
HAL Id: hal-02305895
https://hal.archives-ouvertes.fr/hal-02305895

Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average Curve of n Digital Curves
Isabelle Sivignon

To cite this version:
Isabelle Sivignon. Average Curve of n Digital Curves. DGCI 2019 - 21st IAPR International Confer-
ence on Discrete Geometry for Computer Imagery, Mar 2019, Marne-la-Vallée, France. pp.481-493.
�hal-02305895�

https://hal.archives-ouvertes.fr/hal-02305895
https://hal.archives-ouvertes.fr

Average Curve of n Digital Curves

Isabelle Sivignon

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
isabelle.sivignon@gipsa-lab.grenoble-inp.fr

Abstract. Building on [23], we investigate the problem of defining and
computing the average of digital curves. Given n digital curves that sat-
isfy compatibility conditions, a set - called the gap - in which the average
curve is looked for, is defined. The proposed definition rewrites the clas-
sical arithmetic mean for curves by (i) defining the distance between
each point of the gap and its projection on each curve and (ii) comput-
ing the points that minimize the sum of squared deviations. We show
that, algorithmically speaking, computing such projections comes down
to computing a distance transform with visibility constraints. We pro-
pose a fast algorithm to compute a good approximation of these distance
maps and finally show that the average curve can be obtained using clas-
sical watershed algorithm.

Keywords: Digital curves, Arithmetic mean, Distance Transform, Visibility

1 Introduction

Context Shape averaging is an important task in many applications in order to
take into account fluctuation of data, sensibility to the choice of parameters or
to compute a morphing between several shapes. To cite only a few examples, it
may be used in geological studies to define a shoreline despite short-lived defor-
mations, or as a post-treatment in image segmentation to average the effect of
the choice of algorithm parameters. Many works have been conducted on this
subject, especially when input data is a set of n polygonal curves. When n = 2,
medial axis provides a solution. When n > 2 the problem is much more complex,
and a two-steps process is usually followed: first establish a correspondence be-
tween input curves, and then construct a “centroid” from this correspondence.
Correspondence between input curves can be achieved using for instance the
Fréchet distance [5], or normal map computation [15] for instance. However,
in the examples cited above, shapes are defined as objects in digital images,
so that defining the average of digital shapes is particularly relevant for many
applications. On this matter, most previous works focused on morphing-based
approaches [3].

Arithmetic mean Going back to basics, the arithmetic mean x̄ is the best way to
select a “typical” value for a set of input values xi, in the sense that it minimizes
the sum of squared deviations. Indeed, if we denote f(x) =

∑
i (x− xi)2, x̄ =

argminxf(x). Minimizing f can be done either by looking for local minima of
f , or by looking for the zero set of its derivative f ′(x) =

∑
i (x− xi). Anyway,

the arithmetic mean x̄ lies in the interval [xm, xM], where xm and xM denote
the minimal and maximal value of the xi respectively.

Outline In [23], the authors present a framework to extend the notion of arith-
metic mean to “values” that are not numbers but smooth curves. In this article,
we investigate the extension and relevance of this definition of average curve
in the case of digital curves. We also discuss efficient algorithmic solutions to
compute it. In Section 2 we recall the main results of [23] and revisit them for
digital curves, which reveals a new constrained distance transform problem. Sec-
tion 3 focuses on algorithmic solutions to solve this problem. Then, in Section
4 we show how to obtain an average curve from the constrained distance map
and give some experimental results. Last, Section 5 raises the question of neces-
sary conditions on the input curves for this approach to be valid, and provides
tentative answers.

2 Which definition of Average Curve ?

2.1 “Arithmetic” mean curve

Fig. 1. Gap (dashed) of two
curves C1 and C2. The clos-
est projections π1(q) and
π1(r) of q and r on C1 yield
erroneous mean curve. Gap
relative projections π∆1 are
defined instead.

Given a set of n smooth Jordan curves {Ci}, the
authors of [23] define the Valley Average Curve
as the valley of the scalar height field Q(p) =∑
i d(p, πi(p))

2, and the Zero Average Curve as
the zero set of the scalar height field D(p) =∑
i d(p, πi(p)), where d denotes the Euclidean dis-

tance and πi(p) the “projection” of p onto Ci. Since
all curves are Jordan, each Ci is the boundary of
a bounded shape Si. As the arithmetic mean of a
set of numbers lies somewhere in between the min-
imum and maximum values, the average curve is
looked for somewhere in the symmetric difference
of the Si: no point of the average curve may lie
in the interior or in the exterior of all the Ci. For-
mally, in [23] the authors define the gap of {Ci} as

∆({Ci}) = (
⋃

S i)\(
⋂

S̊i) (see Figure 1 - we use
the notation ∆ for short when there is no ambigu-
ity). Note that, from this definition, an interesting
property is that the average curve goes through all
the points shared by all input curves.

The authors remarked that if the projection
πi(p) of a point p is defined as the point of Ci clos-
est to p, some parts of the average curve may be
missed in the case of the Valley Average Curve, or

misplaced for the Zero Average Curve (see Figure 1). Indeed, the idea behind
the definition of average curve is to suppose that projections of each point of the
average curve C on each Ci provide a continuous and bijective mapping between
C and each Ci: if the segment [p, πi(p)] crosses ∆, this property fails. Thus they
introduce the gap relative projection π∆i (p) as the closest point on Ci such that
[p, π∆i (p)] ⊆ ∆.

2.2 Arithmetic mean digital curve

Consider a set of n digital 4-connected simple and closed curves {Ci, i = 1 . . . n}.
Each Ci being a Jordan curve, Z2\Ci has exactly two 8-connected components,
the unbounded one being called its exterior, and the other its interior. We denote
by Oi the digital object defined as the union of Ci and its interior, that we denote
O̊i. Similarly to [23] we define the gap of {Ci} as ∆({Ci}) = (

⋃
Oi)\(

⋂
O̊i) (or

∆ for short). Note that the Zero Average Curve definition involves non-integer
computation, while the Valley Average Curve can be computed using integers
when all points are in Z2. That is why in the following, we focus on the Valley
Average Curve definition, that we call arithmetic mean digital curve.

For any point p ∈ Z2, we can define H(p) =
∑
i d(p, π∆i (p))2 (H is called

height map) as before. However, the gap relative projection π∆i has to be rede-
fined for digital points and objects. Given a model of digital straight segment
(DSS for short), we say that two points p and q are visible in a digital set A and
denote V isA(p, q) if there exists a DSS s ⊆ A such that p, q ∈ s. We also define
VA(p) as the visibility region of p in A : VA(p) = {q ∈ A|V isA(p, q)}. Thus we
have π∆i (p) = arg minq∈V∆(p)∩Ci{d(p, q)}.

Hence, a main issue in the computation of the arithmetic mean digital curve
is to compute gap relative projections efficiently for all points in the gap, which
is the topic of the next section.

3 Computation of Gap Relative Projections

We consider here the most general problem of computing the visible projection
of any point of a set A with respect to a subset B ⊆ A. In the following, Ac is
the complement of A in Z2, and points of Ac are called obstacles.

Problem 1 (Visible Voronoi Map). Given two digital sets A and B with B ⊆ A,
compute for each point p ∈ A the projection q ∈ B of p such that V isA(p, q).

3.1 Brute force algorithm and discussion

Algorithm Efficient separable algorithms to compute distance transforms and
Voronoi Maps have been proposed [8], and can be used to design a first straight-
forward brute-force algorithm. Given two digital sets A and B such that B ⊆ A,
Algorithm 1 solves Problem 1. Function Visible is the implementation of the
V is predicate defined in Section 2.2.

Algorithm 1: BruteForceVisibleVoronoiMap(Digital Set A, Digital Set B,

B ⊆ A)

1 Initialization: VisiVoroMap(p) = VoronoiMap(p) = arg minr∈B d(p, r);
2 for p ∈ A do
3 if ¬Visible(A, p,VisiVoroMap(p)) then
4 Loop on points of B to find the visible projection q of p in A;
5 VisiVoroMap(p) = q

6 return VisiVoroMap

Proposition 1. If n and m are the cardinality of A and B respectively (n > m),
if V denotes the computational cost of Visible, and k is the number of points
of A for which the Voronoi Map differs from the Visible Voronoi Map then
Algorithm 1 is in O(n+ V.(n+ km)).

The complexity V of the Visible predicate is discussed in Section 3.3. How-
ever, even if V is neglected, this algorithm is not satisfying since, when k and m
are in the order of n, the complexity becomes quadratic in n.

Discussion Several options may be considered to design a more efficient algo-
rithm. The first one would be to adapt the optimal separable distance transform
algorithm of [8] to take into account obstacles. Following the rewriting proposed
in [7] using two predicates (Closest and HiddenBy), it would be a matter of
modifying the HiddenBy predicate since a site hidden by others in the Voronoi
Map may very well be the projection of a point if other sites are not visible from
this point. It appears that, with no further assumption on obstacles, the list of
sites cannot be shortened as efficiently as for the Voronoi Map.

Another option would be to first compute the visibility region of each point
p ∈ A before computing the distance transform of p with respect to VA(p) ∩ B.
Computing the visibility region of a point has ben widely studied in computa-
tional geometry [16], where obstacles are polygons. In the case of digital sets, the
problem has been tackled in [6] but the difficulty here is to efficiently compute
the visibility region for all points of A.

Yet another alternative would be to build a tailored data structure to per-
form efficient visible nearest neighour queries, as proposed in [19] for instance.
Here again, obstacles are supposed to be represented as polygons, and a fast
computation of a predicate returning the minimum visible distance from a point
to an obstacle is key. In our context, an important point is the definition of
obstacles, which could range from an obstacle per point in B (a lot of obstacles
with a very fast predicate) to connected components of B (few obstacles but
more convoluted predicate) for instance. The best solution would highly depend
on the geometry of B with respect to A.

The last option we discuss here is to propagate projections locally, from point
to point. Even though it has been reported in the literature that such local
approaches fail to compute exact Voronoi Maps [12], in Section 3.2 we provide

Algorithm 2: FMMLoop(Accepted Point Set Λ, Candidate list
Γ)

1 Extract from Γ the point p with smallest distance to its projection πA(p);
2 if p 6∈ Λ then
3 Λ = Λ ∪ {p, πA(p)};
4 foreach q ∈ N (p) ∩A do addCandidatePoint(Λ,Γ ,A,q) ;

new results on local approaches accuracy, and show that a strong point of this
approach is that visibility can be checked on the fly. In the next section, we
propose to adapt the Fast-Marching Method [24] (FMM for short) algorithm to
compute an approximation of the solution to Problem 1, but other local schemes
may also be considered.

3.2 Fast Marching Method-like algorithm using projections

Basic loop The algorithm follows the propagation principle of the Fast Marching
Method (which in turns is very similar to Dijkstra’s shortest path algorithm).
It was designed primarily to describe the evolution of an interface as a function
of time and at a given speed in the normal direction to the surface. But more
generally, given a domain A and a set B ⊆ A, the algorithm computes for each
point p of A an approximation of the length of the shortest geodesic from B to
p in A. From the list of points for which the distance is known (called accepted
points), a list of candidate points that lie in the neighbourhood of accepted
points is maintained. For each candidate point, a tentative value of distance is
computed from its neighbours belonging to the accepted point set. Each step of
the algorithm consists in adding the candidate point with the minimum distance.
We adopt the same simplified FMM loop as presented in [17], which is sketched
in Algorithm 2, and implemented in DGtal library [1]. Initially, accepted point
set Λ is set to B, candidate list Γ is empty.

Algorithm 3 details the addCandidatePoint function. Parts in orange are
to be disregarded at this point and will be explained later in this section. In order
to be able to include a visibility constraint in the course of the algorithm, instead
of propagating distance information from point to point, visible projection point
is propagated. Note that a point may appear several times in the candidate list,
with different projections, and thus distance values.

About the accuracy of the algorithm Propagating closest point information in
FMM, without the visibility constraint, was already done in [4]. Accuracy relies
on the assumption that for any point p ∈ A, its visible projection in B is also
the visible projection of one of its neighbours. We formalize this condition in
Proposition 2 when N is the classical 8-neighbourhood N8.

Proposition 2. Let p ∈ A, and πA(p) its ground truth visible projection on B.
If there exists an 8-connected path of points {pi}1..k in A such that (i) p1 = p,

Algorithm 3: addCandidatePoint(Accepted Point Set Λ, Candidate

list Γ , Digital Set A, Digital Set B, Point p)

1 L = ∅;
2 foreach q ∈ N (p) ∩ Λ do
3 if Visible(A, p,πA(q)) then L = L ∪ πA(q);
4 else
5 τ(p) = computeProjTangent(p, q, A, B);
6 if τ(p) exists then L = L ∪ τ(p);

7 πA(p) = arg minx∈L{d(p, x)}; Γ = Γ ∪ {p, πA(p)};

pk = πA(p), for all i ∈ {1 . . . k} πA(pi) = πA(p) (ii) the distance to πA(p) is
decreasing, then Algorithm 2 computes the exact visible projection πA(p) of p.

Proof. We proceed by induction on the length of the path.

[Initialization] If k = 2, then p is 8-neighbour to πA(p) ∈ B. If πA(p) is the
only point of B in N8(p), we are done. Otherwise, any point of B wad added to Λ
before p, and p was added in the candidate point set Γ , using its 8-neighbours, in
particular πA(p). Then p may have been added several times in Γ with different
tentative projections, but only the one with the closest tentative projection, here
πA(p), is actually added in Λ thanks to line 2 of Algorithm 2.

[Induction step] Consider a point p ∈ A for which there exists a path {pi}
of length j + 1, with p1 = p and such that the two conditions of Proposition 2
are satisfied. Point p2 is such that πA(p2) = πA(p) and there exists a path of
length j between p2 and πA(p2). By induction hypothesis, Algorithm 2 correctly
computes πA(p2). Consider now the moment when p2 is included in the accepted
point set Λ (Algorithm 2 line 4). Several cases may arise:

– if p1 is not in Λ, and whether it is already in the list of candidates Γ or
not, it is added to the list, with the smallest distance possible since πA(p2)
is equal to the true visible projection πA(p) of p ;

– if p1 is already in Λ with an erroneous projection, this means that p1 was
added before p2 (otherwise p1, as a 8-neighbour of p2, would have been added
to Γ line 7 of Algorithm 3, since πA(p2) = πA(p)). Let q be the projection
associated to p when it was added to Λ. We have d(p, q) ≤ d(p2, π

A(p2)). But
by hypothesis we have d(p, πA(p)) ≥ d(p2, π

A(p)) = d(p2, π
A(p2)) ≥ d(p, q),

thus contradicting the fact that πA(p) is the ground truth projection.

The sufficient conditions of Proposition 2 may be broken in at least two
situations. Firstly, even if there is no obstacle around p and πA(p), πA(p) may
not be the projection of any of p’s neighbours. This issue is inherent in any
approach based on local propagation because digital Voronoi cells may be not
connected. This has been discussed in the literature, and we extend here the
results of [12] by showing that erroneous values cannot occur close to B.

p

r
r + ~v1

r + ~v2
l1 : y = α1x + β1

l2 : y = α2x + β2

(a)

q π(q)

p

sj

AC

(b)

Fig. 2. (a) Illustration of the proof of Proposition 3. V is (incompletely) depicted in
green. r is the site associated to V . (b) Computation of a tangent from a point p using
the DSS from one of its neighbours q to πA(q) (in blue). Red points are obstacles.
Points in B are marked by black crosses.

Proposition 3. For any digital set B, for all p such that d(p,B) < 13, there
exists a point q ∈ N8(p) such that π(q) = π(p), where N8 denotes the 8 neigh-
bourhood.

Proof. Suppose wlog that p(0, 0). See Figure 2(a) for an illustration of the no-
tations. If there is no point in N8(p) such that π(q) = π(p), this implies that
the Voronoi cell V of π(p) does not contain any point of N8(p). Up to symme-
tries, this means that the boundary of V contains two segments, one cutting
the segment [p, p + (0, 1)] and the other cutting the segment [p, p + (1, 1)]. If
we call l1 and l2 respectively the two lines (of positive slopes) supporting these
two segments, this translates into the following constraints: β1 < 1, β1 > 0,
β2 +α2 > 1 and β2 < 0. Let r be the site associated to p (its closest point in B).
The two lines l1 and l2 are bisectors of r with points r+ v1 ∈ B and r+ v2 ∈ B
respectively. Since B is a digital set, r, r + v1 and r + v2 are points of Z2. The
values β1, β2, β2 + α2 can be written as functions of r, v1 and v2. Combining
the constraints stated above with a study of the variations of these functions
to derive necessary conditions on r, v1 and v2 is quite tedious. Experimentally,
it is however pretty straightforward to find that the triplet of points defined
by r(5, 12), v1 = (−4, 1) and v2 = (2,−1) fulfills the constraints. This gives
an upper bound on the minimal distance (d(p, r) = 13) for which there exists
a point fulfilling the constraints. We verify that this is also a lower bound by
exhaustively checking the constraints for all digital points at distance less than
131.

Secondly, visible projections of p’s neighbours may not be visible from p,
and p’s projection may be somewhere else. In the next paragraph, we propose

1 Python code to make this test is available at www.gipsa-lab.grenoble-inp.fr/

~isabelle.sivignon/Code

an improved version of the function addCandidatePoint, using the parts in
orange, in order to take into account such cases.

Algorithm using tangents If, for a given neighbour q of p, πA(q) is not visible
from p, there is a connected component C of AC between p and πA(q). The idea
is to compute a tangent to C passing through p. Such a construction echoes the
computation of visibility regions in polygons [16]. The returned point, if there is
one, is the intersection between this tangent and B. Many tangent estimators for
digital curves have been proposed in the literature [26, 22], but the problem we
are facing here is slightly different. Indeed, we need to compute the tangent to an
obstacle through a given point (not on the obstacle’s boundary) with no apriori
information on the obstacle. In order to solve this problem, we present here a fast
heuristic. Figure 2(b) illustrates how computeProjTangent is implemented.
Let us suppose that a DSS S(q) = {s1 = q . . . sk = πA(q)} between q and πA(q)
is known (in blue on Figure 2(b) and see Section 3.3 for a discussion). Since
πA(q) is not visible from p, p∪S(q) is not a DSS. Let j ∈ [2, k− 1] be the index
such that p∪ {s1, . . . sj} is a DSS while p∪ {s1, . . . sj+1} is not. Part {s1, . . . sj}
is depicted as blue and green dots in Figure 2(b). The set L of all digital straight
lines that contain the DSS p ∪ {s1, . . . sj} defines a family of lines close to C
through p. In Figure 2(b), the green region represents the parameters of this set
of digital straight lines. Thus, there is not one unique intersection point between
B and a line of L, but a set of points P =

⋃
l∈L,l∩Ac=∅ l ∩ B (green points

overlayed by black crosses in Figure 2(b)). Computing P to find the point of P
closest to p may be computationally expensive in general. If only one intersection
point between B and a specific digital straight line l ∈ L, l∩AC = ∅ is computed,
then committed error (in comparison with the exhaustive computation of P) is
upper bounded by maxr,s∈P |d(p, r)− d(p, s)|.

Computational Complexity

Proposition 4. If A is a digital set of n points, computational complexity of
Algorithm 2 is O(n.|N |.(|N |.V + log(|Γ |))) when Algorithm 3 is called without
the tangent computation. |Γ | is the maximal size of the list of candidates, and
V is the computational complexity of the predicate Visible.

Complexity of Algorithm 2 is O(n.|N |.(|N |.(V + T) + log(|Γ |))) when Algo-
rithm 3 with tangent computation is used instead. T is the computational com-
plexity of the function computeProjTangent.

Proof. The complexity analysis is pretty straightforward. The log(|Γ |) term
comes from the insertion of a new candidate in Γ line 7 of Algorithm 3. This
complexity is achieved by using an ordered set, where the elements {p, πA(p)}
are ordered with respect to the value of d(p, πA(p)).

3.3 Visibility test

The Visible predicate is called many times in the algorithm, so that its im-
plementation is key to the algorithm efficiency. We propose below a visibility

test in three steps. Each step consists in checking sufficient visibility conditions
of increasing precision and complexity: Visible(A,p,q)=(VisibleAdd(A,p,q) or
VisibleUpLow(A,p,q) or VisiblePreimage(A,p,q)). Note that the or short-
circuiting ensures that the least computationally expensive tests handle most
common cases.

VisibleAdd For each accepted point q ∈ Λ, we also store a DSS S(q) ⊆ A such
that q, πA(q) ∈ S(q). Maintaining and propagating this information is actually
very easy using a classical incremental DSS recognition algorithm [13] and the
fact that Algorithm 2 computes the projection of a point from the projections of
its neighbours. The VisibleAdd function returns true if p∪ S(q) is still a DSS,
false otherwise. If true, we set S(p) = p ∪ S(q) and store it with p and πA(q) in
the list of candidates Γ . This test runs in constant time.

VisibleUpLow This predicates verifies whether the DSS having p and q as up-
per (resp. lower) leaning points is included inA. This test runs inO(max(abs(xp−
xq), abs(yp − yq))), which is upper bounded by the maximal distance between
two points of A.

VisiblePreimage The last test finally enables to thoroughly check whether
there exists a DSS included in A among all possible DSSs between p and q. This
problem was tackled in [6] and the solution proposed can be implemented using
the linear-in-time stabbing lines algorithm of [20] for which an implementation is
available in DGtal [1]. The general idea of the algorithm is the following : given
a set of digital points that must belong to the DSS, and another set of digital
points that must not, saying that a given digital point must or must not belong
to a DSS is translated into a couple of constraints on the DSS parameters. When
all the points have been added, it is enough to check whether the set of possible
DSS parameters is empty or not. In our test, the only two points we want in
the DSS are p and q. The points that must not belong to the DSS are obstacles
points, i.e. points of AC . However, in general, few points of AC actually interfere
with a DSS between p and q, and such points can be detected while tracking the
upper and lower DSS in function VisibleUpLow.

3.4 Experimental comparison of brute force and FMM-like
algorithms

Algorithm 1 and Algorithm 2 were implemented using DGtal library [1]. Code
is available at www.gipsa-lab.grenoble-inp.fr/~isabelle.sivignon/Code.
Figure 3 gives elements of comparison in terms of computational speed and
accuracy. The result of Algorithm 1 is considered as the ground truth since
an exhaustive search of visible projections is performed when necessary. We
test our algorithms on three different sets A (one obstacle in (d), two large
obstacles in (e), many obstacles in (f)), with the same set B. Figures 3(a-c)
show experimental computation times in the three cases, at different resolutions
and for each algorithm. Unsurprisingly, Algorithm 1 is much faster when π(p) =

0 20000 40000 60000
Number of points of A

0

50

100

150

200

C
P

U
tim

e
(in

s)

FM-like
Separable DT

(a)

0 20000 40000 60000
Number of points of A

0

1000

2000

3000

C
P

U
tim

e
(in

s)

FM-like
Separable DT

(b)

0 20000 40000
Number of points of A

0

500

1000

1500

C
P

U
tim

e
(in

s)

FM-like
Separable DT

(c)

(d) (e) (f)

(g) (h)

Fig. 3. In (d-g), AC is depicted in light grey, B in black. Figures (a) to (c) report
computation times when running Algorithms 1 and 2 on input data depicted in (d)
to (f) respectively. In (d-g) a color map from red (low values) to green (large values)
is used to represent the distance between a point and its visible projection computed
thanks to Algorithm 2, except for (g) where Algorithm 1 is used. In (h), the same color
map is used to depict the difference between (f) and (g).

πA(p) for all p as in case (d). However, when visibility issues arise for many points
p, the trend is reversed. Figures (d-h) provide elements to evaluate the quality
of the approximation computed by Algorithm 2. The results of this algorithm
are depicted in (d) and (e): we do not show the results of Algorithm 1 since it is
the same apart for very few points where the error is very small (equal to 1 on
these examples, see Proposition 3). However, the results tend to differ more for
the shape with many small obstacles (see (f), (g) and (h)), especially in parts
where the heuristic tangent estimator was called.

(a) (b) (c)

Fig. 4. Results of arithmetic mean digital curve computation : input curves are in
colors, the result mean curve is in black, and the gap in gray: (a) three curves issued
from [23]; in (b) and (c), input curves are the results of a morphological snake image
segmentation algorithm [2] with different parameters - eight curves in (b), three in (c).

4 Computation of the Arithmetic Mean Digital Curve

Coming back to the initial problem, recall that the goal is the following: given
a set of digital curves {Ci}, (i) compute the height map H : ∆({Ci}) → R,
p 7→

∑
i d(p, π∆i (p))2 (ii) compute the valley of the height field H. Section 3 was

dedicated to the design of an algorithm to solve step (i). The concepts of ridges
and valleys involved in step (ii) have been widely studied in computational imag-
ing, with applications in image segmentation or shape recognition (see [14] for
an overview). As stated in [21], there are two main approaches to define these
concepts. The first one is to define ridges as solution manifolds of algebraic equa-
tions using the height field and its derivatives (see [14, 21]). The second approach
is the well-known concept of watershed, for which many efficient algorithms have
been designed for the last 30 years [25, 9, 11]. Experimental results presented in
Figure 4 use the implementation of [25] in the ImageJ open source software [18],
which is widely used in biomedical image analysis for instance.

5 About compatibility conditions of input curves

In this last part, we give tentative elements about conditions input curves must
fulfill for this approach to be correct, and leave some open questions.

Conditions of [23] To define compatibility conditions of input curves, the authors
of [23] define spikes for each point p ∈ Ci: if l is the line l normal to Ci at p, the
spike of Ci at p is the segment of l∩∆ containing p. The assumption they make
on the set of input curves is that for any curve Ci, the spikes of Ci are pairwise
distinct and their union is the gap. Under this assumption, they conjecture that
the height map f has exactly one local minimum on each spike, for any curve
Ci. They also provide a sufficient condition to ensure that the assumption is
true: all input curves should be pairwise normal-compatible [15] (meaning that
the closest point maps between any pair of curves must be an homeomorphism).

(a) (b)

Fig. 5. Ci is in dark grey, ∆C in light grey and arrows are depicted between points
p ∈ ∆ and π∆i (p). (a) Intersecting spikes, (b) no spikes intersect.

Finally, they also enounce a necessary condition (called gap compatibility), used
to fastly detect families of curves for which the approach fails: for any point
p ∈ ∆ and any curve Ci, π∆i (p) must be unique. This can be rewritten as: if
p ∈ ∆ belongs to the medial axis of Si, then only one of its closest points is
visible in ∆.

Which conditions for a set of digital curves ? The properties and conditions
above do not translate straightforwardly for digital curves. First, the gap com-
patibility condition is not relevant in our context since many points that do not
belong to the medial axis (which is the set of maximal balls) may have several
closest points. We propose to rewrite this condition as follows: if for a point p,
π∆i (p) is not unique, say π∆i (p) = {sj}, if (i) the digital ball b(p, d(p, sj)) is not
maximal in Oi and (ii) let s1 and sk be the projections such that Ci(s0..sk) (the
part of Ci between s0 and sk) is of minimal length and for all j, sj ∈ Ci(s0..sk);
then any point in Ci(s0..sk) is visible from p. Verifying that this condition is
fulfilled requires to compute all closest points instead of one, and a solution was
proposed in [10]. Last, the definition of spike is key to ensure that the min-
ima of the height field define a curve. Again, the definition does not extend to
digital curves. The spike of a point p ∈ Ci is actually the Voronoi Cell of p
in ∆. Thus we propose to define the spike of a point p ∈ Ci as spike(p, Ci) =
ConvexHull(V oronoiCell(p) ∩ ∆). The assumption on spikes translates as fol-
lows: for any point x in the interior of spike(p, Ci), p = π∆i (x). This assumption
is violated is many cases in the example of the shape with many holes of Figure
3(f), while it is always fulfilled for shape (e). Figure 5 shows a close-up on spikes
in that two cases. We end up with an open question: what are the properties of
the height field minima with respect to spikes when they are pairwise distinct
and their union is the gap ? May we prove that minima define a curve ?

References

1. DGtal: Digital Geometry Tools and Algorithms Library. http://dgtal.org
2. Alvarez, L., Baumela, L., Márquez-Neila, P., Henŕıquez, P.: A Real Time Morpho-

logical Snakes Algorithm. Image Processing On Line 2, 1–7 (2012)
3. Boukhriss, I., Miguet, S., Tougne, L.: Discrete average of two-dimensional shapes.

In: Springer (ed.) CAIP. vol. LNCS 3691, pp. 145–152 (2005)

4. Breen, D.E., Mauch, S., Whitaker, R.T.: 3d scan conversion of csg models into
distance volumes. In: Proceedings of the 1998 IEEE Symposium on Volume Visu-
alization. pp. 7–14. ACM (1998)

5. Buchin, K., Buchin, M., van Kreveld, M., Löffler, M., Silveira, R.I., Wenk, C.,
Wiratma, L.: Median trajectories. Algorithmica 66(3), 595–614 (2013)

6. Coeurjolly, D., Miguet, S., Tougne, L.: 2d and 3d visibility in discrete geometry:
an application to discrete geodesic paths. Patt. Recog. Lett. 25(5), 561–570 (2004)

7. Coeurjolly, D.: 2d subquadratic separable distance transformation for path-based
norms. In: Discrete Geometry for Computer Imagery, DGCI. Lecture Notes in
Computer Science, vol. 8668, pp. 75–87. Springer (2014)

8. Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the re-
verse euclidean distance transformation and discrete medial axis in arbitrary di-
mension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)

9. Couprie, M., Bertrand, G.: Topological gray-scale watershed transformation (1997)
10. Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and euclidean

skeleton in 2d and 3d. Image and Vision Computing 25(10), 1543 – 1556 (2007)
11. Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological

watershed. Journal of Mathematical Imaging and Vision 22(2), 231–249 (2005)
12. Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Pro-

cessing 14, 227–248 (1980)
13. Debled-Rennesson, I., reveillès, J.P.: A linear algorithm for segmentation of digital

curves. Int. Journal of Pattern Recog. and Art. Intell. 09(04), 635–662 (1995)
14. Eberly, D.: Ridges in image and data analysis. Springer (1996)
15. F. Chazal, A.L., Rossignac, J.: Normal-map between normal-compatible manifolds.

Int. Journal of Computational Geometry and Applications 17(5), 403–421 (2007)
16. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational

Geometry. CRC Press, Inc. (1997)
17. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3d distance fields: a survey of tech-

niques and applications. IEEE Trans. Vis. and Comp. Graph. 12(4), 581–599 (2006)
18. Legland, D., Arganda-Carreras, I.: ImageJ-MorphoLibJ. imagej.net/MorphoLibJ
19. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neigh-

bor queries. IEEE Trans. on Knowledge and Data Eng. 22(5), 665–681 (2010)
20. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges.

Commun. ACM 24(9), 574–578 (Sep 1981)
21. Peikert, R., Sadlo, F.: Height ridge computation and filtering for visualization. In:

2008 IEEE Pacific Visualization Symposium. pp. 119–126 (2008)
22. Prasad, D.K., Leung, M.K.H., Quek, C., Brown, M.S.: Deb: Definite error bounded

tangent estimator for digital curves. IEEE Transactions on Image Processing
23(10), 4297–4310 (2014)

23. Sati, M., Rossignac, J., Seidel, R., Wyvill, B., Musuvathy, S.: Average curve of n
smooth planar curves. Computer-Aided Design 70, 46 – 55 (2016)

24. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)

25. Soille, P., Vincent, L.: Determining watersheds in digital pictures via flooding sim-
ulations (1990)

26. de Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent esti-
mators on digital curves. Pattern Recognition 42(8), 1693 – 1707 (2009), advances
in combinatorial image analysis

