An Algebraic Attack on Rank Metric Code-Based Cryptosystems

Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger, Olivier Ruatta, Jean-Pierre Tillich

- To cite this version:

Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger, et al.. An Algebraic Attack on Rank Metric Code-Based Cryptosystems. Eurocrypt 2020, May 2020, Zagreb, Croatia. hal-02303015v2

HAL Id: hal-02303015
 https://hal-unilim.archives-ouvertes.fr/hal-02303015v2

Submitted on 7 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An Algebraic Attack on Rank Metric Code-Based Cryptosystems

Magali Bardet ${ }^{1,2}$, Pierre Briaud ${ }^{2}$, Maxime Bros 3, Philippe Gaborit ${ }^{3}$, Vincent Neiger ${ }^{3}$, Olivier Ruatta ${ }^{3}$, and Jean-Pierre Tillich ${ }^{2}$
${ }^{1}$ LITIS, University of Rouen Normandie, France
${ }^{2}$ Inria, 2 rue Simone Iff, 75012 Paris, France
${ }^{3}$ Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France

Abstract

The Rank metric decoding problem is the main problem considered in cryptography based on codes in the rank metric. Very efficient schemes based on this problem or quasi-cyclic versions of it have been proposed recently, such as those in the submissions ROLLO and RQC currently at the second round of the NIST Post-Quantum Cryptography Standardization Process. While combinatorial attacks on this problem have been extensively studied and seem now well understood, the situation is not as satisfactory for algebraic attacks, for which previous work essentially suggested that they were ineffective for real parameters. In this paper, starting from Ourivski and Johansson's algebraic modelling of the problem into a system of polynomial equations, we show how to augment this system with easily computed equations so that the augmented system is solved much faster via Gröbner bases. This happens because the augmented system has solving degree r or $r+1$ depending on parameters, where r is the rank weight, which we show by extending results from Verbel et al. (PQCrypto 2019) who lower the solving degree to $r+2$ in a similar context. We give complexity bounds for this approach as well as practical timings of an implementation using magma. This improves upon the previously known complexity estimates for both Gröbner basis and (non-quantum) combinatorial approaches, and for example leads to an attack in 200 bits on ROLLO-I- 256 whose claimed security was 256 bits.

Keywords: Post-quantum cryptography • NIST-PQC candidates • rank metric code-based cryptography . Gröbner basis.

1 Introduction

Rank metric code-based cryptography. In the last decade, rank metric code-based cryptography has proved to be a powerful alternative to more traditional code-based cryptography based on the Hamming metric. This thread of research started with the GPT cryptosystem [36] based on Gabidulin codes [35], which are rank metric analogues of Reed-Solomon codes. However, the strong algebraic structure of those codes was successfully exploited for attacking the original GPT cryptosystem and its variants with the Overbeck attack [52] (see
for example [50] for one of the latest related developments). This has to be traced back to the algebraic structure of Gabidulin codes that makes masking extremely difficult; one can draw a parallel with the situation in the Hamming metric where essentially all McEliece cryptosystems based on Reed-Solomon codes or variants of them have been broken. However, recently a rank metric analogue of the NTRU cryptosystem from 43 has been designed and studied, starting with the pioneering paper [37. Roughly speaking, the NTRU cryptosystem relies on a lattice that has vectors of rather small Euclidean norm. It is precisely those vectors that allow an efficient decoding/deciphering process. The decryption of the cryptosystem proposed in 37 relies on LRPC codes that have rather short vectors in the dual code, but this time for the rank metric. These vectors are used for decoding in the rank metric. This cryptosystem can also be viewed as the rank metric analogue of the MDPC cryptosystem [49] that relies on short vectors in the dual code for the Hamming metric.

This new way of building rank metric code-based cryptosystems has led to a sequence of proposals $3739 \mid 6$, culminating in submissions to the NIST postquantum competition 12, whose security relies solely on the decoding problem in rank metric codes with a ring structure similar to the ones encountered right now in lattice-based cryptography. Interestingly enough, one can also build signature schemes using the rank metric; even though early attempts which relied on masking the structure of a code [40] 9 have been broken [23], a promising recent approach [8] only considers random matrices without structural masking.

Decoding in rank metric. In other words, in rank metric code-based cryptography we are now only left with assessing the difficulty of the decoding problem for the rank metric. The rank metric over \mathbb{F}_{q}^{N}, where \mathbb{F}_{q} is the finite field of cardinality q and $N=m n$ is a composite integer, consists in viewing elements in this ambient space as $m \times n$ matrices over \mathbb{F}_{q} and considering the distance $d(\boldsymbol{X}, \boldsymbol{Y})$ between two such matrices \boldsymbol{X} and \boldsymbol{Y} as

$$
d(\boldsymbol{X}, \boldsymbol{Y})=\operatorname{Rank}(\boldsymbol{Y}-\boldsymbol{X})
$$

A (linear matrix) code \mathcal{C} in $\mathbb{F}_{q}^{m \times n}$ is simply a \mathbb{F}_{q}-linear subspace in $\mathbb{F}_{q}^{m \times n}$, generated by K matrices $\boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{K}$. The decoding problem for the rank metric at distance r is as follows: given a matrix \boldsymbol{Y} in $\mathbb{F}_{q}^{m \times n}$ at distance $\leq r$ from \mathcal{C}, recover an element \boldsymbol{M} in \mathcal{C} at distance $\leq r$ from \boldsymbol{Y}. This is precisely the MinRank problem given as input \boldsymbol{Y} and $\boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{K}$:

Problem 1 (MinRank).
Input: an integer $r \in \mathbb{N}$ and $K+1$ matrices $\boldsymbol{Y}, \boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{K} \in \mathbb{F}_{q}^{m \times n}$.
Output: field elements $x_{1}, x_{2}, \ldots, x_{K} \in \mathbb{F}_{q}$ such that

$$
\operatorname{Rank}\left(\boldsymbol{Y}-\sum_{i=1}^{K} x_{i} \boldsymbol{M}_{i}\right) \leq r
$$

As observed in [19], the MinRank problem is NP-complete and the best known algorithms solving it have exponential complexity bounds.

Matrix codes obtained as $\mathbb{F}_{\boldsymbol{q}^{m}}$-linear codes. However, the trend in rank metric code-based cryptography has been to consider a particular form of linear matrix codes: they are linear codes of length n over an extension $\mathbb{F}_{q^{m}}$ of degree m of \mathbb{F}_{q}, that is, $\mathbb{F}_{q^{m}}$-linear subspaces of $\mathbb{F}_{q^{m}}^{n}$. In the rest of this section, we fix a basis $\left(\beta_{1}, \ldots, \beta_{m}\right)$ of $\mathbb{F}_{q^{m}}$ as a $\mathbb{F}_{q^{-}}$-vector space. Then such codes can be interpreted as matrix codes over $\mathbb{F}_{q}^{m \times n}$ by viewing a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$ as a matrix $\operatorname{Mat}(\boldsymbol{x})=\left(X_{i j}\right)_{i, j}$ in $\mathbb{F}_{q}^{m \times n}$, where $\left(X_{i j}\right)_{1 \leq i \leq m}$ is the column vector formed by the coordinates of x_{j} in the basis $\left(\beta_{1}, \ldots, \beta_{m}\right)$, that is, $x_{j}=X_{1 j} \beta_{1}+\cdots+X_{m j} \beta_{m}$.

Then the "rank" metric d on $\mathbb{F}_{q^{m}}^{n}$ is the rank metric on the associated matrix space, namely

$$
d(\boldsymbol{x}, \boldsymbol{y}):=|\boldsymbol{y}-\boldsymbol{x}|, \quad \text { where we define }|\boldsymbol{x}|:=\operatorname{Rank}(\operatorname{Mat}(\boldsymbol{x})) .
$$

A linear code \mathcal{C} of dimension k of such a kind (that is, an $\mathbb{F}_{q^{m}}$-linear subspace of $\mathbb{F}_{q^{m}}^{n}$ of dimension k) specifies a matrix code $\operatorname{Mat}(\mathcal{C}):=\{\operatorname{Mat}(\boldsymbol{c}): \boldsymbol{c} \in \mathcal{C}\}$ in $\mathbb{F}_{q}^{m \times n}$ of dimension $K:=m k$ over \mathbb{F}_{q} : it is readily verified that a basis of this \mathbb{F}_{q}-subspace is given by $\left(\operatorname{Mat}\left(\beta_{i} \boldsymbol{c}_{j}\right)\right)_{1 \leq i \leq m, 1 \leq j \leq k}$ where $\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)$ is a basis of \mathcal{C} over $\mathbb{F}_{q^{m}}$.

There are several reasons for this trend. On the one hand, the matrix codes for which a decoding algorithm is known are of this kind. On the other hand, such codes have a much shorter description than general matrix codes. Indeed, a matrix code in $\mathbb{F}_{q}^{m \times n}$ of dimension $K=k m$ can be specified by a basis of it, which uses $K m n \log (q)=k m^{2} n \log (q)$ bits, whereas a matrix code obtained from an $\mathbb{F}_{q^{m}}$-linear code of dimension k over $\mathbb{F}_{q^{m}}^{n}$ can be specified by a basis $\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)$ of it, which uses $k m n \log (q)$ bits and thus saves a factor m.

Progress in the design of efficient algorithms for decoding these specific matrix codes suggests that their additional structure due to the $\mathbb{F}_{q^{m}}$-linearity may not have a significant impact on the difficulty of solving the decoding problem. For instance, a generic matrix code over $\mathbb{F}_{q}^{m \times n}$ of dimension $K=m k$ can be decoded using the information set decoder of 38 within a complexity of the order of $q^{k r}$ when the errors have rank at most r and $m \geq n$, compared to $q^{k r-m}$ for the decoding of a linear code over $\mathbb{F}_{q^{m}}^{n}$ in the same regime, using a similar decoder [10]. Moreover, even if the decoding problem is not known to be NP-complete for these $\mathbb{F}_{q^{m}}$-linear codes, there is a randomised reduction to an NP-complete problem 41] (namely to decoding in the Hamming metric). Hereafter, we will use the following terminology.
Problem 2 ((m, n, k, r)-decoding problem).
Input: an $\mathbb{F}_{q^{m}}$-basis $\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)$ of a subspace \mathcal{C} of $\mathbb{F}_{q^{m}}^{n}$, an integer $r \in \mathbb{N}$, a vector $\boldsymbol{y} \in \mathbb{F}_{q^{m}}^{n}$ at distance at most r of \mathcal{C} (i.e. $|\boldsymbol{y}-\boldsymbol{c}| \leq r$ for some $\boldsymbol{c} \in \mathcal{C}$).
Output: $\boldsymbol{c} \in \mathcal{C}$ and $\boldsymbol{e} \in \mathbb{F}_{q^{m}}^{n}$ such that $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{e}$ and $|\boldsymbol{e}| \leq r$.
The region of parameters which is of interest for the NIST submissions corresponds to $m=\Theta(n), k=\Theta(n)$ and $r=\Theta(\sqrt{n})$.

Gröbner basis techniques for decoding in the rank metric. The aforementioned algorithm from [10] for solving the decoding problem follows a combinatorial approach pioneered in [51, which is related to decoding techniques for
the Hamming metric. Another approach consists in viewing the decoding problem as a particular case of MinRank and using the algebraic techniques designed for this problem; namely these techniques use a suitable algebraic modelling of a MinRank instance into a system of multivariate polynomial equations, and then solve this system with Gröbner basis techniques. Several modellings have been considered, such as the Kipnis-Shamir modelling [44] and the minors modelling (described for example in [33]); the complexity of solving MinRank using these modellings has been investigated in 32|33].

The Kipnis-Shamir modelling boils down to a polynomial system which is affine bilinear. This means that each equation has degree at most 2 and the set of variables can be partitioned into two sets $\left\{x_{1}, \ldots, x_{s}\right\} \cup\left\{y_{1}, \ldots, y_{t}\right\}$ such that all monomials of degree 2 involved in the equations are of the form $x_{i} y_{j}$; in other words, the equations are formed by a quadratic part which is bilinear plus an affine part. Although the complexity of solving this system can be bounded by that of solving bilinear systems, which is studied in [34, the complexity estimates thus obtained are very pessimistic, as observed experimentally in [20]. A theoretical explanation of why Gröbner basis techniques perform much better on the Kipnis-Shamir modelling than on generic bilinear systems was later given in 55. It was also demonstrated there that the Kipnis-Shamir approach is more efficient than the minors approach on several multivariable encryption or signature schemes relying on the MinRank problem. However, the speed-up obtained for the Kipnis-Shamir modelling in the latter reference mostly comes from the "superdetermined" case considered therein. When applied to the (m, n, k, r)decoding problem, this corresponds to the case where $m=n$ and $k m<n r$; this condition is not met in the decoding problem instances we are interested in.

Another algebraic approach to solve the (m, n, k, r)-decoding problem was suggested in [38, §V.]. It is based on a new modelling specific to $\mathbb{F}_{q^{m}}$-linear codes which fundamentally relies on the underlying $\mathbb{F}_{q^{m}}$-linear structure and on q-polynomials. Also, it results in a system of polynomial equations that are sparse and have large degree. This approach seems to be efficient only if $r k$ is not much larger than n.

Our contribution. If one compares the best known complexity estimates, the algebraic techniques appear to be less efficient than the combinatorial ones, such as Ourivski and Johansson's approach [51], for the parameters of the rank metric schemes proposed to the NIST [7]3] or of other rank metric code-based cryptosystems 48]. In 54], Levy-dit-Vehel and Perret pioneered the use of Gröbner basis techniques to solve the polynomial system arising in the Ourivski-Johansson algebraic modelling [51, with promising practical timings. In this paper, we follow on from this approach and show how this polynomial system can be augmented with additional equations that are easy to compute and bring on a substantial speed-up in the Gröbner basis computation for solving the system. This new algebraic algorithm results in the best practical efficiency and complexity bounds that are currently known for the decoding problem; in particular, it significantly improves upon the above-mentioned combinatorial approaches.

There are several reasons why the Ourivski-Johansson algebraic modelling improves upon the Kipnis-Shamir one. First, it has the same affine bilinear structure and a similar number of equations, but it involves much fewer variables. Indeed, for the case of interest to us where m and k are in $\Theta(n)$ and r is in $\Theta\left(n^{1 / 2}\right)$, the Kipnis-Shamir modelling involves $\Theta\left(n^{2}\right)$ equations and variables, while the Ourivski-Johansson one involves $\Theta\left(n^{2}\right)$ equations and $\Theta\left(n^{3 / 2}\right)$ variables. Second, this modelling naturally leads to what corresponds to reducing by one the value of r, as explained in Section 3. Third, and most importantly, the main properties that ensure that the Kipnis-Shamir modelling behaves much better with respect to Gröbner basis techniques than generic bilinear systems also hold for the Ourivski-Johansson modelling. In essence, this is due to a solving degree which is remarkably low: at most $r+2$ for the former modelling and at most $r+1$ for the latter. Recall that the solving degree indicates the maximum degree reached during a Gröbner basis computation; it is known to be a strong predictor of the complexity of the most expensive step in a Gröbner basis computation and has been widely used for this purpose with confirmations via numerical experiments, see for instance $42|28| 25|26| 27 \mid 55]$.

To prove the third point, we start from the result about degree falls at the core of [55], which is based on work from [34], and we extend it to a more general setting which includes the Ourivski-Johansson modelling. In our case, these degree falls mean that from the initial system of quadratic equations $f_{i}=0$ of the Ourivski-Johansson modelling, we are able to build many new equations of degree r that are combinations $\sum_{i} f_{i} g_{i j}=0$ where the $g_{i j}$'s are polynomials of degree $r-1$ involved in the j-th new equation. We also prove that, when the parameters satisfy the condition

$$
\begin{equation*}
m\binom{n-k-1}{r} \geq\binom{ n}{r} \tag{1}
\end{equation*}
$$

by using that these polynomials $\sum_{i} f_{i} g_{i j}$ can be expressed as linear combinations of only a few other polynomials, we can perform suitable linear combinations of the equations $\sum_{i} f_{i} g_{i j}=0$'s giving $\binom{n-1}{r-1}-1$ equations of degree $r-1$. All these polynomial combinations are easily computed from the initial quadratic equations. By adding these equations and then performing Gröbner basis computations on the augmented system, we observe that experimentally the Gröbner basis algorithm behaves as expected from the degree fall heuristic:

- if (11) does not hold, the maximum degree reached in the Gröbner basis computation is $r+1$, leading to an overall complexity of $O\left(\left(\frac{((m+n) r)^{r+1}}{(r+1)!}\right)^{\omega}\right)$ operations in \mathbb{F}_{q}, where ω is the exponent of matrix multiplication;
- if (1) holds, this degree is r and the overall complexity is $O\left(\left(\frac{((m+n) r)^{r}}{r!}\right)^{\omega}\right)$ operations in \mathbb{F}_{q}.

Note that for a majority of parameters proposed in [7]3, the condition (1) holds. Taking for ω the smallest value currently achievable in practice, which is $\omega \approx 2.8$ via Strassen's algorithm, this leads to an attack on the schemes proposed in these NIST submissions which is in all cases below the claimed classical security level.

2 Notation

In the whole paper, we will focus on the case which is relevant for cryptographic applications, namely when the field size q is a power of 2 . The results given here also apply to other field characteristics but involve putting the relevant signs wherever this is needed. We also use the following notation and definitions:

- Matrices and vectors are written in boldface font \boldsymbol{M}.
- For a matrix \boldsymbol{M} its entry in row i and column j is denoted by $\boldsymbol{M}[i, j]$.
- The transpose of a matrix \boldsymbol{M} is denoted by \boldsymbol{M}^{\top}.
- For a given ring \mathcal{R}, the ring of matrices with n rows and m columns and coefficients in \mathcal{R} is denoted by $\mathcal{R}^{n \times m}$.
$-\{1 . . n\}$ stands for the set of integers from 1 to n.
- For two subsets $I \subset\{1 . . n\}$ and $J \subset\{1 . . m\}$, we write $\boldsymbol{M}_{I, J}$ for the submatrix of \boldsymbol{M} formed by its rows (resp. columns) with index in I (resp. J).
- We use the shorthand notation $\boldsymbol{M}_{*, J}=\boldsymbol{M}_{\{1 . . m\}, J}$ and $\boldsymbol{M}_{I, *}=\boldsymbol{M}_{I,\{1 . . n\}}$, where \boldsymbol{M} has m rows and n columns.
$-\alpha \in \mathbb{F}_{q^{m}}$ is a primitive element, so that $\left(1, \alpha, \ldots, \alpha^{m-1}\right)$ is a basis of $\mathbb{F}_{q^{m}}$ as an \mathbb{F}_{q}-vector space.
- For $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$. The support of v is the $\mathbb{F}_{q^{\prime}}$-vector subspace of $\mathbb{F}_{q^{m}}$ spanned by the vectors v_{1}, \ldots, v_{n}. Thus this support is the column space of the matrix $\operatorname{Mat}(\boldsymbol{v})$ associated to \boldsymbol{v} (for any choice of basis), and its dimension is precisely $\operatorname{Rank}(\operatorname{Mat}(\boldsymbol{v}))$.
- An $[n, k] \mathbb{F}_{q^{m}}$-linear code is an $\mathbb{F}_{q^{m}}$-linear subspace of $\mathbb{F}_{q^{m}}^{n}$ of dimension k endowed with the rank metric.

3 Algebraic modellings of the decoding problem

In what follows, we always consider parameters for which decoding instances have a single solution \boldsymbol{e}. For simplicity, we assume that the rank of \boldsymbol{e} is exactly r; in general one can run the algorithm for increasing values of the target rank up to r, until a solution is found, and the most expensive step will correspond to the largest considered rank. We consider here the (m, n, k, r)-decoding problem for the code \mathcal{C} and assume we have received $\boldsymbol{y} \in \mathbb{F}_{q^{m}}^{n}$ at distance r from \mathcal{C} and look for $\boldsymbol{c} \in \mathcal{C}$ and \boldsymbol{e} such that $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{e}$ and $|\boldsymbol{e}|=r$.

3.1 Solving the MinRank instance using Kipnis-Shamir's modelling

As explained in Section 1, a possible approach to perform the decoding is to solve the underlying MinRank instance with $k m$ matrices in $\mathbb{F}_{q}^{m \times n}$. Several methods have been developed, and so far the Kipnis-Shamir modelling [44] seems to be the most efficient. By introducing $\boldsymbol{M}_{0}:=\operatorname{Mat}(\boldsymbol{y}), \boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{k m}$ an \mathbb{F}_{q}-basis of $\operatorname{Mat}(\mathcal{C})$ and homogenising the corresponding MinRank problem, we want to find $\left(z_{0}, \ldots, z_{k m}\right)$ in $\mathbb{F}_{q}^{m k+1}$ such that $\sum_{i=0}^{k m} z_{i} \boldsymbol{M}_{i}=0 .\left(z_{0}, z_{1}, \ldots, z_{k m}\right)$ is a solution to the MinRank problem if and only if the right kernel of $\sum_{i=0}^{k m} z_{i} \boldsymbol{M}_{i}$ contains a
subspace of dimension $n-r$ of \mathbb{F}_{q}^{n}. With high probability, a basis of such a space can be written in systematic form, that is, in the form $\left[\begin{array}{c}\boldsymbol{I}_{n-r} \\ \boldsymbol{K}\end{array}\right]$. Thus we have to solve the system

$$
\left(\sum_{i=0}^{k m} z_{i} \boldsymbol{M}_{i}\right)\left[\begin{array}{c}
\boldsymbol{I}_{n-r} \tag{2}\\
\boldsymbol{K}
\end{array}\right]=0
$$

over \mathbb{F}_{q}, where \boldsymbol{K} is an $r \times(n-r)$ matrix of indeterminates. This system is affine bilinear and has $m(n-r)$ equations and $k m+1+r(n-r)$ variables, which are $z_{0}, z_{1}, \ldots, z_{k m}$ and the $r(n-r)$ entries of \boldsymbol{K}; each equation has a bilinear part as well as a linear part which only involves the variables y_{i}.

3.2 Syndrome modelling

We recall here the modelling considered in 7/2. Let \boldsymbol{H} be the parity-check matrix of \mathcal{C}, i.e.

$$
\mathcal{C}=\left\{\boldsymbol{c} \in \mathbb{F}_{q^{m}}^{n}: \boldsymbol{c} \boldsymbol{H}^{\top}=\mathbf{0}\right\}
$$

The (m, n, k, r)-decoding problem can be algebraically described by the system $\boldsymbol{e} \boldsymbol{H}^{\top}=\boldsymbol{s}$ where $\boldsymbol{e} \in \mathbb{F}_{q^{m}}^{1 \times n}$ has rank r and $\boldsymbol{s} \in \mathbb{F}_{q^{m}}^{1 \times(n-k)}$ is given by $\boldsymbol{s}:=\boldsymbol{y} \boldsymbol{H}^{\top}$. Let $\left(S_{1}, \ldots, S_{r}\right) \in \mathbb{F}_{q^{m}}^{r}$ be a basis of the support of \boldsymbol{e}; then, $\boldsymbol{e}=\left[\begin{array}{lll}S_{1} & \cdots & S_{r}\end{array}\right] \boldsymbol{C}$, where $\boldsymbol{C} \in \mathbb{F}_{q}^{r \times n}$ is the matrix of the coordinates of \boldsymbol{e} in the basis $\left(S_{1}, \ldots, S_{r}\right)$. Then expressing the elements S_{i} in the basis $\left(1, \alpha, \ldots, \alpha^{m-1}\right)$ of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} yields $\left[\begin{array}{lll}S_{1} & \cdots & S_{r}\end{array}\right]=\left[\begin{array}{llll}1 & \alpha & \cdots & \alpha^{m-1}\end{array}\right] \boldsymbol{S}$ for some matrix $\boldsymbol{S} \in \mathbb{F}_{q}^{m \times r}$. Thus, the system is rewritten as

$$
\begin{equation*}
\left[1 \alpha \cdots \alpha^{m-1}\right] \boldsymbol{S} \boldsymbol{C} \boldsymbol{H}^{\top}=s, \text { over } \mathbb{F}_{q^{m}} \text { with solutions in } \mathbb{F}_{q} \tag{3}
\end{equation*}
$$

This polynomial system, that we refer to as the syndrome modelling, has $m(n-k)$ equations and $m r+n r$ variables. It is affine bilinear (without terms of degree 1) with respect to the two sets of variables coming from the support and from the coordinates of the error. Besides, this system admits $\left(q^{r}-1\right)\left(q^{r}-q\right) \cdots\left(q^{r}-q^{r-1}\right)$ solutions since this is the number of bases of the support. These solutions of the system all correspond to the same unique solution \boldsymbol{e} of the initial decoding problem. We can easily impose a unique solution by fixing some of the unknowns as in the Kipnis-Shamir modelling, or as has been done in the Ourivski-Johansson modelling that we will present next. It is worthwhile to note that this kind of modelling has as the Kipnis-Shamir modelling $\Theta\left(n^{2}\right)$ equations for the parameter range of interest to us that is given in the introduction but significantly fewer variables, since we now have only $\Theta\left(n^{3 / 2}\right)$ unknowns. The Ourivski-Johansson will be a related modelling that gives a further improvement.

3.3 Ourivski-Johansson's modelling

We now describe the algebraic modelling considered in the rest of this paper, which is basically Ourivski and Johansson's one [51]. It can be viewed as an homogenising trick. Instead of looking for $\boldsymbol{c} \in \mathcal{C}$ and \boldsymbol{e} of rank r that satisfy
$\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{e}$, or what is the same for a $\boldsymbol{c} \in \mathcal{C}$ which is such that $|\boldsymbol{c}+\boldsymbol{y}|=r$, we look for $c \in \mathcal{C}$ and $\lambda \in \mathbb{F}_{q^{m}}$ such that

$$
\begin{equation*}
|\boldsymbol{c}+\lambda \boldsymbol{y}|=r \tag{4}
\end{equation*}
$$

It is precisely here that the $\mathbb{F}_{q^{m}}$-linearity of \mathcal{C} is used in a crucial way. Once we have found such a \boldsymbol{c} and λ, we have found a $\boldsymbol{c}+\lambda \boldsymbol{y}$ such that $\boldsymbol{c}+\lambda \boldsymbol{y}=\mu \boldsymbol{e}$ for some $\mu \in \mathbb{F}_{q^{m}}$ from which we deduce easily \boldsymbol{e}. The point of proceeding this way is that there are q^{m} solutions to (4) and that this allows to fix more unknowns in the algebraic system. Another point of view [51, Sec.2] is to say that we introduce the code $\tilde{\mathcal{C}}:=\mathcal{C}+\langle\boldsymbol{y}\rangle$ and that we look for a rank r word in $\tilde{\mathcal{C}}$, since all such words are precisely the multiples $\lambda \boldsymbol{e}$ for nonzero $\lambda \in \mathbb{F}_{q^{m}}$ of the error \boldsymbol{e} we are looking for. Let $\left[\begin{array}{ll}\boldsymbol{I}_{k+1} & \boldsymbol{R}\end{array}\right]$ be a generator matrix in systematic form of the extended code $\tilde{\mathcal{C}}$; note that for a vector \boldsymbol{v}, we have $\boldsymbol{v} \in \tilde{\mathcal{C}}$ if and only if $\boldsymbol{v}\left[\begin{array}{ll}-\boldsymbol{R}^{\top} & \boldsymbol{I}_{n-k-1}\end{array}\right]^{\top}=0$. Using the notation $\boldsymbol{e}=\left[\begin{array}{llll}1 & \alpha & \cdots & \alpha^{m-1}\end{array}\right] \boldsymbol{S} \boldsymbol{C}$ as above, and writing $\boldsymbol{C}=\left[\begin{array}{ll}\boldsymbol{C}_{1} & \boldsymbol{C}_{2}\end{array}\right]$ with $\boldsymbol{C}_{1} \in \mathbb{F}_{q}^{r \times(k+1)}$ and $\boldsymbol{C}_{2} \in \mathbb{F}_{q}^{r \times(n-k-1)}$, the fact that $e \in \tilde{\mathcal{C}}$ yields the system

$$
\begin{equation*}
\left[1 \alpha \cdots \alpha^{m-1}\right] \boldsymbol{S}\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0, \text { over } \mathbb{F}_{q^{m}} \text { with solutions in } \mathbb{F}_{q} \tag{5}
\end{equation*}
$$

Since all multiples $\lambda \boldsymbol{e}$ are solutions of this system, we can specify $S_{1}=1$, or equivalently, set the first column of \boldsymbol{S} to be $\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]^{\top}$. Doing so, the resulting system is affine bilinear (without constant term), with $(n-k-1) m$ equations and $(m-1) r+n r$ variables. Similarly to what is done in [51, Sec. 3], we also specialise some other variables as follows; this allows us to reduce further the number of variables and to ensure that the system has a unique solution.

Starting from the system above (with $S_{1}=1$), we also specify the first column \boldsymbol{C} to $\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]^{\top}$. In this way, there is a single $\lambda \boldsymbol{e}$ satisfying these constraints: the one where λ is the inverse of the first coordinate of \boldsymbol{e} (assuming it is nonzero, see below). The system still admits several solutions which correspond to different bases of the support of $\lambda \boldsymbol{e}$. To fix one basis of this support, we take an $r \times r$ invertible submatrix of \boldsymbol{S} and specify it to be the identity matrix; thus the system has a single solution.

For the sake of presentation, in Section 5 we present our results assuming that the first coordinate of \boldsymbol{e} is nonzero and that the top $r \times r$ block of \boldsymbol{S} is invertible; these results are easily extended to the general case. Under these assumptions, our system can be rewritten as follows:

$$
\mathcal{F}=\left\{[\begin{array} { l l l }
{ 1 } & { \alpha } & { \alpha ^ { m - 1 } }
\end{array}] [\begin{array} { c | c }
{ \boldsymbol { I } _ { r } } \tag{6}\\
{ \hline \mathbf { 0 } } & { \boldsymbol { S } ^ { \prime } }
\end{array}] \left(\boldsymbol{C}_{2}-\left[\begin{array}{l|l}
1 & \boldsymbol{C}_{1}^{\prime} \\
\mathbf{0} & \boldsymbol{R})\}
\end{array}\right]\right.\right.
$$

where \boldsymbol{S}^{\prime} is the $(m-r) \times(r-1)$ submatrix $\boldsymbol{S}_{\{r+1 . . m\},\{2 . . r\}}$ and $\boldsymbol{C}_{1}^{\prime}$ is the $r \times k$ submatrix $\boldsymbol{C}_{*,\{2 . . k+1\}}$. We call the entries of \boldsymbol{S}^{\prime} the support variables whereas the entries of $\boldsymbol{C}_{1}^{\prime}$ and \boldsymbol{C}_{2} are called the coefficient variables. In Section 6.2 we give a procedure to handle the general case, by making several attempts to find the invertible block of \boldsymbol{S} and a nonzero component of \boldsymbol{e}.

4 Gröbner bases and degree falls

We refer to [22] for basic definitions and properties of monomial ordering and Gröbner bases.

Since we are looking for solutions in \mathbb{F}_{q}, we augment the polynomial system we want to solve with the field equations, that is, the equation $x_{i}^{q}-x_{i}=0$ for each variable x_{i} arising in the system. In our case, as the system we consider in practice has mainly only one solution in \mathbb{F}_{q} (see Section 6), the ideal of the system with the field equations is radical, and for any monomial ordering the reduced Gröbner basis is the set of linear polynomials $\left\{x_{i}-a_{i}\right\}_{i}$, where $\left\{x_{i}\right\}_{i}$ are the variables and $a_{i} \in \mathbb{F}_{q}$ is the i-th coordinate of the solution. The classical approach consists in computing the Gröbner basis with respect to a degreereverse lexicographic order (grevlex), that will keep the degree of the polynomials as small as possible during the computation, and behaves usually better than other monomial orderings in terms of complexity.

Since the first descriptions of algorithms to compute Gröbner bases 17, far more efficient algorithms have been developed. On the one hand, substantial practical speed-ups were achieved by incorporating and accelerating fast linear algebra operations such as Gaussian elimination of the Macaulay matrices, which are sparse and structured (see Faugère's F4 algorithm [30, variants of the XL algorithm [21], and for instance GBLA [16]). We recall that the Macaulay matrix in degree d of a homogeneous system $\mathcal{F}=\left\{f_{i}\right\}_{i}$ is the matrix whose columns correspond to the monomials of degree d sorted in descending order w.r.t. a chosen monomial ordering, whose rows correspond to the polynomials $t f_{i}$ for all i where t is a monomial of degree $d-\operatorname{deg}\left(f_{i}\right)$, and whose entry in row $t f_{i}$ and column u is the coefficient of the monomial u in the polynomial $t f_{i}$. In the case of a system containing field equations, we consider compact Macaulay matrices, where all monomials are reduced w.r.t. the field equations. For an affine system, the Macaulay matrix in degree d contains all polynomials $\left\{t f_{i}\right\}$ for $\operatorname{deg}\left(t f_{i}\right) \leq d$ and the columns are the monomials of degree less than or equal to d. The approaches from F4 or XL are similar in that they both compute row echelon forms of some submatrices of Macaulay matrices for some given degree; in fact, it was proven in [11] that the XL algorithm computes a so-called d-Gröbner basis, which is a basis of the initial system where all computations in degree larger than d are ignored, and that one can rephrase the original XL algorithm in terms of the original F4 algorithm. Now, many variants of these algorithms have been designed to tackle specific families of polynomial systems, and it seems that none of them performs always better than the others. In our experimental considerations, we rely on the implementation of the F4 algorithm which is available in magma V2.22-2 and is recognised for its efficiency.

On the other hand, improvements have been obtained by refining criteria which allow one to avoid useless computations (avoiding to consider monomials that cannot appear, a priori detection of reductions to zero as in the F5 algorithm [31] and the consecutive signature-based algorithms, see [29] for a survey).

For homogeneous systems, the complexity of these algorithms in terms of arithmetic operations is dominated by the cost of the row echelon forms on all

Macaulay matrices up to degree d, where d is the largest integer such that some new non-zero polynomial is produced in the reduced row echelon form. This degree d is called the index of regularity, or degree of regularity, and it only depends on the ideal generated by the system, not on the specific generators forming the system. Some algorithms may need to go beyond degree d to check that no new polynomials will be produced, like the XL Algorithm or the F4 Algorithm without the F5 criteria, but those computations may be avoided if one knows in advance the degree of regularity of the system. This parameter can be precisely estimated for different families of generic systems, using the notions of regularity, of semi-regularity in the over-determined case, and of bi-regularity in the bilinear case [12|14,13|34. However, those bounds may be way too pessimistic for other specific (sub-)families of systems, and deriving estimations in this situation is difficult a priori, in particular for affine systems.

Definition 1. Let $\left(f_{i}\right)_{i}$ be polynomials in a polynomial ring \mathcal{R}. A syzygy is a vector $\left(s_{i}\right)_{i}, s_{i} \in \mathcal{R}$ such that $\sum_{i} s_{i} f_{i}=0$. The degree of the syzygy is defined by $\max _{i}\left(\operatorname{deg}\left(f_{i}\right)+\operatorname{deg}\left(s_{i}\right)\right)$. The set of all syzygies of $\left(f_{i}\right)_{i}$ is an \mathcal{R}-module called the syzygy module of $\left(f_{i}\right)_{i}$.

For a given family of systems, there are syzygies that occur for any system in the family. For instance, for any system $\left\{f_{i}\right\}_{i}$, the syzygy module contains the \mathcal{R}-module spanned by the so-called trivial syzygies $\left(e_{j} f_{i}-e_{i} f_{j}\right)_{i, j}$, where e_{i} is the coordinate vector with 1 at index i. A system is called regular if its syzygy module is generated by these trivial syzygies.

The degree of regularity of a zero-dimensional system $\left(f_{i}\right)_{i}$ of homogeneous polynomials generating an ideal I (having thus more equations than unknowns) is the lowest integer $d_{\text {reg }}$ such that all monomials of degree $d_{\text {reg }}$ are in the ideal of leading terms of I (see [12|14]). It is also $1+\operatorname{deg}\left(H_{I}(z)\right)$, where $H_{I}(z)$ is the Hilbert series of I, which is a polynomial for zero-dimensional systems. Such a system is called semi-regular if the set of its syzygies of degree less than $d_{\text {reg }}(I)$ is exactly the set of trivial syzygies of degree less than $d_{\mathrm{reg}}(I)$. Note that there may be non-trivial syzygies in degree $d_{\text {reg }}(I)$, which may be different for each system. As a consequence, all polynomials occurring in the computation of a Gröbner basis have degree $\leq d_{\text {reg }}$ and the arithmetic complexity is bounded by the cost of the row echelon form on the Macaulay matrices in degree $\leq d_{\text {reg }}$, whose dimensions can be bounded by its number of columns.

For affine systems, things are different. The degree of regularity can be defined in the same way w.r.t. the ideal and the Hilbert series, but is not any more related to the complexity of the computation: for instance, a system with only one solution will have the Hilbert series $H_{I}(z)=1$, and this degree is 1 . We need another parameter to control the complexity of the computation.

Let $\left\{f_{i}\right\}$ be a system of affine polynomials, and \tilde{f}_{i} the homogeneous part of highest degree of f_{i}. Let $I=\left\langle\left\{f_{i}\right\}_{i}\right\rangle$ and $\tilde{I}=\left\langle\left\{\tilde{f}_{i}\right\}_{i}\right\rangle$, and let $\tilde{d}_{\text {reg }}$ be the degree of regularity of \tilde{I}. What may happen is that, during the computation of the basis in degree d, some polynomials of degree less than d may be added to the basis. This will happen any time a syzygy $\left(\tilde{s}_{i}\right)_{i}$ for $\left(\tilde{f}_{i}\right)_{i}$ of degree d is such
that there exists no syzygy $\left(s_{i}\right)_{i}$ for $\left(f_{i}\right)_{i}$ where \tilde{s}_{i} is the homogeneous part of highest degree of s_{i}. In that case, $\sum_{i} \tilde{s}_{i} f_{i}$ is a polynomial of degree less than d (the homogeneous part of highest degree cancels), that will not be reduced to zero during the Gröbner basis computation since this would give a syzygy $\left(s_{i}\right)_{i}$ for $\left(f_{i}\right)_{i}$ with homogeneous part $\left(\tilde{s}_{i}\right)_{i}$. This phenomenon is called a degree fall in degree d, and we will call such syzygies (\tilde{s}_{i}) that cannot be extended to syzygies for $\left(f_{i}\right)_{i}$ in the same degree partial syzygies. $\sum_{i} \tilde{s}_{i} f_{i}$ is called the corresponding residue.

In cryptographic applications, the first degree fall d_{ff} has been widely used as a parameter controlling the complexity in algebraic cryptanalysis, for instance in the study of some HFE-type systems [28|42|24] and Kipnis-Shamir systems [55]. This first degree fall is simply the smallest d such that there exists a degree fall in degree d on $\left(f_{i}\right)_{i}$, and this quantity does depend on \mathcal{F} : it might be different from another set of generators of the same ideal. Still, this notion takes on its full meaning while computing a Gröbner basis for a graded ordering, if we admit that the algorithm terminates shortly after reaching the first degree fall and without considering polynomials of higher degree. This can happen for some families of systems, as explained in the next paragraph, but there are examples of systems where the first degree fall d_{ff} is not the maximal degree reached during the computation, in which case it cannot be related to the complexity of the computation.

If the system $\left\{\tilde{f}_{i}\right\}$ is semi-regular, then the computation in degree less than $\tilde{d}_{\text {reg }}$ will act as if the polynomials where homogeneous: there cannot be degree falls, as they would correspond to syzygies for the system \tilde{f}_{i} that is assumed to be semi-regular. In degree $\tilde{d}_{\text {reg }}$, degree falls will occur for the first time, but at this point the remainder of the computation is negligible compared to the previous ones: by definition of $\tilde{d}_{\text {reg }}$, all monomials of degree $\tilde{d}_{\text {reg }}$ are leading terms of polynomials in the basis, and the remaining steps in the computation will necessarily deal with polynomials of degree at most $\tilde{d}_{\text {reg }}$. Hence, the computations are almost the same as the ones for $\left\{\tilde{f}_{i}\right\}$, and the complexity is controlled by $\tilde{d}_{\text {reg }}$, which is here the first degree fall for the system $\left\{f_{i}\right\}_{i}$.

The behavior of the computation may be very different if degree falls occur in a much smaller degree. A good example of what may happen for particular families of systems is the affine bilinear case. It is proven in [34, Prop. 5] that a generic affine bilinear system of m equations $\left\{f_{1}, \ldots, f_{m}\right\} \in \mathbb{K}\left[x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right]$ in $n_{x}+n_{y} \geq m$ variables is regular. In particular, the Macaulay bound $d_{\text {reg }} \leq$ $n_{x}+n_{y}+1$ applies [45]. However, it is also proven in [34, Thm. 6] that for a zero-dimensional affine bilinear system $\left(m=n_{x}+n_{y}\right), d_{\text {reg }}$ satisfy a much sharper inequality $d_{\text {reg }} \leq \min \left(n_{x}+1, n_{y}+1\right)$. The reason is that (homogeneous) bilinear systems are not regular, but the syzygy module of those systems is well understood [34]. In particular, there are syzygies for $\left(\tilde{f}_{i}\right)_{i}$ coming from Jacobian matrices, that are partial syzygies for $\left(f_{i}\right)_{i}$ and produce degree falls.

For affine systems, that are mainly encountered in cryptographic applications, and in particular for systems coming from a product of matrices whose coefficients are the variables of the system, the Jacobian matrices have a very
particular shape that can be described, and leads to a series of degree falls that reduces the degree of regularity of those systems. This is explained in detail in Section 5

5 Degree falls and low degree equations

5.1 Degree falls from the kernel of the Jacobian

Fundamental results from [34 55]. It has been realized in [55] that the first degree fall in the Kipnis and Shamir modelling can be traced back to partial syzygies obtained from low degree vectors in the kernel of the Jacobian of the bilinear part of system either with respect to the kernel variables or the linear variables. This argument can also be adapted to our case and Jacobians with respect to the support variables are relevant here. To understand the relevance of the Jacobians for bilinear affine systems over some field \mathbb{K} in general, consider a bilinear affine system $\mathcal{F}=\left\{f_{1}, \ldots, f_{M}\right\} \subset \mathbb{K}\left[s_{1}, \ldots, s_{t_{s}}, c_{1}, \ldots, c_{t_{c}}\right]$ of M equations in t_{s} variables s and t_{c} variables c. We denote by $\mathcal{F}^{h}:=\left\{f_{1}^{h}, \ldots, f_{M}^{h}\right\}$ the bilinear part of these equations. In other words each f_{i} can be written as

$$
f_{i}=f_{i}^{h}+r_{i}
$$

where each r_{i} is affine and \tilde{f}_{i} is bilinear with respect to $\left\{s_{1}, \ldots, s_{t_{s}}\right\} \cup\left\{c_{1}, \ldots, c_{t_{c}}\right\}$. We define the Jacobian matrices associated to \mathcal{F}^{h} as

$$
\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}^{h}}{\partial s_{1}} & \cdots & \frac{\partial f_{1}^{h}}{\partial s_{t_{s}}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{M}^{h}}{\partial s_{1}} & \cdots & \frac{\partial f_{M}^{h}}{\partial s_{t_{s}}}
\end{array}\right) \quad \operatorname{Jac}_{\boldsymbol{C}}\left(\mathcal{F}^{h}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}^{h}}{\partial c_{1}} & \ldots & \frac{\partial f_{1}^{h}}{\partial c_{t_{c}}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{M}^{h}}{\partial c_{1}} & \cdots & \frac{\partial f_{M}^{h}}{\partial c_{t_{c}}}
\end{array}\right) .
$$

Note that $\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)$ is a matrix with linear entries in $\mathbb{K}\left[c_{1}, \ldots, c_{t_{c}}\right]$ whereas $\mathrm{Jac}_{\boldsymbol{C}}\left(\mathcal{F}^{h}\right)$ is a matrix with linear entries in $\mathbb{K}\left[s_{1}, \ldots, s_{t_{s}}\right.$]. As shown in [55] [Prop. $1 \& 2$] vectors in the left kernel of these Jacobians yield partial syzygies. This is essentially a consequence of the following relations that are easily verified

$$
\begin{aligned}
\operatorname{Jac}_{\boldsymbol{C}}\left(\mathcal{F}^{h}\right) \cdot\left(c_{1} \ldots c_{t_{c}}\right)^{\top} & =\left(f_{1}^{h}, \ldots, f_{M}^{h}\right)^{\top} \\
\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right) \cdot\left(s_{1} \ldots s_{t_{s}}\right)^{\top} & =\left(f_{1}^{h}, \ldots, f_{M}^{h}\right)^{\top}
\end{aligned}
$$

and one of its consequences which is that an element $\left(g_{1}, \ldots, g_{M}\right)$ in the left kernel of $\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)$ or $\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)$ is a syzygy for \mathcal{F}^{h}, i.e. it satisfies

$$
\sum_{i=1}^{M} f_{i}^{h} g_{i}=0
$$

For instance an element $\left(g_{1}, \ldots, g_{M}\right)$ in the left kernel of $\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)$ satisfies

$$
\begin{aligned}
\sum_{i=1}^{M} f_{i}^{h} g_{i} & =\left(g_{1}, \ldots, g_{M}\right)\left(f_{1}^{h}, \ldots, f_{M}^{h}\right)^{\top} \\
& =\left(g_{1}, \ldots, g_{M}\right) \operatorname{Jac}_{\boldsymbol{C}}\left(\mathcal{F}^{h}\right) \cdot\left(c_{1} \ldots c_{t_{c}}\right)^{\top} \\
& =0
\end{aligned}
$$

This gives typically a degree fall for \mathcal{F} at degree $2+\max \left(\operatorname{deg} g_{i}\right)$, with the corresponding residue given by

$$
\begin{aligned}
\sum_{i=1}^{M} g_{i} f_{i} & =\sum_{i=1}^{M} g_{i} f_{i}^{h}+\sum_{i=1}^{M} g_{i} r_{i} \\
& =\sum_{i=1}^{M} g_{i} r_{i}
\end{aligned}
$$

These Jacobians are matrices with entries that are linear forms. The kernel of such matrices is well understood as shown by

Theorem 1 ([34]). Let \boldsymbol{M} be an $M \times t$ matrix of linear forms in $\mathbb{K}\left[s_{1}, \ldots, s_{t_{s}}\right]$. If $t<M$, then generically the left kernel of \boldsymbol{M} is generated by vectors whose coefficients are maximal minors of \boldsymbol{M}, namely the

$$
\boldsymbol{V}_{J}=(\ldots, \underbrace{0}_{j \notin J}, \ldots, \underbrace{\operatorname{det}\left(\boldsymbol{M}_{J \backslash\{j\}, *}\right)}_{j \in J}, \ldots)_{1 \leq j \leq M}
$$

where $J \subset\{1, \ldots, M\}, \# J=t+1$.
A direct use of this result yields however degree falls that occur for very large degrees, namely at degrees $t_{s}+2$ or $t_{c}+2$. In the case of the Kipnis-Shamir modelling, the syndrome modelling or the Ourivski-Johansson modelling degree falls occur for much smaller degrees than generic bilinear affine systems. This is due to the particular form of the modelling. Roughly speaking, the reason is that the Jacobian of systems coming from matrix products splits as a tensor product as we now explain. This has been realized in 55 for the Kipnis-Shamir modelling and we generalize now slightly their result so that we can use it for more general modellings such as for instance the Ourivski-Johansson modelling.

General form for Jacobian matrices of systems coming from matrix products. Consider a system $\boldsymbol{A} \boldsymbol{X} \boldsymbol{Y}=\mathbf{0}$ where $\boldsymbol{A}=\left(a_{i, s}\right)_{1 \leq i \leq m, 1 \leq s \leq p}, \boldsymbol{X}=$ $\left(x_{s, t}\right)_{1 \leq s \leq p, 1 \leq t \leq r}$ and $\boldsymbol{Y}=\left(y_{t, j}\right)_{1 \leq t \leq r, 1 \leq j \leq n}$. The variables are the $x_{i, j}$ and do not appear in \boldsymbol{A} or \boldsymbol{Y}.
Lemma 1. The Jacobian matrix of the system $\boldsymbol{A} \boldsymbol{X} \boldsymbol{Y}=\mathbf{0}$ with respect to the variables \boldsymbol{X} is

$$
\mathrm{Jac}_{\boldsymbol{X}}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{Y})=\boldsymbol{Y}^{\top} \otimes \boldsymbol{A} \in \mathbb{K}[\boldsymbol{A}, \boldsymbol{Y}]^{n m \times r p}
$$

provided the equations and the variables \boldsymbol{X} are in column order, and

$$
\mathrm{Jac}_{\boldsymbol{X}}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{Y})=\boldsymbol{A} \otimes \boldsymbol{Y}^{\boldsymbol{\top}} \in \mathbb{K}[\boldsymbol{A}, \boldsymbol{Y}]^{n m \times r p}
$$

provided the equations and the variables \boldsymbol{X} are in row order. We use the Kronecker product of two matrices $\boldsymbol{A} \otimes \boldsymbol{Y}^{\boldsymbol{\top}}=\left(a_{i, s} Y^{\boldsymbol{\top}}\right)_{1 \leq i \leq m, 1 \leq s \leq p}$.
Proof. For $1 \leq i \leq m, 1 \leq j \leq n$, the equation in row i and column j of $\boldsymbol{A} \boldsymbol{X} \boldsymbol{Y}$ is

$$
f_{i, j}=\sum_{s=1}^{p} \sum_{t=1}^{r} a_{i, s} x_{s, t} y_{t, j}
$$

We then have, for $1 \leq s \leq p$ and $1 \leq t \leq r, \frac{\partial f_{i, j}}{\partial x_{s, t}}=a_{i, s} y_{t, j}$ so that in row order,

$$
\operatorname{Jac}_{x_{s, 1}, \ldots, x_{s, r}}\left(\left\{f_{i, 1}, \ldots, f_{i, n}\right\}\right)=\left(\frac{\partial f_{i, j}}{\partial x_{s, t}}\right)_{\substack{1 \leq j \leq n \\ 1 \leq t \leq r}}=a_{i, s}\left(y_{t, j}\right)_{\substack{1 \leq j \leq n \\ 1 \leq t \leq r}}=a_{i, s} \boldsymbol{Y}^{\top}
$$

The result follows from the definition of the Kronecker product of matrices. The proof when the equations and variables are in column order is similar.

Application to the Kipnis-Shamir modelling. Recall the system at hand

$$
\left(\sum_{i=1}^{k m} x_{i} \boldsymbol{M}_{i}\right)\left[\begin{array}{c}
\boldsymbol{I}_{n-r} \tag{7}\\
\boldsymbol{K}
\end{array}\right]=\mathbf{0}_{m, n-r}
$$

where $\boldsymbol{M}_{i} \in \mathbb{F}_{q}^{m \times n}$ and \boldsymbol{K} is an $r \times(n-r)$ matrix of indeterminates. Then, if we write each $\boldsymbol{M}_{i}=\left(\boldsymbol{M}_{i}^{\prime} \boldsymbol{M}_{i}^{\prime \prime}\right)$ with $\boldsymbol{M}_{i}^{\prime} \in \mathbb{F}_{q}^{m \times(n-r)}$ and $\boldsymbol{M}_{i}^{\prime \prime} \in \mathbb{F}_{q}^{m \times r}$, then we have

$$
\begin{equation*}
\sum_{i=1}^{k m} x_{i}\left(\boldsymbol{M}_{i}^{\prime}+\boldsymbol{M}_{i}^{\prime \prime} \boldsymbol{K}\right)=\mathbf{0}_{m, n-r} \tag{KS}
\end{equation*}
$$

The bilinear and linear parts of the system are respectively $\sum_{i=1}^{k m} x_{i} \boldsymbol{M}_{i}^{\prime}$ and $\sum_{i=1}^{k m} x_{i} \boldsymbol{M}_{i}^{\prime}$. By using Lemma 1 we obtain when we compute the Jacobian with respect to the entries of \boldsymbol{K} (the so-called kernel variables in [55])
$\mathrm{Jac}_{\boldsymbol{K}}=\sum_{i=1}^{k m} x_{i}\left(\boldsymbol{I}_{n-r} \otimes \boldsymbol{M}_{i}^{\prime \prime}\right)=\boldsymbol{I}_{n-r} \otimes\left(\sum_{i=1}^{k m} x_{i} \boldsymbol{M}_{i}^{\prime \prime}\right)$ (equations in column order).
The kernel of $\operatorname{Jac}_{\boldsymbol{K}}$ is generated by the vectors $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-r}\right)$ with \boldsymbol{v}_{i} in the left kernel of $\boldsymbol{M}=\sum_{i=1}^{m} x_{i} \boldsymbol{M}_{i}^{\prime \prime}$, that should have dimension $\binom{m}{r+1}$. Hence the kernel of $\mathrm{Jac}_{\boldsymbol{K}}$ has dimension $\binom{m}{r+1}(n-r)$. It is here that we see the point of having this tensor product form. These kernel vectors have entries that are polynomials of degree r by using Theorem 1. This gives degree falls at degree $r+2$ and yields partial syzygies that have degree $r+1$. These considerations are a slightly different way of understanding the results given in [55, §3]. The syndrome modelling displays a similar behavior, i.e. a degree fall at $r+2$ for the very same reason as can be readily verified. Let us apply now Lemma 1 to the Ourivski-Johansson modelling.

Application to the Ourivski-Johansson modelling. Recall the OurivskiJohansson modelling first.

$$
\mathcal{F}=\left\{\left[\begin{array}{lll}
1 & \cdots & \left.\alpha^{m-1}\right]
\end{array}\left(\begin{array}{c}
\boldsymbol{I}_{r} \\
\mathbf{0}_{m-r, 1} \\
\boldsymbol{S}^{\prime}
\end{array}\right)\left(\boldsymbol{C}_{2}-\left(\begin{array}{cc}
1 & \boldsymbol{C}_{1}^{\prime} \\
\mathbf{0}_{r-1,1}
\end{array}\right) \boldsymbol{R}\right)\right\}\right.
$$

where \boldsymbol{S}^{\prime} is the $(m-r) \times(r-1)$ matrix $\boldsymbol{S}_{\{r+1 . . m\},\{2 . . r\}}$ and $\boldsymbol{C}_{1}^{\prime}$ is the $r \times k$ matrix $\boldsymbol{C}_{*,\{2 . . k+1\}}$. We add to \mathcal{F} the field equations $\mathcal{F}_{q}=\left\{s_{i, j}^{q}-s_{i, j}, r+1 \leq\right.$ $\left.i \leq m, 1 \leq j \leq r, c_{i, j}^{q}-c_{i, j}, 1 \leq i \leq r, 2 \leq j \leq n\right\}$.

With high probability, this system has a unique solution. As we used the field equations, the ideal $\left\langle\mathcal{F}, \mathcal{F}_{q}\right\rangle$ is radical. The system has $n_{\boldsymbol{S}}=(m-r)(r-1)$ variables $\boldsymbol{S}, n_{\boldsymbol{C}}=(n-1) r$ variables \boldsymbol{C}, and $n-k-1$ equations over $\mathbb{F}_{q^{m}}$, hence $n_{e q}=(n-k-1) m$ equations over \mathbb{F}_{q}, plus the field equations.

Consider the system \mathcal{F}^{h} formed by the bilinear parts of the equations in \mathcal{F}. A simple computation shows that

$$
\mathcal{F}^{h}=\left\{\alpha^{r}\left[1 \alpha \cdots \alpha^{m-r-1}\right] \boldsymbol{S}^{\prime}\left(\boldsymbol{C}_{2}^{\prime \prime}-\boldsymbol{C}_{1}^{\prime \prime} \boldsymbol{R}^{\prime}\right)\right\}
$$

where $\boldsymbol{C}_{2}^{\prime \prime}=\boldsymbol{C}_{\{2 . . r\},\{k+2 . . n\}}, \boldsymbol{C}_{1}^{\prime \prime}=\boldsymbol{C}_{\{2 . . r\},\{2 . . k+1\}}$ and $\boldsymbol{R}^{\prime}=\boldsymbol{R}_{\{2 . . r+1\}, *}$.
If we take the equations and variables in row order, and use Lemma 1, then

$$
\begin{equation*}
\operatorname{Jac}_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)=\alpha^{r}\left[1 \alpha \cdots \alpha^{m-r-1}\right] \otimes\left(\boldsymbol{C}_{2}^{\prime \prime}-\boldsymbol{C}_{1}^{\prime \prime} \boldsymbol{R}^{\prime}\right)^{\top} \tag{8}
\end{equation*}
$$

Clearly the elements in the left kernel of $J a c_{\boldsymbol{S}}\left(\mathcal{F}^{h}\right)$ are those in the right kernel of $\boldsymbol{C}_{2}^{\prime \prime}-\boldsymbol{C}_{1}^{\prime \prime} \boldsymbol{R}^{\prime}$, and applying Theorem 1 , they belong to the vector space generated by the vectors \boldsymbol{V}_{J} for any $J \subset\{1, \ldots, n-k-1\}$ of size r defined by

$$
\boldsymbol{V}_{J}=(\ldots, \underbrace{0}_{j \notin J}, \ldots, \underbrace{\operatorname{det}\left(\boldsymbol{C}_{2}^{\prime \prime}-\boldsymbol{C}_{1}^{\prime \prime} \boldsymbol{R}_{*, J \backslash\{j\}}^{\prime}\right)}_{j \in J}, \ldots)_{1 \leq j \leq n-k-1}
$$

This gives a syzygy for \mathcal{F}^{h} and when applying it to \mathcal{F} it yields a degree fall in degree $r+1$ because the entries of \boldsymbol{V}_{J} are homogeneous polynomials of degree $r-1$. The inner product of \boldsymbol{V}_{J} with the vector of the equations gives an equation of degree $\leq r$ since the homogeneous part of highest degree cancels as has been observed at the beginning of this section. Now the affine part of the equations \mathcal{F} is $\left[1 \alpha \cdots \alpha^{r-1}\right]\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)$. The inner product gives

$$
\begin{align*}
\boldsymbol{V}_{J} \cdot\left(\left[1 \alpha \cdots \alpha^{r-1}\right]\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)\right)^{\top} & =\boldsymbol{V}_{J} \cdot\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)^{\top} \cdot\left[1 \alpha \cdots \alpha^{r-1}\right]^{\top} \\
& =\operatorname{det}\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)_{*, J} \tag{9}
\end{align*}
$$

using the Laplace's formula expressing a determinant in terms of its minors. This yields a corresponding equation that will be reduced to zero by a degree$(r+1)$ Gröbner basis of \mathcal{F}. Hence the partial syzygies of degree r coming from the degree fall in the $(r+1)$-Macaulay matrix are exactly the maximal minors of $\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}$. We have thus proven that

Theorem 2. The equations MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0$, that are the maximal minors of the matrix $\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}$, belong the the ideal $\left\langle\mathcal{F}, \mathcal{F}_{q}\right\rangle$. Moreover, they are reduced to zero by a degree $(r+1)$-Gröbner basis of $\left\{\mathcal{F}, \mathcal{F}_{q}\right\}$.

Remark 1. If we are only interested in the first part of the theorem about the maximal minors, then there is a simple and direct proof which is another illustration of the role of the matrix form of the system. Indeed, let $\left(\boldsymbol{S}^{*}, \boldsymbol{C}^{*}\right)$ be a solution of $\left\{\mathcal{F}, \mathcal{F}_{q}\right\}$, then the non-zero vector $\left(1 S_{2}^{*} \ldots S_{m}^{*}\right)=\left[1 \alpha \cdots \alpha^{m-1}\right] \boldsymbol{S}^{*}$ belongs to the left kernel of the matrix $\boldsymbol{C}_{2}^{*}-\boldsymbol{C}_{1}^{*} \boldsymbol{R}$. Hence this matrix has rank less than r, and the equations MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0$ are satisfied for any solution of the system $\left\{\mathcal{F}, \mathcal{F}_{q}\right\}$, which means that the equations belong to the ideal generated by $\left\langle\mathcal{F}, \mathcal{F}_{q}\right\rangle$ as this ideal is radical.

5.2 Analysis of the ideal MaxMinors $\left(C_{2}-C_{1} R\right)$

The previous theorem allows to obtain directly degree r equations without having to compute first the Macaulay matrix of degree $r+1$. This is a significant saving when performing the Gröbner basis computation. A nice feature of these equations is that they only involve one part of the unknowns, namely the coefficient variables. Moreover all these equations can be expressed by using a limited number of polynomials as we now show. Some of them will be of degree r, some of them will be of degree $r-1$. If we perform Gaussian elimination on these equations by treating these polynomials as variables and trying to eliminate the ones corresponding to the polynomials of degree r first, then if the number of equations we had was greater than the number of polynomials of degree r, we expect to find equations of degree $r-1$. Roughly speaking, when this phenomenon happens we just have to add all the equations of degree $r-1$ we obtain in this way to the Ourivski-Johansson modelling and the Gröbner basis calculation will not go beyond degree r.

Let us analyse precisely the behavior we just sketched. The shape of the equations MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0$ is given by
Proposition 1. MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)$ is a set of $\binom{n-k-1}{r}$ polynomials P_{J}, indexed by $J \subset\{k+2 . . n\}$ of size r :

$$
\begin{gathered}
P_{J}=\sum_{\substack{ }} \operatorname{det}\left(\boldsymbol{R}_{\alpha, J \backslash \beta}\right) \operatorname{det}\left(\boldsymbol{C}_{*, T}\right) \\
\alpha \subset\{1 . . n\}, \# T=r, \\
\beta=T \cap\{1 . . k+1\} \\
\beta \cap\{k+2 . . n\} \subset J
\end{gathered}
$$

If $1 \notin T$, the polynomial $\operatorname{det}\left(\boldsymbol{C}_{*, T}\right)$ is homogeneous of degree r and contains r ! monomials, and if $1 \in T$ it is homogeneous of degree $r-1$ and contains $(r-1)$! monomials.

Proof. Write $J=\left\{j_{1}<\cdots<j_{r}\right\}$, and (remember that \mathbb{F}_{q} has characteristic 2) $P_{J}=\operatorname{det}\left(\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)_{*, J}\right)=\sum_{\sigma \in \mathcal{S}_{r}} \prod_{i=1}^{r}\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)\left[i, \sigma\left(j_{i}\right)\right]$. Expanding the product and putting together the identical monomials give the result.

Each polynomial P_{J} can be expanded in m equations over \mathbb{F}_{q}, the polynomial $P_{J}[i]$ being the coefficient of P_{J} in α^{i-1}. It appears that, when computing a grevlex Gröbner basis of the system of the $P_{J}[i]$'s over \mathbb{F}_{q}, there may be a fall
of degree in the first step, in degree r, that produces equations of degree $r-1$. The following heuristic explains when this fall of degree occurs.

Heuristic 1 - Overdetermined case: when $m\binom{n-k-1}{r} \geq\binom{ n}{r}$, generically, a degree-r Gröbner basis of the projected system MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0$ of $m\binom{n-k-1}{r}$ equations over \mathbb{F}_{q} contains $\binom{n-1}{r-1}-1$ equations of degree $r-1$, that are obtained by linear combinations of the initial equations.

- Intermediate case: when $\binom{n}{r}>m\binom{n-k-1}{r}>\binom{n-1}{r}$, generically a degree- r Gröbner basis of the projected system MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0$ contains $m\binom{n-k-1}{r}-\binom{n-1}{r}$ equations of degree $r-1$, that are obtained by linear combinations of the initial equations.
- Underdetermined case: When $m\binom{n-k-1}{r} \leq\binom{ n-1}{r}$, then generically a degreer Gröbner basis of the system contains $m\binom{n-k-1}{r}$ polynomials that are all of degree r.

Remark 2. Here overdetermined/underdetermined refers to the system of maximal minors given by the set of equations MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=0$

Remark 3. The degree-r Gröbner bases also contain polynomials of degree r in the overdetermined and intermediate cases, but we will not compute them as experimentally, they bring no speed-up to the computation, see Section 6.1.

Proposition 2. Computing those equations amounts to solving a linear system of $m\binom{n-k-1}{r}$ equations in $\binom{n}{r}$ variables, which costs
$\operatorname{Cost}_{\text {MaxMin. }}(m, n, k, r, \omega)=O\left(m\binom{n-k-1}{r}\binom{n}{r} \min \left(m\binom{n-k-1}{r},\binom{n}{r}\right)^{\omega-2}\right)$
operations, where ω is the coefficient of linear algebra.
Proof. It is possible to view the system MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)$ projected over \mathbb{F}_{q} as a linear system of $m\binom{n-k-1}{r}$ equations, whose variables are the $\binom{n}{r}$ unknowns $x_{T}=\operatorname{det}\left(\boldsymbol{C}_{*, T}\right)$ for all $T \subset\{1 . . n\}$ of size r. The matrix associated to this linear system is a matrix \boldsymbol{M} of size $m\binom{n-k-1}{r} \times\binom{ n}{r}$ whose coefficient in row $(i, J): i \in[1 . . m], J \subset\{k+2 . . n\}, \# J=r$, and column x_{T} is

$$
\boldsymbol{M}\left[(i, J), x_{T}\right]= \begin{cases}{\left[\alpha^{i-1}\right] \operatorname{det}\left(\boldsymbol{R}_{T \cap\{1 . . k+1\}, J \backslash \beta}\right)} & \text { if } \beta=T \cap\{k+2 . . n\} \subset J_{(10)} \\ 0 & \text { otherwise } .\end{cases}
$$

A basis of the vector space generated by the equations MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)=$ 0 is given by $\tilde{\boldsymbol{M}} \cdot \boldsymbol{T}$ where $\tilde{\boldsymbol{M}}$ is the row echelon form of \boldsymbol{M} and \boldsymbol{T} is the column vector formed by the polynomials $\operatorname{det}\left(\boldsymbol{C}_{*, T}\right): \# T=r$. As we are searching for equations of degree $r-1$, we order the variables x_{T} such that the ones with $1 \in T$ that correspond to polynomials $\operatorname{det}\left(\boldsymbol{C}_{*, T}\right)$ of degree $r-1$ are the rightmost entries of the matrix.

The entries of the matrix \boldsymbol{M} come from minors of different sizes of \boldsymbol{R}. The non-zero entries in \boldsymbol{R} being chosen uniformly at random, when the number of rows is larger than the number of columns, the matrix \boldsymbol{M} should have full rank. Indeed, when $m\binom{n-k-1}{r} \geq\binom{ n}{r}$, generically the rank of \boldsymbol{M} is not $\binom{n}{r}$, but $\binom{n}{r}-1$ because the equations are homogeneous. Hence, $\tilde{\boldsymbol{M}} \cdot \boldsymbol{T}$ produces $\binom{n-1}{r}$ equations of degree r, and $\binom{n-1}{r-1}-1$ equations of degree $r-1$, that have all the shape $\operatorname{det}\left(\boldsymbol{C}_{*, T}\right)$ or $\operatorname{det}\left(\boldsymbol{C}_{*, T}\right)-\operatorname{det}\left(\boldsymbol{C}_{*, T_{0}}\right)$ where T_{0} corresponds to the free variable $x_{T_{0}}$ of the linear system, and $1 \in T, 1 \in T_{0}$.

6 Experimental results, complexity bounds, and security

6.1 Experimental results

We did various computations for different values of the parameters (m, n, k, r). We got our best complexity results by doing the following steps:

1. compute the set of equations \mathcal{F} which comes from $\left[1 \alpha \cdots \alpha^{m-1}\right] \boldsymbol{S}\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)$ specialised as in (6),
2. compute the system MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)$,
3. compute the matrix \boldsymbol{M} from $\sqrt{10}$ and its echelon form $\tilde{\boldsymbol{M}}$, let \mathcal{J} be the set of the resulting equations of degree $r-1$ in the \boldsymbol{C} variables,
4. if \mathcal{J} is empty, then let \mathcal{J} be a Gröbner basis of $\left\langle\mathcal{J}, \mathcal{F}_{q}\right\rangle$,
5. compute \boldsymbol{G} a reduced degree- d Gröbner basis of the system $\left\{\mathcal{F}, \mathcal{J}, \mathcal{F}_{q}\right\}$, where

$$
d= \begin{cases}r & \text { in the overdetermined case } \\ r \text { or } r+1 & \text { in the intermediate case } \\ r+2 & \text { in the underdetermined case }\end{cases}
$$

The computations are done using magma v2.22-2 on a machine with a Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR} 2.00 \mathrm{GHz}$ processor. In Table 1 , we list notation used in all tables.

Table 2 page 20 gives our timings on the parameters proposed in [54. For each set of parameters, the first row of the table gives the timing for the direct computation of a Gröbner basis of $\left\langle\mathcal{F}, \mathcal{F}_{q}\right\rangle$ whereas the second row gives the timings for the Gröbner basis of $\left\langle\mathcal{F}, F_{q}, J\right\rangle$. We can see that, apart for very small parameters, the computation of the equations MaxMinors $\left(\boldsymbol{C}_{2}-\boldsymbol{C}_{1} \boldsymbol{R}\right)$ is negligible compared to the time of the Gröbner basis computation.

Among the proposed parameters, only the $(15,15,8,3)$ was in the case where the system MaxMinors is underdetermined. In that case, the most consuming part of the computation is the Gröbner basis of the system MaxMinors, that depends only on the \boldsymbol{C} variables. Once this computation is done, the remaining Gröbner basis of $\left\{\mathcal{F}, F_{q}, J\right\}$ has a negligible cost.

Table 3 page 21 gives timing for different values of k and r, with $m=$ 14 and $n=18$ fixed. For $r=2$, the values $k \in\{1 . .11\}$ correspond to the overdetermined case, the value $k=12$ to the intermediate one, and $k=13$ to the underdetermined case. The values $k \in\{1 . .11\}$ behave all like $k=11$. As

Notation	value	signification
n_{S}	$(r-1)(m-r)$	the number of variables in \boldsymbol{S}, the number of variables in \boldsymbol{C}, the number of equations in \mathcal{F},
n_{C}	$r(n-1)$	
$n_{\text {eq }}$	$m(n-k-1)$	
$\overline{d: n_{s y z}}$		the number of equations in \mathcal{J}, were d denotes the degree of the equations and $n_{s y z}$ the number of them.
	$r-1:\binom{n-1}{r-1}-1$	in the overdetermined case,
	$r-1: m\binom{r-k-1}{n}$	in the intermediate case,
	$r: m\left({ }_{r}{ }_{r}\right)$	
$\overline{T_{\text {syz }}}$		time of computing the $n_{s y z}$ equations of degree $r-1$ or r in \mathcal{J},
$T_{G b s y z}$		time of the Gröbner basis computation of $\left\{\mathcal{J}, \mathcal{F}_{q}\right\}$,
$\overline{T_{G b}}$		time of the Gröbner basis computation of $\left\{\mathcal{F}, \mathcal{J}, \mathcal{F}_{q}\right\}$,
$\overline{d_{f f}}$		the degree where we observe the first fall of degree,
$d_{\text {max }}$		the maximal degree where some new polynomial is produced by the F4 algorithm,
"Max Ma	trix size"	the size of the largest matrix reduced during the F4 computation, given by magma. We did'nt take into account the useless steps (the matrices giving no new polynomials)

Table 1. Notation used in Tables 2 to 4
for the parameters from [54], the hardest cases are the ones when the system MaxMinors is underdetermined, where the maximal degree reached during the computation is $r+2$. For the overdetermined cases, the maximal degree is r, and for the intermediate cases, it may be r or $r+1$.

For $r=3$, the overdetermined cases are $k \in\{1 . .8\}, k=9$ is intermediate and $k \in\{10 . .11\}$ are underdetermined. Values of $k \geq 12$ do not allow a unique decoding for $r=3$, the Gilbert-Varshamov bound being 2 for those values.

For $r=4$ the tradeoff are $1 \leq k \leq 6, k=7$ and $8 \leq k \leq 9$ for the three cases, and for $r=5,1 \leq k \leq 5, k=6$ and $7 \leq k \leq 8$. We couldn't perform the computations for the intermediates and underdetermined cases, due to a lack of memory. We also observe that the first fall of degree $\left(d_{f f}\right)$ doesn't always predict the complexity of the computation.

Table 4 page 21 gives the timings for a fixed $r=3$, a ratio $n=2 k$ and various values of k. Again, we can observe that for defavorable cases ($k=6,7$) the maximal degree is $r+2$ or $r+1$ rather than r, making the computation harder for small values of k than for larger.

Table 2. We compare the behavior of the Gröbner basis computation for the parameters considered in 47, with and without adding to the system the equations from \mathcal{J}.

Table 3. $m=14$ and $n=18$.

| k | r | $n_{\text {syz }}$ | n_{S} | n_{C} | $n_{\text {eq }}$ | $T_{\text {Syz. }}$ | $T_{\text {Gbsyz }}$ | $T_{\text {Gb }}$ | $d_{f f}$ | $d_{\text {max }}$ | Max Matrix size |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | ---: | Mem.

Table 4. The parameters are $r=3, m=n, k=\frac{n}{2}$.

k	$n_{s y z}$	n_{S}	n_{C}	$n_{e q}$	$T_{s y z}$	$T_{G b s y z}$	$T_{G b}$	$d_{\max }$	Memory
6	$3: 120$	18	33	60	0.2 s	117 s	0.02 s	5	4.9 Go
7	$3: 280$	22	39	84	0.1 s	9.7 s	0.1 s	4	0.3 Go
8	$2: 104$	26	45	112	0.2 s		0.1 s	3	.04 Go
17	$2: 527$	62	99	544	34.3 s		4.7 s	3	0.3 Go
27	$2: 1377$	102	159	1404	650.2 s		161.3 s	3	2.7 Go
37	$2: 2627$	142	219	2664	5603.6 s		3709.4 s	3	15.0 Go
47	$2: 4277$	182	279	4324	26503.9 s		26022.6 s	3	83.0 Go

6.2 Complexity analysis and security

Now, we give an upper bound on the complexity of our algebraic approach to solve the (m, n, k, r)-decoding problem using the modelling of Section 3.3. The complexity is estimated in terms of the number of operations in \mathbb{F}_{q} that the algorithm uses. This allows us to update the number of bits of security for several cryptosystems, as showed in Table 5. Loidreau's one 48, ROLLO 7], and RQC [3].

The complexity bound follows from the fact that the Gröbner basis algorithm works with Macaulay matrices of degree δ for increasing values of δ up to d, the degree for which the Gröbner basis is found (see Section 4 for a more detailed description). At each of these steps, the algorithm performs a Gaussian elimination algorithm on a Macaulay matrix which has at most $\left(\begin{array}{c}(m-r)(r-1)+(n-1) r\end{array}\right)$ columns, which is the number of squarefree monomials of degree δ in $(m-r)(r-1)+(n-1) r$ variables, at fewer rows than columns.

In general, Gaussian elimination of a $\mu \times \nu$ matrix of rank ρ over a field has a complexity of $O\left(\rho^{\omega-2} \mu \nu\right)$ operations in that field 18153, a bound which is in $O\left(\max (\mu, \nu)^{\omega}\right)$. This constant ω is the exponent in the complexity of multiplying two matrices; we obviously have $\omega \geq 2$ and naive matrix multiplication yields $\omega \leq 3$. The best known value for ω at the time of writing is $\omega \approx 2.37$ [46], by an improvement of Coppersmith-Winograd's algorithm. In terms of practical performances, the best known method is based on Strassen's algorithm, which

Cryptosystem	Parameters (m, n, k, r)	$d=r$	$d=r+1$	Previous
Loidreau	$(128,120,80,4)$	$\mathbf{9 8 . 3}$	119.1	256
ROLLO-I-128	$(79,94,47,5)$	$\mathbf{1 1 6 . 9}$	136.5	128
ROLLO-I-192	$(89,106,53,6)$	$\mathbf{1 4 4 . 2}$	164.5	192
ROLLO-I-256	$(113,134,67,7)$	176.0	$\mathbf{1 9 7 . 3}$	256
ROLLO-II-128	$(83,298,149,5)$	$\mathbf{1 3 4 . 3}$	157.4	128
ROLLO-II-192	$(107,302,151,6)$	$\mathbf{1 6 3 . 5}$	187.0	192
ROLLO-II-256	$(127,314,157,7)$	193.6	$\mathbf{2 1 7 . 4}$	256
ROLLO-III-128	$(101,94,47,5)$	$\mathbf{1 1 9 . 1}$	139.2	128
ROLLO-III-192	$(107,118,59,6)$	$\mathbf{1 4 7 . 7}$	168.6	192
ROLLO-III-256	$(131,134,67,7)$	177.9	$\mathbf{1 9 9 . 5}$	256
RQC-I	$(97,134,67,5)$	$\mathbf{1 2 3 . 1}$	144.0	128
RQC-II	$(107,202,101,6)$	$\mathbf{1 5 6 . 2}$	178.5	192
RQC-III	$(137,262,131,7)$	190.4	$\mathbf{2 1 3 . 9}$	256

Table 5. Security (in bits) for several cryptosystems with respect to our attack, taking $\omega=2.807$ and $d=r$ or $d=r+1$. The values in bold correspond to the most realistic case, depending on whether the condition given by Eq. (1) holds. The last column corresponds to the previous security values, based on the combinatorial attack in [10].
allows one to take $\omega \approx 2.807$, and when the base field is a finite field, this exponent is indeed observed in practice for matrices with more than a few hundreds rows and columns.

The Macaulay matrices encountered in the Gröbner basis computations we consider are usually very sparse and exhibit some structure. Some Gaussian elimination algorithms have been designed specifically for matrices over \mathbb{F}_{2} [4], also for sparse matrices [15], and even to take advantage of the specific structure of Macaulay matrices (see [16]; we expect Magma's closed-source implementation of F_{4} to use similar techniques). However, despite practical speed-ups, none of these optimized algorithms has been proven to reach a complexity which is asymptotically better than the one mentioned above.

As a result, we bound the complexity of the step of degree δ in the Gröbner basis computation by that of performing Gaussian elimination on a matrix of size $\mu \leq \nu=\left(\begin{array}{c}(m-r)(r-1)+(n-1) r\end{array}\right)$. Overall, the complexity bound is the following:

$$
\begin{equation*}
O\left(\left(\sum_{\delta=0}^{d}\binom{(m-r)(r-1)+(n-1) r}{\delta}\right)^{\omega}\right) . \tag{11}
\end{equation*}
$$

Let us now focus on the case $m=n=2 k$ and $r \approx \sqrt{n}$. Then the complexity of our approach is as in Eq. (11) with $d=r$. Using a similar analysis, the approach based on Kipnis-Shamir's modelling has a complexity of

$$
O\left(\left(\sum_{\delta=0}^{r+2}\binom{k m+r(n-r)}{\delta}\right)\right)^{\omega}
$$

operations. In the former complexity the dominant term is of the order of $2^{\frac{3}{2} \omega r \log _{2}(n)}$, while in the Kipnis-Shamir complexity it is of the order of $2^{2 \omega r \log _{2}(n)}$.

Moreover, 2 was added to all entries in Table 5 , due to the expected number of attempts to find a solution which is at most 4 ; we explain this point below. In Section 3.3, we presented the modelling we use, and introduced some assumptions under which it will indeed yield the sought solution $\lambda \boldsymbol{e}$. It remains to explain how to proceed in the case where we do not get such a solution, that is, when the assumptions were not valid. We use notation from Section 3.3 and we start from the system given by Eq. (5) with the first column of \boldsymbol{S} set to $\left[\begin{array}{lll}1 & \cdots & 0\end{array}\right]^{\top}$. Then we use Algorithm 1 in order to specialize more variables: this algorithm first makes an attempt with the specialization detailed in Section 3.3, and if that one fails, follow on with other similar attempts until a solution is found. This algorithm assumes $m \gg 4 r$ and uses the subroutine $\operatorname{Solve}(\boldsymbol{S}, \boldsymbol{C}, \boldsymbol{R})$, which augments the system as explained in Section 5 and returns a solution to Eq. (5) if one is found and \emptyset otherwise.

```
Input: Matrix \(\boldsymbol{R}\)
Output: A solution to the system in Eq. (5)
nb_attempts \(=0\);
col_index \(=0\);
solution \(=\emptyset\);
\(\boldsymbol{S}=m \times r\) matrix of variables ;
\(\boldsymbol{C}=r \times n\) matrix of variables ;
Set the first column and the first row of \(\boldsymbol{S}\) to \(\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]\);
while solution \(==\emptyset\) do
    identity_index \(=0\);
    col_index = col_index +1 ;
    Set the col_index-th column of \(\boldsymbol{C}\) to \(\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]^{\top}\);
    while identity_index \(<4\) and solution \(==\emptyset\) do
                Set the \((r-1) \times(r-1)\) block in \(\boldsymbol{S}\) starting at the
                    position \((2+\) identity_index \(\cdot(r-1), 2)\) to \(\boldsymbol{I}_{r-1}\);
            solution \(=\operatorname{Solve}(\boldsymbol{S}, \boldsymbol{C}, \boldsymbol{R})\);
            identity_index \(=\) identity_index +1 ;
            nb_attempts \(=\) nb_attempts +1 ;
        end
end
return solution ;
```

Algorithm 1: (m, n, k, r)-Decoding

In the next proposition, we call number of attempts the number of times that the previous algorithm calls the Solve procedure.

Proposition 3. For a (m, n, k, r)-rank decoding instance, Algorithm 1 returns a solution to the system in Eq. (5) after an expected number of attempts bounded from above by 4.

Proof. By Lemma 2 in Appendix, if the first coordinate e_{1} of \boldsymbol{e} is nonzero, the expected number of attempts to find an invertible $(r-1) \times(r-1)$ block in \boldsymbol{S} is bounded from above by

$$
\prod_{i=1}^{r-1} \frac{1-q^{i-m}}{1-q^{i-r}}
$$

To take into account the fact that one needs to find a nonzero component in \boldsymbol{e}, one can bound from above the expected total number of attempts by

$$
\left\lceil\frac{q^{r}}{q^{r}-1} \prod_{i=1}^{r-1} \frac{1-q^{i-m}}{1-q^{i-r}}\right\rceil
$$

which is always smaller or equal to 4 as long as $1<r<m$ and $q \geq 2$.

7 Conclusion

In this paper we introduce a new approach for solving the Rank Metric Decoding problem with Gröbner basis techniques. Our approach is based on adding partial syzygies to a newer version of a modelling due to Ourivski and Johansson.

Overall our analysis shows that our attack, for which we give a general estimation, clearly outperforms all previous attacks in rank metric for a classical (non quantum) attacker. In particular we obtain an attack below the claimed security level for all rank-based schemes proposed to the NIST Post-Quantum Cryptography Standardization Process.

Although our attack really improves on previous attacks for rank metric, it meanwhile suffers from two limitations. First these attacks do not benefit from a direct Grover quantum speed-up, unlike combinatorial attacks. For the NIST parameters, the best quantum attacks remain quantum attacks based on combinatorial attacks, because of the Grover speed-up. Second, these attacks need an important amount of memory for large parameters.

Acknowledgements

This work was supported by the ANR CBCRYPT project, grant ANR-17-CE390007 of the French Agence Nationale de la Recherche, and the MOUSTIC project with the support from the European Regional Development Fund (ERDF) and the Regional Council of Normandie.

References

1. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Zémor, G.: Ouroboros-R. First round submission to the NIST post-quantum cryptography call (Nov 2017), https://pqc-ouroborosr. org
2. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Rank quasi cyclic (RQC). First round submission to the NIST post-quantum cryptography call (Nov 2017), https://pqc-rqc.org
3. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G., Couvreur, A., Hauteville, A.: Rank quasi cyclic (RQC). Second round submission to the NIST post-quantum cryptography call (Apr 2019), https://pqc-rqc.org
4. Albrecht, M., Bard, G.: The M4RI Library - Version 20140914. The M4RI Team (2014), http://m4ri.sagemath.org
5. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta, O., Tillich, J.P., Zémor, G.: LAKE - Low rAnk parity check codes Key Exchange. First round submission to the NIST post-quantum cryptography call (Nov 2017), https://csrc.nist.gov/CSRC/media/Projects/ Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.zip
6. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta, O., Tillich, J.P., Zémor, G.: LOCKER - LOw rank parity ChecK codes EncRyption. First round submission to the NIST post-quantum cryptography call (Nov 2017), https://csrc.nist.gov/CSRC/media/Projects/ Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.zip
7. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta, O., Tillich, J.P., Zémor, G., Aguilar Melchor, C., Bettaieb, S., Bidoux, L., Magali, B., Otmani, A.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call (Mar 2019), https: //pqc-rollo.org
8. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank metric based signature scheme. In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. LNCS, vol. 11478, pp. 728-758. Springer (2019). https://doi.org/10.1007/978-3-030-17659-4_25, https://doi.org/10.1007/978-3-030-17659-4_25
9. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Ranksign a signature proposal for the NIST's call. First round submission to the NIST post-quantum cryptography call (Nov 2017), https://csrc.nist.gov/CSRC/ media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/ RankSign.zip
10. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving the rank syndrome decoding problem. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018. pp. 2421-2425. IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437464
11. Ars, G., Faugère, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between XL and Gröbner basis algorithms. In: ASIACRYPT (2004)
12. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Ph.D. thesis, Université Paris VI (Dec 2004), http://tel.archives-ouvertes.fr/tel-00449609/en/
13. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of the F_{5} Gröbner basis algorithm. J. Symbolic Comput. 70, 49-70 (2015)
14. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic expansion of the degree of regularity for semi-regular systems of equations. In: MEGA'05 - Effective Methods in Algebraic Geometry. pp. 1-14 (2005)
15. Bouillaguet, C., Delaplace, C.: Sparse Gaussian elimination modulo p: An update. In: Proceedings CASC 2016 - Computer Algebra in Scientific Computing. pp. 101116. Springer International Publishing (2016)
16. Boyer, B., Eder, C., Faugère, J., Lachartre, S., Martani, F.: GBLA: Gröbner basis linear algebra package. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. pp. 135-142 (2016). https://doi.org/10.1145/2930889.2930914
17. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universitat Innsbruck (1965)
18. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation 28(125), 231-236 (1974)
19. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of linear algebra. J. Comput. System Sci. 58(3), 572-596 (Jun 1999)
20. Cabarcas, D., Smith-Tone, D., Verbel, J.: Key recovery attack for ZHFE. In: Post-Quantum Cryptography 2017. LNCS, vol. 10346, pp. 289-308. Utrecht, The Netherlands (Jun 2017). https://doi.org/10.1007/978-3-319-59879-6_17, https: //doi.org/10.1007/978-3-319-59879-6_17
21. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) Advances in Cryptology - EUROCRYPT 2000. pp. 392-407. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)
22. Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, Springer-Verlag, New York. (2001)
23. Debris-Alazard, T., Tillich, J.P.: Two attacks on rank metric code-based schemes: Ranksign and an identity-based-encryption scheme. In: Advances in Cryptology ASIACRYPT 2018. pp. 62-92. LNCS, Springer, Brisbane, Australia (Dec 2018)
24. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Advances in Cryptology - CRYPTO (2011)
25. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. Cryptology ePrint Archive, Report 2011/570 (2011), http://eprint.iacr.org/2011/570, https://eprint.iacr.org/ 2011/570
26. Ding, J., Schmidt, D.: Solving degree and degree of regularity for polynomial systems over a finite fields. In: Number Theory and Cryptography - Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birthday. LNCS, vol. 8260, pp. 34-49. Springer (2013). https://doi.org/10.1007/978-3-642-420016_4, https://doi.org/10.1007/978-3-642-42001-6_4
27. Ding, J., Yang, B.Y.: Degree of regularity for HFEv and HFEv-. In: Post-Quantum Cryptography 2013. pp. 52-66. Limoges, France (Jun 2013). https://doi.org/10.1007/978-3-642-38616-9_4 https://doi.org/10.1007/ 978-3-642-38616-9_4
28. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Advances in Cryptology - ASIACRYPT 2010. LNCS, vol. 6477, pp. 557-576. Springer, Singapore (Dec 2010). https://doi.org/10.1007/978-3-642-17373-8_32, https://doi.org/ 10.1007/978-3-642-17373-8_32
29. Eder, C., Faugre, J.C.: A survey on signature-based algorithms for computing grbner bases. Journal of Symbolic Computation 80, 719 - 784 (2017). https://doi.org/https://doi.org/10.1016/j.jsc.2016.07.031, http://www. sciencedirect.com/science/article/pii/S0747717116300785
30. Faugère, J.C.: A new efficient algorithm for computing gröbner bases (F4). J. Pure Appl. Algebra 139(1-3), 61-88 (1999)
31. Faugère, J.C.: A new efficient algorithm for computing gröbner bases without reduction to zero: F5. In: Proceedings ISSAC'02. pp. 75-83. ACM press (2002)
32. Faugère, J.C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of Minrank. In: Wagner, D. (ed.) Advances in Cryptology - CRYPTO 2008. LNCS, vol. 5157, pp. 280-296 (2008)
33. Faugère, J., Safey El Din, M., Spaenlehauer, P.: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology. In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, July 25-28, 2010. pp. 257-264 (2010). https://doi.org/10.1145/1837934.1837984
34. Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J.: Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity. J. Symbolic Comput. 46(4), 406-437 (2011)
35. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3-16 (1985)
36. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a noncommutative ring and their applications to cryptography. In: Advances in Cryptology - EUROCRYPT'91. pp. 482-489. No. 547 in LNCS, Brighton (Apr 1991)
37. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC'2013. Bergen, Norway (2013), www.selmer.uib.no/WCC2013/ pdfs/Gaborit.pdf
38. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Information Theory 62(2), 1006-1019 (2016)
39. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptography. In: Progress in Cryptology - AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1-12 (2014)
40. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: Ranksign: An efficient signature algorithm based on the rank metric (extended version on arxiv). In: Post-Quantum Cryptography 2014. LNCS, vol. 8772, pp. 88-107. Springer (2014), https://arxiv. org/pdf/1606.00629.pdf
41. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Information Theory 62(12), 7245-7252 (2016)
42. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Advances in Cryptology - CRYPTO 2006. LNCS, vol. 4117, pp. 345-356. Springer, Santa Barbara, California, USA (Aug 2006). https://doi.org/10.1007/11818175_20, https://doi.org/10.1007/11818175_20
43. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J. (ed.) Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings. LNCS, vol. 1423, pp. 267-288. Springer (1998)
44. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Advances in Cryptology - CRYPTO'99. LNCS, vol. 1666, pp. 19-30. Springer, Santa Barbara, California, USA (Aug 1999). https://doi.org/10.1007/3-540-48405-1
45. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: Computer algebra. LNCS, vol. 162, pp. 146-156. Springer, Berlin (1983), proceedings Eurocal'83, London, 1983
46. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings ISSAC'14. pp. 296-303. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2608628.2608664. http://doi.acm.org/10.1145/2608628. 2608664
47. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. Talk at the Special Semester on Gröbner Bases - Workshop D1 pp. 1-19 (2006), https: //ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf
48. Loidreau, P.: A new rank metric codes based encryption scheme. In: Post-Quantum Cryptography 2017. LNCS, vol. 10346, pp. 3-17. Springer (2017)
49. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New McEliece variants from moderate density parity-check codes (2012), http://eprint. iacr.org/2012/409
50. Otmani, A., Talé-Kalachi, H., Ndjeya, S.: Improved cryptanalysis of rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 19831996 (2018). https://doi.org/10.1007/s10623-017-0434-5 https://doi.org/10.1007/ s10623-017-0434-5
51. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission 38(3), 237-246 (2002). https://doi.org/10.1023/A:1020369320078
52. Overbeck, R.: A new structural attack for GPT and variants. In: Mycrypt. LNCS, vol. 3715, pp. 50-63 (2005)
53. Storjohann, A.: Algorithms for Matrix Canonical Forms. Ph.D. thesis, Swiss Federal Institute of Technology - ETH (2000)
54. Lévy-dit Vehel, F., Perret, L.: Algebraic decoding of codes in rank metric (Jun 2006), communication at YACC06, Porquerolles, France
55. Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D.: On the complexity of "superdetermined" Minrank instances. In: Post-Quantum Cryptography 2019. LNCS, vol. 11505, pp. 167-186. Springer, Chongqing, China (May 2019). https://doi.org/10.1007/978-3-030-25510-7_10, https://doi.org/10. 1007/978-3-030-25510-7_10

Appendix: Proof of Proposition 3

Let n, m, k, r, l be positive integers such that n and m are both greater than r and l smaller than $\left\lfloor\frac{m-1}{r}\right\rfloor$. Let E be a vector space of $\mathbb{F}_{q^{m}}$ of dimension r spanned by $\left\{E_{1}, E_{2}, \ldots, E_{r}\right\}$, let e be a vector of length n whose components are elements of E and such that its first component e_{1} is non-zero and let $\lambda=e_{1}^{-1}$. Now, we focus on the vector space $\lambda E=\left\langle\lambda E_{1}, \lambda E_{2}, \ldots, \lambda E_{r}\right\rangle$. Given a basis $\left(1, \alpha, \ldots, \alpha^{m-1}\right)$ of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}, one can write a basis of λE as a matrix \boldsymbol{S} in $\mathbb{F}_{q}^{m \times r}$. By construction, 1 is in λE, so we can fix the first column and the first row of \boldsymbol{S} to the vectors $\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]^{\top}$ and $\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$ with respective length m and r. The remaining $(m-1) \times(r-1)$ part of S is named $\widehat{\boldsymbol{S}}$. We want to find an $(r-1) \times(r-1)$ non-singular block in $\widehat{\boldsymbol{S}}$, starting by the top-first one. Then, if the first one is singular, one considers the next block, i.e. the block starting at the r-th row, and so on until one reaches at most the l-th block. One wants to count those attempts, this is the topic of the following lemma.

Lemma 2. With the same notation and hypotheses as above, if E and e are chosen at random, then the expected number of attempts one needs to find an invertible $(r-1) \times(r-1)$ block in $\widehat{\boldsymbol{S}}$ is bounded from above by

$$
\prod_{i=1}^{r-1} \frac{1-q^{i-m}}{1-q^{i-r}}
$$

Proof. As E and e are chosen at random, the vector space λE will be uniformally distributed among all the vector spaces in $\mathbb{F}_{q^{m}}$ of dimension r which contains 1. By construction, $\widehat{\boldsymbol{S}}$ will be a $(m-1) \times(r-1)$ matrix of full rank, so the probability for its first $(r-1) \times(r-1)$ block to be invertible is given by

$$
\frac{\left(\prod_{i=1}^{r-1}\left(q^{r-1}-q^{i-1}\right)\right) q^{(r-1)(m-r)}}{\prod_{i=1}^{r-1}\left(q^{m-1}-q^{i-1}\right)}=\prod_{i=1}^{r-1} \frac{1-q^{i-r}}{1-q^{i-m}}:=p_{i n v}
$$

which is the ratio between the amount of $(m-1) \times(r-1)$ matrice with an invertible first $(r-1) \times(r-1)$ block and the amount of full-ranked $(m-1) \times(r-1)$ matrices.

For k in $\{1, \ldots, l\}$, the probability to succeed in finding an invertible $(r-$ 1) $\times(r-1)$ block in $\widehat{\boldsymbol{S}}$ at the k-th attempt, i.e. after $k-1$ failed attempts, is given by

$$
\frac{\left(q^{(r-1)^{2}}-\prod_{i=1}^{r-1}\left(q^{r-1}-q^{i-1}\right)\right)^{k-1}\left(\prod_{i=1}^{r-1}\left(q^{r-1}-q^{i-1}\right)\right) q^{(r-1)(m-1-k(r-1))}}{\prod_{i=1}^{r-1}\left(q^{m-1}-q^{i-1}\right)}:=p_{\text {real }}
$$

If all the attempts were independent, the probability to find a solution at the k-th attempt would be

$$
\left(1-p_{i n v}\right)^{k-1} p_{i n v}:=p_{\text {indep }}
$$

Even if it is clearly not the case, the important fact is that for all k in $\{1, \ldots, l\}$, $p_{\text {real }} \geq p_{\text {indep }}$.

This fact enables one to over-estimate the expected number of attempts that will be required to find a non-singular block by considering it as the expected value of a geometric distribution of parameter $p_{i n v}$, i.e.

$$
\frac{1}{p_{i n v}}=\prod_{i=1}^{r-1} \frac{1-q^{i-m}}{1-q^{i-r}}
$$

