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Abstract 
 
In cancer cells, aberrant DNA methylation is commonly associated with transcriptional alterations, 
including silencing of tumor suppressor genes. However, multiple epigenetic mechanisms, including 
polycomb repressive marks, contribute to gene deregulation in cancer. To dissect the relative 
contribution of DNA methylation-dependent and -independent mechanisms to transcriptional 
alterations at CpG-island/promoter-associated genes in cancer, we studied 70 samples of adult glioma, 
a widespread type of brain tumor, classified according to their Isocitrate Dehydrogenase (IDH1) 
mutation status. We found that most transcriptional alterations in tumor samples were DNA 
methylation-independent. Instead, altered histone H3 tri-methylation at lysine 27 (H3K27me3) was the 
predominant molecular defect at deregulated genes. Our results also suggest that the presence of a 
bivalent chromatin signature at CpG island promoters in stem cells predisposes not only to 
hypermethylation, as widely documented, but more generally to all types of transcriptional alterations 
in transformed cells. In addition, the gene expression strength in healthy brain cells influences the 
choice between DNA methylation- and H3K27me3-associated silencing in glioma. Highly expressed 
genes were more likely to be repressed by H3K27me3 than by DNA methylation. Our findings support 
a model in which altered H3K27me3 dynamics, more specifically defects in the interplay between 
polycomb protein complexes and the brain-specific transcriptional machinery, is the main cause of 
transcriptional alteration in glioma cells. Our study provides the first comprehensive description of 
epigenetic changes in glioma and their relative contribution to transcriptional changes. It may be 
useful for the design of drugs targeting cancer-related epigenetic defects. 
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Introduction 
  
Cancer is a complex disease that results from the disruption of key pathways, including those 

regulating cell survival and division. Besides genetic lesions, epigenetic alterations also contribute to 

tumorigenesis mainly by leading to abnormal gene expression (Flavahan et al., 2017).  
 
Together with genome-wide DNA hypomethylation, DNA hypermethylation of CpG islands (CGIs) is 

a well-defined feature of cancer cells, and is believed to be the main cause of aberrant gene repression 

(Baylin and Jones 2016). CGIs are key regulatory genomic regions of few hundred base pairs in size 

characterized by high frequency of CpG dinucleotides. In humans, about 70% of promoters are 

associated with CGIs that generally remain unmethylated during somatic development, regardless of 

the gene expression status (Deaton and Bird 2011). Conversely, it has been shown that in tumors, 

DNA hypermethylation of their CGI/promoter leads to aberrant silencing of some tumor suppressor 

genes, such as BRCA1 (Dobrovic and Simpfendorfer 1997), RB1 (Greger et al., 1994) and MLH1 

(Herman et al 1998). However, the primary role of this defect in the widespread cancer-associated 

genes silencing, and more broadly in cancer biology, is still being questioned. Indeed, an increasing 

number of studies showed that in tumors, DNA hypermethylation affects primarily CGI/promoters that 

control genes already repressed in the matched normal tissue (Gal-Yam et al., 2008; Hinoue et al., 

2012; Sproul et al., 2011; Sproul et al., 2012; Court and Arnaud 2017). Moreover, in some tumor 

types, such as glioma or breast cancer, patients with a CpG island methylator phenotype (CIMP), a 

signature identified in various human malignancies and defined by the concomitant hypermethylation 

of multiple CGIs (Suzuki et al., 2014), have a better clinical prognosis compared with patients without 

CIMP (Noushmehr et al 2010; Fang et al 2011).  
 
Therefore, other DNA methylation-independent epigenetic alterations at CGI/promoters might 

contribute to the genome-wide pattern of aberrant gene repression observed in cancer cells. During 

normal development, promoters/CGIs are dynamically marked by the permissive H3K4me3 and/or the 

repressive H3K27me3 histone marks (Mikkelsen et al., 2007). When in combination, these marks 

constitute the so-called bivalent chromatin signature that maintains genes (for example, developmental 

genes in stem cells) repressed, but ‘poised’ for activation, since the bivalent mark can resolve into 

either H3K4me3 or H3K27me3 (Bernstein et al., 2006). Alterations in the control of these chromatin 

signatures also could lead to gene silencing (Court and Arnaud, 2017). This hypothesis is supported by 

the observation that genes encoding methyltransferases and demethylases that regulate H3K27me3 

and H3K4me3 deposition, such as EZH2, KMT2 (MLL) family members and KDM6A, are translocated 

or mutated and/or their expression is altered in many malignancies (Suvà et al., 2013; Dawson 2017). 

Such defects had been documented in a handful of studies. In detail, analyses in established prostate 

(Gal Yam et al., 2008; Kondo et al., 2008) and urothelial (Dudziec et al., 2012) cancer cell lines and 

in colorectal tumor samples (Hahn et al., 2014) highlighted that gene silencing can be mediated just by 

H3K27me3.  

Chromatin-based alterations could also lead to gain of gene expression in tumors. Hahn et al., showed 

that genes associated with GCI/promoters displaying a bivalent chromatin signature in normal colon 

can be ectopically expressed in the matched tumor samples following H3K27me3 loss (Hahn et al., 

2014). Moreover, Bert et al., (Bert et al., 2013) identified in prostate cancer cell lines some genomic 

domains characterized by altered chromatin signatures associated with aberrant gene expression. 

Therefore, it is clear that different epigenetic alterations at promoters/CGIs could contribute to the 
abnormal gene expression pattern of cancer cells. Because of the absence of dedicated integrative 
studies, many questions remain concerning the bases and extent of these alterations as well as their 
relative contribution to aberrant loss/gain of gene expression in cancer cells.  
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Glioma, which is derived from glial cells, is one the most widespread brain tumor types. In 2007, the 
World Health Organization (WHO) classified gliomas in four grades (I-IV) according to their 
histology. Malignant anaplastic astrocytoma (a subset of the WHO grade III gliomas) and 
glioblastoma multiforme (GBM; WHO grade IV) account for about half of all gliomas, and are the 
most deadly and aggressive forms. The median survival time after diagnosis of patients with GBM 
does not exceed 18 months despite the aggressive treatments. At the molecular level, aggressive 
gliomas are characterized by expression of wild type isocitrate dehydrogenase (IDHwt) genes (IDH1 
and IDH2), while gliomas with better prognosis express mutated IDH (IDHmut) (Cohen et al., 2013). 
Consequently, the recently released 2016 WHO classification of diffuse gliomas (Louis et al., 2016), 
which we used in this study, is primarily based on the IDH1 mutation status (IDHmut vs IDHwt). 
IDH1 mutation results in CIMP-positive tumors (Turcan et al., 2012) with a better clinical prognosis 
compared with CIMP-negative tumors (Noushmehr et al., 2010; Cohen et al., 2013). Other epigenetic 
regulators also could be involved in glioma development/progression, for instance the polycomb 
repressors EZH2 and BMI1 (Häyry et al., 2008; Suvà et al., , 2009; Bruggeman et al., 2009) and 
KMT2 family members that are mutated in a subset of GBM (Parsons et al., 2008; Brennan et al., 
2013). Here, we used glioma as a model to investigate the molecular bases of transcriptional 
alterations of CGI/promoter-associated genes in cancer. 
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Results 
CGI methylation poorly contributes to transcriptional alterations in glioma 
 
For this study, we used 70 clinically well-characterized primary glioma samples (the patients’ 

demographic and main molecular and clinical features are provided in Supplemental Table S1). We 

classified samples according to their IDH1 status (n = 55 IDHwt, and n = 15 IDHmut). This first level 

of classification, upstream of the 1p/19q co-deletion status according to the 2016 WHO classification 

(Louis et al., 2016), clearly discriminated two tumor classes relative to aggressiveness, with a 

significant survival advantage for patients with IDHmut tumors (HR=0.32, 95% CI [0.14-0.71], 

p=0.005) (Supplemental Table S1 and Supplemental Fig. S1A).  

Genome-wide analysis of DNA methylation at CGIs, using the Infinium HumanMethylation450 

(HM450K) BeadChip Arrays, showed that DNA methylation defects were more widespread in 

IDHmut samples, constituting a Glioma CIMP (G-CIMP) subclass (Supplemental Fig. S1B). In 

agreement with the literature (Noushmehr et al., 2010; Turcan et al., 2012; Louis et al., 2016), in our 

cohort, aggressive gliomas were characterized by IDHwt and absence of G-CIMP, whereas IDHmut 

gliomas showed a G-CIMP profile and had a better prognosis.  

To more precisely define the CGI/promoter alterations in our glioma samples, we analyzed the DNA 

methylation profiles of 14,714 genes with a single CGI-rich promoter that could be assessed using the 

HM450K array. Most of these genes (76.0%) were protein-coding genes, and the others were antisense 

transcripts (10.7%), long intergenic non-coding RNAs (lincRNA; 6.5%), and pseudogenes (6.8%) 

(Fig. 1A). As some CGI/promoters can control more than one gene, these 14,714 genes are associated 

with 11,795 CGI/promoters. About 90% of these CGI/promoters were unmethylated in non-tumor 

control brain samples (mean β-value <0.2), and most of them remained unmethylated also in glioma 

samples. Among these GCI/promoters, 11.6% (n=1,369; associated with 1,623 genes) were aberrantly 

hypermethylated in IDHwt samples, and 22.8% (n=2,692; 3,198 genes) in IDHmut samples, 

contributing to their CIMP-positive status. Conversely, CGI/promoter hypomethylation, although 

more limited than hypermethylation, was more common in IDHwt (n=198 CGI/promoters associated 

with 235 genes; 1.7%) than in IDHmut (n=14 CGI/promoters associated with 22 genes; 0.12%) 

samples (Fig. 1B; Supplemental Fig. S1C-D). 

To evaluate the consequences of these DNA methylation changes, we analyzed by RNA-seq eight 

IDHwt and five IDHmut glioma samples. Most genes with aberrantly hyper- or hypomethylated 

CGI/promoters (79.9% in the IDHwt and 87.4% in the IDHmut group) showed no significant 

transcriptional change compared with control brain samples (|log2 Fc|>2; p<0.05) (Fig. 1C,D). The 

number of genes with altered expression was similar between glioma subtypes despite their different 

DNA methylation profiles. Among the genes with aberrantly hyper- or hypomethylated 

CGI/promoters, 223 and 265 were downregulated (82 in common), and 150 and 140 were upregulated 

(44 in common) in IDHwt and IDHmut glioma samples, respectively, compared with controls (Fig. 

1C,D). These findings indicate that aberrant CGI/promoter methylation minimally affects gene 

transcription in glioma. However, the deregulated genes included some putative tumor suppressors, 

such as RASL10A and HTATIP2 (Schmidt et al., 2012; Dong et al., 2015), and some putative 

oncogenes, such as HOXD9 and CXCL1, the overexpression of which was, counterintuitively, 

associated with methylation gain (Supplemental Table S2). 
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Gene transcription alterations are more widespread in IDHwt glioma samples 
Detailed analysis of the transcriptional landscape of tumor samples showed that transcriptional 

alterations were more widespread in IDHwt than in IDHmut glioma samples (1,670 and 1,024 

deregulated genes, respectively; FDR<0.05; | log2 Fc|>2) (Fig. 2A), particularly for CGI/promoter-

associated genes (Supplemental Fig. S2A). 

Copy number variation (CNV) analyses in the same samples showed that, as previously reported, 

Chromosome 7 gain and Chromosome 10 loss characterized IDHwt samples (Louis et al., 2016), 

while the 1p/19q co-deletion was mainly present in IDHmut samples (Fig 2B). By integrating these 

data with the gene expression profiles, we identified 92 genes in IDHwt and 37 genes in IDHmut 

samples, respectively, in which expression alteration correlated with CNV (p<0.05) (Fig. 2B, and 

Supplemental Fig. S2B-C, Supplemental Table S3). For instance, upregulation of epidermal growth 

factor receptor (EGFR) and the histone methyltransferase EZH2 (both located on Chromosome 7) 

correlated with increased copy number in IDHwt samples. Conversely, overexpression of HOXA13, 

also located on Chromosome 7, did not correlate with CNV (Fig. 2C; Supplemental Fig. S2C). 

Altogether, affected genes without CNV (mostly protein-coding genes) represented about 11% of all 

CGI/promoter-associated genes in IDHwt samples (841 downregulated and 737 upregulated genes), 

and 6.7% in IDHmut samples (556 downregulated and 431 upregulated) (Fig. 2D, Supplemental Table 

S2).  

 

Most transcriptional alterations are DNA methylation-independent 

To understand the bases of such transcriptional alterations we next focused our analyses on IDHwt 

glioma samples. We used paired RNA-seq and HM450K data from 8 IDHwt samples to concomitantly 

determine the DNA methylation and transcriptional changes in the 1,578 affected genes. In these 

IDHwt samples, we could identify four main transcriptional defect types (Fig. 3A): gain or loss of 

gene expression associated with CGI/promoter hypermethylation (referred to as ‘Meth+/Exp+’ and 

‘Meth+/Exp-’defects, respectively), and gain or loss of gene expression without changes in 

CGI/promoter methylation status (i.e., the CGI/ promoter remained unmethylated; referred to as ‘No 

Meth/Exp+’ and ‘No Meth/Exp-’ defects, respectively). More than 93% of aberrantly repressed genes 

did not display any significant DNA methylation alteration at their CGI/promoter (No Meth/Exp-). 

About 47% of the affected genes showed gain of expression that was associated with DNA 

hypermethylation at their CGI/promoter in 6% of them (Meth+/Exp+).  

To evaluate the robustness of this classification, we first analyzed the HM450K data of all 55 IDHwt 

glioma samples of our cohort and confirmed that DNA hypermethylation was associated with genes 

classified in the Meth+/Exp+ and Meth+/Exp- groups, and absence of methylation with genes 

classified in the No Meth/Exp+ and No Meth/Exp- groups. The only exception was a subset of 

“methylable” genes that gained methylation in some samples (Fig. 3B). Next, we concomitantly 

assessed , in 42 IDHwt glioma samples, the DNA methylation and expression, by RT-qPCR, of 
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randomly selected genes from the Meth+/Exp+, No Meth/Exp+, and No meth/Exp- groups. Genes in 

the Meth+/Exp+ group were methylated and ectopically expressed in all analyzed IDHwt glioma 

samples. The seven genes from the No Meth/Exp- group were aberrantly repressed in all analyzed 

samples, and their CGI/promoter mostly unmethylated (Fig. 3C). For instance, the candidate tumor 

suppressor gene BIN1 was unmethylated in all analyzed samples. PCSK6 and HOXD1 provided 

examples of “methylable” genes. They were methylated in a subset of samples, but their expression 

was repressed in all of them. The six genes from the No Meth/Exp+ group were all overexpressed and 

most of them, including the tumor progression-associated VEGFA and E2F2 genes, tended to be 

unmethylated in all analyzed samples. This group also included some “methylable” genes (see Fig. 

3B), such as KDR (the tyrosine kinase receptor for VEGFA) that was overexpressed in all samples, 

while its CGI/promoter was methylated only in a subset of gliomas. These “methylable” genes 

displayed an overall significant gain of DNA methylation in the 55 IDHwt samples. Therefore, we 

reclassified them from their initial No Meth/Exp+ and No Meth/Exp- groups (based on the analysis of 

8 IDHwt samples) into the Meth+/Exp+ and Meth+/Exp- groups, respectively, for the subsequent 

analyses. 

To assess the reproducibility of these observations, we performed the same analyses in an independent 

cohort of 134 IDHwt samples described in Ceccarelli et al., , 2016. In these samples, we confirmed the 

existence of the four main transcriptional defect groups, with proportions similar to those observed in 

our cohort. Overall, the number of affected genes was smaller in this validation cohort (970 vs 1,564), 

possibly due to the different RNA-seq strategies used. Indeed, Ceccarelli et al used mainly non-

stranded RNA-seq in which sense-antisense overlapping transcripts were discarded from the analyses, 

whereas we used an oriented RNA-seq approach that considered independently sense and antisense 

transcripts. Nonetheless, all four defect categories significantly overlapped in the two cohorts 

(minimal P value <1 × 10-40; Fisher’s exact test), demonstrating the robustness of our observations 

(Fig. 3D). 

Finally, to further characterize these defects, we studied the methylation pattern of the 681 genes that 

were transcriptionally affected in both IDHwt and IDHmut glioma samples (377 downregulated and 

303 upregulated in both groups, and 1 downregulated in IDHwt and upregulated in IDHmut). Most of 

these genes displayed the same methylation pattern in IDHwt and IDHmut samples. However, 

“methylable” genes and a subset of unmethylated genes in IDHwt gliomas (symbolized by a blue 

column in Supplemental Fig. S3) tended to be methylated in IDHmut samples, suggesting that 

different molecular pathways can lead to the same aberrant gene expression pattern.  

Altogether, this integrative analysis identified four classes of transcriptional defects at CGI/promoter 

genes in IDHwt glioma: aberrant loss and gain of gene expression without DNA methylation defect 

(most genes), and gene expression defects associated with aberrant DNA methylation either in all 

samples or in some samples (i.e., at methylable genes). In summary, among the 1,578 CGI/promoter-

associated genes affected in IDHwt glioma samples, most belonged to the No Meth/Exp- group 

(n=628), followed by the No meth/Exp+ (n=612), Meth+/Exp- (n=208), and Meth+/Exp+ (n=116) 

(Supplemental Fig. S4). The classification for each gene is provided in Supplemental Table S2.  
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The four defect classes include mainly genes with a chromatin bivalent signature in stem cells 

Gene Ontology analysis (Fig. 4A, Supplemental Fig. S5) showed that the Meth+/Exp- and No 

Meth/Exp- groups were enriched in genes involved in transmembrane ion transport, specifically in 

synapsis and neurons. Conversely, the No Meth/Exp+ group was enriched in genes implicated in 

general processes, such as cell cycle, cell division and chromosome segregation. Finally, the 

Meth+/Exp+ group was highly enriched in genes encoding homeodomain proteins, including the HOX 

family, and implicated in embryonic development. 

Studies on the molecular bases of CGI hypermethylation have shown that genes with a bivalent 

chromatin signature in stem cells are more likely to gain aberrant methylation in cancer cells (Ohm et 

al., 2007; Deneberg et al., 2011; Court and Arnaud 2017). To evaluate whether such an instructive 

program could apply to some or all genes of the four defect categories, we evaluated the GCI/promoter 

chromatin signature of genes in these four categories in human embryonic stem (ES) cells, in neural 

progenitor cells (NPC), and in brain samples. In agreement with previous findings, most genes in the 

Meth+ groups showed bivalent signatures in ES cells and NPC. This was true regardless of their 

aberrant expression pattern (i.e., both Meth+/Exp- and Meth+/Exp+). Similarly (but more 

unexpectedly), about 36% and 48% of genes in the No meth/Exp+ and No meth/Exp- groups, 

respectively, showed a bivalent chromatin signature in ES cells (compared with 24% of all studied 

genes) (Fig. 4B, Supplemental Fig. S5).  

In agreement with the resolution of the bivalent signature during development/cell differentiation, the 

chromatin signature tended to change towards an exclusive H3K4me3 signature, but also to a “none” 

signature (i.e: depleted for both H3K4me3 and H3K27me3) in brain samples (Fig. 4C). In comparison, 

most of the transcriptionally unaffected genes maintained their H3K4me3-only signature from ES cell 

to brain samples. Accordingly, the transcriptionally affected genes displayed a dynamic expression 

pattern from ES cells to NPC and brain. This was true also for the subset of genes in the No 

meth/Exp+ and No meth/Exp- groups that maintained an exclusive H3K4me3 signature in ES cells, 

NPC and brain, but showed loss and gain of expression in brain, respectively (Fig. 4C).   

Altogether, these findings suggest that genes with a bivalent chromatin signature in ES cells and/or 

with a dynamic expression pattern during neural differentiation are more prone to be deregulated in 

IDHwt glioma.  

 

CGI/promoter hypermethylation is associated with gain of expression  

As bisulfite treatment cannot distinguish between methylation and 5-hydroxymethylation (5-hmC), we 

evaluated whether the DNA methylation level detected with the HM450K array at genes classified in 

the Meth+/Exp+ group could be explained by 5hmC deposition. By using publicly available 5hmC 

data for IDHwt tumors (Johnson et al., , 2016), we found that CGI/promoter regions of Meth+/Exp+ 

genes were devoid of 5hmC (median level = 1.2%), indicating that the signal detected with the 

HM450K array was due to DNA methylation (Supplemental Fig. S6A). Note that a similar observation 

is made at the three other defect groups (Supplemental Fig. S7). 
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To determine how DNA hypermethylation and expression gain could co-exist in this group of genes, 

we next assessed their CGI/promoter chromatin signature using publicly available ChIP-seq data for 

IDHwt glioma cells. Compared with healthy brain (control), H3K27me3 level was strongly decreased, 

while H3K4me3 level was increased in about 65% of these genes and totally depleted in the others 

(Fig. 5A). 

Analysis of the HM450K data on the localization of hypermethylated sites relative to the transcription 

start site (TSS) showed that at H3K4me3-enriched genes, the gain of DNA methylation occurred at the 

border of the CGI/promoter, while the TSS area remained unmethylated (Fig. 5B). Analysis of 

individual loci in glioma samples using strand-oriented RNA-seq data suggested that transcription 

initiated from H3K4me3-marked TSS embedded in methylated CGIs (Fig. 5C, and Supplemental Fig. 

S6B). This was observed in several genes that promote gliomagenesis, including TWIST1 (Mikheev et 

al., 2018), CTHRC1 (Liu et al., 2017a) and FOXD3-AS1 (Chen et al., 2016). The H3K4me3 and DNA 

methylation signals were mutually exclusive (Fig. 5C and Supplemental Fig. S6B), in agreement with 

their documented antagonism (Weber et al., 2007).  

In H3K4me3-depleted genes, DNA methylation was spread along the entire CGI/promoter, including 

the TSS (Fig. 5B), suggesting that transcription from these genes could arise from an alternative TSS. 

Analysis of RNA-seq data supported this hypothesis because genes, such as HOXC11 and NR2F2, 

showed transcription signal from H3K4me3-enriched regions located away from the documented TSS 

(Fig 5D and Supplemental Fig. S6C). However, for few genes, such as HEYL and C15orf48 

(Supplemental Fig. S6D), transcription apparently initiated from a methylated CGI through an 

unknown mechanism. 

Altogether, these approaches support the hypothesis that in Meth+/Exp+ genes, transcription could be 

allowed by the absence of DNA methylation at the TSS, or the use of alternative TSS. 

 

E2F- and HOX-target genes are frequently overexpressed in glioma  

The publicly available ChIP-seq data indicated that genes in the No Meth/Exp+ group were enriched 

in H3K4me3 and depleted in H3K27me3 in IDHwt glioma cells compared with healthy brain (Fig. 

6A). We observed this H3K4me3 gain also in the subset of genes that were constitutively marked by 

the H3K4me3-only signature in ES cells, NPC and brain (framed in Fig. 6A). To understand the basis 

of their overexpression in glioma, we determined whether specific motifs were enriched at their 

CGI/promoters. We found that overall, No Meth/Exp+ genes were putative targets of transcription 

factors associated with cell cycle pathways, including the Krüppel-like factors (KLF)/specificity 

protein (SP) and E2F families (Fig. 6B-C). Moreover, most of the H3K4me3-only genes showed 

specific motif enrichment for the E-26 transformation specific (ETS) and nuclear transcription factor-

Y (NF-Y) families. The other No Meth/Exp+ genes were putative targets of homeodomain 

transcription factors, including HOX proteins (Fig. 6B).  

Most of these transcription factors were expressed in healthy controls and remained expressed in 

glioma samples (Fig. 6C). However, a subset was specifically overexpressed in IDHwt glioma 

samples, including HOX genes, E2F2 and 7, ETS1 and ETV1 and 4 (Fig. 6C: RNA-seq data). We 



10 

 

confirmed these findings by RT-qPCR analysis of selected genes in 42 IDHwt samples (Fig. 6D). 

Gene encoding aberrantly overexpressed transcription factors mostly belonged to the Meth+/Exp+ 

(e.g., HOXA2 and HOXD8) and No meth/Exp+ (e.g., E2F2) groups (Supplemental Table S2). This 

observation suggests that the initial overexpression of few key transcription factors could lead to 

overexpression of most genes belonging to the No Meth/Exp+ group.  

 

The repressive signature of silenced genes is related to their transcriptional status in healthy  

brain  

To understand how Meth+/Exp- and No Meth/Exp- genes were transcriptionally repressed, we 

compared their chromatin signature in healthy brain and in glioma cells using publicly available ChIP-

seq data. This highlighted a marked H3K27me3 enrichment in both groups in glioma samples 

compared with controls (Fig. 7A). The only exception was the subset of No Meth/Exp- genes that 

displayed the constitutive H3K4me3-only signature in ES cells, NPC and brain (framed in Fig. 7A) 

and maintained this signature in glioma cells. H3K27me3 enrichment in glioma cells led to a bivalent 

chromatin signature in the large subset of genes that were also marked by H3K4me3 (Fig. 7A). At 

CGIs/promoters of Meth+/Exp- genes, H3K4me3 tended to be reduced and H3K27me3 was enriched 

(Fig. 7A), suggesting that unlike normal cells (Brinkman et al., 2012), both H3K27me3 and DNA 

methylation can coexist at CGI/promoters in glioma cells.  

ChIP analysis of selected genes from the No Meth/Exp- group (PCSK6, MAL, SH3GL3 and NKAIN2) 

confirmed the marked H3K27me3 gain associated with reduced or unchanged H3K4me3 and H3K9ac 

levels, according to the studied locus, in the seven glioma samples tested (Fig. 7B-C, and 

Supplemental Fig. S8A). Also, bisulfite analysis of the H3K27me3-immunopreciptated fraction 

confirmed that both DNA methylation and H3K27me3 co-existed at CGI/promoters in glioma 

samples, as exemplified by the methylable PCSK6 gene (Supplemental Fig. S8B). 

Several studies have highlighted that the propensity of genes to be hypermethylated in cancer cells is 

related to their transcriptional status in the normal tissue (Gal-Yam et al., 2008; Hinoue et al., 2012; 

Sproul et al., 2011; Sproul et al., 2012; Court and Arnaud 2017). Accordingly, we observed that the 

transcriptional status in brain discriminated between Meth+/Exp- and No Meth/Exp- genes. 

Specifically, DNA methylation-independent silencing (No Meth/Exp-) mainly affected genes that were 

highly expressed in normal brain. Conversely, poorly expressed genes tended to be hypermethylated 

(Fig. 7D). To more systematically assess the bases of the differences between these groups, we 

performed principal component analysis for all genes in the Meth+/Exp- and No Meth/Exp- groups. 

The first principal component accounted for about 44.5% of the variance and allowed separating the 

two groups (centroid values along the axis: +0.984 and -0.326, respectively) (Fig. 7E). The 

observation that the first principal component was significantly correlated with the permissive 

H3K4me3 mark (R=0.79; P < 3.4 ×10-126) and the expression level (R=0.71; P < 1×10-129) in healthy 

brain (Fig. 7F) supported the hypothesis that the expression status in healthy cells contributes to the 

choice of silencing pathway used in cancer cells. Additional analyses using normalized RNA-seq data 
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for 21 different tissues showed that genes from the No Meth/Exp- group were strongly expressed 

specifically in adult brain tissues (Supplemental Fig. S8C and D).  

Thus, besides DNA methylation, H3K27me3 enrichment and chromatin bivalency emerge as major 

causes of aberrant gene repression in aggressive glioma cells. The choice between these alternative 

silencing pathways is related to the expression level of the affected genes in healthy tissues/cells. 

 
The four classes of expression defects are observed also in IDHmut glioma samples  
 
We next extended our analyses to IDHmut glioma. Integrative analysis of differential gene expression 

and methylation identified the four main defect classes also in these samples (Supplemental Fig. S9 A-

C; Supplemental Table S2). DNA methylation-independent defects were the most frequent, although 

less prominent than in IDHwt samples. Specifically, the 556 repressed genes were equally distributed 

between the No Meth/Exp- (n=294) and the Meth+/Exp- (n=262) groups (Supplemental Fig. S4).  

These observations were validated in an independent cohort of 415 IDHmut samples derived from 

Ceccarelli et al.,  2016, with a highly significant overlap in the composition of each defect group 

between cohorts (minimal P value <1×10-40; Fisher’s exact test) (Supplemental Fig. S9D). We also 

observed that, like in IDHwt samples, genes with a bivalent chromatin signature in ES cells and/or 

with a dynamic expression pattern during neural differentiation were more prone to be deregulated in 

IDHmut glioma (Supplemental Fig. S10). Then, to understand the molecular bases of these alterations, 

and in the absence of publicly available ChIP-seq data on IDHmut samples, we performed ChIP 

analyses at selected genes from the Meth+/Exp- group (PCSK6 and MAL) and No Meth/Exp- group 

(SH3GL3 and PCDH10) in five IDHmut samples. We found that H3K27me3 enrichment was 

associated with reduced or unchanged H3K4me3 and H3K9ac, in function of the studied locus 

(Supplemental Fig. S11A). This confirms that, like in IDHwt samples, gain of H3K27me3 and 

chromatin bivalency are, besides DNA methylation, the main hallmarks of repressed genes in IDHmut 

glioma cells. Finally, by considering the expression level in healthy brain and performing principal 

component analysis, we observed that the expression status in healthy cells contributed to the choice 

of silencing pathway used in IDHmut cells, with genes repressed independently of DNA methylation 

(No Meth/Exp- group) being mainly genes that were highly expressed in brain (Supplemental Fig. 

S11B-D). 

Altogether, these approaches show that the main observations made in IDHwt glioma also apply to 

IDHmut glioma. 
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Discussion 
 
Here we used glioma, one the most widespread brain tumor types, as a model to evaluate the relative 

contribution of DNA methylation-dependent and -independent mechanisms to transcriptional 

alteration at CGI/promoter-associated genes in cancer cells. Our study showed that H3K27me3 level 

changes are the predominant molecular defect at both aberrantly repressed and expressed genes. 

Moreover, our findings support that H3K27me3 dynamics deregulation, particularly when present in a 

bivalent context, is the main cause of transcriptional alteration in glioma cells. 

Some studies have described H3K27me3-based transcriptional repression in cancer cells (Gal-Yam et 

al., 2008; Kondo et al., 2008; Dudziec et al., 2012; Statham et al., 2012; Hahn et al., 2014). In 

colorectal tumors, ectopic gene expression has been associated with aberrant loss of H3K27me3 from 

CGI/promoters with bivalent chromatin signature (Hahn et al., 2014). Moreover, gene expression 

changes in primary human clear cell renal cell carcinomas can be attributed to chromatin accessibility 

alterations, independently of DNA methylation (Becket et al., 2016). Our study further extends these 

observations and provides, for the first time, a comprehensive description of these alterations in 

glioma samples and their relative contribution to transcriptional alteration in such tumors. Specifically, 

our integrative analyses identified and quantified four main types of transcriptional defects in glioma 

(Fig. 8) that recapitulate the DNA methylation- and H3K27me3-based molecular signatures at 

aberrantly repressed and expressed CGI/promoter-associated genes. We detected these defects in 

IDHwt and also in IDHmut glioma samples (Fig. 8B), indicating that they occur regardless of the G-

CIMP status and tumor aggressiveness. Additional studies are required to determine whether the 

relative distribution of these defects can discriminate different IDHmut sub-populations (e.g., 

classified according to the 1p/19q co-deletion status) and can be associated with specific clinical 

features. Moreover, these observations prompt to investigate whether they might apply to cancer cells 

in general.  

Our study revisited the relationship between aberrant transcription and DNA methylation in cancer 

cells. First, we confirmed, that gene expression deregulation is very rarely associated with 

CGI/promoter DNA hypomethylation in glioma samples, in agreement with the general unmethylated 

status of CGI/promoters in healthy cells. Unexpectedly, we found that DNA hypermethylation is not 

the main cause of transcriptional repression at CGI/promoter genes, and that it can be associated also 

with gain of expression. Indeed, about 16% of ectopically expressed genes were associated with a 

hypermethylated CGI/promoter in IDHwt glioma samples. Specifically, in many genes, ectopic 

expression was associated with CGI/promoters that gained methylation at their borders, while the 

H3K4me3-marked TSS was methylation-free. At other genes, extensive methylation of their main 

CGI/promoter was associated with the use of an alternative promoter. It is not known whether there is 

a causal link between these events. These two distinct signatures have also been described in prostate 
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cancer cell lines (Bert et al., 2013), suggesting that an association between CGI/promoter DNA 

hypermethylation and gain of gene expression is common in cancer.  

Besides the concomitant gain of expression and DNA methylation, this group of genes was 

characterized also by a reduction of H3K27me3 level in glioma cells (compared with controls), 

suggesting that the interplay between these repressive marks is a driving force in their transcriptional 

deregulation. In the mouse, widespread DNA methylation depletion triggers redistribution of 

H3K27me3 (Brinkman et al., 2012; Reddington et al., 2013) that in turn leads to a loss of H3K27me3 

and ectopic expression at a subset of polycomb target genes, including Hox clusters (Reddington et al., 

2013). Reciprocally, analyses in mouse ES cells showed that the area close to CGI/promoters of 

polycomb target genes is protected from aberrant DNA methylation gain by polycomb proteins (Li et 

al., 2018). Therefore, the Meth+/Exp+ defect might affect a subset of polycomb-target genes that are 

particularly sensitive to the H3K27me3 redistribution induced by the genome-wide hypomethylation 

of cancer cells. Noteworthy, in the aggressive IDHwt glioma, this group is enriched in homeodomain 

genes, and more specifically in HOX genes. Deregulation of HOX genes contributes to the tumorigenic 

potential of glioblastoma stem cells, by activating a network of downstream genes (Gallo et al., 2013). 

Accordingly, we observed that many ectopically expressed genes from the No Meth/Exp+ group are 

putative HOX transcription factor targets. Altogether, our observations support a domino effect model 

to account for the gain of expression of CGI/promoter genes in aggressive glioma. In this model, 

genome-wide hypomethylation leads to ectopic expression (and methylation gain) of Meth+/Exp+ 

genes (especially HOX genes) that then promote gain of expression of target genes from the No 

Meth/Exp+ group (Fig. 8A). Additional studies are required to test this model and specifically whether 

No Meth/Exp+ genes are bona fide HOX transcription factor targets. 
 
Another key finding of our study is that a bivalent chromatin signature in stem cells may not only 

predispose genes to hypermethylation, as widely documented (Ohm et al., 2007; Deneberg et al., 

2011; Court and Arnaud 2017), but more globally to transcriptional alteration in cancer cells. We 

observed that genes with CGI/promoters marked by a bivalent chromatin signature in ES cells and 

NPC were more prone to be deregulated in glioma samples, regardless of the transcriptional defect. 

This was particularly true for genes with DNA methylation-associated defects, irrespectively of their 

association with gain or loss of expression (Meth+/Exp+ and Meth+/Exp-), and to a lesser extent, for 

genes with DNA methylation-independent defects (No meth/Exp+ and No meth/Exp-). This 

observation suggests that defects in the control of the bivalent chromatin signature, and more 

specifically of H3K27me3 dynamics, upon differentiation, are one of the main causes of 

transcriptional deregulation of CGI/genes in cancer cells. Accordingly, we found that aberrant gene 

repression in glioma samples affected mainly genes with brain-specific expression, and thus more 

sensitive to bivalency alterations upon neural stem cell differentiation. Besides the functional 

aberrations of H3K27me3 and H3K4me3 writers and erasers documented in many tumors (Suvà et al., 

2013; Dawson 2017), these control defects could also result from transcriptional changes in key tissue-

specific transcription factors or co-factors. Studies in mouse ES cells and tissues showed that their 

transcriptionally inactive status is sufficient to promote the recruitment of the polycomb responsive 
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complex PRC2 and H3K27me3 deposition at CGI/promoters (Mendenhall et al., 2010; Klose et al., 

2013; Riising et al., 2014; Jadhav et al., 2016; Maupetit-Méhouas et al . 2016). This suggests that the 

fate of bivalent chromatin domains upon development/differentiation relies on the interplay between 

PRC2 and the availability of the ad hoc transcriptional machinery. Our observation that the gene 

transcription strength in healthy brain influences the choice of silencing mechanism at repressed genes 

in glioma precisely argues for an alteration in this interplay. Specifically, we propose that following 

the alteration of a subset of brain-specific co-factors, the resulting weakened transcriptional machinery 

cannot efficiently counteract PRC2 recruitment upon differentiation, leading to aberrant maintenance 

of chromatin bivalency and to silencing of a subset of genes that are normally specifically expressed in 

brain. Moreover, gain of function of factors that promote, directly or indirectly, the recruitment of 

PRC2 at CGI could facilitate this process. This includes for instance the histone demethylase KDM2B 

(Farcas et al., 2012; Wu et al., 2013; Blackledge et al., 2014) that is critical in various cancers, 

including glioma (Yan et al., 2018; Staberg et al., 2018). At normally poorly expressed genes, these 

events associated with the initial weak level of H3K4me3, a mark that prevents recruitment of DNA 

methyltransferases, would facilitate the subsequent gain of DNA methylation (Fig. 8A). 

In addition to genes in which their chromatin signature was altered in glioma, we also identified a 

subset of genes with an apparent constitutive H3K4me3-only signature in healthy (ES cells to brain) 

and glioma samples, and that showed either gain of expression (No meth/Exp+) or aberrant repression 

(No Meth/Exp-) in glioma samples (Fig. 8A). Additional studies are required to establish the 

molecular bases of these observations. Specifically, it would be interesting to determine whether the 

regulation of these genes in normal and pathological contexts relies exclusively on the availability of 

ad hoc transcription factor(s), or whether it is also associated with not yet identified repressive histone 

marks. Moreover, No Meth genes that are ectopically expressed in glioma samples were also 

expressed in ES cells and NPC (Fig. 4). Similarly to genes with bivalent chromatin signature in ES 

cells whose aberrant repression in glioma recapitulated their repression in stem cells (Fig. 4), this 

group of genes could contribute to glioma aggressiveness by maintaining tumor cells in a stem-cell 

like state. 

Our study also provides a framework to explain the counterintuitive observation that patients with 

CIMP-positive IDHmut have a better clinical outcome than patients with CIMP-negative IDHwt. Our 

data indicate that CIMP is observed mainly at genes that are already repressed in healthy brain. 

Consequently, the number of deregulated genes with CGI/promoters associated with DNA methylation 

defects is similar between glioma subtypes. Conversely, the higher frequency (about two times) of 

DNA methylation-independent transcriptional alterations in IDHwt than in IDHmut samples could 

contribute to the prognosis difference between glioma subtypes. The CIMP-positive status, by 

promoting stable gene repression, could also act as a protective mechanism against cancer progression, 

by limiting the tumor epigenetic plasticity and its ability to adapt to environmental changes, such as 

metastasis formation or treatment (Sproul and Meehan 2013). Specifically, among the many genes that 

gain expression in IDHwt samples and that are maintained repressed through gain of methylation in 

IDHmut samples (Supplemental Table S4), a dozen are oncogenes with some documented for their 
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role in glioma biology, such as Spalt-like transcription factor 4 (SALL4) (Liu et al., 2017b) and the 

long non-coding RNA MIR155 host gene (MIR155HG) (Wu et al., 2017). 

 

In conclusion, our study on the extent and consequences of epigenetic alterations in glioma indicates 

that transcriptional deregulations rely mainly on chromatin-based DNA methylation-independent 

mechanisms. It also shows that the gene expression level in healthy tissue influences the type of 

silencing pathway used for repression in cancer cells, whereby highly expressed genes are more likely 

to be repressed by H3K27me3 rather than DNA methylation. Besides providing an original framework 

to understand the epigenetic basis of carcinogenesis, these observations are also important for the 

design of drugs to target epigenetic defects in cancer. 
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Materials and Methods: 
 
Tumor and control samples 
Glioma samples (n=70) resected between 2007 and 2014 were obtained from Clermont-Ferrand 

University Hospital Center, France (anonymized samples from the “Tumorotheque Auvergne 

Gliomes’, ethical approval DC-2012-1584). The ethics committees and the respective competent 

authorities approved this study. The study protocols conform to the World Medical Association 

Declaration of Helsinki. 

Immediately after surgery, samples were snap-frozen and stored in liquid nitrogen. Random sections 

of each tumor were analyzed under a light microscope after hematoxylin–eosin staining to determine 

the extent of necrosis and the percentage of tumor cells. All glioma samples included more than 50% 

of tumor cells. Gliomas were classified according their IDH1 mutation status: IDHwt (n=55) and 

IDHmut (n=15). IDH1 genotyping was performed by EpigenDx (Worcester, MA) (EpigenDx 

pyrosequencing assays ADS1703 and ADS1704) (Fogli et al., 2016). 

Eight control brain samples (healthy controls, mean age of 27.3 years, standard deviation ± 2 years) 

were removed by autopsy 4-16h after accidental death (Brain and Tissue Bank of Maryland). These 

samples, identified by the Brain and Tissue Bank of Maryland as corpus callosum (n = 5) and frontal 

cortex (n = 3), corresponded to white matter enriched in astrocytes and oligodendrocytes from which 

gliomas originate.  

Tumor and control samples were homogenized into powder by cryogenic grinding, equally distributed 

in at least three vials before use for matched genomic DNA, RNA and chromatin extraction. All 

samples were stored at −80°C until use. Overall survival (OS) was calculated as the number of days 

between the surgery date and the patient’s death. Tumor resection was classified as gross total 

resection, when no enhanced contrast was detected 48h post-surgery, or as partial resection, when 

enhanced contrast was still detected 48h post-surgery. 

The demographic and clinical features are presented in Supplemental Table S1. The related statistical 

analyses were performed using the Stata software, version 13 (StataCorp, College Station, TX, US) 

and the R software, version 3.3.1 (R Core Team, 2016). To test the prognostic value of the patients’ 

characteristics in univariate analyses, OS curves were compared between groups using the log-rank 

test. Results are expressed as hazard ratios (HRs) and 95% confidence intervals (CIs). 

Validation cohorts, obtained from the TCGA research network, were described in Ceccarelli et al., , 

2016. We retained IDHmut (n=415) and IDHwt (n=134) samples for which matched DNA 

methylation (HM450K array) and RNA expression (RNA-seq) data were available. Clinical and 

molecular data on these patients were retrieved from the cBioPortal for Cancer Genomics 
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(https://www.cbioportal.org/) (Gao et al., , 2013; Cerami et al., , 2012); processed RNA-seq and 

methylation data were obtained from the TCGA web site (https://portal.gdc.cancer.gov/) and analyzed 

as described below. The TCGA ID for each sample is provided in the supplemental table S5.  

 
 
 
Genome reference 

Arrays (HM450K and Cytoscan HD), as most of the databases used in this study, are based on the 

hg19 reference. Moreover, compared with GRCh37/hg19, a higher fraction of HM450K probes 

displays low mapping quality with the GRCh38 assembly (Zhou et al., , 2017). Therefore, we used the 

hg19 as the genome reference in this study. Realigning to GRCh38 assembly should not significantly 

affect the conclusions of this work as we determined that among the 11,795 CGI/promoters, all being 

single CGI/promoters within the associated gene(s), studied here, more than 93 % remained single 

CGI/promoters (i.e., overlap ± 1kb with the TSS area) within the associated gene(s) in GRCh38. This 

proportion is maintained when considering only affected CGI/promoters. 

 
Selection of the genes to be analyzed 
The positions of genes and CpG islands (CGI: defined using standard criteria: GC content ≥50%; 

length >200bp; ratio Obs/Exp CpG >0.6) were downloaded from GENCODE annotation release V19, 

and CpG-island tracks of UCSC hg19 assembly, respectively. For each gene, the promoter region was 

defined as TSS ± 1kb. To assess the relationship between CGI/promoter methylation status and gene 

expression, we first identified the genes associated with only one promoter with CGI features 

(n=15,350). As our cohort included both men and women, we then excluded genes located on the X or 

Y Chromosomes. We finally retained 14,714 genes in which the CGI/promoter is covered by at least 

two probes in the HM450K Illumina array. 

 
DNA methylation analyses  
 

- DNA extraction 
DNA was isolated from frozen tissue samples using the QIAamp DNA Mini Kit (Qiagen, Hamburg, 

GmbH) according to the manufacturer’s recommendations.  
 

- Gene-specific bisulfite sequencing 
Bisulfite conversion, PCR amplification, cloning, and sequencing were performed as previously 

described (Arnaud et al., 2003). Details on the primers used are in Supplemental Table S6. 
 

- HM450K analysis 
The HM450K array data for controls and gliomas sample (8 normal brain, 55 IDHwt and 15 

IDHmut gliomas) were analyzed as previously described (Maupetit-Méhouas et al., 2018). 

Specifically, DNA bisulfite conversion and array hybridization were performed by Integragen SA 

(Evry, France), using the Illumina Infinium HD methylation protocol. β-values were computed 

using the GenomeStudio control interplate normalization and background subtraction (version 

2011.1, manifest files: HumanMethylation450_1 5017482_v.1.2.bpm). For each sample, β-values 
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with a detection P-value >0.01 were excluded. All probes with a detection P-value >0.01or lacking 

signal in more than 5% of our samples were excluded. Finally, 26,507 probes containing common 

SNPs (dbSNP 147) in their last 5bp or in the CpG sites were discarded. As our patient cohort 

included both men and women, probes on the X and Y Chromosomes were also excluded from the 

analysis. After the implementation of these quality filters, a total of 443,691 CpG methylation 

values were considered suitable for the downstream analysis. Methylation level at the 14,714 

genes (11,795 CGIs) was given by the mean β-value of all probes located in their CGI. 

Differential methylation analyses were performed using the limma R package (Ritchie et al., 

2015)  , as previously described (Court et al., 2014). These analyses concerned the entire groups (8 

controls vs 55 IDHwt, and 8 controls vs 15 IDHmut) or only the samples with matched RNA-seq 

data (3 controls vs 8 IDHwt and 3 controls vs 5 IDHmut). The HM450K probes were considered 

differentially methylated when the FDR was <0.05 and when the β-value difference between 

groups was >0.1. To consider only robust methylation variations, CGI/promoters were classified 

as hyper-methylated or hypo-methylated only if they included at least two probes differentially 

methylated (gain or a loss of methylation) in their CGI.  

To test the robustness of this strategy we performed again the analyses by using Wilcoxon test, 

instead of limma (Ritchie et al., 2015), and by including the filters described in Zhou et al., (Zhou 

et al., 2017). For both IDHwt and IDHmut samples, we identified the same four groups of defects. 

At the statistical level, the affected probes displayed more than 91% of homology with both tests. 

In addition, the percentage of affected genes for each defects only marginally changed between 

our initial conditions and these conditions (Supplemental file S1: Fig. S12).  

 

- 5hmC analysis by data mining  
5hmC data from 30 IDHwt glioma samples were retrieved from Jonhson et al., 2016 (GSE73895). 

β-values, derived from HM450K arrays hybridized with DNA after conversion with oxidative 

bisulfite (oxBS) and bisulfite only (BS), were computed as described above. The level of 5hmC 

for each probe and sample was obtained by subtracting the β-values of oxBS samples from their 

corresponding BS pair. 

 
Expression analysis  

- RNA extraction 
RNA was isolated from frozen tissue samples using the RNeasy Mini Kit (Qiagen, Hamburg, GmbH), 

according to the manufacturer’s recommendations.  

 
- RT-qPCR expression analyses 

RT-qPCR assays were performed using a microfluidic-based approach, as previously described 

(Maupetit-Méhouas et al., 2016). First-strand cDNA was pre-amplified for 14 cycles with the pool of 

primers used for RT-qPCR and the TaqMan PreAmplification Master Mix (Life Technologies, 

4488593). Primer sequences are in Supplemental Table S6. RT-qPCR assays were then performed and 

validated using Fluidigm 96.96 Dynamic Arrays and the Biomark HD system (Fluidigm Corp.), 
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according to the manufacturer’s instructions. The relative expression level was quantified with the 2-

dCt. The housekeeping genes PPIA, TBP and RPL13A were used to normalize transcript expression. 

Each analysis was performed in duplicate. 

 

- RNA-sequencing 
RNA-seq was performed using total RNA after ribosomal RNA depletion (Ribo-Zero rRNA Removal 

Kit, Illumina) from 3 brain, 8 IDHwt and 5 IDHmut glioma samples. RNA processing, rRNA 

depletion, library preparation and sequencing on an Illumina HiSeq 2500 apparatus were performed by 

Integragen SA (Evry, France), according to the manufacturer's protocol (mean of 90 million of paired 

reads per sample). Stranded RNA-seq reads were mapped to the human genome (hg19) using TopHat2 

(version 2.1.0) and a transcript annotation file from GENCODE (Release 19) (Kim et al., 2013). The 

average alignment rate was about 94.5% with a concordant pair alignment rate of 92%. Only properly 

paired reads were considered for downstream analysis. The reads count per gene was obtained with the 

HTseq-count script (option: -m intersection-nonempty -s reverse), and the FPKM gene expression 

level was determined with Cuffquant and Cuffnorm from the Cufflinks suite (version 2.2.1), based on 

GENCODE V19 transcript annotation (Anders et al., 2015, Trapnell et al., 2010). Strand-specific 

RNA-seq signals were derived from the RNA-seq alignments using Samtools, genomeCoverageBed 

and bedGraphToBigWig tools, and visualized using the UCSC Genome Browser (Li et al., 2009; 

Quinlan and Hall, 2010 ; Kent et al., 2010). Differential expression analyses between controls and 

glioma samples were based on reads counts using the DESeq2 and edgeR R packages (Love et al., 

2014, Robinson et al., 2010). Genes were considered as differentially expressed between groups when 

| log2-fold change| >2 with an adjusted P-value <0.05 in both statistical approaches.  

 
- Gene expression data mining  
Gene expression levels in several human tissues were obtained from the Roadmap Epigenomics 

project (https://egg2.wustl.edu/roadmap/web_portal/processed_data.html#RNAseq_uni_proc). The 

transcription levels in different brain regions were retrieved from the GEO database (accession number 

GSE33587). 

 
Chromatin analyses  

- Chromatin immuno-precipitation from glioma samples 
Anti-H3K9ac (Millipore 06-942), -H3K4me3 (Diagenode 03-050) and -H3K27me3 (Millipore 07-

449) antibodies were used to assess the respective marks at selected genes by ChIP of native 

chromatin isolated from glioma samples and controls, as described in (Maupetit-Méhouas et al., 

2016). Input and antibody-bound fractions were quantified by real-time PCR amplification with the 

SYBR Green mixture (Roche) using a LightCycler 480II (Roche) instrument. Background 

precipitation levels were determined by performing mock precipitations with a non-specific IgG 

antiserum (Sigma-Aldrich C-2288), and were only a fraction of the precipitation levels obtained with 

the specific antibodies. The bound/input ratios were calculated and normalized to the precipitation 
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level at the TBP promoter for the anti-H3K9ac and -H3K4me3 ChIPs and at the SP6 promoter for the 

anti-H3K27me3 ChIP. The primers used are described in Supplemental Table S6. 

- ChIP-seq data mining associated with chromatin analyses 
ChIP-seq data from NPC and brain samples were from the NIH Roadmap Epigenomics project 

(http://www.roadmapepigenomics.org/). In detail: 

- For H9-derived Neural Progenitor Cells (NPC): Input (GSM772805); H3K4me3 

(GSM772736), and H3K27me3 (GSM772801) 

- In brain: Input (GSM772991), H3K4me3 (GSM772996), H3K27me3 (GSM772993) and 

H3K9me3 (GSM670005) 

ChIP-seq data for the H3K4me3 and H3K27me3 profiles in glioma-derived cells were obtained from 

the GEO database (accession numbers: GSM1121888 and GSM1121885, respectively).  

To describe the histone modification enrichment in each defect group, the ChIP-seq read densities 

around TSS (± 2 kb) was represented by a heatmap where each line represents one single promoter. 

The mean signal around TSS (± 2 kb) for each defect group was compared with the mean signal for all 

genes included in this study (n=14,714) to correct for the bias due to the use of different datasets. 

- Gene classification according to their chromatin signature 
The gene classification according to their chromatin signature (bivalent, H3K4me3-only, H3K27me3-

only and none) in human ES cells is from (Court and Arnaud, 2017). For NPC and brain samples, this 

classification was performed as previously described in (Court and Arnaud, 2017). Briefly, data for 

input, H3K4me3 and H3K27me3 ChIPs were aligned to the hg19 genome assembly. Peaks were then 

called with MACS 1.4.2 using the input as control for peak detection (Zhang et al., 2008). Chromatin 

signatures were classified using an in-house R scripts. Specifically, a bivalent region was defined by 

the overlapping of H3K4me3 and H3K27me3 peaks for at least 1kb. H3K4me3-only and H3K27me3-

only regions were identified as 1 kb peaks for H3K4me3 or H3K27me3 that did not overlap. The rest 

of the genome was considered as having a “none” chromatin signature. To attribute a chromatin 

signature to CGI/promoter regions, only the signature spreading across the CGI region was retained.  

 
Copy-number variation (CNV) analyses 
CNV analyses were performed using the Genome-Wide Human CytoScan HD Array (Affymetrix, CA, 

USA) and the samples analyzed by RNA-seq (3 controls, 8 IDHwt and 5 IDHmut glioma samples). 

DNA and array data were processed by the Genomic Platform/Curie Institute (France) according to the 

manufacturer's protocol. Arrays were scanned using an Affymetrix GeneChip Scanner 3000 7G. 

Scanned data files were analyzed with Affymetrix Chromosome Analysis Suite v3.1 (ChAS) 

(Affymetrix Inc., USA) using the CytoScanHD_Array.na33.annot.db annotation file on the hg19 

genome. To find CNVs, single samples were analyzed using the reference model file 

“CytoScanHD_Array.na33.r2.REF_MODEL”. To prevent the detection of false-positive CNVs, only 

alterations that involved at least 50 consecutive probes and spanning more than 100 kb were 

considered in the analysis. To evaluate genetic alterations at gene level, the mean log2 ratio of the 

CNV fragment overlapping with a CGI/promoter region was assigned to each gene. For genes with a 

CGI/promoter region not covered by a CNV fragment, the mean log2 ratio was considered as null. 
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Positive and negative mean log2 ratios were used to categorize duplicated and deleted regions, 

respectively. To identify genes the expression alteration of which correlates (p <0.05) with CNV 

changes, the mean log2 ratio of the CNV values and the normalized pseudo RNA-seq counts for each 

transcriptionally affected gene in the same sample were compared using the for the Pearson’s 

correlation. 

 

Principal component analysis (PCA) 
The PCA was done with the FactoMineR package using molecular features (histones modifications, 

DNA methylation and expression) associated with genes from Meth+/Exp- and No Meth/Exp-the 

groups in brain (Le et al., 2008). For each gene, the histone modification levels at the CGI/promoter 

region (TSS ±1kb) were based on the average ChIP-seq signal for H3K4me3, H3K27me3 and 

H3K9me3 obtained in brain samples. The DNA methylation levels were determined by the log2 value 

of the mean β-value, obtained from 8 brain control samples, for all the probes located in the CGI of 

that gene. For the transcriptional level, the average FPKM value from 3 brain control samples was log2 

transformed. As the different variables used were defined by different measure units, they were 

standardized all before the PCA analysis (i.e., centered and scaled). 

 
Functional annotations 

InterPro protein functional classification analysis was performed using the functional annotation tools 

in DAVID 6.8 (https://david.ncifcrf.gov/) (Huang et al., 2009). Gene Ontology analyses were done 

with the GeneRanker tools of the Genomatix suite (http://www.genomatix.de/). To identify putative 

regulatory features linked to the transcriptional defect groups, the CGI positions in genes were 

analyzed with i-cis Target (https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/) (Herrmann et al., 2012). 

The comparative analysis tools were then used to identify specific binding sites. As transcription 

factors could have multiple position weight matrices (PWM), all Normalized Enrichment Scores 

(NES) given by i-cis Target for a factor were displayed in a boxplot. The tumor-suppressor gene and 

oncogene lists were obtained from www.ongene.bioinfo-minzhao.org, www.cta.lncc.br and 

www.uniprot.org with the keywords tumor suppressor (KW-0043) and proto-oncogene (KW-0656). 

 

Data Access  
Data generated in this study have been submitted to the NCBI Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) under the accession numbers: 

- GSE123678 for the the HM450K DNA methylation data 
 

- GSE123682 for the Cytoscan HD data 
 

- GSE123892 for the oriented RNA-seq data 

 

Custom R scripts used to perform this study are available as Supplemental Code. 
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Figure Legends: 
 
Figure 1: Aberrant methylation at CGI/promoters is not the main contributor to transcriptional 
alteration in glioma 
A) Classification of the 14,714 genes analyzed in this study. B) DNA methylation level (mean β-
values) of the 11,795 CGI/promoters (row) analyzed in IDHmut and IDHwt glioma and control 
(normal brain tissue) samples (columns). Left columns show their hyper- or hypo-methylation status in 
IDHmut and IDHwt glioma samples compared with controls. C-D) Differential expression status of 
genes associated with hyper- (C) or hypomethylated (D) CGI/promoters in IDHwt (left panel) and 
IDHmut (right panel) glioma samples compared with controls. 
 
Figure 2: Extent of transcriptional alterations in IDHwt and IDHmut glioma samples. 
A) Volcano plot analysis of differential gene expression in IDHwt (left) or IDHmut (right) glioma 
samples. Blue and red dots represent genes that were significantly down- or up-regulated, respectively, 
compared with healthy controls (n=14,714 genes analyzed). B) Circular karyotype showing the 
duplication (in red) and deletion (in blue) frequencies at the 14,714 analyzed genes in IDHwt (outer 
circles) and IDHmut (inner circles) samples. Genes showing a significant correlation between CNV 
and expression are symbolized by an orange (up-regulated) or green (down-regulated) line. C) 
Correlation analysis between CNV and expression levels for the EGFR and HOXA13 genes in IDHwt 
(yellow dots, left panels) and IDHmut (blue dot, right panels) glioma samples. Black dots indicate 
value in healthy controls. EGFR overexpression correlated with increased copy number in IDHwt 
glioma samples. D) Classification of the genes with expression alterations that did not correlate with 
CNV. 
 
Figure 3: Four expression defect classes 
A) Integrative analysis of differential gene expression and methylation in 8 IDHwt glioma samples 
identified four main defect classes: Gain of expression with gain of methylation (Meth+/Exp+), gain 
of expression with CGI/promoter remaining unmethylated (No Meth/Exp+), loss of expression with 
gain of methylation (Meth+/Exp-), and loss of expression with the CGI/promoter remaining 
unmethylated (No Meth/Exp-). B) Differential DNA methylation analysis in all IDHwt glioma 
samples (n=55) vs controls (n=8) (delta of the mean β-value). Glioma samples were grouped in the 
four classes of expression defects defined in A). The methylated and methylable status of genes is 
indicated in the left column. C) Integrative analysis of differential expression and methylation at 
selected Meth+/Exp+ (upper panel), No Meth/Exp+ (middle panel), and No Meth/Exp- (lower panel) 
genes in 42 IDHwt glioma samples compared with controls (n=8). D) Integrative analysis of 
differential gene expression and methylation in an independent cohort of 135 IDHwt glioma samples 
(validation cohort) also identified the four main defect classes. Odds ratio and significance of the 
overlap (Fisher’s exact test) between the data of the validation cohort and our cohort, for each defect 
category, are shown on the right panel.  

 
Figure 4: Genes with bivalent chromatin signature in ES cells are more prone to be deregulated 

in IDHwt glioma. 

A) Gene Ontology terms (biological processes) enriched in genes from the four defect categories. For 
each category, the four highest terms are shown. B) Distribution of genes of each defect category 
according to their chromatin signature in human ES cells (none: gray; bivalent: black; H3K4me3-only: 
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blue; H3K27me3-only: red). As reference, the distribution of the 14,714 genes analyzed in this study 
according to their chromatin signatures in human ES cells is shown in the left panel. C) Expression 
level and chromatin signatures of genes of the four defect categories in human ES cells, neural 
progenitor cells (NPC) and healthy brain. For comparison, the same analysis is provided on the right 
panel for genes without expression defect (unaffected) in IDHwt glioma samples.  
 
Figure 5: Expression from genes with methylated CGI/promoter 
A) Data-mining derived ChIP-seq read density data for H3K27me3 (purple) and H3K4me3 (blue) in 
genes with defect 1 in a ± 2kb window centered on their TSS, in healthy brain (left panel) and IDHwt-
derived cell lines (right panel). The mean ChIP-seq signal values are shown on the lower panels for 
“Meth+/Exp+” genes (red line) and for the 14,714 analyzed genes (black line) that were used as 
normalized reference. B) Heatmap showing CpG sites density and their mean methylation level in a ± 
2kb window centered on the TSS of genes with defect 1 and enriched (upper panel) or depleted (lower 
panel) for H3K4me3 in IDHwt glioma samples, compared with healthy controls. The ChIP-seq read 
density obtained in IDHwt-derived cell lines is shown on the right panels. C) Genome browser view at 
the TWIST1 and FOXD3 loci to show H3K4me3 enrichment, differential DNA methylation, and the 
oriented RNA-seq signal. These two loci are representative of genes that initiate from an H3K4me3-
marked TSS embedded in a methylated CGI/promoter in IDHwt samples. D) HOXC11 is 
representative of genes in which expression initiates from an alternative TSS in IDHwt glioma 
samples. 
 
Figure 6: Transcription factor binding motifs in the promoters of genes overexpressed in glioma 

samples 

A) Data-mining derived ChIP-seq read density data for H3K27me3 (purple) and H3K4me3 (blue) at 
“No Meth/Exp+” genes in a ± 2kb window centered on their TSS, in healthy brain (left panels) and 
IDHwt-derived cell lines (right panels). The mean ChIP-seq signal values are shown on the lower 
panel for all class 2 defect genes (orange line) and for those that are (dotted green line) or not (dotted 
pink line) marked by H3K4me3-only in ES cells, NPC and brain. The black line, used as normalized 
reference, shows the value for all analyzed genes. B) Transcription factor motif enrichment in the 
CGI/promoter of “No Meth/Exp+” genes, calculated using i-cis Target and represented as a 
Normalized Enrichment Score (NES). Enrichment is shown for genes that are (green squares) or not 
(red squares) marked by H3K4me3-only in ES cells, NPC and brain. When a transcription factor 
possesses several binding motifs, data are presented as a box plot. C) Expression status, assessed by 
RNA-seq, of the transcription factors identified in B). The middle column shows their expression 
status in healthy control (n=5) (white, not expressed; gray, expressed: fpkm>1) and the right column 
their expression in IDHwt glioma samples (n=8). The left column shows the motif enrichment in all 
“No Meth/Exp+” genes (black), and those with H3K4me3-only (green) and without (red) H3K4me3-
only (red) in ES cells, NPC and brain. D) Expression vs controls of selected overexpressed 
transcription factor identified in C) assessed by RT-qPCR in 42 IDHwt glioma samples. Details for 
each sample are provided in the lower panel (p-value by Mann-Whitney U test). 

 

Figure 7: Gene repression is associated with H3K27me3 gain 

A) Data-mining derived ChIP-seq read density data for H3K27me3 (purple) and H3K4me3 (blue) at 
“Meth+/Exp-” and “No Meth/Exp-” genes in a ± 2 kb window centered on their TSS, in healthy brain 
(left panels) and IDHwt-derived cell lines (right panels). The mean ChIP-seq signal values are shown 
in the lower panels for “Meth+/Exp-” (purple line) and “No Meth/Exp-” (blue line) genes. Genes in 
the “No Meth/Exp-” group were further subdivided in genes marked (dotted light blue line) and not 
marked (dotted dark blue line) by H3K4me3-only in ES cells, NPC and brain. The black line used as 
normalized reference shows the value for all analyzed genes. B) ChIP analysis of H3K9ac, H3K4me3 
and H3K27me3 at selected genes in IDHwt (n=7) and control (n=5) samples. The precipitation level 
was normalized to that obtained at the TBP promoter (for H3K4me3 and H3K9ac) and at the SP6 
promoter (for H3K27me3) (p-values calculated with the GENCODE U test). C) Detail for each 
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samples of the ChIP analysis at the PCSK6 locus. Heat maps of the expression and methylation values 
are in the upper panel. D) Expression level of “Meth+/Exp-” (purple column) and “No Meth/Exp-” 
(blue column) genes and of all analyzed genes (white column) in healthy controls. E-F) Principal 
component analysis. Two-dimensional scatter plot of the values of each “Meth+/Exp-”  (purple dots) 
and “No Meth/Exp-” gene (blue dots) along the 1st (Dim 1) and 2nd (Dim 2) principal component (E). 
For each class defect, the centroids are shown by colored squares. F) H3K4me3 and expression levels 
in healthy brain are the variables that most contributed to and were significantly correlated with the 
first principal component. 
 

 

Figure 8: Working model.  
A) In glioma, alterations in the control of the H3K27me3 signature could be one of the main 
contributors to the four types of transcriptional defects observed at CGI/promoter-controlled genes 
(upper panels). In this model, genome-wide hypomethylation induces H3K27me3 redistribution that 
could lead to ectopic expression of genes that are normally repressed by polycomb proteins, including 
some genes encoding transcription factors. These overexpressed transcription factors could then 
promote the aberrant expression of their target genes (dotted arrow). Similarly, alterations in the 
interplay between the polycomb complex and the transcriptional machinery could affect H3K27me3 
fate during ES and/or neural stem cell differentiation. Specifically, this alteration could lead to the 
aberrant maintenance of bivalency and silencing at a subset of genes that are normally specifically 
expressed in brain. At genes that are normally poorly expressed in healthy brain, this process is 
associated with gain of DNA methylation in glioma. Beside defects in the H3K27me3 signature, we 
also identified a subset of genes that are apparently constitutively associated with H3K4me3-only, 
regardless of their expression status in brain and glioma (lower panel). The mechanisms underlying 
their transcriptional deregulation remain to be determined. B) Percentage of unaffected and affected 
CGI/promoter-controlled genes for each of the four defects described in the article, in IDHwt and 
IDHmut glioma samples from our cohort. 
 
 
 


















