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Abstract—This paper proposes a new AC voltage sensorless 

control scheme for three-phase pulse-width modulation rectifier. 
A new startup process to ensure a smooth starting of the system 
is also proposed. The sensorless control scheme uses an adaptive 
neural (AN) estimator inserted in voltage-oriented control to 
eliminate the grid voltage sensors. The developed AN estimator 
combines an adaptive neural network in series with an adaptive 
neural filter. The AN estimator structure leads to simple, 
accurate and fast grid voltages estimation, and makes it ideal for 
low cost digital signal processor implementation. Lyapunov 
based stability and parameters tuning of the AN estimator are 
performed. Simulation and experimental tests are carried out to 
verify the feasibility and effectiveness of the AN estimator. 
Obtained results show that; the proposed AN estimator presented 
faster convergence and better accuracy than the second order 
generalized integrator based estimator; the new startup 
procedure avoided the over-current and reduced the settling 
time; the AN estimator presented high performances even under 
distorted and unbalanced grid voltages. 
 

Index Terms—AC voltage sensorless control, adaptive neural 
(AN) estimator, grid voltages estimation, neural networks (NNs), 
pulse-width modulation (PWM) rectifier, startup pro cess, 
voltage-oriented control (VOC). 

I.  INTRODUCTION 

OWADAYS, renewable energy sources such as 
photovoltaic and wind power generation systems are 

commonly connected to the grid through three-phase pulse-
width modulation (PWM) rectifier [1], [2]. This converter 
topology has such advantages as low harmonic pollution, 
adjustable DC-link voltage, bidirectional energy flow and 
operation at unity power factor (UPF) [3]. In renewable 
energy generation systems, cost reduction is essential for 
increasing their attractiveness compared to other conventional 
energy sources [1], [4]. So, decreasing the converters cost can 
leads to improve their competitiveness. 

Usually, control scheme of the three-phase grid connected 
PWM rectifier consist of two control loops; one for tracking 
AC-line currents, and another to regulate the DC-link voltage 
[5]. To perform this, at least five sensors are generally 
required; two grid voltage sensors, one DC-link voltage 
sensor, and two AC-line current sensors [6]–[11]. However, 
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operation with reduced number of sensors provides cost 
savings. Indeed, for mid-low power systems, the sensors cost 
covers a significant portion of the entire system cost [12], 
[13]. For high power systems, the sensors cost is less 
significant since the overall system cost is high. Nevertheless, 
even if sensors are installed, control scheme with sensorless 
operation ability is relevant [4], [12]. This ensures 
uninterrupted operation in case of sensors failure. Besides 
obvious benefits of sensors reduction, there are several other 
additional advantages like [4], [8], [11], [13], [14]; elimination 
of noise, resolution limitations, offset and various disturbances 
related to sensors, and decrease of hardware complexity. AC-
line current sensors and DC-link voltage sensor are essential 
for proper operation of the control system since the AC-line 
currents and DC-link voltage are the controlled quantities [9]. 
In addition, these sensors are employed for overcurrent and 
overvoltage protections [4], [9]. On the other hand, grid 
voltage sensors are mainly used for synchronization purposes. 
So, they can be replaced by software sensors. Various 
strategies for grid voltages sensorless control of PWM 
rectifiers have been developed. Some of them are discussed in 
what follow. 

Sensorless control algorithm based on instantaneous power 
theory has been initially proposed in [15]. Grid voltages are 
estimated by adding the input voltages to the voltage drop on 
the AC filter. Despite its simplicity, the AC-line currents 
derivative is required. Since this solution presents high noise 
sensitivity, other methods have been developed using virtual 
flux (VF) concept [9], [10], [16]–[21], Kalman filters [22], 
[23], disturbance observers [14], [24], hybrid parallel 
observers [25] and Luenberger observers [26]. Adaptive full-
order observers [12], [27] have been also proposed for grid 
voltage sensorless control. This strategy has been tested under 
unbalanced conditions by exploiting the filtering capabilities 
of reduced-order generalized integrators (ROGIs). In [11], 
ROGI based control scheme has been modified to achieve 
sensorless operation. One cycle control designed using 
hardware circuits instead of a digital algorithm has been 
presented in [8]. Recent algorithms based on virtual 
impedance emulation [4] and mathematical optimization [6], 
[7] have been investigated. Other alternatives using neural 
networks (NNs) have been proposed for grid voltages 
estimation [28], [29]. In [28], the authors have developed a 
sensorless deadbeat current control strategy based on a 
multilayer NN estimator. Accordingly, an uncertainty function 
containing the AC filter parameters variation, harmonics 
disturbances and grid voltages information, is used for 
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synchronization and control purposes. Separate estimation of 
the AC filter parameters and grid voltages using a parallel 
NNs structure has been achieved in [29]. 

Although the cited strategies provide satisfactory results, 
some of them require specific control schemes [8], [11], [14], 
[24], [28]. Others are sensitive to load variation [4], need 
initialization [7] and present instability under grid voltages sag 
[8] which deteriorate their robustness. The VF estimation 
through open loop integrators has limitations related to 
stability [9]. The observers based approaches presented 
difficulty of tuning and high computational burden. Multilayer 
NNs estimators proposed in [28] and [29] have a complicated 
structure where over ten weights are online updated. The 
authors in [29] have presented only real time simulation 
results; therefore, the proposal has not been experimentally 
validated. Furthermore, several strategies have not been tested 
for unbalanced or distorted grid voltages [6]–[9], [11], [13]–
[15], [19]–[22], [24]–[26], [29]. On the other hand, complexity 
and high computational burden are the major drawbacks of the 
strategies tested under non-ideal conditions. Hence, their 
implementation requires expensive digital signal processors 
(DSPs). The cost reduction aspect is then lost. Another 
important consideration of sensorless operation is the startup 
process that guaranties smooth starting of the control 
algorithm. At the best of our knowledge, the startup process 
has not been considered in the majority of the published 
works. 

To address the previously cited issues, this paper proposes 
a new sensorless control scheme of grid connected three-phase 
PWM rectifier that offers acceptable tradeoff between 
estimation accuracy and system complexity. The proposed 
sensorless control scheme is composed with an adaptive 
neural (AN) estimator for grid voltages estimation feeding a 
voltage-oriented control (VOC) algorithm. The AN estimator 
combines an adaptive neural network (ANN) to estimate the 
grid voltages in series with an adaptive neural filter (ANF) to 
improve its harmonic rejection. The simple structure of the 
AN estimator offers low computational burden where only 
three weights are online updated. This leads to easy 
implementation in low cost DSPs [5], [30]. In addition, its 
online adaptation and filtering properties ensure robustness 
against periodic and time-varying disturbances related to the 
grid voltages. The AN estimator does not depend on the 
control structure; therefore it can be easily adapted to different 
control schemes [31]. Guidelines for optimal tuning of the AN 
estimator’s parameters are also given here in. As the control 
scheme needs initialization in case of sensorless operation, a 
new startup process is introduced to perform a simultaneous 
starting of the DC-link voltage and AC-line currents control 
loops with minimum overcurrent and reduced settling time. 
The evaluation of the proposed estimator is performed through 
simulation and experimental tests. Several working conditions 
are considered including unbalanced and distorted grid 
voltages. 

This paper is organized as follows. Section II presents the 
design of the proposed AN estimator. The startup process and 
overall structure of the proposed AC voltage sensorless 

control strategy are described in Section III. In Section IV, a 
comparison between the proposed estimation method and 
second order generalized integrator (SOGI) based method is 
performed. In Section V, experimental and simulation tests are 
conducted to verify the feasibility and effectiveness of the 
proposed AN estimator. Section VI concludes this paper. 

II.  NNS-BASED GRID VOLTAGES ESTIMATION 

Accurate estimation of grid voltages is required for 
implementing a robust AC voltage sensorless control scheme. 
Accordingly, this section presents a novel estimation strategy 
based on NNs. This strategy permits to estimate online the 
grid voltages with low computational burden and high 
accuracy. 

Fig. 1 describes the proposed AN estimator, which offers a 
reliable solution to online grid voltages estimation. It includes 
two simple NNs simultaneously working in series. First, an 
ANN is used to estimate the grid voltages. Second, an ANF is 
added in series for extracting fundamental components of the 
estimated grid voltages. 

In this paper, the steepest descent and least mean square 
(LMS) algorithms are used for adaptive adjustment of the 
ANN and ANF weights, respectively. Their main advantages 
are low complexity, low computational demand, and high-
speed convergence. Other online updating techniques like the 
total least squares EXIN neuron [32] or recursive least square 
algorithm [33] have been proposed to enhance NNs online 
learning capabilities. However, the use of these updating 
technics causes a significant increase of the complexity and 
computational demand of the estimator. Because this paper 
aims to propose a simple sensorless control scheme, steepest 
descent and LMS are selected as updating algorithms. 

 

 
Fig. 1.  Architecture of the proposed AN estimator. 
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A.  ANN-Based Grid Voltages Estimation 

The ANN topology is built from the model of the grid 
connected three-phase PWM rectifier shown in Fig. 2. L and R 
are, respectively, the inductance and resistance of the AC 
filter. C is the DC-link capacitance, Vdc is the DC-link voltage 
and RL is the load resistance. i i, vin and ei (i=a,b,c) refer to the 
phase-i AC-line current, input voltage and grid voltage, 
respectively. Si (i=a,b,c) are the switching states of three 
converter legs. 
 

 
Fig. 2.  Schematic diagram of the controlled three-phase PWM rectifier. 

In the stationary α–β reference frame, the PWM rectifier 
can be modeled as follows: 

 n

n

e i i vd
L R

e i i vdt
α α α α

β β β β

       
= + +       

       
 (1) 

where iα, iβ, eα and eβ are, respectively, the α- and β-axis 
components of the AC-line currents and the grid voltages. vαn 
and vβn are the α- and β-axis components of the rectifier input 
voltages. 

In the synchronous d–q frame, the model (1) is written as 

 d d d dn

q q q qn
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L
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ω
ω
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= + +        

        
 (2) 

where id, iq, ed and eq are, respectively, the d- and q-axis 
components of the AC-line currents and the grid voltages. ω is 
the grid angular frequency. vdn and vqn are the d- and q-axis 
components of the rectifier input voltages. 

Using the forward Euler method, the discrete-time form of 
(1) is obtained as follows: 
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 (3) 

with A 1 sT R

L
= −  and B .sT

L
=  Ts is the sampling period. 

An ANN for estimating the grid voltages (eα, eβ) is 
designed using the following input/output combination: 
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 (4) 
where eα,ANN, eβ,ANN, iα,est and iβ,est are the estimated grid 
voltages and the ANN outputs, respectively. As can be seen 
from the ANN architecture presented in Fig. 1, the updated 
weight is the estimated grid voltages. 

The weight eαβ,ANN is adaptively adjusted using the steepest 
decent algorithm by exploiting the following estimation error: 
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Thus, a discrete-type quadratic error function can be 
deduced as follows: 
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The grid voltages are adaptively estimated by minimizing 
E(k). For this purpose, the following Jacobian is considered 
[34]: 
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According to the steepest descent algorithm, the weight at 
time (k + 1) is calculated as 
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where µ is a learning rate. Therefore, the simple iterative 
gradient algorithm (8) is used for minimizing (7) online. It 
should be noticed that, under ideal condition, the ANN is 
sufficient for accurate grid voltages estimation. However, in 
case of non-ideal conditions, an additional filtering stage 
should be added in order to extract their fundamental 
components. This latter will be discussed in what follows. 

B.  ANF for Filtering the Estimated Grid Voltages 

In this section, the estimated grid voltages eαβ,ANN are 
filtered. The time-varying magnitude and phase of the eαβ,ANN 
fundamental component are extracted using an ANF. In order 
to formulate this estimation problem, a suitable decomposition 
of eαβ,ANN is performed. This decomposition is given in a 
discrete-time as follows: 
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with En is the magnitude of the nth term, φn its initial phase 
angle and ωn its pulsation. From equation (9), the fundamental 
component of eα,ANN and eβ,ANN can be obtained as 
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This can be expressed yet in the following developed form: 
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Form equation (11), the following vectorial notation is 
obtained: 
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where 
( ) ( )
( ) ( )

1 1 1 1

1 1 1 1

cos sin

sin cos

E E
X

E E

ϕ ϕ
ϕ ϕ

 − 
=  
 

 and D(k) = [cos(ω1kTs) 
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Equation (12) is a linear combination that can be learned by 
one ANF with the adaptive weight W = [wαβ1 wαβ2]. The vector 
D(k) is represented by two generated sine waves which 
constitutes the ANF inputs (see Fig. 1). During the learning 
process, the weight W is adaptively updated to converge 
toward X. The weight W is updated using the LMS algorithm 
with the learning rate η [5], [30], [34] in the following way: 
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where ε is a sufficiently small and positive value used to avoid 
division by zero if DT(k)D(k)=0. λαβ = eαβ,ANN – eαβ,est is the 
estimation error. The vector eαβ,est = [eα,est (k) eβ,est (k)]T is the 
output of the AN estimator. It is obtained after the 
convergence of the ANF weight (see Fig. 1) as follows: 
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C.  Convergence Investigation of the AN Estimator and 
Learning Rates Tuning 

The stability of the proposed AN estimator is investigated 
in this section regarding the ANN and ANF learning rates µ 
and η. Thus, Lyapunov’s convergence criterion is exploited to 
establish the limits of µ and η that ensuring the AN estimator 
stability. The selected values of µ and η are then justified. 

First, the ANN stability is analyzed. A positive definite 
Lyapunov function candidate for (5) is chosen and expressed 
as 
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The Lyapunov’s convergence criterion must be satisfied 
such that 
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where the Lyapunov function variation ∆V1(k) is given by 
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As V1(k) is a positive definite function, the stability 

criterion in (16) is satisfied when ∆V1(k)<0. Since the grid 
voltages can be considered as continuous signals and their 
period is much higher than the estimation period, the error 
variation (∆δα(k), ∆δβ(k)) due to the learning rate of the ANN 
is given as 
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By replacing (18) in (17), ∆V1(k) is calculated as follows: 
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where ǀǀ·ǀǀ is the Euclidian norm in nℜ . From (5) and (6), the 
following equality can be assumed: 
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   ∂∂   

 (20) 

The expression of ∆V1(k) is obtained by replacing (20) in 
(19) in the following way: 
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 ∂ ∂ ∆ = − − ∂ ∂  

 ∂ ∂ − − ∂ ∂  

 (21) 

The ANN convergence is guaranteed when the stability 
condition in (16) is satisfied. Hence, the learning rate µ must 
be selected according to the following inequality: 

 
( ) ( ) 22

,,

, ,

2
0 .

max , estest
k

ANN ANN

i ki k

e e
βα

α β

µ< <
 ∂∂
 

∂ ∂ 
 

 (22) 

Secondly, the ANF stability is investigated. As the weight 
W computed by the ANF algorithm is an estimate of X, a 
positive definite Lyapunov function candidate for the ANF 
estimation error can be defined as 

 ( ) ( ) ( )2 W WTV k k k= ɶ ɶ  (23) 
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where ( )W kɶ  is the ANF estimation error , defined as 

 ( ) ( ) ( )W W .k X k k≡ −ɶ  (24) 

The Lyapunov’s convergence criterion must be satisfied 
such that 

 ( ) ( )2 2 0V k V k∆ <  (25) 

where ∆V2(k) is the Lyapunov function variation. As 
illustrated in (23), V2(k) is a positive definite function. 
Therefore, the stability criterion (25) is satisfied when ∆V2(k) 
< 0. The Lyapunov function variation is established as 

 ( ) ( )( ) ( )( )2 2 2W 1 W 0.V k V k V k∆ = + − <ɶ ɶ  (26) 

By using the ANF estimation error dynamics, obtained 
from (24), with the update law (13), ∆V2(k) can be assessed as 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
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1 1 W
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1 1

W W

W 1 1 1
2

1 1 1 1

T T

T

T

T

T T

D k D k k
V k k

D k D k

k k

k D k D k D k

D k D k D k D k

η
ε

η η
ε ε

− −
∆ = −

+ − −

−

 −  − − = − + + − − + − −  

ɶ
ɶ

ɶ ɶ

ɶ

 (27) 

where ||· || is the Euclidian norm in nℜ . Since ε >0, the 
stability condition in (26) is satisfied if the bracketed term in 
(27) is negative which means that the learning rate satisfy the 
inequality given below: 
 0 2η< <  (28) 

The following convergence properties are also satisfied: 

 ( ) ( ) ( )0 0 0W W W 1 W W 0 W , 1k k k− ≤ − − ≤ − ≥   

(29.a) 

 
( ) ( )
( ) ( )

W 1
lim 0

1 1
Tk

k D k

D k D kε→∞

−
=

+ − −

ɶ

 (29.b) 

where W0 is obtained at perfect convergence of the ANF. 
According to (28), the augmented error is monotonically non-
increasing, hence, the convergence is guaranteed. 

If the learning rates µ and η are chosen according to the 
intervals given by (22) and (28), respectively, the AN 
estimator stability is guaranteed. The µ and η values affect 
directly the accuracy, convergence speed and stability of the 
AN estimator [32]. Indeed, low values of µ and η lead to 
increase the accuracy and the stability at cost of slower 
convergence speed. On the other hand, high values of µ and η 
lead to high convergence speed but with less accuracy and 
stability. Therefore, correct choice of the learning rates is a 
tradeoff between the convergence speed and stability of the 
AN estimator. 

III.  STARTUP PROCESS OF THE AC VOLTAGE SENSORLESS 

CONTROL SCHEME 

Startup procedure of control algorithms is a common 
problem in case of grid voltages sensorless operation of PWM 
rectifiers [10]. During the startup, the initial value of the grid 
voltages phase angle θ is needed. In case of VOC, initial 
values of ed and eq are also required. With these satisfactions, 

the over current can be reduced and stability of the control 
scheme is guaranteed. 

Few startup algorithms have been proposed in the literature 
[19], [24], [25], [35], [36]. A common method based on the 
application of short zero-voltage-vector pulses at the rectifier 
input is proposed in [19], [24], [35]. The grid voltages angle is 
then deduced from the AC currents variation. However, such a 
technic short circuit the converters AC side. Therefore, an 
important over current is occurred. Extracting the initial value 
of θ during the diode rectifier operation mode has been also 
proposed in recent papers. In [36], the signs of the AC currents 
flowing during the diode rectifier operation are exploited to 
deduce an approximated value of θ using a look up table. 
Current signs detection based method is also proposed in [25] 
to detect the zero crossing interval of θ. However, both 
strategies start with an imprecise grid voltages position, which 
lead to an increased settling time. The diode rectifier operation 
mode (when all the IGBTs are switched off) is exploited in 
this paper to propose a new strategy for initial values 
estimation of θ, ed and eq at the startup. Indeed, the proposed 
AN estimator is applied to estimate the grid voltages by 
exploiting the similarity between the PWM rectifier and the 
diode rectifier models. Since the AN estimator needs the input 
voltages vαβn, three Heaviside functions are then used to their 
computation in diode rectifier operation mode. The Heaviside 
functions determine if the diodes are conducting or in blocking 
state [37]. Assuming ideal diode bridge switches, the input 
voltages vαβn are expressed as 
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 (30) 

where gi = {+1 if i i ≥ 0; 0 if i i < 0} for i=a,b,c. It should be 
noticed that, by replacing (30) in (1), the diode rectifier model 
can be obtained. Fig. 3 presents the AC-line currents and the 
reconstructed input voltages from (30) during diode rectifier 
operation mode. 
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Fig. 3.  Sensed AC-line currents (ia, ib and ic) and computed input voltages (vαn 
and vβn) during diode rectifier operation mode (experiment). 
 

The overall sensorless control scheme is depicted in Fig. 4. 
It consists of a control unit and an estimation unit. The control 
unit based on VOC maintains a constant DC-link voltage 
under a UPF operation [5]. The estimated parameters θest, ed,est 
and eq,est are obtained from the AN estimator through a phase 
locked loop (PLL). The estimation unit ensures grid voltages 
estimation and a smooth starting of the VOC. The equation 
(30) is used to compute the input voltages during the diode 
rectifier operation mode. The obtained input voltages are 
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injected in the AN estimator. Thus, the grid voltages are 
accurately estimated under diode rectifier operation. 
Thereafter, the estimated grid voltages are used in a PLL to 
obtain initial values of θ, ed and eq. The VOC is finally started 
and initialized by the PLL outputs (θest, ed,est and eq,est). 
Simultaneously, the input voltages obtained from (30) are 

switched to the actual input voltages (see Fig. 4). Note that, in 
PWM operation mode, the actual input voltages are obtained 
from the current controller outputs. This leads to avoiding 
direct measurements that are affected by the modulation and 
acquisition noise [7], [28]. 

 
Fig. 4.  Overall structure of the developed AC voltage sensorless control. 
 

IV.  COMPARISON BETWEEN THE PROPOSED ESTIMATION 

METHOD AND SOGI BASED ESTIMATION METHOD 

To prove the superiority of the proposed AC voltage 
sensorless control algorithm, comparative study between the 
AN estimator and the recently developed SOGI based 
estimation method [9], [10] has been performed. First, the 
SOGI method is presented. Thereafter, simulation tests are 
carried out in MATLAB/Simulink environment. 

The SOGI based estimation method uses the VF concept 
where a virtual AC motor is assumed from the behavior of the 
grid voltages and the AC filter. Then, the grid voltages are 
induced by a virtual magnetic flux [9], [10], [17]. In α–β 
reference frame, the VF ϕαβ can be estimated from the 
integration of the grid voltages as follows: 

 ne dt Liαβ αβ αβ αβφ φ= = +∫  (31) 

where ( )n nv Ri dtαβ αβ αβφ = +∫ . 

The integration in (31) induces saturation and DC offset in 
the estimated VF. To overcome this, the authors in [9] and 
[10] proposed a SOGI based adaptive filter with a cutoff 

frequency ω. The SOGI transfer function is given by 

 ( ) ( )
( ) 2 2

nf e

n e

s k s
F s

s s k s
αβ

αβ

φ ω
φ ω ω

= =
+ +

 (32) 

where ϕαβnf is the filtered quantity of ϕαβn and ke is a parameter 
that influences the SOGI filter speed convergence. Note that 
since no grid voltages information is available from the SOGI 
method, the estimated VF is utilized to derive the estimated 
grid voltages used in VOC control scheme [20]. This is 
performed in the following way: 
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    
 (33) 

In the present comparative study, ke is optimally tuned 
according to [38] and the AN estimator learning rates (µ, η) 
are tuned according to the criterions established in Section II-
C. Thus, both the AN estimator and the SOGI based estimator 
are tuned to their best. To perform the comparison, the two 
estimation methods are simulated in the same conditions 
where two tests are carried out. The simulation parameters are 
summarized in Table I. 
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Fig. 5.  Comparison between the AN estimator and the SOGI estimator at 
startup (simulation): (a) actual grid voltage eα and estimated grid voltages 
(eα,ANE, eα,SOGI), (b) estimation errors. 
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Fig. 6.  Actual AC-line currents iα,ANE and iα,SOGI when the control methods 
based on the AN estimator and the SOGI estimator are used (simulation). 
 

Performances comparison between the AN estimator and 
the SOGI based estimator in term of tracking speed of the grid 
voltages is illustrated in Fig. 5. In this simulation, RL is set to 
55Ω and Vdc ref is fixed to 190 V. Both estimators are started 
without initialization. Fig. 5(a) shows the actual grid voltage 
eα and its estimations eα,ANE and eα,SOGI provided by the AN 
estimator and the SOGI based estimator, respectively. In Fig. 
5(b) the corresponding estimation errors are presented. These 
results show that, compared to the SOGI based estimator, the 
AN estimator exhibits faster convergence and low estimation 
error. Fig. 6 illustrates the actual AC-line currents iα,ANE and 
iα,SOGI corresponding to the sensorless control methods based 
on AN estimator and the SOGI based estimator, respectively. 
From this result, it is clear that the control method based SOGI 
estimator causes higher overshoots and longer settling time. 
Furthermore, this test shows the necessity of using initial 
values of the grid voltages at the startup. 

 

-100

0

100

V
o

lta
g

e 
(V

)

 

 

-20

-10

0

10

2020

E
st

im
at

io
n

 e
rr

o
r (

V
)

 

 

(a)

SOGI

eα,SOGI

eα

(b)

eα,ANE

ANE
 -20  

0.98 1 1.02 1.04 1.06 1.08 1.1
160

180

200

220

240

Time (s)

V
o

lta
g

e
 (

V
)

 

 
(c)

V
dc ref

V
dc,SOGI

V
dc,ANE

 
Fig. 7.  Performances comparison under Vdc ref step change (simulation): (a) 
actual grid voltage eα and estimated grid voltages (eα,ANE, eα,SOGI), (b) 
estimation errors and (c) reference DC-link voltage Vdc ref and measured DC-
link voltages (Vdc,ANE, Vdc,SOGI). 

Performances comparison between the control methods 
based on AN estimator and SOGI estimator under Vdc ref step 
change is given in Fig. 7. In this test, RL is set to 55Ω. At time 
t=1s, a step change of 20V in Vdc ref is applied (Vdc ref passes 
from 190V to 210V). The actual grid voltage eα and the 
estimated voltages eα,ANE and eα,SOGI are shown in Fig. 7(a). 
The corresponding estimation errors are illustrated in Fig. 
7(b). From these figures, it is clear that the AN estimator is not 
affected by Vdc ref step change unlike the SOGI estimator 
where an estimation error has occurred. This is mainly due to 
the SOGI filter which is not applied to the whole estimated 
flux. As shown in (31) and (32), the current through L is not 
filtered. Indeed, in transient phase, the SOGI estimator may 
lose information of Liαβ being not sinusoidal or having a 
different frequency than ω. However, in our proposed 
estimation method, all the quantities used in the estimation are 
processed by the AN estimator. This leads to robust estimation 
during Vdc ref step change. Controlled DC-Link voltages 
corresponding to each estimation strategy are presented in Fig. 
7(c). It can be observed that the DC-Link voltages follow 
correctly Vdc ref. 

From the obtained results, the AN estimator presented 
faster convergence and better accuracy compared to the SOGI 
based estimator. In order to verify the feasibility, robustness 
and accuracy of the proposed AC voltage sensorless control 
scheme, experimental and simulation tests are carried out in 
the following section. 

V.  RESULTS 

The laboratory setup used for experimenting the developed 
AC voltage sensorless control algorithm, illustrated in Fig. 4, 
is presented in Fig. 8. It consists of a three-phase insulate-
gate-bipolar-transistor based PWM rectifier with anti-
paralleling diodes. Two current sensors and one voltage sensor 
are used to measure two input currents (ia and ib) and DC-link 
voltage Vdc, respectively. It should be noted that, three voltage 
sensors are used for measuring the grid voltages. These 
measured voltages are not used in the closed-loop control 
scheme. Therefore, they are only used to perform comparison 
between the estimated grid voltages and the actual ones. The 
developed AC voltage sensorless control algorithm is 
implemented in MATLAB-Simulink environment and 
executed on a dSPACE DS1104 board using Euler resolution 
method. The experimental platform specifications can be 
found in Table I. 

TABLE I 
SYSTEM PARAMETERS 

Parameter Simulation Experiment 
Nominal DC-link voltage (V) 190 190 
Phase grid voltage rms (V) 55 55 

Grid voltages frequency f (Hz) 50 50 
Nominal AC filter resistance R (Ω) 1 1 
Nominal AC filter resistance L (mH) 8 8 
DC-link capacitor C (mF) 3.3 3.3 
Load resistance RL (Ω) 55 55 
Sampling time (µs) 10 110 
Switching frequency (kHz) 7.5 7.5 

 
The AN estimator is implemented with the learning rates 
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µ=9520 and η=0.04 which are experimentally adjusted to 
ensure stability and optimal convergence speed according to 
the criterions established in section II-C. Thus, these learning 
rate values are both used in simulation and experiment tests. 
During all tests, the PWM rectifier operates at UPF since the 
current iq ref is fixed to zero. 

In the following subsections, experimental (from Fig. 9 to 
Fig. 20) and simulation (Figs. 21 and 22) tests are carried out. 
The AN estimator is experimentally tested in different 
operating conditions such as diode rectifier operation mode, 
startup process, Vdc ref variation, RL variation, symmetrical grid 
voltages sag and unbalanced grid voltages. Finally, the AN 
estimator is simulated under distorted grid voltages. The 
simulation test is done in a MATLAB-Simulink environment 
using the parameters listed in Table I. 
 

 
Fig. 8.  Photograph of the implemented test bench: 1) three-phase PWM 
rectifier, 2) interconnecting inductances, 3) interconnecting resistances, 4) 
isolating transformer, 5) PC-Pentium + dSPACE board + ControlDesk, 6) 
dSPACE input/output connectors, 7) load resistance, 8) additional resistances, 
9) current sensors, 10) voltage sensors. 

A.  Performances of the AN estimator in Diode Rectifier 
Operation Mode 

Experimental results of the grid voltages estimation in 
diode rectifier operation mode are presented in Figs. 9 and 10. 
In this experiment, the load resistance is set to 55 Ω. So, the 
DC-link voltage is around 117 V. Figs. 9(a) and 9(b) illustrate 
the signals used as inputs of the AN estimator. The input 
voltages (vαn, vβn) are obtained from (30). From Fig. 9(c) and 
9(d), the αβ-axes components of the grid voltages are 
accurately estimated. After the estimation process, eα,est and 
eβ,est are inserted in the PLL (see Fig. 4). In Fig. 10, the 
estimated dq-axes components (ed,est, eq,est) and the phase angle 
(θest) of the grid voltages are illustrated. Therefore, the 
estimated quantities (ed,est, eq,est and θest) will be used as initial 
values in order to achieve smooth startup of the sensorless 
control scheme. 
 

-100

0

100

V
ol

ta
ge

 (V
)

-5

0

5

C
u

rr
e

nt
 (A

) (b)iα

iβ

vβn

vαn
(a)

-100

0

100

V
o

lta
g

e 
(V

)

1 1.05 1.1 1.15
-100

0

100

Time (s)

V
ol

ta
ge

 (
V

)

estimation error

estimation error eα,est

eα

eβ
eβ,est

(c)

(d)

 
Fig. 9.  Steady-state performances of the AN estimator in diode rectifier 
operation mode (experiment): (a) computed input voltages vαn and vβn, (b) 
actual AC-line currents iα and iβ, (c) actual grid voltage eα, estimated grid 
voltage eα,est and estimation error and (d) actual grid voltage eβ, estimated grid 
voltage eβ,est and estimation error. 
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Fig. 10.  Steady-state performances of the PLL in diode rectifier operation 
mode (experiment): (a) computed dq components (ed, eq) with actual grid 
voltages and computed dq components (ed,est, eq,est) with estimated grid 
voltages and (b) computed angles θ and θest with actual and estimated grid 
voltages, respectively. 

B.  Startup Process 

 Figs. 11 and 12 present obtained experimental results of 
the proposed sensorless control strategy at startup. In this 
experiment, Vdc ref is fixed to 190 V and RL is set to 55 Ω. The 
input voltages vαn and vβn are shown in Fig. 11(a). The VOC 
strategy is started at t = 1.34s. Simultaneously, the input 
voltages computed from (30) are switched to αβ-axes 
components of the current controller outputs (vαn ref and vβn ref) 
(see Fig. 4). As illustrated in Figs. 11(b) and (c), the proposed 
startup process prevents the over-current trip and reduces the 
commissioning time of the controlled system. So, Vdc rapidly 
follows its reference. It passes from 117V to 190V in about 
0.1s. This settling time is due to the time constant of the 
external control loop. The actual and estimated grid voltages 
are shown in Fig. 11(d) and (e). It is clear that the estimated 
voltages are close to the actual ones and present a minimum 
estimation error at startup. For comparison purpose, two PLLs 
are computed with actual and estimated grid voltages. The 
obtained results are presented in Fig. 12. Reduced oscillations 
and noises are obtained from the PLL computed with 
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estimated grid voltages. The actual phase angle is also 
accurately tracked. Consequently, this experiment prove that 
the AN estimator can successfully estimates the grid voltages. 
The stability of the sensorless control strategy is also 
guaranteed at startup. 
 

-100

0

100

V
o

lta
g

e
 (V

)

-10

0

10

C
u

rr
e

n
t (

A
) iα

vαn

(b)

(a)

startup process PWM rectifier opration
diode rectifier

operation

iβ

vβn

100

150

200

V
o

lta
g

e
 (

V
) (c)V

dc ref

V
dc

-100

0

100

V
ol

ta
ge

 (
V

)

1.3 1.35 1.4 1.45 1.5
-100

0

100

Time (s)

V
o

lta
g

e 
(V

)

(e)

(d)

estimation error

estimation error

eα

eα,est

eβ,est eβ

 
Fig. 11.  Performances of the AN estimator at startup (experiment): (a) input 
voltages vαn and vβn, (b) actual AC-line currents iα and iβ, (c) reference and 
measured DC-link voltages (Vdc ref, Vdc), (d) actual grid voltage eα, estimated 
grid voltage eα,est and estimation error and (d) actual grid voltage eβ, estimated 
grid voltage eβ,est and estimation error. 
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Fig. 12.  Performances of the PLL at startup (experiment): (a) computed dq 
components (ed, eq) with actual grid voltages and computed dq components 
(ed,est, eq,est) with estimated grid voltages and (b) computed angles θ and θest 
with actual and estimated grid voltages, respectively. 
 

C.  Robustness Analysis 

To verify the robustness of the proposed sensorless control 
strategy several tests have been conducted under different 
working conditions. The results are given in Figs. 13–22. 

1) Vdc ref variation: In this experiment, RL is set to 55Ω. A 
step change of 20V in Vdc ref is applied at t = 1.287 s (Vdc ref 
passes from 190V to 210V). As shown in Fig. 13(a) and (b), 

the actual and estimated grid voltages are superimposed. 
During the step change in Vdc ref, the currents rise from 6A to 
8A (see Fig. 13(c)). This increases the flowed power from the 
AC side to the DC side. Vdc is given in Fig. 13(d). It follows 
accurately its reference before and after the step change. From 
Fig. 14, the PLL gives great performances with the estimated 
grid voltages where the computed quantities are not affected 
by the Vdc ref step change. The actual phase angle is also well 
tracked. 
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Fig. 13.  Transient performances of the AN estimator under Vdc ref step change 
(experiment): (a) actual grid voltage eα, estimated grid voltage eα,est and 
estimation error, (b) actual grid voltage eβ, estimated grid voltage eβ,est and 
estimation error, (c) actual AC-line currents iα and iβ and (d) reference and 
measured DC-link voltages. 
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Fig. 14.  Transient performances of the PLL under Vdc ref step change 
(experiment): (a) computed dq components (ed, eq) with actual grid voltages 
and computed dq components (ed,est, eq,est) with estimated grid voltages and (b) 
computed angles θ and θest with actual and estimated grid voltages, 
respectively. 
 

2) Load resistance variation: In this test, a variation of 
35% in RL is applied during 0.23s. Vdc ref is fixed to 190V. In 
Figs. 15(a) and (b), the actual grid voltages are well tracked 
with low estimation errors. Thus, RL variation seems not affect 
the estimation algorithm. From Fig. 15(c), the currents vary 
from 6A to 10A. Transient performances of the PLL are 
shown in Fig. 16. Actually, the PLL provides good 
performances with the estimated grid voltages. The actual 
phase angle remains well tracked. 
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Fig. 15.  Transient performances of the AN estimator under load resistance 
variation (experiment): (a) actual grid voltage eα, estimated grid voltage eα,est 
and estimation error, (b) actual grid voltage eβ, estimated grid voltage eβ,est and 
estimation error and (c) actual AC-line currents. 
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Fig. 16.  Transient performances of the PLL under load resistance variation 
(experiment): (a) computed dq components (ed, eq) with actual grid voltages 
and computed dq components (ed,est, eq,est) with estimated grid voltages and (b) 
computed angles θ and θest with actual and estimated grid voltages, 
respectively. 
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Fig. 17.  Transient performances of the AN estimator under symmetric grid 
voltages sag (experiment): (a) actual grid voltage eα, estimated grid voltage 
eα,est and estimation error and (b) actual grid voltage eβ, estimated grid voltage 
eβ,est and estimation error and (c) actual AC-line currents. 
 

3) Symmetrical grid voltages sag: In this experiment, Vdc ref 
is fixed to 190V and RL is set to 55Ω. Symmetrical grid 
voltages sag of 16% is applied during 0.25s by adding three-
phase resistance of 1.5Ω in the AC side (see Fig. 8). As shown 

in Fig. 17, the AN estimator stability is ensured and the grid 
voltages are rapidly estimated during the symmetrical grid 
voltages sag. An increase in the AC-line currents due to the 
power flow variation is observed during the sag. In Fig. 18, 
transient performances of the PLL are presented under 
symmetrical grid voltages sag. The dq-axes components of the 
grid voltages and phase angle are well estimated. 
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Fig. 18.  Transient performances of the PLL under symmetric grid voltages 
sag (experiment): (a) computed dq components (ed, eq) with actual grid 
voltages and computed dq components (ed,est, eq,est) with estimated grid 
voltages and (b) computed angles θ and θest with actual and estimated grid 
voltages, respectively. 
 

4) Unbalanced grid voltages: In this experiment, Vdc ref is 
maintained to 190V and RL is set to 55Ω. Two-phase sag is 
applied during 0.25s. As presented in Fig. 19(a) and (b), the 
AN estimator is not affected by the grid voltage unbalance. 
The estimation error remains very close to zero. Fig. 19(c) 
shows the currents iα and iβ. Although grid voltage unbalance 
causes AC-line currents distortion, a stable operation of the 
overall control strategy is guaranteed. Clearly, the computed 
components with actual and estimated grid voltages shown in 
Fig. 20 are distorted. This is only due to limitation of the used 
PLL against unbalanced conditions. Therefore, it cannot be 
considered as an issue of the proposed estimation strategy. 

 

-100

0

100

V
o

lta
g

e
 (

V
)

 

 

-100

0

100

V
o

lta
g

e
 (

V
)

 

 

(a)eα

(b)

estimation error

estimation error eα,est

eβ
eβ,est

grid voltages unbalance

0.75 0.8 0.85 0.9 0.95 1 1.05
-10

0

10

Time(s)

C
ur

re
nt

 (
A

)

 

 

iαiβ

(c)

 
Fig. 19.  Transient performances of the AN estimator under grid voltages 
unbalance (experiment): (a) actual grid voltage eα, estimated grid voltage eα,est 
and estimation error and (b) actual grid voltage eβ, estimated grid voltage eβ,est 
and estimation error and (c) actual AC-line currents. 
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Fig. 20.  Transient performances of the PLL under grid voltages unbalance 
(experiment): computed dq components (ed, eq) with actual grid voltages and 
computed dq components (ed,est, eq,est) with estimated grid voltages  and (b) 
computed angles θ and θest with actual and estimated grid voltages, 
respectively. 
 

5) Distorted grid voltages: In this simulation, RL is set to 
55Ω, Vdc ref is fixed to 190V and the grid voltages contain the 
5th and 7th harmonic components (5% of the 5th harmonic and 
5% of the 7th harmonic). As can be seen from Figs. 21(a) and 
(b), the estimated voltages are well filtered without any 
influence of the actual grid voltages distortion on the 
estimation process. This is due to the ANF designed at the 
fundamental grid voltages frequency. This leads to 
fundamental components estimation of the grid voltages even 
under distorted conditions. It should be mentioned that the 
distortions observed in iα and iβ (see Fig. 21(c)) are caused by 
the used current controllers (simple PI controllers) and not by 
the AN estimator. Fig. 22 shows performances of the PLL. 
The computed quantities (ed, eq and θ) using the actual grid 
voltages present large ripples which are due to the limited PLL 
performances against harmonic distortions. As the distortions 
do not appear on the estimated grid voltages, the quantities 
(ed,est, eq,est and θest) do not present significant oscillations. 
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Fig. 21.  Transient performances of the AN estimator under distorted grid 
voltages (simulation): (a) actual grid voltage eα and estimated grid voltage 
eα,est, (b) actual grid voltage eβ and estimated grid voltage eβ,est and (c) actual 
AC-line currents. 
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Fig. 22.  Transient performances of the PLL under distorted grid voltages 
(simulation): computed dq components (ed, eq) with actual grid voltages and 
computed dq components (ed,est, eq,est) with estimated grid voltages and (b) 
computed angles θ and θest with actual and estimated grid voltages 
respectively. 

VI.  CONCLUSION 

In this work, a new AN estimator for eliminating the grid 
voltage sensors in VOC of three-phase PWM rectifier has 
been proposed. The developed AN estimator combines 
estimation capability of the ANN and filtering property of the 
ANF. Lyapunov’s theory based stability analysis has been 
exploited for optimal tuning of the AN estimator. Hence, 
simple, accurate and fast grid voltages estimation has been 
obtained. To avoid current overshoot and to reduce the settling 
time at the startup, a new startup process has been proposed to 
initialize the VOC. The effectiveness of the proposed 
procedure has been experimentally demonstrated. A 
comparison between the proposed AN estimator and the 
recently developed SOGI based estimator has been conducted. 
This comparison has clearly indicated faster convergence and 
better accuracy of the proposed estimator. Finally, robustness 
of the AN estimator regarding to step change in DC-link 
voltage reference, load resistance variation and non-ideal grid 
voltages conditions (symmetrical sag, unbalance, distortion) 
has been investigated through simulation and experimental 
tests. The obtained results have demonstrated high 
performances of the proposed AN estimator within the 
analyzed working conditions. 
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