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Abstract

Within the framework of the European H2020 HYPROGEO program, an inno-

vative hybrid engine combustion chamber compatible with satellite requirements

(constant thrust over very long burn-times) had to be developed. A first test

rig was designed and tested in order to better understand the functioning of

this innovative combustion chamber, and to help the design of a breadboard to

demonstrate the efficiency of this new engine with respect to the mission re-

quirements. Two test campaigns, the first on the test rig with 87.5% hydrogen

peroxide, and the second on the hybrid engine breadboard with 98% hydrogen

peroxide, were performed under various operating conditions to demonstrate the

catalytic ignitability of this new hybrid engine, and the sustainment of a stable

combustion over firing durations up to 180 s. The test campaigns also enabled

the identification of the main influencing parameter on the fuel regression rate

for this innovative combustion chamber.
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1. Introduction

The use of electrical propulsion systems to transfer satellites from GTO to

operational GEO orbits, in addition to their current use for station-keeping,

seems to be the trend for future European telecommunication satellites. How-

ever, the long transfer durations inherent to such low-thrust technologies may

not be compatible with all mission timeline requirements. One of the solutions

proposed by industry and public agencies is to employ a dedicated high-thrust

propulsion system to accelerate the transfer phase. This apogee kick-stage mod-

ule should also combine environmentally-friendly chemical technology and elec-

trical thrusters, to optimize its efficiency in terms of propulsive performances,

mass, costs, etc.

Owing to their advantages over current MMH/NTO bi-propellant engines,

such as increased safety, lower environmental impact, better propulsive perfor-

mances, lower costs, etc., hybrid propulsion systems could be a good candidate

for this task. However, the current architecture of such an engine is not suitable

for the long burn-time and constant-thrust required for a satellite application,

as a result of the variations in oxidizer-to-fuel ratio and fuel grain shape with

time. An innovative combustion chamber satisfying the previous requirements

is thus to be developed.

In order to have a constant thrust, Rice et al. developed the vortex end-

burning hybrid engine (VEBH) which provides the advantage of a constant fuel

burning surface area [1]. The engine mixture ratio can be controlled by varying

the oxidizer mass flow rate and/or the combustion chamber diameter (fuel sur-

face area). As presented in Figure 1, this engine, designed for use with HTPB,

consists of a ring chamber sandwiched between top and bottom matings, with

the gaseous oxidizer (GOX) tangentially injected through ports at the tail-end

(nozzle side) of the chamber in order to create a swirl motion of the gaseous

phase, and to increase the fuel regression rate. Based on observations of post-

firing fuel grains, a counter-swirling pattern of grooves, which appear to indicate

flow opposite to that of the swirl GOX injection, exists near the centre of the
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chamber. According to the authors, a portion of the oxygen may be spiralling

along the bottom of the chamber and up to the head end in the central region,

where it meets the grain surface and flows back outward. In this case, the flow

field might consist of two inter-twined spirals in the central region of the cham-

ber, one spinning upward and the other spinning downward towards the nozzle

(Figure 2). However, this concept is not compatible with the long burn-

Figure 1: Vortex end-burning hybrid engine [1]

Figure 2: Flow field in the combustion chamber [2]

time required for satellite applications, since the distance between the injection

location and the fuel surface evolves with time, which may cause combustion sta-

bility and ignition issues. In order to solve this problem, an interesting solution

is the end-burning swirling-flow hybrid rocket engine (named SOFT for Swirling

Oxidizer Flow Type), using paraffin wax developed by Hayashi and Sakurai for
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application to a first stage [3]. This concept is similar to that of Rice et al. in

terms of overall dimensions, oxidizer type and injection, but is equipped with

an actuator to push the fuel grain axially toward the nozzle side in order to

keep the volume of the combustion chamber constant during burning. As in

the previous study, the authors observed that the fuel regressed axially with a

high regression rate region close to the centre of the fuel grain. According to

Volchkov et al., the convection coefficient on the surface is maximum at the axis

level because of the phenomena induced by the swirl injection [4]. Hayashi and

Sakurai concluded that the formation of a crater at the centre of the fuel grain

was provoked by these same mechanisms, since the energy input was higher.

Although this concept was interesting, the actuator was not useful, as a

result of the very short burn duration (only two seconds). Moreover, the fuel

employed for this study was not suitable for use on-board a satellite due to its

high regression rate: the length needed to make this engine compatible with

the requirements in terms of burn duration would make it incompatible with

spacecraft sizing. Dedicated studies on pancake hybrid engines were performed

in order to satisfy these constraints [5, 6], but these concepts led to a time-

variant change in the oxidizer-to-fuel ratio and the fuel grain shape, which is

not coherent with the satellite requirements for constant thrust.

Within the framework of the European H2020 HYPROGEO project, a hy-

brid engine compatible with a long burn duration (about 5000 s) and with

a constant thrust at the required level (250 N) for use on-board a spacecraft

had to be developed [7]. To reach these objectives, the idea was to design an

end-burning, swirling-flow hybrid engine combined with a passive actuator to

compensate for the fuel regression, operating with high density polyethylene as

fuel and 98% hydrogen peroxide as oxidizer; this type of fuel is suitable for use

on-board satellites due to its very low regression rate. In addition, catalytic

injection combining start and stop capabilities is made possible by the choice of

this oxidizer.

The methodology that was followed during the HYPROGEO project led to

the development of two innovative hybrid rocket engines. The first one, the
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MHYCAS facility [8], was designed to better understand the functioning of this

new combustion chamber architecture, while the goal of the second one, the Su-

perMHYCAS facility, was to demonstrate the efficiency of this new engine with

respect to the objectives for constant thrust over long burn durations. This

paper will consequently describe the architecture of these new hybrid engines

and discuss the test results.

2. The MHYCAS test campaign

The MHYCAS engine (Figure 3), a French acronym for ’hybrid engine com-

patible with satellite application’, was designed and tested as an intermediate

step in order to better define the final breadboard of the HYPROGEO project,

to investigate potential difficulties, such as catalytic ignition or oxidizer injec-

tion, and to define the operating conditions to have the required oxidizer-to-fuel

ratio, chamber pressure and oxidizer mass flow rate.

Figure 3: MHYCAS hybrid engine during a test firing

2.1. Description of the test facility

The MHYCAS facility is composed of a pressurized tank, feeding lines, and

the MHYCAS hybrid engine. The tank pressure is maintained at a constant level

during the firing test to keep the oxidizer mass flow rate, and hence operating

conditions, constant.

5



The MHYCAS engine (Figure 4) is composed of a fuel tank containing the

high density polyethylene fuel grain, an annular ring providing a swirl injection,

with six decomposition chambers filled with the platinum-based PX1 catalyser

and supplied with 87.5% hydrogen peroxide mounted to the annular ring (Figure

5), a combustion chamber of 200 mm in-diameter at the fuel location, and a

nozzle with an adaptable throat section. The modular design of this hybrid

engine enables the operator to easily change the number of active decomposition

chambers, the initial position of the fuel grain with respect to the location of

the oxidizer slots, the shape of the fuel grain, and the operating conditions in

terms of chamber pressure, oxidizer mass flow rate and mass flux (calculated

at oxidizer injection). However, contrary to the VEHB and SOFT engines,

the oxidizer injection is located very close to the fuel grain to ease the catalytic

ignition of the engine. Moreover, since the oxidizer injection and the gaseous

flow have a major impact on the fuel regression rate, the ring was designed

with the help of idealised and CFD analyses [9]. These analyses led to the

selection of six continuous ducts which inject the oxidizer tangentially to the

combustion chamber to generate a swirling motion (Figure 5). The engine

is equipped with temperature and pressure probes located at the end of one of

the six decomposition chambers, and three pressure probes placed around the

combustion chamber. The engine is also placed on a thrust bench to measure

the propulsive performance. However, it should be noted that the nozzle was

not adapted to ambient pressure, since the nozzle throat was only modified to

target different values of combustion chamber pressure.

To complete these measurements, thin thermocouples were welded onto the

external wall of the engine: 14 were placed on the combustion chamber, one

was placed at the end of each decomposition chamber, and two were placed on

the fuel tank. By means of a backwards integration method, these temperature

measurements enable the evaluation of the inside wall temperature and the

thermal flux along the combustion chamber.

Finally, the instrumentation for the test facility includes a Coriolis mass

flow meter and temperature and pressure transducers for the liquid oxidizer,
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Figure 4: Drawing of the MHYCAS engine

upstream of the oxidizer distributor. The latter distributes the oxidizer from

the main supply line to the six secondary lines, each one being connected to a

single decomposition chamber.

The uncertainties related to the measurement techniques implemented on

this test bench are specified in Table 1.

2.2. Test results

The MHYCAS test campaign was performed through 25 test firings with the

same test sequence. As presented in Figure 6, the first phase of the firing tests

corresponded to a blipping sequence of the oxidizer injection, to fill the oxidizer
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Figure 5: Drawing of the selected injector ring with the decomposition chambers

Table 1: Uncertainties of the measurements techniques implemented on the MHYCAS facility

Quantity Uncertainty Unit

Pressure 1000 Pa

Oxidizer mass flow rate 0.1 g/s

Temperature 1 k

Thrust 2 N

lines and to slowly warm-up the decomposition chambers to avoid damaging

the catalyser. This sequence was followed by a continuous oxidizer injection

phase, which can be split into two parts: a mono-propellant phase, where the

combustion process has not started, and a hybrid phase as soon as the engine

has ignited. Finally, after the firing test, a drain phase was employed, which

consisted of a continuous nitrogen injection to avoid thermal lag and degradation

of the engine. This phase was also composed of two distinct parts: the first was

the flushing of the hydrogen peroxide contained in the feed lines (associated

with an increase in chamber pressure during the flush), whilst the second was

the injection of pure nitrogen into the engine. The objectives of the first four

tests were to ignite the hybrid engine, and to maintain a stable hybrid mode over

several seconds. These tests revealed that the engine was able to ignite, but also

that the fuel grain position with respect to the oxidizer injection location had a
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Figure 6: Example of the firing test phases for the MHYCAS engine

major influence on the ignition delay. This distance was set to 12.5 mm for the

first two firing tests, and was then fixed at 1 mm for the rest of the test campaign,

in order to minimize the monopropellant phase duration. Several configurations

were then tested through the campaign at various operating conditions, in terms

of pressure or mass flow rate. In order to increase the oxidizer mass flux at

the injection, data evaluated in the cross section at the end of the injector

duct r(ed line in Figure 5), two solutions were employed: the first consisted of

reducing the number of active decomposition chambers (and consequently, the

number of active decomposition injectors), and the second consisted of adding a

circumferential plate around the fuel grain to reduce the oxidizer slot thiwkness

and consequently the cross-sectional area of the active injectors. The results of

the main tests are presented in Table 2. The oxidizer mass flux is evaluated at

It should be noted that to avoid the transient effects of the engine ignition,

which could have a significant impact on the data for small-duration tests all

the values provided were averaged over the last three seconds of hybrid phase

duration. Moreover, the fuel regression rates values are only based on the fuel

mass loss, and were corrected in the hybrid phase to consider the drain phase,

where the engine re-ignited due to the hydrogen peroxide flush.
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Table 2: MHYCAS firing test results

MHYCAS test number 02 05 07 09 12 15 16 17 22

Number of active decomposition chambers 6 6 6 3 3 6 2 2 6

Oxidizer slot thickness (mm) 10.5 10.5 10.5 10.5 10.5 10.5 10.5 3.5 2.5

Ignition delay (s) 19.2 35.0 3.7 6.6 4.2 8.6 7.5 9.2 17.6

Firing duration (s) 12.7 18.0 28.8 36.2 29.1 23.8 25.3 22.9 16.0

Chamber pressure (bar) 7.87 8.24 17.89 8.54 18.26 11.03 7.67 7.02 5.62

Oxidizer mass flow rate (g/s) 51.7 52.1 103.1 41.4 44.1 107.9 36.2 30.6 30.3

Oxidizer mass flux (kg/m2/s) 16.4 16.5 37.7 26.3 28.0 34.3 34.4 87.5 40.4

Oxidizer-to-fuel mass ratio (-) 34.5 21.3 27.5 13.9 16.2 29.2 11.7 7.4 8.1

Regression rate (mm/s) 0.050 0.082 0.126 0.100 0.124 0.124 0.104 0.142 0.132

Experimental characteristic velocity (m/s) 1049 1071 1187 1364 1276 1212 1386 1436 1169

Combustion efficiency (%) 89.2 82.9 96.8 96.0 93.0 100.0 93.7 89.9 73.9

The first firing tests were conducted with high oxidizer-to-fuel mass ratios

compared with the target value of 7.4, which corresponds to the optimal value

for a hybrid engine operating with 98% hydrogen peroxide and high-density

polyethylene as propellants. Values very close to this target were reached with

test MHYCAS 17 (two active decomposition chambers), and MHYCAS 22 (six

active decomposition chambers), proving that reaching an optimum value of

oxidizer-to-fuel ratio was feasible with such a hybrid engine.

2.3. Firing test analysis

The analysis of the firing tests presented in Table 2 will only focus on the

behaviour of the fuel regression rate, since this parameter has a major role on

the oxidizer-to-fuel ratio, and on the propulsive performances, which are two

important criteria to optimize for applications to spacecraft.

The distance between the fuel grain surface and the oxidizer injection has

a significant influence on the ignition delay. Consequently, it seems that the
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heat transfer between the gaseous flow and the fuel grain is increased when

this distance decreases. This is confirmed by comparing the MHYCAS 02 and

MHYCAS 05 tests, for which the fuel regression rate has been significantly in-

creased by reducing the distance between the fuel surface and the injector. This

influence will not be present for the SuperMHYCAS engine, since the distance

between the fuel surface and the oxidizer injection will remain constant by com-

pensating for the fuel regression rate.

In a classical hybrid engine, pressure has no significant influence on the fuel

regression rate. In order to verify if this assumption is correct with the MHY-

CAS engine, tests 07 and 15, as well as tests 09 and 12, can be compared in pairs,

since they have similar oxidizer injection conditions with respect to mass flow

rates and mass flux, but strong differences in combustion chamber pressures.

It can be seen that the fuel regression rate is not modified when the pressure

changes. This conclusion is verified whatever the value of the oxidizer mass flow

rate, since it is true for high mass flow rates (geq 100 g/s), or low mass flow

rates (leq 45 g/s). Note that these comparisons were performed on firing tests

with the same number of active injectors. These results tend to show that the

combustion chamber pressure has a negligible effect on the fuel regression rate.

The last factor which could have an important impact on the fuel regression

rate is the oxidizer injection, which is well known for classical hybrid engine

geometries. This can be separated further into various parameters, such as the

mass flow rate, the mass flux, the injection velocity, and the injection geometry

(the number of active decomposition chambers). When considering two firing

tests with the same mass flow rates and mass fluxes, the only method of ob-

taining different oxidizer velocities is by changing the oxidizer density, which is

achieved by modifying the chamber pressure. However, as discussed previously,

the pressure, and thus the injection velocity of the oxidizer, does not have a

significant influence on the regression rate. Based on a comparison of tests 16

and 17, and 15 and 22, it is possible to conclude that at a given number of

active decomposition chambers and similar oxidizer mass flow rates, an increase

in the mass flux improves the fuel regression rate. Finally, the number of active
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decomposition chambers has a major impact on the fuel regression rate, since

even with a similar oxidizer mass flow rate and a different oxidizer mass flux,

tests 17 and 22 provided nearly identical oxidizer-to-fuel ratios. It seems that,

for an oxidizer mass flux value, an increase in the number of active decomposi-

tion chambers increases the fuel regression rate.

3. The SuperMHYCAS test campaign

The objective of the SuperMHYCAS facility (Figure 7) was to demonstrate

the efficiency of this innovative hybrid engine architecture with respect to the

satellite requirements, namely providing a constant thrust over a long firing du-

ration. In order to maximize the propulsive performances, this engine operates

with 98% hydrogen peroxide, compared to the MHYCAS engine, which is only

compatible with the standard grade of peroxide (87.5%). In order to sustain

the high temperature expected during operation, most of the parts of the engine

were manufactured in Inconel 625.

Figure 7: SuperMHYCAS hybrid engine

3.1. Description of the test facility

The design of the SuperMHYCAS engine (Figure 7) is very similar to the

MHYCAS engine. The engine is composed of a fuel tank containing the high-
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density polyethylene fuel grain, an annular ring providing a swirl injection,

with six decomposition chambers filled with the PX1 catalyser mounted to the

annular ring, a combustion chamber with a diameter of 250 mm at the location

of the fuel grain, and a graphite nozzle with a throat diameter of 11.5 mm.

This engine is thus slightly bigger than the MHYCAS engine, in order to be

compatible with the thrust level required by the mission specifications. However,

the design of the annular ring was performed in order to easily change the

thickness of the oxidizer slot, since this parameter drives the oxidizer mass

flux, which has a major impact on the fuel regression rate (main result of the

MHYCAS test campaign). The injector ring (Figure 8) is composed of three

parts, one external and two internal; the first internal part (in orange on Figure

9) sets the distance between the fuel grain and the oxidizer slot, while the other

internal part (in blue on Figure 9) fixes the thickness of this slot.

The main difference with the design of the previous engine manufactured in

the framework of this project lies in the addition of a passive fuel displacement

system, in order to compensate for the fuel regression. The displacement of

the fuel grain is guaranteed by the pressurisation, at a higher value than the

combustion chamber pressure, of the volume located at the end the end-hand of

the engine and the fuel grain is stoped at the opposite side (combustion chamber

side) by the conical shape of annular injector ring.

The instrumentation of SuperMHYCAS facility is also very similar to that

of the MHYCAS facility. The only difference lies in the addition of a linear

displacement sensor to give an estimation of the fuel regression rate.

3.2. Test results and analysis

Eleven tests were performed during the SuperMHYCAS test campaign. The

first four were dedicated to the adjustment of the test sequence, in order to avoid

the extrusion of the fuel grain through the conical injection ring at the end of

the firing test. The objective of the next three tests was to provide data through

different oxidizer mass fluxes, in order to plot the evolution of the average fuel

regression rate as a function of the oxidizer mass flux and of the oxidizer-to-fuel
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Figure 8: Complete assembly of the SuperMHYCAS injector ring

Figure 9: Drawing of the SuperMHYCAS engine

ratio. These two plots allow the determination of the thickness of the oxidizer

injection slot needed to reach the optimum mixture ratio. The three tests were

therefore performed under approximately the same operating conditions (Table

3) but with three different slot thicknesses (0.3, 0.6 and 2.8 mm). As with

the MHYCAS test campaign, all the values provided were averaged over the

last five seconds, to avoid significant effects of engine ignition and shut-off on

the data averaging. The regression rate values are based on mass loss during

the firing test.

Figure 10 presents the time evolutions of the chamber pressure, oxidizer
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Table 3: SuperMHYCAS test results - tests 05 to 07

SuperMHYCAS test number 05 06 07

Slot thickness (mm) 0.6 2.8 0.3

Ignition delay (s) 9.7 7.2 22.5

Firing duration (s) 45.3 47.8 32.5

Chamber pressure (bar) 8.43 8.00 7.27

Oxidizer mass flow rate (g/s) 51.4 53.5 46.4

Decomposition temperature (K) 1176 1190 1188

Oxidizer-to-fuel mass ratio (-) 5.1 9.3 4.1

Regression rate (mm/s) 0.221 0.125 0.243

mass flow rate and decomposition chamber temperature observed during the

sixth test of the SuperMHYCAS engine (with slot thickness of 2.8 mm). The

evolutions for the two other tests were very similar. The blipping phase al-

lowed for a gradual increase in decomposition chamber temperature before the

continuous oxidizer injection, during which it reached about 1200 K. The mono-

propellant phase then started, and lasted until the engine was ignited and the

hybrid phase began. Even if the oxidizer mass flow rate was constant during the

hybrid mode, the chamber pressure evolved significantly, which meant that the

transient phase for temperature was still not completed for this firing duration.

The drop in the chamber pressure at the end of the firing test was due to the

de-pressurization of the fuel grain tank, and the retraction of the fuel grain in

order to avoid its extrusion into the combustion chamber when the oxidizer in-

jection stopped. The data presented in Table 3 was collected in the five seconds

before the depressurization of the fuel tank. Based on these three tests, the

evolutions of the fuel regression rate as a function of the oxidizer-to-fuel ratio,

and of the oxidizer mass flux, are plotted (Figure 11, Figure 12). Based

on the interpolation equations of these two plots, an oxidizer-to-fuel ratio of

7.4 (the optimal value with respect to specific impulse for this configuration)
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Figure 10: SuperMHYCAS 06 test results

corresponds to a fuel regression rate of 0.15 mm/s, and an oxidizer mass flux of

45.5 kg/m2/s. Regarding the hybrid engine geometry, this last value leads to

an oxidizer injection slot thickness of 1.65 mm. A new inner part of the injector

ring, corresponding to this value, was subsequently manufactured and tested

(SuperMHYCAS 08). The oxidizer-to-fuel ratio obtained during this test was

7.2 which was very close to the targeted value.

Later tests were performed to increase the firing duration up to 300 s, the

maximum possible burn time based on transient thermoelastic computations

at the optimal combustion efficiency for the combustion chamber. The Su-

perMHYCAS 09 and SuperMHYCAS 10 firing tests were performed under the

same operating conditions over 90 and 180 s of continuous oxidizer injection,

respectively. As presented in Figure 13, the data was very stable over the hybrid

mode. The averaged results over the 5 s duration are listed in Table 4, and are

comparable to the SuperMHYCAS 08 firing test results in terms of decomposi-

tion chamber temperature, chamber pressure, and oxidizer mass flow rate, even

if the oxidizer mass flow rate for the final test is about 10% below the two previ-

ous tests, for an unexplained reason. However, the averaged oxidizer-to-fuel

ratio continuously decreased as the firing duration increased. As presented in
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Figure 11: Evolution of the fuel regression rate as a function of the oxidizer to fuel ratio

Figure 14, the fuel grain displacement was non-linear, and increased with time.

The reason for this evolution is still unexplained, but it justifies the decrease in

the oxidizer-to-fuel ratio when the firing duration increases. Moreover, based

on the observation of the fuel grain surfaces after the firing tests (Figure 15),

the non-uniformity of the fuel regression rate over the burning surface has an

influence on this evolution, but its quantification, if possible, is quite complex.

4. Conclusion

This paper presented the development of an innovative hybrid engine archi-

tecture compatible with satellite requirements (long burning duration associated

with a constant thrust). To do this, two facilities were manufactured and tested.

The first, the MHYCAS facility, was designed to better understand the func-

tioning of this new combustion chamber. The test campaign, performed with

87.5% hydrogen peroxide, was successful and achieved all the initial objectives.

The catalytic ignitability of the fuel was demonstrated for various operating

conditions: low and high oxidizer mass flow rates (from 30 to 110 g/s), low and

medium combustion chamber pressures (from 5 to 20 bar), various numbers of

active decomposition chambers, etc. The analysis revealed that the combustion
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Figure 12: Evolution of the fuel regression rate as a function of the oxidizer mass flux

chamber pressure has no significant influence on the fuel regression rate, and

that the main parameters influencing this regression rate are the number of ac-

tive decomposition chambers, and the oxidizer mass flux.

The results of this first test campaign enabled the design of the SuperMHY-

CAS hybrid engine, with special attention being given to the oxidizer injection,

in order to easily change its mass flux. The test campaign, performed with

98% hydrogen concentration, was also successful, with a combustion efficiency

of about 90%. For a first engine of this size, and an engine that was not op-

timized with respect to thermal losses, this can be considered good. This test

campaign included a 55 s firing test at the optimal average oxidizer-to-fuel ratio

(7.4) for the required application, but as the firing duration increased, the av-

eraged oxidizer-to-fuel ratio decreased, likely as a result of an escalation of the

non-uniformity of the fuel regression rate over the burning surface. This should

be addressed in further studies by working on the oxidizer injection..
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Figure 15: Fuel grain surface after SuperMHYCAS 08 (top) and SuperMHYCAS 10 (bottom)

firing tests
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