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SOME REMARKS ON SMITH PREDICTORS: A
GEOMETRIC POINT OF VIEW

Constantin-Irinel Mor ărescu1 Silviu-Iulian Niculescu 2

Keqin Gu 3

Abstract: In this paper we develop a method to obtain the stability crossing curves of
a Smith Predictor control scheme. More explicitly, we compute the crossing set, which
consists of all frequencies corresponding to all points on the stability crossing curve, and
we give their complete classification. Furthermore, the directions in which the zeros cross
the imaginary axis are explicitly expressed.
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1. INTRODUCTION

The stability and control of time-delay systems are
subject of recurring interest since thedelay is inher-
ently present in various applications, from signal prop-
agation in networks to population dynamics (see, for
instance, [7, 2] for further references, and examples).

The aim of this paper is to present somenew interpre-
tationsof the Smith predictors ([10]) subject todelay
uncertainty. This problem was largely treated in the
literature starting with the 80s (see, for instance, [8],
[12], [11], [9], and the references therein), and it is
reconsidered recently ([6]), mainly to the increasing
interest of using such a methodology in applications,
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like control of congestions in high-speed networks
(see, e.g. [5]).

The approach considered in the paper makes use of
some simple geometric idea (triangles inequality), in-
spired by ([3]) and devoted to the characterization of
the stability crossing curves for general systems with
two delays. The novelty of the results lies in asimple,
andeasyto follow classificationof all the situations
where uncertainty on the nominal delay value will
induce instabilities in the corresponding schemes, and
also considers, and gives the corresponding character-
izations of some of thedegenerate casesmentioned,
but not discussed by [3]. Furthermore, the approach
under consideration completes the algebraic charac-
terizations in ([7], [6]).

2. PROBLEM FORMULATION, AND
PRELIMINARIES

As discussed in [7], the analysis of the effects induced
by the delay uncertainty of the Smith predictor on
the stability of the corresponding closed-loop schemes
reduce to the analysis of the following characteristic
equation:

P (s) + Q(s)e−sτ1 −Q(s)e−s(τ1+δ) = 0,

where τ1 represents the nominal delay value, and
P (s), Q(s) are appropriate polynomials defined by the
plant free of delay, and by corresponding controller.



Let G be the set of all pairs(x, y) ∈ R2
+ such that

x < y. It is obvious that replacingτ2 = τ1 + δ and
taking (τ1, τ2) ∈ G we can consider the following
equivalent equation:

D(s, τ1, τ2) = P (s) + Q(s)e−sτ1 −Q(s)e−sτ2 = 0.
(1)

More explicitly, we study the occurrence of any possi-
ble stability switch/reversal4 resulting by increasing
the time delayτ1 or τ2. In other words, we explicitly
study the change of number of zeros of (1) onC+ as
the delays(τ1, τ2) vary onG. Since the main objective
of this study is to identify the regions of(τ1, τ2) in
G such thatD(s, τ1, τ2) is (asymptotically) stable, we
will exclude some cases, and the following assump-
tions appear naturally:

Assumption 1.deg(Q) ≤ deg(P ).

Assumption 2.P (0) 6= 0.

Assumption 3.P , Q do not have common zeros.

Assumption 4.P and Q are such that:

lim
s→∞

∣∣∣∣
Q(s)
P (s)

∣∣∣∣ <
1
2
.

Remark 1.If the system is of retarded type then the
assumption 4 is automatically satisfied since its left

hand is zero. For neutral systems, letc = lim
s→∞

Q(s)
P (s)

.

Then it is well known that the stability of the system
(1) is possible only if the difference equation

x(t) + cx(t− τ1)− cx(t− τ2) = 0 (2)

is exponentially stable. Assumption 4 guarantees the
stability of (2).

3. IDENTIFICATION OF THE CROSSING
POINTS

Let T denote the set of all points(τ1, τ2) ∈ G such
thatD(s) has at least one zero on the imaginary axis.
Any (τ1, τ2) ∈ T is known as a crossing point. The
setT , which is the collection of all crossing points , is
known as thestability crossing curves. Let Tω denote
the set of all(τ1, τ2) ∈ G such thatD(s) has at least
one zero fors = jω. Let Ω the set of allω for which
there exists a pair(τ1, τ2) such thatD(jω, τ1, τ2) = 0.
We will refer toΩ as thecrossing set. Obviously

T = {Tω|ω ∈ Ω}.
Next, for the clarity of the presentation we will split
our discussion in two parts. First we will consider only
the case which satisfy the following non-degeneracy
condition,

4 We are using the same terminology as in Cooke and Gross-
man [1], that is a root of the characteristic equationcrossingthe
imaginary axis, when some parameter is varying.

Assumption 5.

P (jω) ·Q(jω) 6= 0 for all ω ∈ Ω (3)

and then we will discuss what happens in other cases.

3.1 Regular cases

In the sequel, we consider

h(s) =
Q(s)
P (s)

and

H(s) = 1 + h(s)e−sτ1 − h(s)e−sτ2 (4)

For given τ1 and τ2, as long as assumption 5 is
satisfied,D(s) and H(s) share all the zeros in a
neighborhood of the imaginary axis. Therefore, we
may obtain all the crossing points and direction of
crossing usingH(s) = 0 instead ofD(s) = 0.
We may also consider the three terms inH(s) as
three vectors in the complex plane, with magnitudes
1, |h(s)| and |h(s)| respectively. So when we adjust
the values ofτ1 andτ2 in fact we adjust the directions
of the vectors represented by the second and the third
terms. Equation (4) means that if we put the first two
vectors had to tail then we get the third vector. In other
words they form an isosceles triangle and the existence
condition reduces to: the sum of the equal sides exceed
the other side. This allows us to give the following
proposition.

Proposition 1.For some(τ1, τ2) ∈ G, H(s) has an
imaginary zeros = jω, ω 6= 0 if and only if

|h(jω)| ≥ 1
2
. (5)
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Fig. 1.Triangle formed by 1,h(s)e−sτ1 andh(s)e−sτ2

Due to the symmetry and assumption 2 we only need
to consider positiveω. So Ω is the set of allω > 0
which satisfy (5). Also, for a givenω ∈ Ω we may find
all the pairs(τ1, τ2) satisfyingH(jω) = 0 as follows:



τ1 = τu±
1 (ω) =

∠h(jω) + (2u− 1)π ± q

ω
, (6)

u = u±0 , u±0 + 1, u±0 + 2, ...

τ2 = τv±
2 (ω) =

∠h(jω) + 2vπ ∓ q

ω
, (7)

v = v±0 , v±0 + 1, v±0 + 2, ...

whereq ∈ [o, π] is the internal angle of triangle in
Figure 1 which can be calculated by the cosine law as

q(jω) = cos−1

(
1

2|h(ω)|
)

(8)

and u = u+
0 , u = u−0 , v = v+

0 , v = v−0 are the
smallest integers (may depend onω) such that the

corresponding valuesτ
u+

0 +
1 , τ

u−0 −
1 , τ

u+
0 +

2 , τ
u−0 −
2 are

nonnegative andτ
u+

0 +
2 > τ

u+
0 +

1 , τ
u−0 −
2 > τ

u−0 −
1 .

The position in Figure 1 corresponds to(τu+
1 , τu+

2 )
and the mirror image about the real axis corresponds
to (τu−

1 , τu−
2 ). If we defineT +

ω,u,v andT −ω,u,v as the
singletons(τu+

1 (ω), τu+
2 (ω)) and (τu−

1 (ω), τu−
2 (ω))

respectively, then we can characterizeTω as follows:

Tω =


 ⋃

u≥u+
0 ,v≥v+

0

T +
ω,u,v


 ⋃


 ⋃

u≥u−0 ,v≥v−0

T −ω,u,v




Proposition 2.The crossing setΩ consists of a finite
number of intervals of finite length including the cases
which may violate assumption 5.

Proof: First one can observe easily that the number of
points inΩ violating (3) is finite. So, we only need to
show that the set of all points satisfying (5) consists of
a finite number of intervals of finite length. Because

|h(jω)| = 1
2
⇔ |P (jω)| = 2|Q(jω)|

is a polynomial equation of variableω2 it has a fi-
nite number of positive solutions. Therefore the so-
lution of (5) consists of a finite number of intervals.
Due to assumption 4, any sufficiently largeω violates
(5). Therefore the lengths of all intervals are finite.
In what follows we will denote these intervals as
Ω1, Ω2, ..., ΩN and without loss of generality we may
suppose that the intervals are ordered such that for any
ω1 ∈ Ωk1 , ω2 ∈ Ωk2 , k1 < k2 we haveω1 < ω2.

Remark 2.If (5) is satisfied forω = 0 and sufficiently
small positive value ofω then we will take 0 as the
left end ofΩ1. Consideringωr

1 the right end ofΩ1,
according to assumption 2 we getΩ1 = (0, ωr

1], so
0 /∈ Ω.

Remark 3.From geometrical point of view an end
point ω∗ with |P (jω∗)| = 2|Q(jω∗)|, corresponds to
the limit case where internal angleq of the triangle is
0. In this case we obtain

−−→
OB = −−−→AB on the real axis.

We will not restrict∠h(jω) to be within the2π range
but make it a continuous function ofω within each

Ωk. Thus, for each fixedu, v andk, (6) and (7) are
continuous curves denoted asT k+

u,v respectivelyT k−
u,v .

We should keep in mind that, for someu, v and k,
part or entire curveT k+

u,v (respectivelyT k−
u,v ) may be

outside of the rangeG, and therefore, may not be
physically meaningful. The collection of all the points
in T corresponding toΩk may be expressed as

T k =
∞⋃

u=−∞

∞⋃
v=−∞

[(T k+
u,v ∪ T k−

u,v

) ∩ G]
=

⋃

ω∈Ωk

Tω

T =
N⋃

k=1

T k (9)

Our previous discussions allow us to say that the ends
of Ωk must be in one of the following situation:

Type 1. It satisfies the equation|h(x)| = 1
2

.

Type 2. It equals0.

If one end ofΩk is of type 1 thenq = 0 andT k+
u,v is

connected withT k−
u,v at this end. So, if both ends ofΩk

are of type 1 we getT k is a series of closed curves.
Obviously just the left end ofΩ1 can be 0. In this case,
asω → 0, bothτ1 andτ2 approach∞. In factT 1+

u,v and
T 1−

u,v approach∞with asymptotes passing through the

points(ĥ± q̂, ĥ∓ q̂) with slopes of

m±
u,v =

τv±
2

τu±
1

=
∠h(0) + 2vπ ∓ q(0)

∠h(0) + (2u− 1)π ± q(0)
,

whereq(0) is evaluated using (8) and

ĥ =
d

dω
[∠h(jω)]

∣∣∣∣
ω=0

, q̂ =
d

dω
[q(jω)]

∣∣∣∣
ω=0

.

In the sequel we will say that an interval is of type 11
if both his end are of type 1, andΩ1 is of type 21 if his
left end is 0. Therefore, the crossing setΩ consists in
a finite number of intervals of type 11, and eventually
the first interval is of type 21. It is obvious thatT k

consists in a series of curves belonging to one of the
following categories:

A) A series of closed curves (Ωk is of type 11)
B) A series of open ended curves with both ends

approaching∞ (Ωk is of type 21)

We continue this section with some illustrative exam-
ples regarding the above characterization.

Example 1.(type 11) Consider a system with

h(s) =
4s + 1

4(s2 + s + 1)
(10)

Figure 2 (up) plots2|h(jω)| againstω. The crossing
set can be easily identified from this figure, it contains
one intervalΩ1 = [0.39, 2, 21]

As an illustration of a series ofclosed curveswe
examineT k corresponding toΩk of type 11. In this
case, for a givenu andv such thatτu±

2 > τu±
1 > 0,



0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

ω

2|h(jω)|

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

τ2

τ1

u=1
v=3

u=1
v=2 u=2

v=3

u=2
v=4

u=3
v=3

u=3
v=4

Fig. 2. The crossing set for the system (10) can be identified up

and some crossing curves of this system are plotted down

we getT k+
u,v andT k−

u,v are connected on the both ends
to form a closed curve. Asu and v vary, we obtain
a series of deformed versions of such closed curves
situated above the first bisector. A suggestive image of
a series ofclosed curvesis given in Figure 2 (down)
which showT of the system described in (10).

Example 2.(type 21) Consider a system with

h(s) =
s +

√
2

2s3 + s2 + 8s + 1
(11)

Figure 3 (up) plots|h(jω)| againstω. The crossing
set Ω can be easily identified from the Figure 3, it
contains two intervals:Ω1 = (0, 0.364] of type 21,
andΩ2 = [1.673, 2.198] of type 11.

In the sequel, we considerΩk = [ωl
k, ωr

k]. Obviously,
the intervalΩ1 is open to the left if its left end is0. To
illustrate the case ofopen ended curveswe consider
T 1 corresponding toΩ1 of type 21. In this caseΩ1 =
(0, ωr

1] and for a givenu and v, T 1+
u,v and T 1−

u,v are
connected atωr

1. The other end ofT 1−
u,v extends to

infinity with asymptotes passing through the points
(ĥ− q̂, ĥ + q̂) with the slopem−

u,v and, the other end
of T 1+

u,v extends to infinity with asymptotes passing

through the points(ĥ + q̂, ĥ− q̂) with the slopem+
u,v.

Again, asu andv vary, we obtain a series of deformed
versions of such open ended curves situated above
the first bisector. Evidently, the slope is changing for
differentu andv. We can see a series ofopen ended
curvesin Figure 3 (right).
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Fig. 3. The crossing set for the system (12) can be identified up

and some crossing curves of this system are plotted down

3.2 Degenerate cases

In the sequel, we consider the cases violating assump-
tion 5. Obviously, the interesting case isP (jω) = 0
has at least one positive solution. We can easily state
the following:

Remark 4.. For ω∗ 6= 0 satisfyingQ(jω∗) = 0 it is
clear that increasing ofτ1 and/orτ2 has no effect w.r.t.
stability of the system. We note also thath(jω∗) = 0

imply thath(jω) <
1
2

, for all ω in a neighborhood of

ω∗.

Next, we assume thatP (jω∗) = 0 for ω∗ 6= 0.
Using assumption 3 we getQ(jω∗) 6= 0 and therefore

lim
ω→ω∗

|h(jω)| = ∞. So that,|h(jω)| > 1
2

for all ω in

a neighborhood ofω∗. This mean thatΩ contains one
interval of type[ωl, ω∗] and one of type[ω∗, ωr]. It is
clear that the first interval is open to the left ifωl = 0.

Proposition 3.Forω∗ 6= 0 satisfyingP (jω∗) = 0 we
getTω∗ consists of the solutions of

ω∗τ2 = ω∗τ1 + 2mπ, m ∈ Z in G.

and

lim
ω→ω∗

q(jω) =
π

2
;

lim
ω→ω∗

τ1(ω) =
2∠Q(jω∗) + (4u− 2± 1)π

2ω∗
;

lim
ω→ω∗

τ2(ω) =
2∠Q(jω∗) + (4v ∓ 1)π

2ω∗
.



Proof.Straightforward computations.

Remark 5.1) Tω∗ consists of an infinite number of
straight lines of slope 1 of equal distance.
2) lim

ω→ω∗
τ2(ω)− lim

ω→ω∗
τ1(ω) = 2mπ, m ∈ Z

Let Ωk = [ωl, ω∗] and Ωk+1 = [ω∗, ωr]. In this
case, using proposition 3 we getT k+

u,v is connected

with T (k+1)+
u,v andT k−

u,v is connected withT (k+1)−
u,v at

the end corresponding toω∗. Using (9) and remark
5 we obtain that each crossing curve inT k±

u,v consist
of an union of one straight line of slope 1 and the
curve corresponding toΩk \ {ω∗}. From Remark 5
we deduce that one end of the curve corresponding to
Ωk \ {ω∗} is on the line inTω∗ which correspond to
the pair(u, v). In the following ifP (jω∗) = 0 we will
say thatω∗ is an end point of type 0.

Example 3.(type 20 and 01) Consider a system with

h(s) =
s + 2
s2 + 2

(12)

Figure 3 (up) plots
1

|h(jω)| againstω. The crossing

set Ω contains two intervals:Ω1 = (0,
√

2] of type
20, andΩ2 = [

√
2, 3.046] of type 01. Figure 4 (down)

plotsT 2±
3,4 which are two curves of type 01.
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4. CROSSING CURVES, CHARACTERISTIC
ROOTS BEHAVIOR

4.1 Tangent and Smoothness

For a givenk we will discuss the smoothness of the

curves inT k and thusT =
N⋃

k=1

T k. In this part we use

an approach based on the implicit function theorem.
For this purpose we considerτ1 and τ2 as implicit
functions ofs = jω defined by (1).
For a givenk, ass moves along the imaginary axis
within Ωk, (τ1, τ2) = (τu±

1 (ω), τv±
2 (ω)) moves along

T k. For a givenω ∈ Ωk, let

R0 = Re

(
j

s

∂D(s, τ1, τ2)
∂s

)

s=jω

=
1
ω

Re
{
[h′(jω)− τ1h(jω)] e−jωτ1

+ [τ2h(jω)− h′(jω)] e−jωτ2
}

,

I0 = Im

(
j

s

∂D(s, τ1, τ2)
∂s

)

s=jω

=
1
ω

Im
{
[h′(jω)− τ1h(jω)] e−jωτ1

+ [τ2h(jω)− h′(jω)] e−jωτ2
}

and

Rl = Re

(
1

s

∂D(s, τ1, τ2)

∂τl

)
s=jω

= (−1)l−1Re
(
h(jω)e−jωτl

)
,

Il = Im

(
1

s

∂D(s, τ1, τ2)

∂τl

)
s=jω

= (−1)l−1Im
(
h(jω)e−jωτl

)
,

for l=1,2. Then, sinceD(s, τ1, τ2) is an analytic
function ofs, τ1 andτ2, the implicit function theorem
indicates that the tangent ofT k can be expressed as


dT

dω
dτ

dω


 =

1
R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
, (13)

provided that

R1I2 −R2I1 6= 0. (14)

It follows thatTk is smooth everywhere except possi-
bly at the points where either (14) is not satisfied, or
when

dT

dω
=

dτ

dω
= 0. (15)

From the above discussions, we can conclude:

Proposition 4.The curveT k is smooth everywhere
except possibly at the points corresponding tos = jω
a multiple solution of (1).

4.2 Direction of crossing

Next, we will discuss the direction in which the solu-
tions of (1) cross the imaginary axis as(τ1, τ2) devi-
ates from the curveT k. We will call the direction of



the curve that corresponds to increasingω thepositive
direction. We will also call the region on the left hand
side as we head in the positive direction of the curve
the region on the left.

To establish the direction of crossing we need to con-
siderτ1 andτ2 as functions ofs = σ + jω, i.e., func-
tions of two real variablesσ andω, and partial deriv-
ative notation needs to be adopted. Since the tangent

of T k along the positive direction is

(
∂τ1

∂ω
,
∂τ2

∂ω

)
, the

normal toT k pointing to the left hand side of positive

direction is

(
−∂τ2

∂ω
,
∂τ1

∂ω

)
. Corresponding to a pair

of complex conjugate solutions of (1) crossing the
imaginary axis along the horizontal direction,(τ1, τ2)

moves along the direction

(
∂τ1

∂σ
,
∂τ2

∂σ

)
. So, if a pair

of complex conjugate solutions of (1) cross the imag-
inary axis to the right half plane, then,

(
∂τ1

∂ω

∂τ2

∂σ
− ∂τ2

∂ω

∂τ1

∂σ

)

s=jω

> 0, (16)

i.e. the region on the left ofT k gains two solutions on
the right half plane. If the inequality (16) is reversed
then the region on the left ofT k loses has two right
half plane solutions. Similar to (13) we can express



dτ1

dσ
dτ2

dσ




s=jω

=
1

R1I2 −R2I1

(
R0R2 + I0I2

−R0R1 − I0I1

)
.

Using this, we arrive to the following:

Proposition 5.Let ω ∈ (ωl
k, ωr

k) and (τ1, τ2) ∈
T k such thatjω is a simple solution of (1) and
D(jω′, τ1, τ2) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (τ1, τ2) is
not an intersection point of two curves or different sec-
tions of a single curve ofT ). Then a pair of solutions
of (1) cross the imaginary axis to the right, through
s = ±jω if R2I1 − R1I2 > 0. The crossing is to the
left if the inequality is reversed.

5. ILLUSTRATIVE EXAMPLES

In this paragraph we reconsider one example already
treated in the literature [6]. Consider:

P (s) = (k1k2+1)s+(a+k1), Q(s) = k1(k2s+1).

[6] assumea > 0 and(a+k1)/(k1k2 +1) > 0, which
guarantees internal stability of the closed-loop system.
The so-called “practical stability” criterion is given

by assumption 4 which simply states

∣∣∣∣
k1k2

1 + k1k2

∣∣∣∣ <

1
2
⇔ −1/3 < k1k2 < 1. For a = 1, k1 = 2, k2 =

1/4 we get Ω = (0, 2.37], and, in conclusion,Ω
consists of one interval of type 21. More precisely, we
obtain a series of open ended curves with both ends
approaching infinity, conclusion which is similar to

the one in [6], but derived using a different (algebraic)
approach.

6. CONCLUDING REMARKS

This paper focuses on the stability crossing curves for
a class of delay systems controlled by a Smith predic-
tor, subject touncertaintyin the delay. More precisely,
the particular form of the closed-loop system allows
an easy derivation of the stability crossing curves
(crossing set characterization, direction of crossing,
smoothness). Regular, and degenerate cases are both
treated. Various examples complete the presentation.
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