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Abstract – Indium antimonide photovoltaic cells are specifically designed and fabricated for 

use in a near-field thermophotovoltaic device demonstrator. The optimum conditions for 

growing the p-n junction stack of the cell by means of solid-source molecular beam epitaxy are 

investigated. Then processing of circular micron-sized mesa structures, including passivation 

of the side walls, is described. The resulting photovoltaic cells, cooled down to around 77 K in 

order to operate optimally, exhibit excellent performances in the dark and under far-field 

illumination by thermal sources in the [600-1000] °C temperature range. A short-circuit current 

beyond 10 µA, open-circuit voltage reaching almost 85 mV, fill factor of 0.64 and electrical 

power at the maximum power point larger than 0.5 W are measured for the cell with the 

largest mesa diameter under the highest illumination. These results demonstrate that these 

photovoltaic cells will be suitable for measuring a near-field enhancement of the generated 

electrical power.           

 

Keywords: thermophotovoltaics, InSb, MBE, passivation.  

 

I. INTRODUCTION 

Thermophotovoltaics (TPV) is the process by which infrared thermal radiation power is 

converted into electrical power using a low bandgap photovoltaic cell [1,2]. Near-field 

thermophotovoltaics (NF-TPV) is an extension of the same process, where benefit is taken 

from evanescent waves to increase by large factors the thermal radiation transfer between a hot 

emitter and a photovoltaic (PV) converter, and hence the electrical power generation 

presumably by similar factors [4-6]. Moving from principles to practice took almost two 
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decades: indeed, the near-field enhancement of electrical power generated by InAsSb and InAs 

photovoltaic cells was experimentally demonstrated very recently [7]. In this groundbreaking 

work, the PV cells were neither specifically designed nor fabricated in order to operate under 

near-field thermal irradiation conditions. The measured current-voltage characteristics were all 

straight lines (fill factor equal to 0.25) and the open-circuit voltages were all smaller than two 

millivolts. 

Even though multiple theoretical analyses dealt with modelling the transport of electrical 

charges within the photovoltaic cell of a NF-TPV device [8-25], the steps of (1) designing, (2) 

fabricating and characterizing, and (3) operating a PV cell in the near field were never 

completed successively. The present article is about realizing the second step in that series in 

the case of a cell made of indium antimonide (InSb). The reasons for selecting this specific 

semiconductor material were given in the article describing step (1), i.e. the design [23]. They 

are briefly summarized in the following for a better understanding of the applied strategy. One 

important present limitation in near-field thermal radiation measurement setups is the 

temperature of the hot side (thermal emitter in a NF-TPV device): the largest values reached so 

far are 720 K (the cold side being at 460 K) in [26], and ~655 K (the cold side being at near 

room temperature) in [7]. With such emitter temperatures (~700 K), Wien’s law tells that the 

bandgap should preferably be smaller than 0.28 eV to collect most of the thermally emitted 

photons. Narrow-bandgap (~0.2 eV at 300 K) InAs/GaSb superlattice based interband cascade 

structures are currently being developed for TPV applications. They have the advantage to 

operate at room temperature, with promising demonstrated conversion efficiencies (3.6%) in 

the far field, at the expense of complex heterostructures [27]. Indium antimonide, having a very 

low bandgap (0.17 eV at 300 K and 0.23 eV at 77 K), is also very well suited for TPV 

applications and a simple homojunction can be used. However, such a junction cannot operate 

at room temperature and must be cooled down, typically at around 77 K. Up to now, InSb 

photodiodes were developed for imaging applications in the mid-infrared (2-5 µm) range and 

not for photovoltaic power generation, in particular in the configuration where electrical 

carriers are photogenerated under near-field thermal irradiation conditions.  

In this context, the present article is about the fabrication and characterization of a photovoltaic 

cell made of indium antimonide, specifically designed [23] for subsequent use in a laboratory 

demonstrator of a NF-TPV device. Fabrication and experimental procedures are described in 

section II. In particular, optimum conditions for layer growth and dopant incorporation for the 

active zone of the cell structure by means of Molecular Beam Epitaxy are established. Then the 

technological processes for passivating the side walls of micron-sized mesa-etched p-n 

junction diodes and putting the front and back contacts are presented in details. In section III, 
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electrical characterizations of the cells in the dark and under far-field illumination are 

discussed. Results demonstrate that the fabricated InSb cells behave as efficient diodes, and 

generate a photovoltaic power with short-circuit currents of several microamps and 

open-circuit voltages of dozens of millivolts. 

 

         

II. FABRICATION AND EXPERIMENTAL PROCEDURES  

II.1. MOLECULAR BEAM EPITAXY 

InSb detectors are usually fabricated using standard planar methods where the p-n junction is 

formed by ion implantation on the front side of an InSb bulk substrate. Such methods have a 

deleterious effect on crystal quality. To overcome these drawbacks, molecular beam epitaxy 

(MBE) is of great interest since it was shown that InSb epi-diodes operating at 95 K-100 K 

have the same electrical performances as standard InSb planar-diodes operating at 77 K [28]. 

The samples were grown by solid-source MBE on Te-doped, n-type, (001)  0.1° oriented InSb 

substrates in a multi-chamber RIBER 412 reactor equipped with an antimony-valved cracker 

cell providing Sb2 species. Growth rates were inferred from flux measurements carefully 

calibrated by reflection high-energy electron diffraction (RHEED). Growth temperature was 

measured with an optical pyrometer calibrated using (2x4) to (5x1) surface reconstruction 

transition observed on the InSb surface in static conditions [29]. Beryllium was used as the 

p-type dopant.  

 

II.1.1. Oxide removal 

Since the desorption temperature of In2O3 is close to the melting point of InSb (~527 °C), 

standard thermal oxide removal techniques are not appropriate for InSb. Therefore, surface 

oxides were removed during 30 min at low temperature (400 °C) by exposing the surface to a 

hydrogen overpressure (~ 2 10-5 Torr) using an ADDON RF plasma source. By doing so before 

the growth, it was ensured that the surface is smooth and the InSb wafer’s temperature kept low 

enough [30]. At the end of the deoxidation stage, the removal of In and Sb based oxides gave 

rise to pseudo (1x3) surface reconstructions observed on RHEED patterns exhibiting an 

epi-ready InSb surface. 

 

II.1.2. Optimum growth conditions 

In order to achieve optimum MBE growth conditions of 1 µm-thick InSb test layers, two main 

parameters were investigated: the growth temperature (TG) and the incorporation rate ratio 
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(IRR) defined by IRR = RSb / RIn, where RSb and RIn are respectively the growth rates in 

monolayers per second (ML/s) of indium and antimony, calibrated using RHEED oscillations. 

For indium, RIn = 0.5 ML/s was selected as a good trade-off between growth duration and 

crystal quality. The structural quality of the epitaxial layers was assessed using both high 

resolution (004) X-ray diffraction (HRXRD) and atomic force microscopy (AFM). As a result 

of these investigations, the optimum MBE growth conditions were found to be TG = 440 °C and 

IRR = 4. Figure 1 (a) shows XRD spectra performed when TG = 440 °C and IRR = 3 and 4. The 

corresponding full-widths at half-maximum (FWHM) of the diffraction peaks are respectively 

equal to 58 arcsec and 19 arcsec. In Fig. 1 (b), well-defined atomic steps associated with a 

root-mean-square (RMS) surface roughness of only 0.25 nm (less than one monolayer for 

Sb-based materials) are visible on a 20 x 20 µm2 AFM image. 

 

 

FIG. 1: (a) High-resolution XRD spectrum (004) reflection spectra of InSb layers grown by MBE with 

TG = 440 °C and IRR = 4 or 3. Inset: FWHM of the diffraction peaks shown as a function of IRR. (b) 20 

x 20 µm2 AFM image when IRR = 4 and TG = 440 °C. 

 

To complete the analysis, photoluminescence (PL) measurements were performed using a 

Brucker Vertex 70 Fourier transform infrared (FTIR) spectrometer. When IRR = 4, PL spectra 

measurements performed at 80 K on samples grown by MBE with TG = 370 °C or TG = 440 °C 

are reported in Fig. 2. PL peaks centered at 0.234 eV (P = 5.3 µm) with a typical FWHM of 20 

meV correspond to the band-to-band carrier recombination. The most intense PL peak 

confirms that the optimum growth temperature is 440 °C. 
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FIG. 2. Photoluminescence spectra measurements performed at T = 80 K for InSb layers grown by 

MBE with IRR = 4 and TG = 440 °C or 370 °C. 

 

II.1.3. Dopant incorporation 

The active zone of the fabricated photovoltaic cells is a p-on-n InSb junction. p-doped and 

n-doped InSb layers were grown on an InSb substrate (n-doped with Nd,sub = 4 1017 cm-3). In a 

previous work, near-field radiation transfer and low-injection charge transport simulations 

were used to find the optimum architecture of the p-n junction layers in terms of their thickness 

and doping concentrations [23]: the top p-layer must be 0.5 m thick with Na= 1017 cm-3 and 

the bottom n-doped layer must be 2.5 m thick with Nd = 1015 cm-3.   

It is worth noticing that the targeted doping concentration of the n-doped layer is very close to 

the background carrier concentration obtained for non-intentionally doped InSb layers. Indeed, 

from standard capacitance-voltage (C-V) measurements performed at a frequency of 1 MHz on 

different p-n junctions, doping concentrations (Nd) values ranging from 8 1014 cm-3 to 1015 cm-3 

were systematically found using 
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where A is the area of the mesa structure (see section II.2), V is the applied bias of the diode, q 

is the electron charge, 0 is the dielectric constant and InSb = 15.7 the relative dielectric 

constant of InSb. 

In order to measure the incorporation of the Be dopant in the p-type top layer of the structure, 

secondary ion mass spectrometry (SIMS) measurements were made at 300 K. Prior to these 
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measurements, calibrations were done using reference samples of InSb with implanted Be. 

Then, three 500 nm-thick Be-doped layers were grown with Be effusion cell temperatures of 

800 °C, 850 °C and 900 °C. For 850 °C, the corresponding SIMS profile is shown in Fig. 3 (a). 

A constant concentration in the doped layer and a sharp layer/substrate interface are visible. Fig. 

3 (b) shows the Be atomic concentration as a function of Be effusion cell temperature inferred 

from the SIMS measurements.  

 

 

FIG. 3: (a) SIMS profile measurement for a Be effusion cell temperature equal to 850°C. (b) Be atomic 

concentration as a function of Be effusion cell temperature (the dashed line is a guide for the eye). 

 

Owing to the small bandgap of InSb, we assumed that the Be activation coefficient (ratio of 

free holes to atomic Be concentrations) is equal to one. Consequently, the Be cell temperature 

required to reach a doping concentration (Na) of 1017cm-3 in the p-type top layer was found to 

be 770°C.  

 

II.2. TECHNOLOGICAL PROCESSES 

The InSb photovoltaic cells with optimized doping levels in the structure grown by MBE were 

processed with a standard UV photolithography technique using AZ5214 photoresist to define 

circular mesa devices with diameters of 210 µm, 130 µm, 90 µm and 70 µm. The mesa etching 

was performed with a 50:1 ratio of citric acid and hydrogen peroxide solution at room 

temperature [31]. The resulting depth of the mesa is approximately 1.8 m. Thus the bottom of 

the mesa is located close to the middle of the n-doped InSb layer (1.75 m from the top 

surface) grown by MBE. Figure 4 depicts a schematic illustration of a cross-section of the PV 

cell, a SEM image of the side wall of the mesa structure and a top view of a PV cell obtained by 

optical microscopy. In this first generation of InSb PV cells for near-field thermophotovoltaics, 

it was chosen not to add any anti-reflection coating. Given the microscopic size of the mesas, 
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the cells were passivated just after mesa etching to prevent parallel current surface leakages 

that manifest in the dark current-voltage characteristics (in particular in reverse bias). Actually, 

especially in the case of low-bandgap materials - which are almost metals -, side walls of the 

mesa provide a conductive channel for the electrical charges. Different passivation techniques 

contribute to avoid accumulation of majority carriers at these side walls and thus to increase the 

cell performances [32]. After various tests using different materials, an organic passivation 

technique [33] was selected with using the AZ1518 photoresist. This photoresist was spin 

coated with a speed of 4000 rpm, and the resulting 1.8 m-thick layer was baked at 200 °C for 

2 hours in an oven [34]. Finally, 20 nm/20 nm/200 nm of Ti/Pt/Au ohmic contacts were added 

using e-beam evaporation on the top of the p-type mesa and 20 nm/200 nm of Ti/Au contacts at 

the back of the n-type substrate. In the end, to the circular mesa diameters of 210 µm, 130 µm, 

90 µm and 70 µm, correspond diameters of the active (uncovered) areas of 160 µm, 80 µm, 40 

µm and 20 µm, respectively. 

 

 

FIG. 4: (a) Schematic of the PV cell structure. (b) SEM image of the side wall of the mesa. Inset: 

top-view optical image of the PV device. 

 

III. ELECTRICAL CHARACTERIZATIONS 

For characterizing the electrical performances of the fabricated PV cells, current-voltage (I-V) 

characteristics were measured using a Keithley 2400 source meter in an ARS 4K probe station. 

Temperature of the cell was controlled by means of a cryostat and could be regulated from 

77 K to 197 K. During measurements of the dark current density-voltage (Jd-V) curves, in 

order to prevent radiation coming from the environment at 300 K to illuminate the cell, a top 

nickel-plated shield inserted in the probe station was used. During measurements of the I-V 

curves under illumination, an IR-12K infrared (IR) radiation source having a 3.5 mm x 3.5 mm 

active area was mounted 4 cm above the sapphire windows of the probe station without using 
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any focusing optics. The distance between the emitting surface of the IR source and the cell 

was 9.5 cm. The fraction coming from the IR source can be calculated knowing the area of the 

source, the active area of the cell, the distance separating them (view factor), the source 

temperature, and the spectral optical properties of the IR source (SiC) and of the two windows 

of the probe station (sapphire). In the case with the largest temperature of the IR source 

(1248 K) and the largest mesa diameter (210 m), this contribution is approximately 0.44 W. 

In addition, radiation power coming from the surroundings (within and outside the probe 

station) has to be taken into account. It can be much larger. For example, the same cell subject 

to a hemispherical background radiation at 20 °C would receive an additional power of roughly 

8.4 W. The probe station allows neither the full elimination nor an accurate estimation of that 

contribution to the incident power. Therefore, conversion efficiency cannot be assessed for 

these cells. Report on their electrical properties will be made as a function of mesa size, 

operating temperature and illumination conditions. 

III.1. DARK J-V CURVES 

Figure 5 (a) shows the dark current density-voltage (Jd-V) curves (semi-log scale plot, absolute 

values) of InSb PV cells having different mesa diameters. For all Jd-V curves, the current in 

reverse bias is always smaller than 10-4 A cm-2. In addition, it is important to notice that the 

Jd-V curves do not depend much on the size of the mesa, proving that passivation with 

photoresist is performing well. It is worth noticing that the minimum of the Jd-V curves is not 

located at V = 0. This indicates that despite the shielding, a slight photonic current due to the 

thermal radiation of the probe station and its surroundings is measured. This means that these 

curves are not perfect dark current density-voltage characteristics, as clearly shown in 

Fig. 5 (b) (linear scale plot). If the curves are vertically shifted so that they all cross at the 

origin, they superimpose (not shown). This suggests that cells performances in the dark barely 

depend on the mesa size. However, by using the mesa area to calculate current densities, one 

finds that the larger the cell, the better its performances. 
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FIG. 5. Dark J-V curves of InSb PV cells at 77 K having different mesa sizes and passivated with 

photoresist: (a) semi-log scale and (b) linear scale plots.  

 

The Jd-V curves of an InSb PV cell having a mesa diameter of 210 m and passivated with 

photoresist were measured as a function of temperature, from 77 K up to 197 K (Fig. 6). For 

the lowest two temperatures (77 K and 97 K), a small current caused by the background 

thermal radiation can be observed, which demonstrates the high sensitivity of the device. When 

temperature of the cell increases, the dark current in both reverse and forward bias conditions 

raises by large factors. The background thermal radiation is not visible anymore (the minimum 

is at V = 0, i.e. the dark current dominates). This result confirms that a near-field 

thermophotovoltaic device with an InSb PV cell operating at 300 K, theoretically investigated 

multiple times [12, 18, 35-42], is clearly impracticable.    

 

 

FIG. 6. Dark J-V curves of InSb PV cells having a mesa diameter of 210 m and passivated with 

photoresist, as a function of temperature. 
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III.2. I-V CURVES UNDER ILLUMINATION  

After measurements of current-voltage characteristics in the dark, performances of the InSb 

cells under illumination were investigated. First, Fig. 7 (a) shows that when the top 

nickel-plated shield is removed, the sole illumination of the background at room temperature 

(300 K) is able to generate a photovoltaic power in InSb cells at 77 K. The current-voltage 

characteristic curves under illumination exhibit a short-circuit current of the order of nA and 

open-circuit voltages reaching up to 70 mV. Note that these curves are often in the fourth 

quadrant, but here the sign of the current was changed in order to observe the IV curves in the 

first quadrant. Consistently with results shown in Fig. 5 (b), where a photovoltaic effect is 

visible due to a residual background illumination, the performances of the cell (open-circuit 

voltage) increase with the mesa size. Then the level of illumination provided by the infrared 

(IR) radiation source was varied, by changing its setting temperature at three values (948 K, 

1098 K, and 1248 K, using a calibration curve from the IR-12K manufacturer). Figure 7 (b) 

shows the corresponding I-V curves for InSb cells at 77 K having a mesa diameter of 210 m. 

As expected, the I-V curves shift farther up right into the first quadrant as the IR source 

temperature is increased. Indeed more radiation is collected, hence both the short-circuit 

current and the open-circuit voltage increase because of more photocarrier generation in the 

cell. Under the largest illumination level (setting temperature of the IR source equal to 1248 K), 

the open-circuit voltage is equal to around 83 mV, the short-circuit current is about 10 A, the 

electrical power at the maximum power point is 0.531 W and the corresponding fill factor is 

0.64 (consistent with the fact that the I-V curve is not a straight line). The large fill factor value 

can be attributed to the micron size of the cell, large mobility of holes in the p-doped layer (~ 

2000 cm2 V-1 s-1 at 77 K) and high-quality contacts.  

In the upcoming step (3) of developing a laboratory NF-TPV demonstrator, these indium 

antimonide PV cells will be operated with a thermal source in the near field. Simulations of 

illumination conditions predict levels higher than the largest one investigated in the present 

article. Hence it is ensured that these photovoltaic cells will be suitable for measuring a 

near-field enhancement of the generated electrical power. Future consideration of using more 

complex structures than p-n junctions, for example by adding a window layer, requires keeping 

in mind the constraints of near-field illumination and metamorphic growth. 
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FIG. 7: Electrical performances of InSb PV cells passivated with photoresist at 77 K, (a) having 

different mesa diameters illuminated by the background radiation at 300 K, (b) having a mesa diameter 

of 210 m (active area diameter of 160 m) under illumination by the IR source with various source 

temperatures.  

 

IV. CONCLUSIONS 

Based on a prior design, micron-sized indium antimonide photovoltaic cells have been 

fabricated and characterized. The optimum conditions for deoxidation of the substrate, MBE 

growth with the incorporation of dopants of n-doped and p-doped layers have been determined. 

Characterization by X-ray diffraction, photoluminescence, and atomic force microscopy have 

demonstrated the high quality of the resulting p-n junction diode layers grown on a n-doped 

substrate. The processing steps of micron-sized circular mesa structures have been described in 

detail. Performances of the resulting photovoltaic cells have been measured without and with 

an external infrared radiation source, as a function of the diameter of the mesa, the operating 

temperature of the cell, and under various illumination conditions. A striking result is that even 

under illumination by the background at room temperature, well-resolved diode-like 

current-voltage characteristics have been observed, with open-circuit voltages reaching up to 

70 mV. Under far-field illumination by an infrared radiation source, a single cell has exhibited 

even larger open-circuit voltages, short-circuit currents of several microamps and an electrical 

power at the maximum power point reaching more than 0.5 W in the best case. 

Room-temperature background generates thermophotovoltaic power, thus it can be anticipated 

that near-field thermal radiation-to-electricity conversion will be efficient with these cells, 

even if the thermal source is moderately hot.  
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