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Abstract—We introduce a dynamical spatio-temporal model
formalized as a recurrent neural network for forecasting time
series of spatial processes, i.e. series of observations sharing
temporal and spatial dependencies. The model learns these depen-
dencies through a structured latent dynamical component, while a
decoder predicts the observations from the latent representations.
We consider several variants of this model, corresponding to
different prior hypothesis about the spatial relations between the
series. The model is evaluated and compared to state-of-the-art
baselines, on a variety of forecasting problems representative
of different application areas: epidemiology, geo-spatial statistics
and car-traffic prediction. Besides these evaluations, we also
describe experiments showing the ability of this approach to
extract relevant spatial relations.

I. INTRODUCTION

Time series exhibiting spatial dependencies are present
in many domains including ecology, meteorology, biology,
medicine, economics, traffic, and vision. The observations can
come from multiple sources e.g. GPS, satellite imagery, video
cameras, etc. Two main difficulties when modeling spatio-
temporal data come from their size - sensors can cover very
large space and temporal lags - and from the complexity of
the data generation process. Reducing the dimensionality and
uncovering the underlying data generation process naturally
leads to consider latent dynamic models. This has been
exploited both in statistics [ 1] and in machine learning (ML)
121, (3]

Deep learning has developed a whole range of models for cap-
turing relevant information representations for different tasks
and modalities. For dynamic data, recurrent neural networks
(RNN) handles complex sequences for tasks like classification,
sequence to sequence prediction, sequence generation and many
others [4]]-[6].

These models are able to capture meaningful features of
sequential data generation processes, but the spatial structure,
essential in many applications, has been seldom considered
in Deep Learning. Very recently, convolutional RNNs [7]], [8]]
and video pixel networks [[9] have been used to handle both
spatiality and temporality, but for video applications only.

We explore a general class of deep spatio-temporal models
by focusing on the problem of time series forecasting of spatial
processes for different types of data. Although the target in
this paper is forecasting, the model can easily be extended to

cover related tasks like spatial forecasting (kriging [[10]]) or
data imputation.

The model, denoted Spatio-Temporal Neural Network
(STNN), has been designed to capture the dynamics and
correlations in multiple series at the spatial and temporal levels.
This is a dynamical system model with two components: one
for capturing the spatio-temporal dynamics of the process into
latent states, and one for decoding these latent sates into actual
series observations.

The model is tested and compared to state of the art
alternatives, including recent RNN approaches, on spatio-
temporal series forecasting problems: disease prediction, traffic
forecasting, meteorology and oceanography. Besides a compar-
ative evaluation on forecasting tasks, the ability of the model
to discover relevant spatial relations between series is also
analyzed.

The paper is organized as follow: in section [II| we introduce
the related work in machine learning and spatio-temporal
statistics. The model is presented in section [ITI) with its different
variants. The experiments are described in section [V] for both
forecasting and relations discovery [V-C|

II. RELATED WORK

The classical topic of time series modeling and forecasting
has given rise to an extensive literature, both in statistics and
machine learning. In statistics, classical linear models are based
on auto-regressive and moving average components. Most
assume linear and stationary time dependencies with a noise
component [[11]. In machine learning, non linear extensions
of these models based on neural networks were proposed as
early as the nineties, opening the way to many other non
linear models developed both in statistics and ML, like kernel
methods [[12] for instance.

Dynamical state space models, such as recurrent neural
networks, have been used for time series forecasting in
different contexts since the early nineties [13]. Recently, these
models have witnessed important successes in different areas
of sequence modeling problems, leading to breakthrough in
domains like speech [14]], language generation [15], translation
[16] and many others. A model closely related to our work
is the dynamic factor graph model [[17] designed for multiple
series modeling. Like ours, it is a generative model with a latent
component that captures the temporal dynamics and a decoder



for predicting the series. However, spatial dependencies are
not considered in this model, and the learning and inference
algorithms are different.

Recently, the development of non parametric generative
models has become a very popular research direction in
Deep Learning, leading to different families of innovative
and promising models. For example, the Stochastic Gradient
Variational Bayes algorithm (SGVB) [18] provides a framework
for learning stochastic latent variables with deep neural
networks, and has recently been used by some authors to
model time series [[19]—[21]. In our context, which requires
to model explicitly both spatial and temporal dependencies
between multiple time series, variational inference as proposed
by such models is still intractable, especially when the number
of series grows, as in our experiments.

Spatio-temporal statistics have already a long history [1]],
[22]]. The traditional methods rely on a descriptive approach
using the first and second-order moments of the process for
modeling the spatio-temporal dependencies. More recently,
dynamical state space models, where the current state is
conditioned on the past have been explored [23]]. For these
models, time and space can be either continuous or discrete.
The usual way is to consider discrete time, leading to the
modeling of time series of spatial processes. When space is
continuous, models are generally expressed by linear integro-
difference equations, which is out of the scope of our work.
With discrete time and space, models come down to general
vectorial autoregressive formulations. These models face a curse
of dimensionality in the case of a large number of sources.
Different strategies have been adopted to solve this problem,
such as embedding or parameter reduction. This leads to model
families that are close to the ones used in machine learning
for modeling dynamical phenomena, and incorporate a spatial
components. An interesting feature of these approaches is the
incorporation of prior knowledge inspired from physical models
of space-time processes. This consists in taking inspiration
from prior background of physical phenomena, e.g. diffusion
laws in physics, and using this knowledge as guidelines for
designing dependencies in statistical models. In climatology,
models taking into account both temporal and geographical
components have also been used such as Gaussian Markov
Random Fields [24]]

In the machine learning domain, spatio-temporal modeling
has been seldom considered, even though some spatio-temporal
models have been proposed [25]]. [2] introduce a tensor model
for kriging and forecasting. 3] use conditional random fields
for detecting activity in video, where time is discretized at the
frame level and one of the tasks is the prediction of future
activity. Brain Computer Interface (BCI) is another domain
for spatio-temporal data analysis with some work focused on
learning spatio-temporal filters [26], [27], but this is a very
specific and different topic.

III. THE STNN MODEL
A. Notations and Task

Let us consider a set of n temporal series, m is the
dimensionality of each series and T their length ﬂ m =1
means that we consider n univariate series, while m > 1
correspond to m multivariate series each with m components.
We will denote X the values of all the series between time 1
and time 7. X is then a RT*™*™ 3_dimensional tensor, such
that X; ; ; is the value of the j-th component of series ¢ at time
t. X; will denote a slice of X at time ¢ such that X; € R™**™
denotes the values of all the series at time .

For simplicity, we first present our model in a mono-
relational setting. An extension to multi-relational series where
different relations between series are observed is described in
section We consider that the spatial organization of the
sources is captured through a matrix W € R"*". Ideally, W
would indicate the mutual influence between sources, given
as a prior information. In practice, it might be a proximity or
similarity matrix between the sources: for geo-spatial problems,
this might correspond to the inverse of a physical distance - e.g.
geodesic - between sources. For other applications, this might
be provided through local connections between sources using
a graph structure (e.g. adjacency matrix for connected roads in
a traffic prediction application or graph kernel on the web). In
a first step, we make the hypothesis that W is provided as a
prior on the spatial relations between the series. An extension
where weights on these relations are learned is presented in
section

We consider in the following the problem of spatial time
series forecasting i.e predicting the future of the series, knowing
their past. We want to learn a model f : RT>7Xm x Rnxn
R7™*"*™ aple to predict the future at 7 time-steps of the series
based on X and on their spatial dependency.

B. Modeling Time Series with Continuous Latent Factors

Let us first introduce the model in the simpler case of
multiple time series prediction, without considering spatial
relations. The model has two components.

The first one captures the dynamic of the process and is
expressed in a latent space. Let Z; be the latent representation,
or latent factors, of the series at time ¢. The dynamical
component writes Z;11 = g(Z;). The second component is
a decoder which maps latent factors Z; onto a prediction
of the actual series values at t: X; = d(Z;), X; being
the prediction computed at time ¢. In this model, both the
representations Z; and the parameters of the dynamical and
decoder components are learned. Note that this model is
different from the classical RNN formulations [16], [28]. The
state space component of a RNN with self loops on the hidden
cells writes Z;11 = g(Z, X{), where X is the ground truth
X, during training, and the predicted value X, during inference.
In our approach, latent factors Z, are learned during training

'We assume that all the series have the same dimensionality and length.
This is often the case for spatio-temporal problems otherwise this restriction
can be easily removed.



and are not an explicit function of past inputs as in RNNs: the
dynamics of the series are then captured entirely in the latent
space.

This formal definition makes the model more flexible than
RNNSs since not only the dynamic transition function g(.),
but also the state representations Z; are learned from data. A
similar argument is developed in [[17]. It is similar in spirit to
Hidden Markov models or Kalman filters.

a) Learning problem: Our objective is to learn the two
mapping functions d and g together with the latent factors Z,
directly from the observed series. We formalize this learning
problem with a bi-objective loss function that captures the
dynamics of the series in the latent space and the mapping
from this latent space to the observations. Let £(g,d, Z) be
this objective function:

£(d9.2) = 7 3 Ald(Z), 1) @

T-1

(1)
1
+>\T Z | Ze1 = 9(Z0)|P
t=1

(i)

The first term (i) measures the ability of the model to
reconstruct the observed values X; from the latent factor Z;.
It is based on loss function A which measures the discrepancy
between predictions d(Z;) and ground truth X;. The second
term (ii) aims at capturing the dynamicity of the series in the
latent space. This term forces the system to learn latent factors
Z;+1 that are as close as possible to g(Z;). Note that in the ideal
case, the model converges to a solution where Z;11 = g(Z;),
which is the classical assumption made when using RNNs.
The hyper-parameter A is used here to balance this constraint
and is fixed by cross-validation. The solution d*, g*, Z* to this
problem is computed by minimizing £(d, g, Z):

d*,g*,Z* = arg min L(d, g, Z)
d,g,Z

2)

b) Learning algorithm: In our setting, functions d and
g, described in the next section, are differentiable parametric
functions. Hence, the learning problem can be solved end-
to-end with Stochastic Gradient Descent (SGD) techniquesﬂ
directly from (9)). At each iteration, a pair (Z;, Z¢11) is sampled,
and Z;, Z;11, g and d are updated according to the gradient of
(T). Training can also be performed via mini-batch, meaning
that for each iteration several pairs (Z;, Z;41) are sampled,
instead of a single pair. This results in a high learning speed-up
when using GPUs which are the classical configuration for
running such methods.

c) Inference: Once the model is learned, it can be used
to predict future values of the series. The inference method
is the following: the latent factors of any future state of the
series is computed using the g function, and the corresponding
observations is predicted by using d on these factors. Formally,
let us denote Z, the predicted latent factors at time 7"+ 7. The

2In the experiments, we used the Nesterov’s Accelerated Gradient (NAG)
method [29].

forecasting process computes Z, by successively applying the
g function 7 times on the learned vector Zr:

ZT:gogo...og(ZT) 3
and then computes the predicted outputs X,
X, —d(Z) 4)

C. Modeling Spatio-Temporal Series

Let us now introduce a spatial component in the model. We
consider that each series has its own latent representation at
each time step. Z, is thus a n x N matrix such that Z, ; € RYN
is the latent factor of series ¢ at time ¢, /N being the dimension
of the latent space. This is different from approaches like [[17]]
or RNNs for multiple series prediction, where Z; would be
a single vector common to all the series. The decoding and
dynamic functions d and g are respectively mapping R™*" to
R™ ™ and Ran to RRXN.

The spatial information is integrated in the dynamic compo-
nent of our model through a matrix W € R’*". In a first step,
we consider that W is provided as prior information on the
series” mutual influences. In we remove this restriction, and
show how it is possible to learn the weights of the relations,
and even the spatial relations themselves, directly from the
observed data. The latent representation of any series at time
t + 1 depends on its own latent representation at time ¢ (intra-
dependency) and on the representations of the other series at ¢
(inter-dependency). Intra-dependency will be captured through
a linear mapping denoted ©(®) € RN*N and inter-dependency
will be captured by averaging the latent vector representations
of the neighboring series using matrix W, and computing a
linear combination denoted ©(1) € RV*N of this average.
Formally, the dynamic model g(Z;) is designed as follow:

Zi1 = h2Z,00 + wz,0W) (5)

Here, h is a non-linear function. In the experiments we set
h = tanh but h could also be a more complex parametrized
function like a multi-layer perceptron (MLPs) for example —
see section [V| The resulting optimization problem over d, Z,
0 and O writes:

d*, Z*, @(O)*7 @(1)* —

1

T ZA(d(Zt),XtH‘
t

arg min
4,2,600 6

L T (6)
)\T ; | Ziy1 — (2,00 + Wz,06W)|?

with Z, € R™*N

D. Modeling different types of relations

The model in section considers that all the spatial
relations are of the same type (e.g. source proximity). For many
problems, we will have to consider different types of relations.
For instance, when sensors correspond to physical locations
and the target is some meteorological variable, the relative
orientation or position of two sources may imply a different type



[ Dataset I Task [ n [ m [ nbrelations [ time-step [ total length [ training length [ #folds |
Google Flu Flu trends 29 1 1to3 weeks =~ 10 years 2 years 50
GHO (25 datasets) Number of deaths 91 1 1to3 years 45 years 35 years 5
Wind Wind speed and orientation 500 2 1to3 hours 30 days 10 days 20
PST Temperature 2520 1 8 months = 33 years 10 years 15
Bejing Traffic Prediction 5000 1 1to3 15 min 1 week 2 days 20

TABLE I: Datasets statistics. n is the number of series, m is the dimension of each series, timestep corresponds to the duration
of one time-step and #folds corresponds to the number of temporal folds used for validation. For each fold, evaluation has been
made on the next 5 values at 7'+ 1,7 + 2, ..., T 4 5. The relation columns specifies the number of different relation types used
in the experiments i.e the number of W (") matrices used in each dataset. 1 to 3 means that the best among 1 to 3 relations was

selected using cross validation

of dependency between the sources. In the experimental section,
we consider problems with relations based on the relative
position of sources, north, south,west, east, .... The multi-
relational framework generalizes the previous formulation of
the model, and allows us to incorporate more abstract relations,
like different measures of proximity or similarity between
sources. For instance, when sources are spatiality organized
in a graph, it is possible to define different graph kernels,
each one of them modeling a specific similarity. The following
multi-relational formulation is based on adjacency matrices,
and can directly incorporate different graph kernels.

Each possible relation type is denoted r and is associated to
a matrix W) ¢ Rf_x". For now, and as before, we consider
that the W (") are provided as prior knowledge. Each type of
relation r is associated to a transition matrix ©("). This learned
matrix captures the spatio-temporal relationship between the
series for this particular type of relation. The model dynamics
writes:

Zir = 0200 + 3w z,eM)
reR

where R is the set of all possible types of relations. The
learning problem is similar to equation (6)) with Z;, replaced
by the expression in (7). The corresponding model is illus-
trated in figure [} This dynamic model aggregates the latent
representations of the series for each type of relation, and then
applies ©(") on this aggregate. Each ©(") is able to capture
the dynamics specific to relation (r).

(N

(W@ z,e@),

(W z,00), Zt—i—l i

(WO 2,00),

Fig. 1: Architecture of the STNN model as described in Section

[-D}

IV. LEARNING THE RELATION WEIGHTS AND CAPTURING
SPATIO-TEMPORAL CORRELATIONS

In the previous sections, we made the hypothesis that the
spatial relational structure and the strength of influence between

series were provided to the model through the TW (") matrices.
We introduce below an extension of the model where weights
on these relations are learned. This model is denoted STNN-
R(efining). We further show that, with a slight modification,
this model can be extended to learn both the relations and
their weights directly from the data, without any prior. This
extension is denoted STNN-D(iscovering).

We will first introduce the STNN-R extension. Let I'(")
R™"™ be a matrix of weights such that I‘frj) is the strength of
the relation between series ¢ and j in the relation r. Let us
extend the formulation in Equation (7) as follows:

Zip1 = h(ZtG)(O) + Z(W(T) ® F(T))zt@(r))
reR

(®)

where T'(") is a matrix to be learned, W () is a prior i.e a set
of observed relations, and ® is the element-wise multiplication
between two matrices. The learning problem can be now be
written as:

d*, 7%, 0% T* =

1
argmin — Y A(d(Z), X;) + 7T
dzr T < ©)
1 T-1

- _ (r) (r) (Y12
—MT ; [[Z41 — h( ;};)(W "ort)z,em|

where |T'(")| is a I; regularizing term that aims at sparsi-
fying T'("). We thus add an hyper-parameter v to tune this
regularization factor.

If no prior is available, then simply removing the W(")s
from equation (B) leads to the following model:

Zi = (2,0 + Z rz,.em)
reR

(10)

where T'(") is no more constrained by the prior W (") so that
it will represent both the relational structure and the relation
weights. Both models are learned with SGD, in the same way
as described in The only difference is that a gradient
step on the I'(")s is added.

V. EXPERIMENTS

Experiments are performed on a series of spatio-temporal
forecasting problems representative of different domains. We
consider predictions within a +5 horizon i.e. given a training
series of size T, the evaluation of the quality of the model



M Disease Car Traffic Geographical
odels ——
Google Flu L GH(E[ Beijing Speed L Direction l PST ]
MEAN 175 335 201 0.191 0.225 258
AR .101£.004 .299 £.008 | .075+.003 | .082£.005 | 0.098+.016 .15 £.002
VAR-MLP .095+.004 | .291£.004 | .07 +.002 .071£.005 | 0.111+0.14 | .132 £.003
DFG .095 £.008 | .288 +.002 | .068 £ .005 .07+£.004 | .092 £ .006 .99 £ .019
RNN-tanh .082 £ .008 | .287 +.011 | .075£.006 | .064 +.003 .09 £ .005 141 £ .01
RNN-GRU || .074 +.007 | .268 + .07 .074 £.002 | .059 +.009 | .083 £.005 | .104 &+ .008
STNN .066 = .006 | .261+£.009 | .056 & .003 | .047 £.008 | .061 +.008 | .095+ .008
STNN-R .061 = .008 261 £+ .01 .055 +.004 | .047 £.008 | .061 & .008 .08 +.014
STNN-D .073£.007 | .288 .09 .069 £+ .01 .069 £.008 | .073 £.008 | .109 £ .015

TABLE II: Average RMSE for the different datasets computed for T+1, T+2,...,T+5. Standard deviation was computed by

re-training the models on different seeds.

Disease / Model AR VAR-MLP | RNN-GRU | Mean | DFG | STNN-R
All causes 0.237 0.228 0.199 0.35 | 0.291 0.197
Tuberculosis 0.407 0.418 0.37 0.395 | 0.421 0.377
Congenital syphilis 0.432 0.443 0.417 0.459 | 0.422 0.409
Diphtheria 0.406 0.396 0.387 0.404 | 0.419 0.385
Malignant neoplasm of esophagus 0.355 0.341 0.341 0.363 | 0.372 0.345
Malignant neoplasm of stomach 0.44 0.434 0.431 0.455 | 0.452 0.43
0.267 0.254 0.282 0.303 | 0.301 0.253
Malignant neoplasm of intestine 0.281 0.29 0.278 0.314 | 0.305 0.275
Malignant neoplasm of rectum 0.501 0.499 0.481 0.504 | 0.509 0.498
Malignant neoplasm of larynx 0.321 0.313 0.32 0.314 | 0.329 0.310
Malignant neoplasm of breast 0.375 0.375 0.382 0.394 | 0.38 0.36
Malignant neoplasm of prostate 0.111 0.113 0.109 0.184 | 0.138 0.109
Malignant neoplasm of skin 0.253 0.243 0.227 0.264 | 0.256 0.221
Malignant neoplasm of bones 0.103 0.099 0.097 0.204 | 0.173 0.08
Malignant neoplasm of all other and | 0.145 0.157 0.147 0.164 | 0.169 0.156
unspecified sites
Lymphosarcoma 0.15 0.132 0.13 0.231 | 0.135 0.122
Benign neoplasms 0.366 0.362 0.332 0.398 | 0.331 0.331
Avitaminonsis 0.492 0.474 0.449 0.571 0.58 0.414
Allergic disorders 0.208 0.217 0.221 0342 | 0.24 0.202
Multiple sclerosis 0.061 0.057 0.061 0.242 | 0.152 0.056
Rheumatic fever 0.325 0.31 0.287 0.345 | 0.313 0.256
Diseases of arteries 0.302 0.301 0.269 0.345 | 0.328 0.238
Influenza 0.141 0.141 0.155 0.23 | 0.217 0.125
Pneumonia 0.119 0.128 0.1 0.187 | 0.187 0.1
Pleurisy 0.246 0.246 0.247 0.29 | 0.272 0.245
Gastro-enteritis 0.386 0.369 0.291 0.394 | 0.398 0.295
Disease of teeth 0.344 0.312 0.305 0413 | 0.361 0.302

TABLE III: RMSE of STNN-R over the 25 datasets in GHO for T+1, T+2,...,.T+5

will be made over 7'+ 1 to T' + 5 time steps. The different
model hyper-parameters are selected using a time-series cross-
validation procedure called rolling origin as in [30], [31]]. This
protocol makes use of a sliding window of size T”: on a series
of length T, a window of size T" shifted several times in order
to create a set of train/test folds. The beginning of the 7"
window is used for training and the remaining for test. The
value of 7" is fixed so that it is large enough to capture the
main dynamics of the different series. Each series was re-scaled
between 0 and 1.

We performed experiments with the following models:
(i) Mean: a simple heuristic which predicts future values of a
series with the mean of its observed past values computed on
the T” training steps of each training fold.
(i) AR: a classical univariate Auto-Regressive model. For
each series and each variable of the series, the prediction is
a linear function of R past lags of the variable, R being a

hyper-parameter tuned on a validation set.

(iii)) VAR-MLP: a vectorial auto-regressive model where the
predicted values of the series at time ¢ + 1 depend on the past
values of all the series for a lag of size R. The predictive
model is a multi-layer perceptron with one hidden layer. Its
performance were uniformly better than a linear VAR. Here
again the hidden layer size and the lag R were set by validation
(iv) RNN-tanh: a vanilla recurrent neural network with one
hidden layer of recurrent units and tanh non-linearities. As for
the VAR-MLP, one considers all the series simultaneously, i.e.
at time ¢ the RNN receives as input X;_; the values of all
the series at £ — 1 and predicts X;. A RNN is a dynamical
state-space model but its latent state Z; explicitly depends
through a functional dependency both on the preceding values
of the series X,_; and on the preceding state Z,_;. Note that
this model has the potential to capture the spatial dependencies
since all the series are considered simultaneously, but does not



Fig. 2: Prediction of wind speed over around 500 stations on the US territory. prediction is shown at time-step 7" + 1 for

RNN-GRU (centre) and STNN-R (right).
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Fig. 3: Example of a 3 months prediction of Pacific temperature. Left column is the ground truth, central and right columns
correspond respectively to RNN-GRU and STNN-R predictions at horizon 7'+ 1, T'+ 2 and T' + 3 (top to bottom).

model them explicitly.

(v) RNN-GRU: same as the RNN-tanh, but recurrent units
is replaced with gated recurrent units (GRU) units, which are
considered state of the art for many sequence prediction prob-
lems today El We have experimented with several architectures,
but using more than one layer of GRU units did not improve
the performance, so we used 1 layer in all the experiments.
(vi) Dynamic Factor Graph (DFG): the model proposed in
[17] is the closest to ours but uses a joint vectorial latent
representation for all the series as in the RNNs, and does not
explicitly model the spatial relations between series.

(vii) STNN: our model where g is the function described in
equation (]ZI), h is the tanh function, and d is a linear function.
Note that other architectures for d and g have been tested (e.g.
multi-layer perceptrons) without improving the quality of the
prediction. The A\ value has been set by cross validation.

(viii and ix) STNN-R and STNN-D: For the forecasting
experiments the + value of the L; penalty (see equation (9))

4We also performed tests with LSTM and obtained similar results as GRU.

wer set to 0 since higher value decreased the performance,
a phenomena often observed in other models such as Lj-
regularized SVMs. The influence of v on the discovered spatial
structure is further discussed and illustrated in figure [

The complete set of hyper-parameters values for the different
models is given in appendix.

A. Datasets

The different forecasting problems and the corresponding
datasets are described below. The dataset characteristics are
provided in table [V-A]

« Disease spread forecasting: The Google Flu dataset con-
tains for 29 countries, about ten years of weekly estimates
of influenza activity computed by aggregating Google
search queries (see http://www.google.org/flutrends). We
extract binary relations between the countries, depending
on whether or not they share a border, as a prior W.

+ Global Health Observatory (GHO): This dataset made
available by the Global Health Observatory, (http://www.
who.int/en/) provides the number of deaths for several
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Fig. 5: RMSE on the Google Flu dataset at horizon 7'+ 1 to
T+13

diseases. We picked 25 diseases corresponding to 25
different datasets, each one composed of 91 time series
corresponding to 91 countries (see table [V-A). Results
are averages over all the datasets. As for Google Flu, we
extract binary relations W based on borders between the
countries.

« Geo-Spatial datasets: The goal is to predict the evolution
of geophysical phenomena measured on the surface of
the Earth.

The Wind dataset (www.ncdc.noaa.gov/) consists of
hourly summaries of meteorological data. We predict
wind speed and orientation for approximately 500 land
stations on U.S. locations. In this dataset, the relations
correspond to a thresholded spatial proximity between the
series. Given a selected threshold value d, two sources
are connected (w; ; = 1) if their distance is below d and
not connected (w; ; = 0) otherwise.

The Pacific Sea Temperature (PST) dataset represents
gridded (at a 2 by 2 degrees resolution, corresponding to
2520 spatial locations) monthly Sea Surface Temperature

(SST) on the Pacific for 399 consecutive months from
January 1970 through March 2003. The goal is to predict
future temperatures at the different spatial locations. Data
were obtained from the Climate Data Library at Columbia
University (http://iridl.ldeo.columbia.edu/). Since the se-
ries are organized on a 2D grid, we extract 8 different
relations : one for each cardinal direction (north, north-
west, west, etc...). For instance, the relation north, is
associated to a binary adjacency matrix W ("°"*") such
that Wi(’?orth) is set to 1 if and only if source j is located
2 degree at the north of source ¢ (the pixel just above on
the satellite image).

o Car Traffic Forecasting: The goal is to predict car traffic
on a network of streets or roads. We use the Beijing
dataset provided in [32], [33]] which consists of GPS
trajectories for ~ 10500 taxis during a week, for a total of
17 millions of points corresponding to road segments in
Beijing. From this dataset, we extracted the traffic-volume
aggregated on a 15 min window for 5,000 road segments.
The objective is to predict the traffic at each segment. We
connect two sources if they correspond to road segments
with a shared crossroad.

For all the datasets but PST (i.e. Google Flu, GHO, Wind
and Bejing), we defined the relational structure using a simple
adjacency matrix W. Based on this matrix, we defined K
different relations by introducing the powers of this matrix:
WO =W, W® =W x W, etc. In our setting K took values
from 1 to 3 and the optimal value for each dataset has been
selected during the validation process.

B. Forecasting Results

A quantitative evaluation of the different models and the
baselines, on the different datasets is provided in table
All the results are average prediction error for 7' 4+ 1 to
T + 5 predictions. The score function used is the Root Mean
Squared Error (RMSE). A first observation is that STNN and
STNN-R models which make use of prior spatial information
significantly outperform all the other models on all the datasets.
For example, on the challenging PST dataset, our models
increase by 23% the performance of the GRU-RNN baseline.
The increase is more important when the number of series is
high (geo-spatial and traffic datasets) than when it is small
(disease datasets). In these experiments, STNN-D is on par
with RNN-GRU. The two models do not use prior information
on spatial proximity. STNN makes use of a more compact
formulation than RNN-GRU for expressing the series mutual
dependency but the results are comparable. Vectorial AR
logically improves on mono-variable AR (not shown here)
and non linear MLP-VAR improves on linear VAR.

We also provide in table the score for each of the
25 diseases of the GHO dataset. STNN-R obtained the best
performance compared to STNN and STNN-D. It outperforms
state-of-the-art methods in 20 over 25 datasets, and is very
close to the RNN-GRU model on the 5 remaining diseases
where RNN-GRU performs best. It thus shows that our model is
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Fig. 7: Spatial correlations extracted by the STNN-R model

on the PST dataset. The color of each pixel correspond to the
principal relation extracted by the model.

able to benefit from the neighbour information in the proximity
graph.

Figures [2] and [3] illustrate the prediction of STNN-R and
RNN-GRU on the meteorology and on the oceanography
datasets along with the ground truth. Clearly on these datasets,
STNN qualitatively performs much better than RNNs by using
explicit spatial information. STNN is able to predict fine details
corresponding to local interactions when RNNs produce a much
more noisy prediction. These illustrations are representative of
the general behavior of the two models.

We also provide the performance of the models at different
prediction horizons 7'+ 1,7 + 2, ....T + 13 on figure [3 for the
Google Flu dataset. Results show that STNN performs better
than the other approaches for all prediction horizons and is
thus able to better capture longer-term dependencies.

Figure [ illustrates the RMSE of the STNN-R model when
predicting at 741 on the Google Flu dataset for different values
of \. One can see that the best performance is obtained for an
average value of A: low values corresponding to weak temporal
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Fig. 8: Dynamic spatio-temporal relations extract from the PST
dataset on the training set. The color represents the actual sea
surface temperature. The arrows represent the extracted spatial
relations that evolve through time.

constraints do not allow the model to learn the dynamicity
of the series while high values degrade the performance of
STNN.

C. Discovering the Spatial Correlations

In this subsection, we illustrate the ability of STNN to
discover relevant spatial correlations on different datasets.
Figure [§] illustrates the values of I' obtained by STNN-D
where no structure (e.g. adjacency matrix W) is provided to
the model on the PST dataset. Each pixel corresponds to a
particular time series and the figure shows the correlation I'; ;



discovered between each series j with a series ¢ roughly located
at the center of the picture. The darker a pixel is, the higher the
absolute value of I'; ; is (note that black pixels correspond to
countries and not sea). Different levels of sparsity are illustrated
from low (up) to high (down). Even if the model does not
have any knowledge about the spatial organization of the series
(no W matrix provided), it is able to re-discover this spatial
organization by detecting strong correlations between close
series, and low ones for distant series.

Figure [/| illustrates the correlations discovered on the PST
dataset. We used as priors 8 types of relations corresponding
to the 8 cardinal directions (South, South-West, etc...). In this
case, STNN-R learns weights (i.e (M) for each relation based
on the prior structure. For each series, we plot the direction
with the highest learned weight. The strongest direction for
each series is illustrated by a specific color in the figure.
For instance, a dark blue pixel indicates that the stronger
spatial correlation learned for the corresponding series is
the North-West direction. The model extracts automatically
relations corresponding to temperature propagation directions
in the pacific, providing relevant information about the
spatio-temporal dynamics of the system.

The model can be adapted to different situations. Figure [§]
represents the temporal evolution of the spatial relations on the
PST dataset. For this experiment, we have slightly changed the
STNN-R model by making the I'(") time dependent according
to:

0. = f(Z]) (11)

This means that with this modified model, the spatial relation
weights depend on the current latent state of the corresponding
series and may evolve with time. In the experiment, f, is a
logistic function. On figure [§] the different plots correspond
to successive time steps. The color represent the actual sea
surface temperatures, and the arrows represent the direction
of the stronger relation weights F,ET) among the eight possible
directions (N, NE, etc). One can see that the model captures
coherent dynamic spatial correlations such as global currents
directions or rotating motions that gradually evolve with time.

VI. CONCLUSION

We proposed a new latent model for addressing multivariate
spatio-temporal time series forecasting problems. For this model
the dynamics are captured in a latent space and the prediction
makes use of a decoder mechanism. Extensive experiments
on datasets representative of different domains show that
this model is able to capture spatial and temporal dynamics,
and performs better than state of the art competing models.
This model is amenable to different variants concerning the
formulation of spatial and temporal dependencies between the
sources.

For the applications, we have concentrated on forecasting
(time based prediction). The same model could be used for
interpolating (space based prediction or kriging) or for data
imputation when dealing with time-series with missing values.
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APPENDIX

Hyper-parameters selection

We list in this section the set of hyper-parameters that have
been chosen by cross-validation.

¢ For RNN-models:

— Size of the hidden state = (20, 50, 80, 150, 300, 500)

o« For AR:

— Number of lags R € {1,2,5,10,15,25}

e« For VAR-MLP:

— Number of lags R € {1,2,5,10,15,25}
— Size of the hidden state € {20, 50, 80, 150, 300, 500}

o For STNN:

— Dimension of the latent space N €
{5, 10, 20, 50, 80, 10}
— Soft-constraint parameter A €

{0.001,0.01,0.1,1, 10}

— Sparsity regulation v € {0.001,0.01,0.1,1}

- K value € {1,2,3} (for datasets composed of 1
unique relation)

o For DFG:

— Size of the hidden states S
{10, 20, 50, 100, 300, 500}



