. The idea of the contextual
strategy (presented below) is that reward 𝑋𝑐𝑡,𝐴𝑡 depends of both arm assigned and item’s
characteristics (covariates).

3.2 Contextual Strategy
Contextual approaches assume that it exists sub-groups of items presenting each a different
reward distribution. But, experiments show that it can be difficult to define such groups.
Asking the user to define them is often unproductive, as he/she often does not have a clear
vision of these different groups. To overcome this problem, it is assumed that there are
unknown a priori link between on one hand, the context of the items (i.e., the characteristic
vectors describing the items [47]) and the groups and on the other hand, the groups and the
averages of the rewards obtained. To fit this link, two approaches can be considered:
∙ In contextual bandit, this link is modelled by a unique regression function: the groups

and their associated average rewards are directly set by the bandit during the test (see
Section 3.2.1).
∙ In two step-based approaches, the groups are set using a preprocessing step to the

A/B test (see Section 3.2.2).

3.2.1 Contextual bandits. In this approach, rewards are supposed generated from a unknown
function depending on the items covariates (characteristics) and the arm chosen. The
objective is to fit this function during the test. Consequently, assumptions are made about
the type of function, such as linearity property. Some methods like Lin-Ucb are based on
this idea.

In bandits based on linear regression, the arms’ parameters are mostly calculated by a
matrix inversion, which can be very time consuming regarding to the number of item’s
covariates 𝑑 [27]. These approaches have shown their theoretical and practical performances
in reducing cumulative regrets [5]. In particular the Lin-Ucb algorithm is one of the most
popular of such methods due to its performance and interpretability. Figure 2 shows the
cumulative regret over time 𝑡 with simulated data generated with a linear reward function.
From this figure, one can see that the Lin-Ucb algorithm outperforms the Thompson
Sampling, uniform and Ucb ones.

If the linearity assumption is not established, some techniques coming from statistics
has been proposed. In [12] authors proposes a method based on Generalized Linear Model

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 9

0

50

100

150

200

0 250 500 750 1000

Time

C
um

ul
at

iv
e

R
eg

re
t

Algorithm

LinUCB

Thompson Sampling

UCB

Uniform

The lower the cumulative regret, the better the method

Fig. 2. Cumulative regret of four linear regret-based bandit algorithms on simulated data

(GLM), called GLM-UCB. This method allows to consider a wider class of problems, and in
particular cases where the rewards are counts or binary variables using, respectively, Poisson
or logistic regression. Like Lin-Ucb, GLM-UCB requires an matrix inversion and can be
very costly in terms of time response.

Recently, bandit algorithm based on tree regression was proposed with BanditForest
algorithm [14]. This algorithm uniformly assigns visitors to each arm until a tree forest
models the link function. This random forest is built with the joint distribution of contexts
and rewards. Thus, all past observations (context and rewards) are stored. The uniformly
assignment leads to excessive selection of sub optimal arms, causing the algorithm’s perfor-
mance suffers. Moreover, the main limitation of the algorithm is that it depends on four
parameters requiring strong domain expertise to be set: two parameters directly influence
the level of exploration, one controls the depth of the trees, and one determines the number
of trees in the forest [10]. In [10, 11, 13] the authors propose the tree bootstrap algorithm,
based on the similar approach but which requires no parameters and which automatically
chooses the depth in the trees. However, these algorithm only considers binary rewards,
which strongly limits its use.

The kernelized stochastic contextual bandit Kernel-Ucb [45] provides a non linear
modelization of the link reward function (like GLM-UCB). It use a reproducing kernel
Hilbert space (RKHS). Unfortunately, Kernel-Ucb requires a long latency to provide a
choice.

Moreover, in addition to having to make assumptions (e.g., Gaussian distribution, binary
reward . . .)) to remain understandable and implementable, these methods suffer from many
drawbacks identified in the literature:
∙ In [46] the authors explain that dynamic allocation does not provide more benefit

than a frequentist allocation when the assumptions (e.g., linear dependence between
characteristics and reward, independence between items, ...) have not been fulfilled.
∙ The choices made by the algorithm are not explicit (black box). While understanding

choices is not always necessary in a recommendation system, it is important for A/B
test as the user seeks to understand why and for whom one variation is better than
another.
∙ These methods often require large data set.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

10 Claeys et al.

∙ The CPU or memory resources required to carry out such algorithms can be significant,
especially since the differences between the versions is small.

3.2.2 Two step-based approaches . In the approach, it is assumed that it exists some
natural groups presenting each a Gaussian reward distribution and that these groups can be
determinated before the A/B test itself. The idea is to build these groups a priori. Then,
when a new item is submitted to the system, it classes it first into a group. The assignment
to an arm is only done after and taking into an account the group the item belongs to.

In [30], the authors propose the Single-K-UCB method and show that if groups are well
defined, the cumulative regret early converges asymptotically and the average regret falls
significantly. Indeed, intuitively, the cumulative regret is in this case, bounded by the sum of
the cumulative gaps between best arm and sub-optimal arms for each group (which is higher
than a gap on a non informative strategy). Authors assumes that reward distributions are
clustered and the clusters are determined by some latent variables. They assume that there
is a surjective function 𝑓 which to links each item (with a 𝑐𝑡 context) to a group 𝑘 such
as: 𝑓 (𝑐𝑡) = 𝑘 such that the reward distribution of a 𝑘 group applied to an arm 𝑎 : 𝜈𝑎,𝑓 (𝑐) is
𝜎-Gaussian (where 𝜎2 is the variance, known). Unfortunately, they do not specify how to
identify the 𝑓 function and how to obtain different relevant groups. They only studied the
problem in a context-free setting, and a very weak performance guarantee is provided when
the reward distribution is unknown in those clusters [34].

To address this problem, we propose a new method called Ctree-Ucb which is detailed
in the next section.

4 CTREE-UCB: A CONTEXTUAL APPROACH TO A/B TEST
Our contribution aims at addressing constraints and needs experienced by users in real-world
applications. Thus, in the first instance, we address cases where the system must respond in
a time the shorter as possible (ideally in real-time): for instance, the delay of respond must
be lower than the usual display time of a webpage. In the second instance, we consider that
the items submitted to the system can be very heterogeneous but clusterisable according to
a given criterion. Finally, we want to ensure that the results of the exploration phase are
understandable, and possibly reusable, by the user.

In this context, we propose an approach that consists of defining groups based on the
covariates (i.e., characteristics or features) of the items, each of these groups having the
most homogeneous population as possible. The main idea is that in a such group, the items
have a similar behavior regarding to the proposed version and thus that the distribution of
groups’ rewards can be modelled by a Gaussian distribution. Thus, each of these groups can
be supported by a non-contextual bandit. The general procedure is that each time a new
item is presented to the system, it is automatically assigned to a group according its own
covariates and then, through the associated bandit, an alternative is assigned to it. As the
complexity of this type of bandit is low, this ensure a satisfactory response time.

In summary, the proposed method Ctree-Ucb consists of two main steps:

∙ an offline process for creating groups.
∙ an online A/B test.

4.1 Groups identification
To construct these groups, we suppose that there are information describing performance of
the existing version i.e., a database (referred here as ℒ𝑛: ℒ) which contains, for each item,

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 11

its context and the reward (conversion, number of clicks, survival, . . .) produced on this
"original" version.

Thus, if the test to be carried out concerns the same type of reward and on a variation of
the original version (referred here as the arm 𝐴), using this information to build groups can
only be beneficial. To do that, a model can be learned using learning and validation sets
extracted from ℒ𝑛. This model is then used it to predict the group a new item belongs to
according to its context.

A lot of supervised methods exist to produce such model.
For instance, The decision trees-based algorithms like C4.5 [35] or C.A.R.T. [4] have shown

their effectiveness in finding such homogeneous groups according a numeric/binary rewards
using an entropy measurement (C4.5) or with the Gini index (C.A.R.T.). Unfortunately,
they present two fundamental issues: an over-fitting and selection bias towards continuous
covariates [39]. In the same way, conditional inference trees approches have shown their
robustness compared to these previous algorithms [31]. Moreover these trees have a high
level of stability and robustness [29, 41]. More details will be given in the section 4.2. In
fact, this approach seems very interesting because the pre-process of group construction at
an A/B test and our method Ctree-Ucb based on its has shown good performance.

Moreover, we want the groups to be relevant for the user: they should be both fairly
general (and therefore in small numbers) but nevertheless specific enough to provide real
information to the user. However, too many groups slow down the exploration phase because
too many items will be required to learn on each groups.

4.2 Ctree-UCB process
The global scheme of our framework is given by Fig.3.

Past
observations

Step 1:
Offline

pre-
processing:

Modelization
of subgroups

New
items

Step 2:
On-line

A/B Test
Dynamic allocation

Reward Choice

Dynamic allocation

Result

learnset

1

2 3

1
2

3

ratio (%)

time

100%

0%

A

B

B
A

A

B

Fig. 3. Ctree-Ucb: a contextual approach to A/B test

4.2.1 Step 1. In the this first step, performed offline, a conditional inference tree algorithm
(for instance the one described in [21, 22, 40]) called CTREE (Algo. 2) is applied to a
learning data set (refered here as ℒ𝑛) of 𝑛 items to identify homogeneous groups. It consists in
initially creating one group containing all the items. This group is associated to the root node
of the tree. Then, an recursive divisive process is applied from this node. An independence
hypothesis 𝐻0 between each 𝑗 ∈ {1, . . . , 𝑑} covariate and the reward distribution is evaluated
for all the items of the associated group. Then:
∙ If the hypothesis can be rejected, the group is split into two subgroups using the

covariate 𝑗* with the highest correlation with the reward, according to the value of

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

12 Claeys et al.

this covariate that maximizes the difference in distribution between two groups. The
algorithm is recursively applied on two new nodes associated to the two subgroups.
∙ If the hypothesis cannot be rejected, 𝐻0, at the predetermined risk level 𝜖, for any

covariate, the recursion stops.
To verify the correlation hypothesis, numerous tests exist in the literature (for example

A.N.O.V.A., Spearman test, Wilcoxon Man Witney, Chi2 . . . [21, 40]). At the instantiation
of the Ctree-Ucb scheme, such correlation tests must be defined according to the covariate
types (continuous, binary, categorical . . .) and reward type (continuous or binary) [23].

The conditional inference tree do not require a pruning process, which leads to avoid
the overfitting. Moreover, the selection of the value to split in is based on the univariate
p-values avoiding a variable selection bias towards caracteristics with many possible split
value. If a statistically significant observation may have actually arisen by "chance" because
of the size of the parameter space to be searched, a Bonneferoni correction can be apply
[9]. However, tests integrating categorial covariates can require very long computation time
when a Bonferroni correction is applied [20]. To reduce this time, it is possible to use a
Bonferroni correction by the Monte Carlo method [32]. Such a correction includes a random
part, which varies the tree structure.

At the end of Step 1, groups are described by a reward average and defined by one or
more covariates. Using these information, a predictive function 𝑓 is defined which link to
each new item to a group.

This function actually predicts a group 𝑘 defined by an expected reward according with
𝐴.

Thus, this function 𝑓 can be also considered as a non-linear regression function.

Algorithm 2 CTREE algorithm
Require: ∙ 𝜖 ∈]0, 1[
∙ A dataset of covariates 𝑌 and response 𝑋.
∙ An influence function ℎ depending on the scale of 𝑋.
∙ An appropriate function 𝑔𝑗 , which depends on the scale of the covariate 𝑌𝑗

1: Calculate the the test statistics 𝑠𝑗0 for the observed data
2: Permute the observation in the node
3: Calculate 𝑠 for all permutations
4: Calculate the p-values (number of test statistics 𝑠, where |𝑠| > |𝑠0|)
5: Correct p-values for multiples testing
6: if 𝐻0 not rejected (p-value > 𝜖 for all 𝑌𝑗) then
7: return
8: else
9: Select covariate 𝑌 *

𝑗 with the strongest association (smallest p-value)
10: Search best split for 𝑌 *

𝑗 (maximize test statistic 𝑠) and partition data
11: Apply CTREE for both of the new partitions

Output: An hierarchical partitioning

This regression is based on method described in [22] using the test statistic T which
is derived from [40]. Appendix B gives more details about this method. This function is
used during the A/B test (Step 2). As the step 1 is done offline, it does not delay the
computational time of Ctree-Ucb.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 13

Fig. 4 shows an example of obtained regression tree.

4.2.2 Step 2. The second step of section consist in the A/B test itself (online). It consists
in associating a Ucb bandit to each subgroup to identify the best arms to this group. So,
each time a new item is submitted, the 𝑓 function decides the group the item belongs to.

Then the associated Ucb bandit assigns the item to a arm.As the bandits are independent,
each of them can stops the exploration phase at any time and switch to the exploitation
mode. The test can then end either when all the bandits are in exploitation mode, or after a
given number of items, or a predefined duration. Algor. 3 refers Ctree-Ucb method.

In Appendix C the reader can find more details about theoretical guarantees of Ctree-
Ucb.

Algorithm 3 Ctree-Ucb algorithm
Require: 𝛼 > 0,L𝑛,𝜖 ∈ [0, 1],

1: Generate with ℒ𝑛 a conditional inference tree model : 𝑓 with an 𝜖 accepted error by
CTREE algorithm.

2: loop
3: 𝑐𝑡 ← a new item with a vector 𝑌𝑡 of covariates
4: Assign 𝑐𝑡 to group 𝑘 such as 𝑓 (𝑐𝑡) = 𝑘
5: if 𝑇𝑎,𝑘 (𝑡) = 0 then
6: 𝐴𝑡,𝑘 = 𝑎
7: else

8: 𝐴𝑡,𝑘 = argmax𝑎∈𝒜 {�̂�𝑎,𝑘,𝑡 + 𝛼

√︂
2*𝑙𝑜𝑔(

∑︀
𝑎∈𝒜 𝑇𝑎,𝑘 (𝑡))

𝑇𝑎,𝑘 (𝑡)
}

9: Assign arm 𝐴𝑡,𝑦 to 𝑐𝑡

10: 𝑋𝑐𝑡,𝐴𝑡,𝑘 ← the arm 𝐴𝑡,𝑘 reward
11: Update �̂�𝐴𝑡,𝑘 and 𝑇𝐴𝑡,𝑘 (𝑡)

Output: A sequence of arm choices and rewards for each group 𝑘

4.3 Example on simulated data
Observations made on the data collected via A/B tests indicated that some of the link
functions between the rewards and the covariate can be modelled by a continuous function
per part. For example, the link between the price of a product and the quantity purchased.
If the site offers one item for every 3 items purchased, the linear modelling between the
covariate (quantity of item) and the reward no longer holds. In the medical field, if a
treatment is effective for young children and elderly people, but not deficient for adults,
linear modelling does not work either. However, by using a pairwise function, such cases
can be represented. In such a function, the link is linear only over an interval of values
taken by the covariate. When the link function between a covariate and a reward is linear or
continuous per part, the above-mentioned bandit methods have an increasing cumulative
regret. To validate our method, we first propose to simulate data from a pairwise function
(2000 covariate 𝑥 and 2000 rewards) and compare the results between Ctree-Ucb, Lin-Ucb,
Ucb and uniform (see Appendix C.3 for more details).

4.3.1 Offline step. We set 30% of the data at ℒ𝑛 (so the past rewards of 𝐴 are the only
ones observed), and the remaining 70% are used for the test. The regression tree correctly

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

14 Claeys et al.

x

1

≤ 1.98 > 1.98

x

2

≤ 0.98 > 0.98

Node 3 (n = 118)

−1

−0.5

0

0.5

1

1.5

2

Node 4 (n = 112)

−1

−0.5

0

0.5

1

1.5

2

x

5

≤ 2.98 > 2.98

Node 6 (n = 115)

−1

−0.5

0

0.5

1

1.5

2

x

7

≤ 3.98 > 3.98

Node 8 (n = 136)

−1

−0.5

0

0.5

1

1.5

2

Node 9 (n = 119)

−1

−0.5

0

0.5

1

1.5

2

5 groups are identified: Node 3, Node 4, Node 6, Node 8 and Node 9

Fig. 4. Groups identification on simulated data

identifies each group where the link between the covariate and the reward is identical (each
final leaf is a group, represented by an estimated average, see Figure 4).

4.3.2 A/B test (Dynamic allocation). On the A/B test itself, a dynamic allocation is then
made for each group. Figure 5 shows the cumulativce regret over time, of different algorithms.
Figure 6 to 10 show the cumulative regret of Ctree-Ucb specific to each group. The
following section does the same comparison on real datasets.

0

300

600

900

0 2000 4000 6000 8000

Time

C
um

ul
at

iv
e

re
gr

et Algorithm

Ctreeucb

LinUCB

UCB

Uniform

Fig. 5. Cumulative regret of Ctree-Ucb, Lin-Ucb, uniform and Ucb with a non linear reward
function

5 MATERIALS AND EXPERIMENTS SETTING
To evaluate the performance of Ctree-Ucb, we compare it to existing A/B methods: a global-
based bandit (Ucb), the Lin-Ucb and Kernel-Ucb bandits, as well as a uniform-based
algorithm which chooses the variations alternatively. The main criteria for this evaluation
are the cumulative and average regret. The experiments are carried out over three data sets.
The first one is from the movieLens movie database (small MovieLens, [19]) while the second
and third sets come from the company AB Tasty and correspond to an e-merchant A/B
tests.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 15

0 50 100 150 200 250

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r
su

bg
ro

up
 3

Fig. 6. Node 3

0 50 100 150 200 250

0
2

4
6

8
10

12

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r
su

bg
ro

up
 4

Fig. 7. Node 4

0 50 100 150 200 250

2
4

6
8

10
12

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r
su

bg
ro

up
 6

Fig. 8. Node 6

0 50 100 150 200 250 300

0
5

10
15

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r
su

bg
ro

up
 8

Fig. 9. Node 8

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

cu
m

ul
at

iv
e

re
gr

et
 fo

r
su

bg
ro

up
 9

Fig. 10. Node 9

Fig. 11. Cumulative regret of Ctree-Ucb for each group

All experiments are carried out using the R free open language3

5.1 Data
5.1.1 Small MovieLens data set. This dataset comes from the MovieLens public database4. It
contains movies described by 14 binary characteristics (Adventure, Action, Comedy, Drama,
Thriller, Romance, Sci-Fi . . .) and their associated rates (from 0 to 500) given by film
reviewers.

To simulate an A/B test using this data, we define:
∙ movies as items: There are 9125 movies in the original database
∙ film reviewers as the variations: denoted by 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸: the 5 reviewers.
∙ rates as the rewards: the reward of a movie 𝑐𝑡 is the rate 𝑋|𝑎, 𝑐𝑡 given by the reviewer

𝑎 ∈ {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} associated to the variation. In case the film has not been rated
by this reviewer (which may appear mainly with recent films), the missing value is
evaluated by the global MovieLens average.

The objective is to obtain the best cumulative films evaluation.

5.1.2 AB Tasty datasets. These A/B tests are comparisons of a variation of a web-page with
its original state (referred here as 𝑃1 and 𝑃2, respectively).

These tests were performed in 2018 on AB Tasty’s servers for several e-merchant clients.
It consisted in using a static allocation with an equal distribution of visitors between the
two pages 𝑃1 and 𝑃2.

For each test, visitors who navigate on the tested web page (i.e., a potential customer)
are identified by an ID: the first time one visits the web page, a new visitor description (see
Tab. 2) and its associated ID are generated.

This description may vary depending on the data available to the user. Then a variation
(𝐴 or 𝐵) is allocated to it. A cookie memorizes the description, the ID and the allocated
version.

3They have been done on a Intel® Core™ i5-8250U CPU 8-processors running at 1.60GHz with 7.5 GB of
RAM on Ubuntu 17.10, 64 bits. All materials (including data, conditional tree regression framework CTREE
[23] and Ctree-Ucb) are available at: https://github.com/R-workshop-strasbourg/bandit4abtest
4These datasets change over time, last update was done in October 2016 but the version of database used in
out experiments is available at https://github.com/emmanuelleclaeys

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

https://github.com/R-workshop-strasbourg/bandit4abtest
https://github.com/emmanuelleclaeys

16 Claeys et al.

Each time they come back on the tested page, the same variation is shown. So, we assume
that no statistical association between visitors exist. We present the results of two A/B tests
performed on two different websites

Table 2. Item covariates of A/B Test Dataset

Type covariates (number of possible value or domain)
Integer Visits (N)

Categorial Navigator’s language (27), Navigator type (6), Device (3), Operating System (7)

All the actions of the visitors during their visits are stored. At the end of the test (i.e.,
after 𝑇 visitors) the reward is computed. According with the user’s objective, the reward
corresponds to a purchase value by the visitor during all of its visits regardeless the visit(s)
the purchase(s) have happened after the assignation. It is defined by cumulative sum if the
visitor 𝑡 has purchased on the web page.

Notations used throughout the paper. For 𝑁 variations 𝑉0, 𝑉1, . . . , 𝑉𝑁 , 𝑆𝑖 is the set of
items to which variation 𝑉𝑖 has been allocated, 𝑇𝑖 = |𝑆𝑖| and 𝑇 = 𝑇0 + 𝑇1 + · · · + 𝑇𝑁 where
|.| denotes the cardinalty of a set.

5.2 Existing methods to be compared
The performance of Ctree-Ucb is compared with four algorithms:
∙ Two algorithms with a non informative strategy which do not take into account the

item’s contexts:
– uniform which no require any parameter.
– The Ucb strategy described in Section 3.1.1.
∙ Two algorithms with a contextual strategy (see Section 3.2.1) :

– The Lin-Ucb strategy algorithm using linear reliability assumption.
– The Kernel-Ucb strategy algorithm without use of linear reliability assumption,

these policy estimate each variation’s reward as well as a kernel regression of charac-
teristics

Each algorithm will provide a sequence of choice. These sequence are compared with a
model who always chose the best variation (see section 2.2), trained with all data in the test
set, so the cumulative and average regret at the end of the A/B test (time T) is evaluated.

Note that Lin-Ucb and Kernel-Ucb require to transform categorical characteristic into
binary ones.

5.3 Experiment protocol
5.3.1 The A/B test parameters. All the algorithm (except uniform) are derived from the
standard Ucb algorithm which requires setting the confidence interval parameter defined
in Eq. 6, Section 3.1.1. To evaluate impact of the parameter on the results we have been
carried out experiments with different values of 𝛼 (from 0.25 to 2.5, values generally found
in the literature).

To limit the CPU time consumed by the Kernel-Ucb algorithm, we have limited the
numbers of items used in the kernel regression to 100.

5.3.2 A/B test simulation. The principle of simulation is to apply each algorithm on data
sets and to compare their obtained cumulative regrets. We compare the results with a
non-linear regression (CTREE) model that learns from all the data. Thus when assigning

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 17

an item to a variation, regret is evaluated as the difference between the maximum prediction
(between all possible variations) and the prediction of the chosen one. This assessment can
be seen as a difference between conditional averages and is based on the theoretical definition
presented in section 2.

For Ctree-Ucb method, the offline step (see Section 5.3.3) consisting to learn a conditional
regression tree is firstly done. Then each item is submitted to this tree in order to determinate
the group it belongs to. Finally, the item is submitted to the classical UCB algorithm
associated to this group.

For each data set, we have considered each variation as a potential original variation. So,
for the Movie data set, five configurations have been tested corresponding each to a different
choice of movie rate as original variation. Indeed, since the tree is built on the original, the
choice of variation A assigns the rest of the process.

5.3.3 Ctree_ucb offline step. The Ctree-Ucb offline step which consists in defining the
item groups used in the contextual A/B test is crucial. It strongly impacts the A/B test
process. To produce these groups, we used the R conditional tree regression framework CTREE
[23] with ten-fold cross validation and different maximum error risk.

To assess this impact, we have carried out experiments with different configurations
depending the ratio between the number of items used to learn the regression tree and the
one used to simulate the A/B test

Additional notations. 𝐿 = |ℒ| where ℒ is the set used to learn the conditional regression
tree. 𝑇𝐴/𝐵 = |𝑆𝐴/𝐵 | where 𝑆𝐴/𝐵 is the set used to simulate the A/B test. 𝜖 is the error risk
parameter to CTREE

To respect the assumption that, before the A/B test, the user only knows the rewards
obtained by the original variation (referred here as 𝑉𝐴), the regression tree can only build
from the set of items 𝑆𝐴 to which variation 𝑉𝐴 has been allocated . So ℒ ⊂ 𝑆𝐴. Two
configuration have been tested:
∙ Conf30,70: ℒ = 30% of 𝑉0, 𝑆𝐴/𝐵 =

∑︀
𝑖{70% of 𝑆𝑖}

∙ Conf100,100: ℒ = 𝑉0, 𝑆𝐴/𝐵 =
∑︀

𝑖 𝑆𝑖

5.3.4 Experiment configurations. Tab. 3 summarizes all the parameters and their different
potential values.

Data set Algorithms Parameters

MovieLens Ucb, Lin-Ucb, Kernel-Ucb 𝛼 ∈{0, 0.25, 0.5, 1, 1.5, 2, 2.5}

Ctree-Ucb

𝑉𝐴 ∈ {𝑉𝑖}
AB Tasty dataset 1 Config. ∈ {Conf30,70, Conf100,100}

AB Tasty dataset 2 𝜖 ∈ {0.01, 0.05, 0.1}
𝛼 ∈ {0, 0.25, 0.5, 1, 1.5, 2, 2.5}

Table 3. Algorithm parameters

There are 441 combinations : 3× 3× 7 combinations for the 3 UCB-based algorithms and
(2× 2× 2× 3× 7) + (5× 2× 3× 7) for the Ctree-Ucb method

We report only 88 combinations in our experiments for more readability.
For each experiment, a table summarizes the cumulative and average regret of each

algorithm. The average regret allows to evaluate the evolution of the cumulative regret
compared to the set of tested items (𝑆). The best performances (cumulative regret / average)
appear in bold in these table.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

18 Claeys et al.

Ctree-Ucb
Lin-Ucb Kernel-Ucb Ucb uniform𝑉𝐴 : R1 𝑉𝐴 : R2 𝑉𝐴 : R3 𝑉𝐴 : R4 𝑉𝐴 : R5

Configuration 𝜖 = 0.05 𝜖 = 0.05 𝜖 = 0.05 𝜖 = 0.05 𝜖 = 0.05

Config.30,70
𝑅𝑇

E[𝑅𝑇]
19155

3
21628
3.39

28458
4.47

27894
4.37

19976
3.13

22378
3.50

21239
3.32

20650
3.23

22808
3.57

Config.100,100
𝑅𝑇

E[𝑅𝑇]
27875
3.05

34152
3.74

35679
3.91

35908
3.94

37679
4.13

68101
7.46

40848
4.48

31146
4.41

45643
5

Table 4. Influence of segmentation’s parameters on the cumulative regret 𝑅𝑇 and average regret E[𝑅𝑇]
with movieLens dataset (with 𝛼 = 1)

6 EXPERIMENTS
6.1 Movie data set
6.1.1 Offline step. On Fig. 12, each leaf is associated the mean and the variance of a group
(represented by a boxplot). There is 9 leafs.

genre_Drama
p < 0.001

1

≤ 0 > 0

genre_Musical
p < 0.001

2

≤ 0 > 0

genre_Mystery
p < 0.001

3

≤ 0 > 0

genre_Comedy
p = 0.016

4

≤ 0 > 0

genre_Action
p = 0.02

5

≤ 0 > 0

Node 6 (n = 396)

100

200

300

400

500
Node 7 (n = 207)

100

200

300

400

500
Node 8 (n = 660)

100

200

300

400

500

genre_Film_Noir
p = 0.011

9

≤ 0 > 0

Node 10 (n = 73)

100

200

300

400

500
Node 11 (n = 8)

100

200

300

400

500
Node 12 (n = 85)

100

200

300

400

500

genre_War
p = 0.017

13

≤ 0 > 0

genre_Action
p = 0.02

14

≤ 0 > 0

Node 15 (n = 1133)

100

200

300

400

500
Node 16 (n = 98)

100

200

300

400

500
Node 17 (n = 77)

100

200

300

400

500

Fig. 12. Conditional inference tree on movieLens dataset (Config.30,70, 𝑉𝐴 : Reviewer 1, 𝜖 = 0.05)

6.1.2 A/B test (Dynamic allocation). On MovieLens dataset, the last movies (with less
ratings) of the dataset gets generally the same ratings for all reviewers. That is due to
replacement of missing values by the average values. This can explain, for some movies, a
regret equal to zero whatever the variation chosen. So find the best variation with dynamic
allocation is thus difficult (see section 3.1.2). A such situation may decrease the performance
of observed bandits and the uniform algorithm gets equal performance in a such situation.

The results in terms of cumulative regret are little impacted by the value of the 𝜖 parameter,
and its impact on results are treated on the next experiments. So, for sake of readability, in
Tab. 4, we report only the classical value of the accepted risk of error, i.e. 𝜖 = 0.05. Ctree-
Ucb presents the lowest cumulative regret (in bold in Tab. 4). The Lin-Ucb algorithm
presents low performance. One of the explications could that the linearity hypothesis required
by this algorithm is not respected. Kernel-Ucb gets a cumulative regret comparable to
a frequentist allocation. One explanation can be than its require more data to make its
regression. Ctree-Ucb gets a better result with reviewer 1 (in bold) with Config.30,70 or
Config.100,100. The learning with reviewer 3 (on Config.30,70) or 5 (Config.100,100) decrease

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 19

its performance. We suppose than they implies under or over fitting depending of the
configuration.

To obtain good results with Ctree-Ucb, whatever the parameter 𝑉0, the offline step
must be done on a population representative of the one to be tested.

However, Fig. 14 shows how 𝛼 impacts cumulative regret. Regardless the 𝛼 value, Ctree-
Ucb perform better then other methods and guarantees stable results. Opposite to other
algorithms, Kernel-Ucb performs differently according to 𝛼: Its cumulative regret seems
strongly dependent on this parameter. So choosing a sub optimal value for 𝛼 can make it
less efficient than uniform (Fig. 14).

0

5000

10000

15000

20000

0 2000 4000 6000
Time

C
um

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

Fig. 13. Cumulative regret with movieLens dataset (𝑉𝐴 : R1, Conf30,70, 𝜖 = 0.05,𝛼 = 0.25)

0.0 0.5 1.0 1.5 2.0 2.5

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

Fig. 14. Cumulative regret according to 𝛼 with movieLens dataset (𝑉𝐴 : R1, Conf30,70, 𝜖 = 0.05

6.2 AB tasty database 1
6.2.1 Offline step. The user have a clothing sales website and its objective is to increase
the value of purchase. On Fig. 15, each leaf is associated an expected reward (a purchase
value). On Config.30,70 2543 visitors are dedicated to Step 1 (learning step) and 5934 visitors
are tested (Step 2). On Config.100,100 steps 1 and 2 have 8477 visitors. There is 10 groups
identifed by the first Step. Number of past visits before see the tested page has the strongest
correlation with the purchase values. However, purchase value can increase or decrease
according to the visitor’s user agent or language.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

20 Claeys et al.

Ctree-Ucb
𝑉𝐴 : 𝑃1 𝑉𝐴 : 𝑃2 Lin-Ucb Kernel-Ucb Ucb uniform

Configuration 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1

Conf30,70
𝑅𝑇

E[𝑅𝑇]
100

1.68 * 10−2
100

1.68 * 10−2
100

1.68 * 10−2
355

5.59 * 10−2
355

5.59 * 10−2
355

5.59 * 10−2
364

6.11 * 10−2
592
9.97 * 10−2

408
6.87 * 10−2

6610
1.11

Conf100,100
𝑅𝑇

E[𝑅𝑇]
152

1.79 * 10−2
152

1.79 * 10−2
152

1.79 * 10−2
67

0.79 * 10−2
67

0.79 * 10−2
67

0.79 * 10−2
24

0.28 * 10−2
448
5.28 * 10−2

241
2.840.79 * 10−2

8148
0.96

Table 5. Influence of segmentation’s parameters on the cumulative regret and average with AB Tasty
dataset 1 (𝛼 = 1)

6.2.2 A/B test (Dynamic allocation). On Config.30,70, all results provided by Ctree-Ucb
(in bold) are the best. On AB tasty dataset 1, the Tabs 5 gives the cumulative regret
according to the different parameters (𝜖 and 𝑉𝐴). With all configuration the 𝜖 parameter
doesn’t modify the tree structure. However, the challenge in step 1 is to avoid overfitting
(to many groups as in Config.100,100, 𝑉 _𝐴 : 𝑃_1 in Tabs. 5) or underfittig (to less group
as in Config.30,70, 𝑉 _𝐴 : 𝑃_2 in Tabs. 5). In fact, too few groups lead to performance
similar to that of a non-contextual strategy. On the other hand, too many groups slow
down the exploration period, but Ctree-Ucb results remain more effective than the Ucb
Kernel-Ucb and uniform.

In this test, variation A was the best for all, therefore (see Fig 16) all bandit algorithms
have a logarithmic cumulative regret It also appears that the exploration period would be
stop early (after 2000 visitors) with our method than a frequentist approach (uniform) and
consequently save money to the user.

visit.y
p < 0.001

1

≤ 12 > 12

userAgent
p < 0.001

2

Android, ERREUR_OS, iPhone, LinuxiPad, Macintosh, Windows

userAgent
p = 0.021

3

Android, ERREUR_OSiPhone, Linux

Node 4 (n = 63)

0
100
200
300
400
500

Node 5 (n = 1596)

0
100
200
300
400
500

Node 6 (n = 2475)

0
100
200
300
400
500

userAgent
p < 0.001

7

ERREUR_OS, iPad, iPhone, Linux, Windows Macintosh

visit.y
p = 0.002

8

≤ 75 > 75

userAgent
p = 0.019

9

ERREUR_OS, iPad, iPhoneLinux, Windows

Node 10 (n = 218)

0
100
200
300
400
500

Node 11 (n = 760)

0
100
200
300
400
500

userAgent
p < 0.001

12

iPad, iPhone, WindowsLinux

visit.y
p = 0.021

13

≤ 96 > 96

Node 14 (n = 17)

0
100
200
300
400
500

Node 15 (n = 10)

0
100
200
300
400
500

Node 16 (n = 32)

0
100
200
300
400
500

langID
p = 0.038

17

1 3, 5

Node 18 (n = 18)

0
100
200
300
400
500

Node 19 (n = 7)

0
100
200
300
400
500

Figure 15. Tree on AB Tasty dataset 1 (Config.30,70, 𝑉 _𝐴 : 𝑃 _1, 𝜖 = 0.05)

6.3 A/B tasty database 2
6.3.1 Offline step. The user owns a media website, and wants to optimize the purchase
values. 800 visitors are dedicated to Step 1 (learning step) and 1865 visitors are tested (Step
2). As the previous experiment, on Fig. 18, each leaf is associated an expected reward (a
purchase value). There is 7 groups discovered in the first Step. We note that characteristics
present in the previous experience (user agent, visits) have also an influence on groups. On
the other hand, there is a new one that appears: the browser (called name). Our hypothesis
is that since the sale concerns online videos, the user’s browser is likely to influence the
visual rendition displayed.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 21

0

2000

4000

6000

0 2000 4000 6000
Time

C
um

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

Fig. 16. Cumulative regret according to 𝛼 with AB Tasty dataset 1 (Conf30,70 𝑉𝐴 = 𝑃1,𝜖 = 0.05)

0.0 0.5 1.0 1.5 2.0 2.5

0
50

00
10

00
0

15
00

0
20

00
0

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

Fig. 17. Cumulative regret according to 𝛼 with AB Tasty dataset 1 (𝑉𝐴 : 𝑃1, Conf30,70, 𝜖 = 0.05)

userAgent
p < 0.001

1

Android, ERREUR_OS, iPad, iPhone, Macintosh Linux, Windows

name
p < 0.001

2

"Internet Explorer", Safari Chrome, Firefox, Opera, Other

visit.y
p = 0.003

3

≤ 1 > 1

Node 4 (n = 18)

5

10

15

20

25
Node 5 (n = 454)

5

10

15

20

25

visit.y
p < 0.001

6

≤ 1 > 1

Node 7 (n = 22)

5

10

15

20

25
Node 8 (n = 290)

5

10

15

20

25

visit.y
p < 0.001

9

≤ 23 > 23

visit.y
p < 0.001

10

≤ 1 > 1

Node 11 (n = 46)

5

10

15

20

25
Node 12 (n = 871)

5

10

15

20

25
Node 13 (n = 964)

5

10

15

20

25

Fig. 18. Tree on abtasty dataset 2 (Config.100,100, 𝑉𝐴 : 𝑃1, 𝜖 = 0.05)

6.3.2 A/B test (Dynamic allocation). Tabs 6 gives the cumulative regret according to
the different parameters (𝜖 and 𝑉𝐴). On 𝑉𝐴 : 𝑃1, Conf30,70 the tree structure is only
slightly modified (occurrence or avoidance of one/two groups maximum). On Conf100,100
with all configuration the 𝜖 parameter dosen’t modify the tree structure, see Figure 20.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

22 Claeys et al.

However, according to 𝑉𝐴 = 𝑃1 Ctree-Ucb gets the best results whatever the configuration.
Nevertheless, on 𝑉𝐴 = 𝑃2, best results will given by Lin-Ucb. Fig 19 gives the gives the
cumulative regret according to 𝛼 and spots the robust performance of Ctree-Ucb

0.0 0.5 1.0 1.5 2.0 2.5

20
00

40
00

60
00

80
00

10
00

0

α

C
um

ul
at

ive
 re

gr
et

Ctreeucb

LinUCB

UCB

KernelUCB

Uniform

Fig. 19. Cumulative regret according to 𝛼 with AB Tasty dataset 2 (𝑉𝐴 : 𝑃1, Conf30,70, 𝜖 = 0.05)

0

2000

4000

6000

0 1000 2000
Time

C
um

ul
at

ive
 R

eg
re

t Algorithm
Ctreeucb

KernelUCB

LinUCB

UCB

Uniform

Fig. 20. Cumulative regret with A/B tasty dataset 2 (Conf100,100 𝑉𝐴 = 𝑃1,𝜖 = 0.05,𝛼 = 1)

Ctree-Ucb
𝑉𝐴 : 𝑃1 𝑉𝐴 : 𝑃2 Lin-Ucb Kernel-Ucb Ucb uniform

Configuration 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1

Conf30,70
𝑅𝑇

E[𝑅𝑇]
1251
0.67

1263
0.67

1265
0.67

3110
1.67

3110
1.67

3110
1.67

3092
1.67

4469
2.40

4284
2.30

4279
2.30

Conf100,100
𝑅𝑇

E[𝑅𝑇]
1994
0.75

1994
0.75

1994
0.75

3843
1.44

3843
1.44

3843
1.44

2457
0.92

7007
2.63

6114
2.30

6862
2.57

Table 6. Influence of segmentation’s parameters on the cumulative regret and average with ab tasty
dataset 2. (𝛼 = 1)

Groups analysis. The cumulative regret of Ctree-Ucb (see Fig. 20) is the sum of the
cumulative regret of each group, we propose a more detailed analysis of Ctree-Ucb results
by observing the cumulative regret of the 7 subgroups. The parameters of Ctree-Ucb are:
(Conf100,100 𝑉𝐴 = 𝑃1,𝜖 = 0.05,𝛼 = 1)

Note that the group names in Fig. 21 refer to the id of the leaf in the tree and not the
n-th group.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 23

∙ Figures 21b, 21c and 21e shows the cumulative regret of Group #5, Group #7 and
Group #11. In theses figures, the cumulative regret converges asymptotically. For
example in Group #7, the first half of the visitors tested produced 100% of the total
cumulative regret. For the last visitors their regret is always equal to zero. This result
shows for these groups, that Ctree-Ucb ends the exploitation in an optimal way.
This also suggests that these groups are homogeneous (see section 3.1.2).
∙ Figures 21a, 21f and 21g shows groups’ cumulative regret, almost equal throughout

the A/B test. Only few visitors belonging to this group were impacted by the A/B
test. These results shows that Ctree-Ucb separate unaffected visitors correctly, see
section 5.1.2).
∙ Figure 21d shows a case where the cumulative regret grows almost linearly throughout

the A/B test. For this group, the variation chosen for exploration require time or is not
the best for all visitors. There are different reasons may explain this: the gap between
variations’ average is really small, learning from the original page did not correctly
identify all possible groups existing in the test dataset, or the characteristics used are
not sufficient to give a reliable average for this group.

0 20 40 60 80 100 120 140

0
5

10
15

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

4

(a) Group #4

0 50 100 150 200 250 300

0
5

10
15

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

5

(b) Group #5

0 20 40 60 80 100 120

0
5

10
15

20
25

30

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

7

(c) Group #7

0 100 200 300 400

0
50

10
0

15
0

20
0

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

8

(d) Group #8

0 100 200 300 400

0
2

4
6

8

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

11

(e) Group #11

0 200 400 600 800

0.
00

0.
05

0.
10

0.
15

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

12

(f) Group #12

0 50 100 150 200 250

4
5

6
7

8
9

10
11

Index

cu
m

ul
at

ive
 re

gr
et

 fo
r s

ub
gr

ou
p

13

(g) Group #13

Fig. 21. Cumulative regret for some groups with AB tasty Database (Conf100,100 𝑉𝐴 = 𝑃1,𝜖 = 0.05,
𝛼 = 1)

Time response. When the user requires a fast response time (for example for an A/B test
that chooses between two web pages, for each visitor the algorithm must give a choice in
less than a half millisecond)

The step one of Ctree-Ucb is computed before the ab test (offline), the user has the
time to compute it. thus, time allocated to step one is therefore not considered. Only
the computation time required for dynamic allocation, i.e. step 2 (online), is considered.
We report at Tab.7 a computation time required for Ctree-Ucb and compared it with
Lin-Ucb, Kernel-Ucb and Ucb on Config.100,100. We also include the longest calculation
time among all groups (max group). As the visitor groups are tested separately, it is possible
to distribute the computation time.

After several experiences, the response time per visitor for Ctree-Ucb is always less
than one millisecond. Kernel-Ucb, on the other hand, requires the longest computation
time. This is mainly due to the regression calculation of the kernel. However, Lin-Ucb and
Kernel-Ucb time response increases with the number of covariates 𝑑. Ctree-Ucb has a
short execution time and respects the response time required. .

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

24 Claeys et al.

Ctree-Ucb Lin-Ucb Kernel-Ucb Ucb
Total time execution (second) 0.504 (max group : 0.226) 0.622 16.013 0.096
Time execution by visitor (millisecond) 0.18 (max group: 0.08) 0.23 6 0.03

Table 7. Total time calculation of each algorithm (Config.100,100) on A/B Tasty dataset 2

7 DISCUSSION
Our experiences have indicated that Ctree-Ucb responds to different A/B test issues. Our
results includes continuous or categorical characteristics, continuous reward and a number of
possible variations higher than two (A/B/C/. . .). It shows the performance of Ctree-Ucb
for different types of tests.

Ctree-Ucb requires 3 parameters : Conf., 𝑉𝐴, 𝜖 and 𝛼. Our experiences conclude that:
∙ A partial dataset (Conf30,70) for step one is sufficient to obtain results comparable to

the total dataset (Conf100,100).
∙ By considering different original variation 𝑉𝐴, the results of Ctree-Ucb may be

different. However, Ctree-Ucb remain good compared to result of Lin-Ucb, Kernel-
Ucb and Ucb.
∙ 𝜖 parameter (associated with the accepted risk in the inference tree) get a lower

influence on its result. A 0.05 default value can be set
∙ an incorrect 𝛼 value can lead to a degradation of Ucb performance while Ctree-Ucb

is less sensitive to the alpha parameter.
The quality result from Ucb and Lin-Ucb are very different according to data type.

These algorithm can be equivalent than uniform when their assumptions (like linearity,
. . .) are not verified, or when the 𝛼 value is not optimal.

Kernel-Ucb is difficult to use in practice. As Cesa-Bianch et al. [8] said "In particular,
when the number of kernel evaluations is bounded, there are cases where no algorithm
attains performance better than a trivial sub-sampling strategy, where most of the data
is thrown away. Also, no algorithm can work well when the regularization parameter is
sufficiently small or the norm constraint is sufficiently large."

On the other hand, furthermore, with AB Tasty’s datasets, Ctree-Ucb gets the best
results. Theses datasets corresponds to our main objective, the other one are mainly there
to provide results on public datasets.

8 CONCLUSION
We presented a new contextual algorithm Ctree-Ucb and compared it to synthetic and
real data. Ctree-Ucb gets a cumulative regret comparable to the best performance of other
state of the heart algorithms. We showed that Ctree-Ucb provides good results whatever
parameters are chosen and that a default setting is enough to obtain reliable results. We have
also shown that the computation time required for Ctree-Ucb allows its integration in an
industrial environment where a fast response time is necessary. Moreover, experiments have
shown that the conditional inference tree is a powerful method for achieving group definition,
leading to a decrease in cumulative/average regret. In practice, integrating Ctree-Ucb on
an A/B test platform for e-commerce websites has presented the following advantages:
∙ Conditional inference trees are easily interpretable by a user (usually a marketing

expert), which allows them to make assumptions for each group. The user identifies
"personas": i.e. a type of visitor. This makes it easier to imagine variations.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 25

∙ Conditional inference trees manage categorical data well and this is what is most
common on the web in practice. These characteristics can be provided by the visitor
(device, browser, etc...) or supplemented by external services (such as Data Management
Platform) that provides "marketing" information (focus, gender, age category, etc...).
Unlike comparative methods, it’s not required to transform categorical data into binary
one.
∙ Creating the tree on data from the original variation is reassuring for the user. There

is no feeling of risk since it is the original variation, already in production, that is
used. The variation (feared, for fear of losing money) will only be evaluated in a bandit
context.
∙ Sometimes the variation changes are minor; in practice, the test will have an impact

only on a few groups. Isolation of items producing so-called "extreme" or no possible
rewards in a group. Like a robot that generates many clicks or no purchase . . . Such
items can disrupt the exploration period. In fact, our method isolates extreme cases,
limiting their negative impact on the whole experience. As the opposite a Lin-Ucb
are strongly impacted by extreme values.
∙ The pre-process selection of characteristics correlated to the response excludes those

that are of no interest. Then we also use a non-linear regression approach before the
test. This is a trade-off between approaches that learn from scratch but can increase
regret and a global approach that limits the interpretation of the A/B test (only one
best variation is considered). That leads to a regret decreasing over the test.
∙ The group construction, performed offline, allows to obtain a response time comparable

to a non-contextual method and can be decreased with a distributed computing (like
one group per server). Thus, Ctree-Ucb has a very low response time compared to
traditional contextual methods. It can be implemented for an A/B e-marketing test or
any use case where the user needs a fast response.

The generation of groups by a conditional inference tree is based on statistical tests that
accept missing values. Missing data can happen in many practical cases and the use of
Ctree-Ucb is a solution to such situations.On the other hand, Ctree-Ucb does not require
a large number of items to learn, e.g., in small (30 items) to moderately sized samples
(100k items), conditional inference trees ensure that the right-sized tree is grown without
additional (post-)pruning or cross-validation.

The good performance of Ctree-Ucb at identifying groups with different original variation
suggests a correlation between the distribution of variations. In practice, most of the times,
the changes provided by a variation are limited. So we can create groups on variation A and
assume that they are similar on variation B.

Our experiment on partial data (first 30%) or on the all dataset shows that the groups
are persistent over the time. Moreover, groups identification can help guide the user on the
composition of the test itself. If the test was irrelevant for a group, another test can be done,
more specific.

9 ACKNOWLEDGES
This research was supported by A/B Tasty company and CNRS institute. We thank Jérémie
Mary for assistance with bandit techniques. Thanks to Gaëtan Philipot for proofreading
and their support. We would also like to show our gratitude to the Rémi Aubert and Alix
de Sagazan for sharing support to us during the course of this research.

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

26 Claeys et al.

REFERENCES
[1] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. 2014. Regret in Online Combinatorial

Optimization. Math. Oper. Res. 39, 1 (Feb. 2014), 31–45. https://doi.org/10.1287/moor.2013.0598
[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of the Multiarmed Bandit

Problem. Machine Learning 47, 2 (01 May 2002), 235–256. https://doi.org/10.1023/A:1013689704352
[3] Léon Bottou, Jonas Peters, Joaquin Qui nonero Candela, Denis X. Charles, D. Max Chickering, Elon

Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013. Counterfactual Reasoning and Learning
Systems: The Example of Computational Advertising. Journal of Machine Learning Research 14 (2013),
3207–3260. http://jmlr.org/papers/v14/bottou13a.html

[4] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. 1984. Classification and Regression Trees.
Taylor & Francis.

[5] Sébastien Bubeck and Nicolò Cesa-Bianchi. 2012. Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Foundations and Trends® in Machine Learning 5, 1 (2012), 1–122.
https://doi.org/10.1561/2200000024

[6] S. Bubeck, V. Perchet, and P. Rigollet. 2013. Bounded regret in stochastic multi-armed bandits. ArXiv
e-prints (Feb. 2013). arXiv:math.ST/1302.1611

[7] Giuseppe Burtini, Jason Loeppky, and Ramon Lawrence. 2015. A Survey of Online Experiment Design
with the Stochastic Multi-Armed Bandit. CoRR abs/1510.00757 (2015).

[8] Nicolò Cesa-Bianchi, Yishay Mansour, and Ohad Shamir. 2014. On the Complexity of Learning with
Kernels. CoRR abs/1411.1158 (2014). arXiv:1411.1158

[9] Olive Jean Dunn. 1961. Multiple Comparisons Among Means. J. Amer. Statist. Assoc. 56, 293 (1961),
52–64.

[10] Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, and Marek Petrik. 2017. A Practical Method
for Solving Contextual Bandit Problems Using Decision Trees. In Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017.
http://auai.org/uai2017/proceedings/papers/171.pdf

[11] Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, and Marek Petrik. 2017. A Practical Method for Solv-
ing Contextual Bandit Problems Using Decision Trees. CoRR abs/1706.04687 (2017). arXiv:1706.04687
http://arxiv.org/abs/1706.04687

[12] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. 2010. Parametric Bandits: The
Generalized Linear Case. In Advances in Neural Information Processing Systems 23, J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.). Curran Associates, Inc., 586–594.
http://papers.nips.cc/paper/4166-parametric-bandits-the-generalized-linear-case.pdf

[13] Dylan J. Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert E. Schapire. 2018. Practical
Contextual Bandits with Regression Oracles. In ICML.

[14] Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, and Fabrice Clérot. 2016. Random Forest for
the Contextual Bandit Problem. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (Proceedings of Machine Learning Research), Arthur Gretton and Christian C.
Robert (Eds.), Vol. 51. PMLR, Cadiz, Spain, 93–101. http://proceedings.mlr.press/v51/feraud16.html

[15] Aurélien Garivier and Olivier Cappé. 2011. The KL-UCB Algorithm for Bounded Stochastic Bandits and
Beyond. In Proceedings of the 24th Annual Conference on Learning Theory (Proceedings of Machine
Learning Research), Sham M. Kakade and Ulrike von Luxburg (Eds.), Vol. 19. PMLR, Budapest,
Hungary, 359–376.

[16] Aurélien Garivier, Hédi Hadiji, Pierre Menard, and Gilles Stoltz. 2018. KL-UCB-switch: optimal regret
bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints.
(May 2018). https://hal.archives-ouvertes.fr/hal-01785705 working paper or preprint.

[17] Author(s) J. C. Gittins and J. C. Gittins. 1979. Bandit processes and dynamic allocation indices.
Journal of the Royal Statistical Society, Series B (1979), 148–177.

[18] J.C. Gittins and D.M. Jones. 1974. A Dynamic Allocation Index for the Sequential Design of Experiments.
In Progress in Statistics, J. Gani (Ed.). North-Holland, Amsterdam, 241–266.

[19] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM
Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages. https://doi.org/10.1145/2827872

[20] Torsten Hothorn, Kurt Hornik, Mark van de Wiel, and Achim Zeileis. 2008. Implementing a Class
of Permutation Tests: The coin Package. Journal of Statistical Software, Articles 28, 8 (2008), 1–23.
https://doi.org/10.18637/jss.v028.i08

[21] Torsten Hothorn, Kurt Hornik, Mark A van de Wiel, and Achim Zeileis. 2006. A Lego System for
Conditional Inference. The American Statistician 60, 3 (2006), 257–263. https://doi.org/10.1198/

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

https://doi.org/10.1287/moor.2013.0598
https://doi.org/10.1023/A:1013689704352
http://jmlr.org/papers/v14/bottou13a.html
https://doi.org/10.1561/2200000024
http://arxiv.org/abs/math.ST/1302.1611
http://arxiv.org/abs/1411.1158
http://auai.org/uai2017/proceedings/papers/171.pdf
http://arxiv.org/abs/1706.04687
http://arxiv.org/abs/1706.04687
http://papers.nips.cc/paper/4166-parametric-bandits-the-generalized-linear-case.pdf
http://proceedings.mlr.press/v51/feraud16.html
https://hal.archives-ouvertes.fr/hal-01785705
https://doi.org/10.1145/2827872
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.1198/000313006X118430
https://doi.org/10.1198/000313006X118430

Dynamic allocation optimization in A/B tests using classification-based preprocessing 27

000313006X118430 arXiv:https://doi.org/10.1198/000313006X118430
[22] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. 2006. Unbiased Recursive Partitioning: A Conditional

Inference Framework. Journal of Computational and Graphical Statistics 15, 3 (2006), 651–674.
https://doi.org/10.1198/106186006X133933 arXiv:https://doi.org/10.1198/106186006X133933

[23] Torsten Hothorn, Universität München, Kurt Hornik, Wirtschaftsuniversität Wien, Achim Zeileis, and
Wirtschaftsuniversität Wien. [n.d.]. party: A Laboratory for Recursive Partytioning.

[24] M N Katehakis and H Robbins. 1995. Sequential choice from several populations. Proceedings of the
National Academy of Sciences 92, 19 (1995), 8584–8585. https://doi.org/10.1073/pnas.92.19.8584
arXiv:http://www.pnas.org/content/92/19/8584.full.pdf

[25] E. Kaufmann, O. Cappé, and A. Garivier. 2014. On the Complexity of A/B Testing. ArXiv e-prints
(May 2014). arXiv:math.ST/1405.3224

[26] T.L Lai and Herbert Robbins. 1985. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics 6, 1 (1985), 4 – 22. https://doi.org/10.1016/0196-8858(85)90002-8

[27] Tor Lattimore and Csaba Szepesvári. 2019. Bandit Algorithms. Cambridge University Press (preprint).
[28] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A Contextual-bandit Approach

to Personalized News Article Recommendation. In Proceedings of the 19th International Conference
on World Wide Web (WWW ’10). ACM, New York, NY, USA, 661–670. https://doi.org/10.1145/
1772690.1772758

[29] Wei-Yin Loh. [n.d.]. Fifty Years of Classification and Regression Trees. Inter-
national Statistical Review 82, 3 ([n. d.]), 329–348. https://doi.org/10.1111/insr.12016
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/insr.12016

[30] Odalric-Ambrym Maillard and Shie Mannor. 2014. Latent Bandits. Extended version of the paper
accepted to ICML 2014 (paper and supplementary material).

[31] John Mingers. 1987. Expert Systems-Rule Induction with Statistical Data. The Journal of the
Operational Research Society 38, 1 (1987), 39–47.

[32] Toshihiko Morikawa, Akira Terao, and Masakazu Iwasaki. 1996. Power evaluation of various modified
bonferroni procedures by a monte carlo study. Journal of Biopharmaceutical Statistics 6, 3 (1996),
343–359. https://doi.org/10.1080/10543409608835148 PMID: 8854237.

[33] O. Nicol, J. Mary, and Ph. Preux. 2012. ICML Exploration and Exploitation challenge: Keep it Simple
!. In Journal of Machine Learning Research (JMLR).

[34] Yi Qi, Qingyun Wu, Hongning Wang, Jie Tang, and Maosong Sun. 2018. Bandit Learning with
Implicit Feedback. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 7276–7286.
http://papers.nips.cc/paper/7958-bandit-learning-with-implicit-feedback.pdf

[35] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[36] Herbert Robbins. 1952. Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc.
58, 5 (09 1952), 527–535.

[37] A. Salomon, J.-Y. Audibert, and I. El Alaoui. 2011. Regret lower bounds and extended Upper
Confidence Bounds policies in stochastic multi-armed bandit problem. ArXiv e-prints (Dec. 2011).
arXiv:stat.ML/1112.3827

[38] Steven L. Scott. 2015. Multi-armed Bandit Experiments in the Online Service Economy. Appl. Stoch.
Model. Bus. Ind. 31, 1 (Jan. 2015), 37–45. https://doi.org/10.1002/asmb.2104

[39] Y.-S Shih. 2004. A note on split selection bias in classification trees. Computational Statistics & Data
Analysis 45, 3 (2004), 457–466. https://doi.org/10.1016/S0167-9473(03)00064-1

[40] Helmut Strasser and Christian Weber. 1999. On the asymptotic theory of permutation statistics.
[41] Carolin Strobl, James C. Malley, and Gerhard Tutz. 2009. An introduction to recursive partitioning:

rationale, application, and characteristics of classification and regression trees, bagging, and random
forests. Psychological methods 14 4 (2009), 323–48.

[42] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction. IEEE
Transactions on Neural Networks 16 (1998), 285–286.

[43] William R Thompson. 1933. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika 25, 3-4 (1933), 285–294. https://doi.org/10.1093/biomet/25.3-
4.285 arXiv:/oup/backfile/content𝑝𝑢𝑏𝑙𝑖𝑐/𝑗𝑜𝑢𝑟𝑛𝑎𝑙/𝑏𝑖𝑜𝑚𝑒𝑡/25/3−4/10.1093/𝑏𝑖𝑜𝑚𝑒𝑡/25.3−4.285/2/25−
3 − 4 − 285.𝑝𝑑𝑓

[44] Michel Tokic and Günther Palm. 2011. Value-Difference Based Exploration: Adaptive Control between
Epsilon-Greedy and Softmax. In KI 2011: Advances in Artificial Intelligence, Joscha Bach and Stefan

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

https://doi.org/10.1198/000313006X118430
https://doi.org/10.1198/000313006X118430
http://arxiv.org/abs/https://doi.org/10.1198/000313006X118430
https://doi.org/10.1198/106186006X133933
http://arxiv.org/abs/https://doi.org/10.1198/106186006X133933
https://doi.org/10.1073/pnas.92.19.8584
http://arxiv.org/abs/http://www.pnas.org/content/92/19/8584.full.pdf
http://arxiv.org/abs/math.ST/1405.3224
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1111/insr.12016
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/insr.12016
https://doi.org/10.1080/10543409608835148
http://papers.nips.cc/paper/7958-bandit-learning-with-implicit-feedback.pdf
http://arxiv.org/abs/stat.ML/1112.3827
https://doi.org/10.1002/asmb.2104
https://doi.org/10.1016/S0167-9473(03)00064-1
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/25/3-4/10.1093/biomet/25.3-4.285/2/25-3-4-285.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/25/3-4/10.1093/biomet/25.3-4.285/2/25-3-4-285.pdf

28 Claeys et al.

Edelkamp (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 335–346.
[45] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. 2013. Finite-time Anal-

ysis of Kernelised Contextual Bandits. In Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence (UAI’13). AUAI Press, Arlington, Virginia, United States, 654–663.

[46] Joannès Vermorel and Mehryar Mohri. 2005. Multi-armed Bandit Algorithms and Empirical Evaluation.
In Machine Learning: ECML 2005, João Gama, Rui Camacho, Pavel B. Brazdil, Alípio Mário Jorge,
and Luís Torgo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 437–448.

[47] Li Zhou. 2015. A Survey on Contextual Multi-armed Bandits. CoRR abs/1508.03326 (2015).
arXiv:1508.03326

A UCB ALGORITHM

Algorithm 4 Ucb algorithm
Require: 𝛼 > 0
Require: Assign at least one item to each arm 𝑎

1: loop
2: 𝑐𝑡 ← a new item
3: 𝐴𝑡 = argmax𝑎∈𝒜 {�̂�𝑎,𝑡 + 𝛼

√︁
2*𝑙𝑜𝑔(𝑡)

𝑇𝑎 (𝑡)
}

4: Assign arm 𝐴𝑡 to 𝑐𝑡

5: 𝑋𝑐𝑡,𝐴𝑡 ← the arm 𝐴𝑡 reward
6: Update �̂�𝐴𝑡 and 𝑇𝐴𝑡 (𝑡)

Output: A sequence of arm choices and rewards

B TEST STATISTIC
Ctree-Ucb receives a set of 𝑑-dimensional covariates vector 𝑌 and associated responses
𝑋. The 𝑓 regression predicts an average representing a single group 𝑘. It is assumed that
the conditional mean of the response 𝑋 is related to the linear function of 𝑌 through a link
function ℎ where ℎ{𝐸 (𝑋|𝑌, I{𝑓 (𝑌) = 𝑘})} = 𝛼𝑘 + 𝛽⊤

𝑘 𝑌 , with I{𝑓 (𝑌) = 𝑘}, the membership
variable that returns one if the item belongs to the 𝑘-th group and zero otherwise.

Theorem B.1 (Horthon et al, (2006)).

T𝑗 (ℒ𝑛, 𝑤) = vec
(︀ 𝑛∑︁

𝑖=1
𝑤𝑖𝑔𝑖 (𝑌𝑖𝑗ℎ(𝑋𝑖, (𝑋1, ..., 𝑋𝑛))

⊤)︀
∈ R

The core of the test statistic can be a matrix. In that case, vec() operator vectorize the
matrix. Observation with are not in the current partition will get the weight 𝑤 = 0 and
otherwise 𝑤 = 1. 𝑔𝑗 is a transformation of the 𝑗− 𝑡ℎ covariate 𝑌𝑗 . ℎ is the influence function:
transformation of the response 𝑋. The function ℎ and 𝑔𝑗 stays the same for each partition,
so it is enough to choose them once before the first split.

Conditional expectation 𝜇𝑗 ∈ R and and covariance Σ𝑗 ∈ R of the T𝑗 under 𝐻0 given all
permutations 𝜎 ∈ 𝑆 (ℒ𝑛, 𝑤) of the responses are also derived by the framework from [40]:

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

http://arxiv.org/abs/1508.03326

Dynamic allocation optimization in A/B tests using classification-based preprocessing 29

𝑛node =
𝑛∑︁

𝑖=1
𝑤𝑖

𝜇𝑗 = E(T𝑗 (ℒ𝑛, 𝑤)|𝑆 (ℒ𝑛, 𝑤)) = vec
(︀(︀ 𝑛∑︁

𝑖=1
𝑤𝑖𝑔𝑖 (𝑌𝑗𝑖)

)︀
E[ℎ|𝑆 (ℒ𝑛, 𝑤)]⊤

)︀
Σ𝑗 = V(T𝑗 (ℒ𝑛, 𝑤)|𝑆 (ℒ𝑛, 𝑤))

=
𝑛node

𝑛node − 1V[ℎ|𝑆 (ℒ𝑛, 𝑤)]⊗
(︀ 𝑛∑︁

𝑖=1
𝑤𝑖𝑔𝑖 (𝑌𝑗𝑖) ⊗ 𝑤𝑖𝑔𝑖 (𝑌𝑗𝑖)

⊤)︀
− 𝑛node

𝑛node − 1V[ℎ|𝑆 (ℒ𝑛, 𝑤)]⊗
(︀ 𝑛∑︁

𝑖=1
𝑤𝑖𝑔𝑖 (𝑌𝑗𝑖)

)︀
⊗

(︀
𝑤𝑖𝑔𝑖 (𝑌𝑗𝑖)

⊤)︀

E(ℎ|𝑆 (ℒ𝑛, 𝑤)) = 𝑛−1
node

𝑛∑︁
𝑖=1

𝑤𝑖ℎ(𝑋𝑖, 𝑋1 . . . 𝑋𝑛)) ∈ R𝑞

V(ℎ|𝑆 (ℒ𝑛, 𝑤)) = 𝑛−1
node

𝑛∑︁
𝑖=1

𝑤𝑖 (ℎ(𝑋𝑖, (𝑋1 . . . 𝑋𝑛)) − E(ℎ|𝑆 (ℒ𝑛, 𝑤))) (ℎ(𝑋𝑖, (𝑋1 . . . 𝑋𝑛))−

E(ℎ|𝑆 (ℒ𝑛, 𝑤)))⊤

C THEORICAL BOUND OF CTREE-UCB
C.1 Variance reduction in Step 1
We firstly set a continuous regression model in step 1, where both the response 𝑋 and
the covariates 𝑌𝑗 (where 𝑗 = 1, ..., 𝑑) are measured on a numeric scale. We define 𝑛 as the
total size of observations. We assumes for simplicity than the influence function ℎ and the
transformation function 𝑔𝑗 is the identity function, which means the variable will not be
transformed at all. Thus ℎ = 𝑋𝑖 and 𝑔𝑗 = 𝑌𝑗 . The formulation

∑︀
𝑖∈node means sum over

all observation in the partition. This is the same as the sum over all observations with
additional weights, because only observation in the current node have weight 𝑤 = 1 the
other have weights 𝑤 = 0. This yields following the standardized test statistic:

T𝑗 (ℒ𝑛, 𝑤) =
𝑛∑︁

𝑖=1
𝑤𝑖𝑋𝑗,𝑖𝑌𝑖 =

∑︁
𝑖∈node

𝑋𝑗,𝑖𝑌𝑖

𝑛node :=
∑︀𝑛

𝑖=1 𝑤𝑖 is the number of observation in a node. �̂�node is the mean of in node node.
𝑌𝑗,node is the mean of 𝑌𝑗 in a node.

(Σ)𝑙𝑙 is the 𝑙-th diagonal entry of the co-variance matrix. Univariate test statistics 𝑠
mapping an observed multivariate linear statistic t ∈ R𝑑 into the real line. It can be done by
the maximum of the absolute values of the standardized linear statistics:

𝑠max(t,𝜇,Σ) = max
𝑙=1,...,𝑑

| (t− 𝜇)𝑙√︀
(Σ)𝑙𝑙

| = | t− 𝜇√
Σ
|

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

30 Claeys et al.

𝜇𝑗 =
(︀ 𝑛∑︁

𝑖=1
𝑤𝑖𝑌𝑗𝑖

)︀
E𝑛𝑜𝑑𝑒[ℎ] = 𝑛𝑛𝑜𝑑𝑒𝑌𝑗,𝑛𝑜𝑑𝑒�̂�𝑛𝑜𝑑𝑒

Σ =
𝑛𝑛𝑜𝑑𝑒

𝑛𝑛𝑜𝑑𝑒 − 1V𝑛𝑜𝑑𝑒 (ℎ)
𝑛∑︁

𝑖=1
𝑤𝑖𝑌

2
𝑗𝑖 −

1
𝑛𝑛𝑜𝑑𝑒 − 1V𝑛𝑜𝑑𝑒 (ℎ)𝑛

2
𝑛𝑜𝑑𝑒𝑌 2

𝑗,𝑛𝑜𝑑𝑒

=
1

𝑛𝑛𝑜𝑑𝑒 − 1
∑︁

𝑖∈𝑛𝑜𝑑𝑒

(𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2

𝑛∑︁
𝑖=1

𝑌 2
𝑗𝑖

− 1
𝑛𝑛𝑜𝑑𝑒 − 1

1
𝑛𝑛𝑜𝑑𝑒

∑︁
𝑖∈𝑛𝑜𝑑𝑒

(𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2𝑛2

node𝑌 2
𝑗,node

=
1

𝑛𝑛𝑜𝑑𝑒 − 1
∑︁

𝑖∈𝑛𝑜𝑑𝑒

(𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2) (

∑︁
𝑖∈𝑛𝑜𝑑𝑒

𝑌 2
𝑗,𝑖 − 𝑛node𝑌 2

𝑗,𝑛𝑜𝑑𝑒)

=
1

𝑛𝑛𝑜𝑑𝑒 − 1 (
∑︁

𝑖∈𝑛𝑜𝑑𝑒

(𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2) (

∑︁
𝑖∈𝑛𝑜𝑑𝑒

(𝑌𝑗,𝑖 − 𝑌𝑗,𝑖)
2))

Therefore:

𝑠 ∝
⃒⃒⃒ ∑︀

𝑖∈𝑛𝑜𝑑𝑒 𝑌𝑗𝑖𝑋𝑖 − 𝑛𝑛𝑜𝑑𝑒𝑌𝑗,𝑛𝑜𝑑𝑒�̂�𝑛𝑜𝑑𝑒√︁
(
∑︀

𝑖∈𝑛𝑜𝑑𝑒 (𝑋𝑖,𝑗 − �̂�𝑛𝑜𝑑𝑒)2) (
∑︀

𝑖∈𝑛𝑜𝑑𝑒 (𝑌𝑖,𝑗 − 𝑌𝑗,𝑛𝑜𝑑𝑒)2)

⃒⃒⃒
(9)

The linear test statistic is proportional the the linear coefficient of correlation. The next
step is to calculate the test statistics (correlation coefficient multiplied by a constant). This
will be done with permutation test where if coefficient in eq 9 is very extreme compare to
coefficients from randomized permutations, the p-value will be very low.
The splitting critriea is the value where a partition 𝐸 or 𝐸 is made (inferior or equal for
numerical covariates, a set for categorical covariates) with selected covariate 𝑗*. It leads to
two different set of 𝑛𝐸 (resp: 𝑛𝐸) items for partition 𝐸 (resp: 𝐸). The statistics used to find
the best split is the following:

T𝐸
𝑗* (ℒ𝑛, 𝑤) =

𝑛∑︁
𝑖=1

𝑤𝑖I{𝑌𝑗*,𝑖 ∈ 𝐸}𝑋𝑖 =
∑︁

𝑖:𝑌𝑗*,𝑖∈𝐸

𝑋𝑖 = 𝑛𝐸𝑋𝑖

𝜇𝐸
𝑗* =

𝑛∑︁
𝑖=1

𝑤𝑖I{𝑌𝑗*,𝑖 ∈ 𝐸} 1
𝑛𝑛𝑜𝑑𝑒

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖 = 𝑛𝐸�̂�𝑛𝑜𝑑𝑒 (10)

Σ𝐸
𝑗* =

𝑛𝑛𝑜𝑑𝑒

𝑛𝑛𝑜𝑑𝑒 − 1
1

𝑛𝑛𝑜𝑑𝑒

𝑛∑︁
𝑖=1

𝑤𝑖 (𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2

𝑛∑︁
𝑖=1

𝑤𝑖I{𝑌𝑗*,𝑖 ∈ 𝐸}2 (11)

− 𝑛𝑛𝑜𝑑𝑒

𝑛𝑛𝑜𝑑𝑒 − 1
1

𝑛𝑛𝑜𝑑𝑒

𝑛∑︁
𝑖=1

𝑤𝑖 (𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2 (

𝑛∑︁
𝑖=1

𝑤𝑖I{𝑌𝑗*,𝑖 ∈ 𝐸})2

=
1

𝑛𝑛𝑜𝑑𝑒 − 1
∑︁

𝑖∈𝑛𝑜𝑑𝑒

(𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2𝑛𝐸 (1− 𝑛𝐸

𝑛𝑛𝑜𝑑𝑒
)

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 31

Note that (1− 𝑛𝐸
𝑛𝑛𝑜𝑑𝑒

) is actually the probability to be assign to 𝐸. Let 𝑍 a randomized
value according to a binomial distribution such as 𝑍 ∼ ℬ(𝑛𝑛𝑜𝑑𝑒, 𝑛𝐸

𝑛𝑛𝑜𝑑𝑒
)

Equation 11 can be rewritten as

Σ𝐸
𝑗* =

1
𝑛𝑛𝑜𝑑𝑒 − 1

∑︁
𝑖∈𝑛𝑜𝑑𝑒

(𝑋𝑖 − �̂�𝑛𝑜𝑑𝑒)
2𝑛𝑛𝑜𝑑𝑒

𝑛𝐸

𝑛𝑛𝑜𝑑𝑒
(1− 𝑛𝐸

𝑛𝑛𝑜𝑑𝑒
) (12)

= 𝜎2
𝑋𝑛𝑜𝑑𝑒

𝜎2
𝑍

Thus, the standardized test statistics is:

𝑠max (t𝐸
𝑗* , 𝜇𝐸

𝑗* , Σ𝐸
𝑗*) = max

𝑙
| (t

𝐸 − 𝜇)𝑙√︀
(Σ)𝑙𝑙

| = 𝑛𝐸 |
�̂�𝐸 − �̂�𝑛𝑜𝑑𝑒√︁

𝜎2
𝑋𝑛𝑜𝑑𝑒

𝜎2
𝑍

|

C.2 Final bound
If a group of items 𝑘 have a 𝜎𝑘-subgaussian distribution of reward for a 𝑠 number of trials
with 𝑠 ≤ 𝑛 and a given 1− 𝛿 probability, the real average reward of an arm 𝑎 is bounded by:

1
𝑠

𝑠∑︁
𝑡=1

𝑋𝑎,𝑡,𝑘 ≤ 𝜇𝑎,𝑘 +

√︃
2𝜎2

𝑎,𝑘 log 1
𝛿

𝑠
(13)

with traditionally 𝛿 = 1
𝑛2

𝑦
[2].

We assume the case where a prediction function assign items to a group 𝑘 where it’s
reward follows a 𝜎𝑘-gaussian distribution regardless of the arm applied. The experiences in
the next section indicate that this hypothesis can be confirmed in practice. Define a reward
at time 𝑡:𝑋𝑡 = 𝑋𝐴𝑡,𝑘 and 𝑇𝐴𝑡,𝑘 (𝑡) the number of time when the arm 𝐴𝑡 in group 𝑘 have
been played. By definition of regret:

𝑅𝑛,𝑘 =
∑︁
𝑎∈𝒜

∆𝑎,𝑘E[𝑇𝑎,𝑘 (𝑛)] (14)

.
The regret increase of ∆𝑎,𝑘 when
(𝑎) U.C.B𝑎,𝑎* (𝑘, 𝑡) > 𝜇𝑎*,𝑘

(𝑏) U.C.B𝑎=𝑎* (𝑘, 𝑡) < 𝜇𝑎*,𝑘

Let’s 𝐺𝑎,𝑘 the event of (𝑎) or (𝑏) define by a constant 𝑢𝑎,𝑦:

𝐺𝑎,𝑘 = {𝜇𝑎*,𝑘 < min
𝑡∈[𝑛]

U.C.B𝑎=𝑎* (𝑘, 𝑡)} ∩ {�̂�𝑎,𝑘,𝑢𝑖
+ 𝜎𝑘

√︂
1

𝑢𝑎
log 1

𝛿
< 𝜇𝑎*,𝑘}

where if 𝐺𝑎,𝑘 happens, the regret converge to a finite value and so if 𝐺𝑎,𝑘 occur, then
𝑇𝑎,𝑘 (𝑛) ≤ 𝑢𝑖,𝑘. Let 𝐺𝐶

𝑎,𝑘 the complementary event.

E[𝑇𝑎,𝑘 (𝑛)] = E[I{𝐺𝑎,𝑘}𝑇𝑎,𝑘 (𝑛)] + E[I{𝐺𝐶
𝑎,𝑘}𝑇𝑎,𝑘 (𝑛)]

≤ 𝑢𝑎,𝑘 + P[𝐺𝐶
𝑎,𝑘]𝑛

Bound of complementary event 𝐺𝐶
𝑎,𝑘 is done in two parts:

𝐺𝐶
𝑎,𝑘 = {𝜇𝑎*,𝑘 ≥ min

𝑡∈[𝑛]
U.C.B𝑎=𝑎* (𝑘, 𝑡)} ∪ {�̂�𝑎,𝑘,𝑢𝑎 + 𝜎𝑘

√︂
2

𝑢𝑎
log 1

𝛿
≥ 𝜇𝑎*,𝑘}

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

32 Claeys et al.

{𝜇𝑎*,𝑘 ≥ min
𝑡∈[𝑛]

U.C.B(𝑘, 𝑡)} ⊂ ∪𝑠∈[𝑛]{𝜇𝑎*,𝑘 ≥ �̂�𝑎*,𝑘,𝑠 + 𝜎𝑘

√︂
2
𝑠

log 1
𝛿
}

P[𝜇𝑎*,𝑘 ≥ min
𝑡∈[𝑛]

U.C.B𝑎=𝑎* (𝑘, 𝑡)] ≤
𝑛∑︁

𝑠=1
P[𝜇𝑎*,𝑘 ≥ �̂�𝑎*,𝑘,𝑠 + 𝜎𝑘

√︂
2
𝑠

log 1
𝛿

]

≤ 𝑛𝛿

And so P[𝐺𝐶
𝑎,𝑘] ≤ 𝑛𝛿 + P[�̂�𝑎,𝑘,𝑢𝑎 +

√︁
2

𝑢𝑎
log 1

𝛿 ≥ 𝜇𝑎*,𝑘]. We remind that ∆𝑎,𝑘 = 𝜇𝑎*,𝑘 − 𝜇𝑎,𝑘

Assume a positive constant 𝑐 where ∆𝑎,𝑘 − 𝜎𝑘

√︁
2

𝑢𝑎
log 1

𝛿 ≥ 𝑐∆𝑎,𝑘:

P[�̂�𝑎,𝑘,𝑢𝑎 + 𝜎𝑘

√︂
2

𝑢𝑎
log 1

𝛿
≥ 𝜇𝑎*,𝑘] = P[�̂�𝑎,𝑘,𝑢𝑎 + 𝜎𝑘

√︂
2

𝑢𝑎
log 1

𝛿
≥ ∆𝑎,𝑘 + 𝜇𝑎,𝑘] (15)

= P[�̂�𝑎,𝑘,𝑢𝑎 − 𝜇𝑎,𝑘 ≥ ∆𝑎,𝑘 − 𝜎𝑘

√︂
2

𝑢𝑎
log 1

𝛿
]

≤ P[�̂�𝑎,𝑘,𝑢𝑎 − 𝜇𝑎,𝑘 ≥ 𝑐∆𝑎,𝑘]

≤ exp (−
𝑢𝑎𝑐2∆2

𝑎,𝑘

2𝜎2
𝑘

)

The last line of the equation 15 refers to a bounded error for a random variable following a
Gaussian distribution. So P[𝐺𝐶

𝑎] ≤ 𝑛𝛿 + exp (−𝑢𝑎𝑐2∆2
𝑎,𝑘

2𝜎2
𝑘

). We looking for 𝑢𝑎 that satisfy:

∆𝑎,𝑘 − 𝜎𝑦

√︂
2

𝑢𝑎
log 1

𝛿
≥ 𝑐∆𝑎,𝑘

𝑢𝑎 ≥
2𝜎2

𝑘 log 1
𝛿

∆2
𝑎,𝑘 (1− 𝑐)2

If 𝛿 = 1
𝑛2

E[𝑇𝑎,𝑘 (𝑛)] ≤
2𝜎2

𝑘 log 1
𝛿

∆2
𝑎,𝑘 (1− 𝑐)2

+ 1 + 𝑛 exp (−
𝑢𝑎𝑐2∆2

𝑎,𝑘

2𝜎2
𝑘

) (16)

≤
2𝜎2

𝑘 log 1
𝛿

∆2
𝑎,𝑘 (1− 𝑐)2

+ 1 + 𝑛
−1+ 𝑐2

(1+𝑐)2

The function −1 + 𝑐2

(1+𝑐)2 is strictly negative and for any 𝑐 < 1
2 . The equation 16 can be re

written as

E[𝑇𝑎,𝑘 (𝑛)] ≤
2𝜎2

𝑘 log 𝑛2

∆2
𝑎,𝑘

1
2
+ 2

For any group 𝑘 the regret is bounded by:

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

Dynamic allocation optimization in A/B tests using classification-based preprocessing 33

𝑅𝑛,𝑘 =
∑︁
𝑎∈𝒜

∆𝑎,𝑘E[𝑇𝑎,𝑘 (𝑛)]

=
∑︁
𝑎∈𝒜

16𝜎2
𝑘 log 𝑛2

∆𝑎,𝑘
+ 2

∑︁
𝑎∈𝒜

∆𝑎,𝑘

This finally define the cumulative regret for any group 𝑘 based on past data from 𝑎 = 𝐴 (the
original variation to improve). If the conditional inference tree define a set of 𝒦 admissible
groups where ∀𝑘 ∈ 𝒦, 𝒩 (𝜈𝑘,𝑎=𝐴, 𝜎𝑘,𝑎=𝐴) is statistically different (with an accepted risk of 𝜖)
and |𝒦| = 𝐾, the cumulative regret during the A/B test is

𝑅Ctree-Ucb
𝑛 =

∑︁
𝑘∈𝒦

𝑅𝑛,𝑘 =
∑︁
𝑘∈𝒦

(
∑︁
𝑎∈𝒜

16𝜎2
𝑘 log 𝑛2

∆𝑎,𝑘
+ 2

∑︁
𝑎∈𝒜

∆𝑎,𝑘)

≤ 𝐾 max
𝑘∈𝒦

[𝜎2
𝑘](

∑︁
𝑎∈𝒜

16 log 𝑛2

∆𝑎,𝑘
+ 2

∑︁
𝑎∈𝒜

∆𝑎,𝑦)

C.3 Simulation
We report an example of a simulation to test the performance of Ctree-Ucb under real
assumptions. For each variation (A or B), 10000 rewards are generated by the following
function, related to a covariate 𝑥:

𝜃𝐴 = (2,−1, 1.5, 0)
𝜃𝐵 = (1.5,−0.5, 1.25, 0)

𝑋 =

⎧⎪⎪⎨⎪⎪⎩
if 1 ≤ 𝑥1 < 2 𝑋𝐴 = 𝜃𝐴[1] 𝑋𝐵 = 𝜃𝐵 [1]
if 3 ≤ 𝑥1 < 4 𝑋𝐴 = 𝜃𝐴[2] 𝑋𝐵 = 𝜃𝐵 [2]

if 𝑥1 ≥ 4 𝑋𝐴 = 𝜃𝐴[3] 𝑋𝐵 = 𝜃𝐵 [3]
if 𝑥1 < 1 𝑋𝐴 = 𝜃𝐴[4] 𝑋𝐵 = 𝜃𝐵 [4]

⎫⎪⎪⎬⎪⎪⎭

ACM Trans. Interact. Intell. Syst., Vol. , No. , Article . Publication date: 2019.

	Abstract
	1 Introduction
	2 A/B test and bandit paradigm
	2.1 A/B testing
	2.2 The bandit model

	3 State of the art
	3.1 Non informative strategy
	3.2 Contextual Strategy

	4 Ctree-Ucb: a contextual approach to A/B test
	4.1 Groups identification
	4.2 Ctree-UCB process
	4.3 Example on simulated data

	5 Materials and experiments setting
	5.1 Data
	5.2 Existing methods to be compared
	5.3 Experiment protocol

	6 Experiments
	6.1 Movie data set
	6.2 AB tasty database 1
	6.3 A/B tasty database 2

	7 Discussion
	8 Conclusion
	9 Acknowledges
	References
	A Ucb algorithm
	B Test statistic
	C Theorical bound of Ctree-Ucb
	C.1 Variance reduction in Step 1
	C.2 Final bound
	C.3 Simulation

