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ABSTRACT 

 

In using Modeling and Simulation for the system Verification & Validation activities, often the 

difficulty is finding and implementing consistent abstractions to model the system being simulated 

with respect to the simulation requirements. A proposition for the unified design and 

implementation of modeling abstractions consistent with the simulation objectives based on the 

computer science, control and system engineering concepts is presented. It addresses two 

fundamental problems of fidelity in simulation, namely, for a given system specification and some 

properties of interest, how to extract modeling abstractions to define a simulation product 

architecture and how far does the behaviour of the simulation model represents the system 

specification. A general notion of this simulation fidelity, both architectural and behavioural, in 

system verification and validation is explained in the established notions of the experimental frame 

and discussed in the context of modeling abstractions and inclusion relations. A semi-formal 

ontology based domain model approach to build and define the simulation product architecture is 

proposed with a real industrial scale study. A formal approach based on game theoretic quantitative 

system refinement notions is proposed for different class of system and simulation models with a 

prototype tool development and case studies. Challenges in research and implementation of this 

formal and semi-formal fidelity framework especially in an industrial context are discussed. 



 

  



 

THESIS ROADMAP 

 

A brief roadmap of how to read this thesis according to the reader’s need is presented in this section. 

Broadly, our unified approach to the problem of fidelity of simulation models consists of two axes 

of research, namely, semi-formal axis based on domain model approach using ontologies and 

formal axis based on theory of formal verification, game theory and control. Though these two 

approaches are complimentary to each other in developing a simulation product with sufficient 

fidelity, in principle they can be read independent of the other. Similarly, within an approach, there 

are subsections which are at times could be considered independent according to the reader’s need. 

In order to facilitate this and to provide a coherent vision on our approach which attempts to deal 

with various facets of the fidelity problem, a road map of thesis is presented from the perspective 

of a reader’s need. For example, a reader might choose a different approach to overcome fidelity 

issues at the architectural level but might still choose to consider the behavioural approach 

presented in this thesis and vice versa.  
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CHAPTER  I 

INTRODUCTION 

Verification and Validation (V&V) activities are carried out to determine the compliance of a 

system, also called as System Under Test (SUT), with their specifications and fitness for their 

intended use respectively. Such V&V activities are usually illustrated in the classical V cycle as 

seen in figure 1 [Airbus] and this cycle can be broadly classified into two parts. The left branch of 

the cycle corresponds to design V&V where the SUT is virtual i.e. under construction and the right 

branch corresponds to product V&V where the SUT is physical i.e. built. 

 

 

Figure 1: System V cycle, [Airbus] 

In the V&V of complex engineering systems, the SUT is integrated with the other systems 

called environmental systems to perform some test cases and evaluate its behaviour against some 

user defined criteria such as performance, robustness etc. However, due to realistic limitations such 

as safety, cost, risk, and availability of systems this is seldom possible and these environmental 

systems are usually replaced by their representations i.e. models. Thus it becomes necessary to 

develop reasonable abstractions i.e. models of such environmental systems such that the resulting 

V&V activity yields same conclusions such as the ones carried out with real systems. This ability 

of models to replace systems by faithfully reproducing their behaviour is called simulation fidelity 

or simply ‘fidelity’ and it has been widely discussed in literature [Gross,1999], [Kim,2004], 

[Sancandi,2011], [Roza,2004]. 

 

1. MOTIVATION  

Modeling and Simulation (M&S), in general, are analysis and decision means to assess 

performances, functionalities and operations of a system of interest [Brade,2004]. M&S is being 

increasingly used in product life cycle development in general and V&V activities in particular. It 

is used in both phases of the V cycle illustrated in figure 1, to perform V&V of the specification 

and the design of the SUT in the design verification phase, and of the integrated configuration and 

the SUT operational environment in extreme conditions, such as failure, in the product verification 

phase. 
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The pervasive beneficial impact of M&S is especially relevant in high technology industries 

such as aerospace where simulation can add value addition to the whole product development 

chain. At the Airbus Operations SAS of the Airbus Group, hitherto referred simply as Airbus, there 

is an ever-increasing tendency to use M&S during the aircraft life cycle with an ultimate objective 

of using Virtual Testing (VT) as a means of certification. Virtual testing can be defined as a method 

of testing based on the usage of simulation instead of physical test and on the usage of modeling 

of the physical article, instead of the physical article [CRESCENDO,2009]. A natural and logical 

evolution to the widespread use of M&S during the development of new aircraft, is to extend this 

VT as an acceptable Means Of Compliance (MOC) for certification. However, this necessitates the 

demonstration of the adequacy of M&S process in representing the reality. Thus the effectiveness 

of simulation in reproducing the reality i.e. fidelity needs to be evaluated apriori to base design 

choices or certification decisions of systems on simulation results. 

In a classical industrial environment, a system and its representations i.e. simulation models 

are often developed by different stakeholders with different objectives. These SUTs, along with 

other systems or their models, are then tested at different V&V scenarios by a test team. System 

designers, who design and develop systems, are often domain experts but do not necessarily have 

a multi-system end user perspective. On the other hand, testers or the simulation users are not 

domain experts but know the context under which a SUT will be used. Then, the challenge for the 

model developer, who is usually in between these two stakeholders, is how to develop models of 

the systems called simulation model in the context of system V&V. In using M&S as a means for 

such system V&V, the model developer needs to find and implement abstractions of the system 

being simulated with respect to the simulation requirements. However, this is often a challenging 

task since this fidelity requirement is seldom expressed even if the context of use is well known 

and often it is overlooked. In addition, as the systems are getting more complex so do the M&S 

activities. Even with the advent of powerful computing resources, the sheer complexity of 

phenomena to be modeled in addition to non-technical factors such as lack of rigorous and 

standardized process makes M&S activities challenging.  There is also neither an agreed standard 

to define or measure this complexity of model, nor a methodology for model developer to choose 

it [Brooks,1996]. This motivates an important question of how to ensure adequate level of fidelity 

between a system and its simulation with respect to its V&V objectives all along the product 

development cycle? In order to answer to this question, it is important to study the current ‘as-is’ 

M&S process which is briefly presented in the following section. 

1.1 MEASURED FIDELITY APPROACH 

The current practices with regard to simulation fidelity in general, and Airbus in particular, is 

the conventional bottom up approach process. In this process, a simulation model is developed 

independent of the context under which it will be used and the fidelity is only measured post priori 

the experiment i.e. simulation. This approach, also called as the measured fidelity approach, either 

results in over fidelity i.e. too many unnecessary details in the model for the scenario being tested 

or under fidelity i.e. too little details resulting in costly rework and thereby increasing the cost and 

time of the overall system V&V process. In addition, this approach necessitates the knowledge of 

executability of the V&V plan on the means of simulation and the confidence of the results. 

However, these fidelity requirements (expected capabilities, tolerances etc.) are not explicitly 

represented in the system V&V plan and fidelity assessment is relied upon by traditional but 

arduous method based on expert review, heuristics and past experience.  
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This approach is illustrated in the figure 1.1 below and it can be seen that the simulation 

operation domain i.e. V&V plan and SUT is not taken into account in the simulation design domain 

i.e. simulation specification and fidelity is only measured at the end with respect to the real system’s 

behaviour. Such an approach of measuring the simulation fidelity at the end is called measured 

fidelity [Ponnusamy,2014].  

 

 

Figure 1.1: Measured Fidelity Approach 

The problems of fidelity could be mitigated by explicitly taking into account the context of 

usage i.e. simulation operation domain into the simulation specification i.e. simulation design 

domain and this ‘designed fidelity’ approach is briefly discussed in the next section. A brief 

overview of the various challenges in the measured fidelity approach is further elaborated in section 

2.2 in the context of the need for a designed fidelity approach. 

1.2 DESIGNED FIDELITY APPROACH 

A paradigm shift to a design fidelity approach [Ponnusamy,2014] where the modeling process is 

driven by the associated fidelity and validity requirements motivates the following questions.  

1. How to assess the distance between a system and its simulation in general and with respect to 

its V&V objectives in particular? 

2. Regarding the V&V objectives, what are the fidelity requirements on the means of simulation? 

3. How to develop simulation models with respect to fidelity requirements? 

4. How to develop a consistent approach to evaluate fidelity of simulation models along the 

product development chain? 

It may be seen that realization of such an approach will help improve the level of confidence 

in the simulation results for system V&V and help better utilization of simulation resources by 

selecting the best resource according to test objectives. Identification of such a consistent and 

continuous way to improve simulation products will help improving product life cycle quality 

while controlling their cost and mitigating risk. However, this designed fidelity approach, which is 
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essentially the distance between the system specification and the simulation specification in figure 

1.1, entails the following challenges which are broadly classified into three categories, namely, 

1.  Capture fidelity        : How to capture the fidelity needs from the end user? 

2.  Manage fidelity     : How to build the simulation specification according to the captured 

needs and the current system knowledge i.e. system specification? 

3.  Implement fidelity : How to ensure a consistent implementation? 

The challenges are illustrated on the overall simulation product development process in the figure 

1.2. 

 

 

Figure 1.2: Fidelity Challenges 

It may be noted that the critical challenge is on the capture and manage fidelity aspects since 

implement fidelity is arguably a verification i.e. correctness problem. In addition, the inclusion of 

simulation objectives into the simulation design domain with respect to the system being modeled 

i.e. system specification could also be seen. In this context, let us introduce our thesis objectives in 

the next section. 

 

2. OBJECTIVES 

The objective in the context of designed fidelity approach in capturing and managing fidelity is 

briefly given as follows,  

- Define a method to capture the fidelity needs of simulations intended to be used for the V&V of 

avionic systems (subclass of cyber physic systems) from design phase to final product.  

- Propose a method to monitor the required fidelity level through the assessment of the validity 

of a simulation. 
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2.1 SCOPE OF STUDY 

The scope of the study has been limited to the design and product V&V of avionic systems through 

simulation. The study is focused on capturing fidelity requirements and implementing it through 

different modeling abstractions for such systems. The fidelity resulting from implementation 

aspects such as model of computation, hardware or software or model output perception such as 

visual displays has not been studied.  

In addition, in the industrial context, V&V processes are only applicable to technical product 

requirements i.e. requirements having a direct impact on the fit, form or function of the product. 

The V&V of process or program requirements are covered by process assurance and project 

management activities respectively and are thus outside the scope of the current study.  

In the following sections, the key objective of the study in capturing and managing fidelity 

[Ponnusamy,2015] is briefly discussed. 

2.2 CAPTURING & MANAGING FIDELITY: NEED FOR A UNIFIED APPROACH 

In a top down approach to M&S, owing to the fact that most of the models are rigorously verified 

but seldom validated, the onus must be on inclusion of validity objectives a priori in model building 

process as discussed in section 1.2. In this context, the first logical step would be to capture the 

fidelity aspects from the perspectives of simulation user or test team (simulation operation domain) 

and system designer (system design domain) i.e. fidelity requirements and fidelity capabilities 

respectively, to build a simulation specification (simulation design domain) with adequate fidelity. 

Fidelity requirements, according to Roza in [Roza,1999], is a formal description of the level of 

realism a model or simulation must display in order to achieve or to fulfill the needs and objectives 

of the user of the model or simulation. Similarly, the design decisions employed by the system 

designer to build the system specifications have to be considered which gives a measure of 

available fidelity i.e. capability. Once the fidelity is captured in terms of its requirements, the next 

step is to manage or assess this requirements vis à vis the capabilities via abstractions and the 

inclusion relations introduced in section 3.4 of chapter II between them. In this top down approach, 

simulation developer has to take design decisions as to what are the possible abstractions of the 

system specification with respect to the fidelity requirement? However, as remarked in 

[Brooks,1996], there exists no agreed standard or a guideline to choose this level of model 

complexity owing to the innate nature of problem in quantifying this complexity i.e. abstraction 

level vis à vis requirements. 

This capture of requirements and development of models for cyber physical systems resulting 

from the confluence of control, communication and computing paradigms [Clark,2013] is an active 

research area as such systems are becoming ubiquitous especially in transportation domain such as 

in avionic systems. In V&V of such systems, there is a problem of heterogeneity due to different 

modeling formalisms used by different stakeholders leading to interoperability issues particularly 

during the model integration phase. In addition, the complexity of the process is higher, especially 

in an industrial context of simulation product development the modeling phase involves 

requirement collection, conceptual modeling, model formulation, model construction, assembly 

and deployment on the platform. Then the simulation phase involves experimentation according to 

V&V plan, data collection, analysis and conclusion. All such activities involve multiple levels of 

abstraction, stakeholders, formalisms and tools. In particular, the system specification (system 
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design domain) and/or simulation requirements (simulation operation domain) are not only at 

different levels of abstraction (design vs operational) but may also be expressed formally (e.g.: 

models), informally (e.g.: text) or a combination of both. Such complexities give raise to two key 

challenges for the model developer, namely, how to define requirements, called as Model 

Requirements (MR), from informal system specification and scenario description? and how to 

rigourously specify model behaviour based on this MR? A single approach to tackle this 

complexity is neither feasible nor practical and a rigorous multi modal system engineering 

approach is needed.  

In this model based approach, effectiveness largely depends on the degree to which design 

concerns captured in the different abstraction layers by different stakeholders are orthogonal, i.e. 

how much the design decisions in the different layers are independent [Clark,2013]. Such a multi 

modal or multi view modeling approach has been widely discussed in terms of reasoning, 

functional modeling, qualitative modeling and visuo-spatial reasoning etc. [Fishwick,1993]. 

However, such studies are discussed mostly in modeling perspective and the problem of fidelity is 

not explicitly addressed. The unified approach presented in this thesis attempts to leverage the 

flexibility of semi-formal approaches and rigor of formal approaches to address the problems of 

complexity in the designed fidelity approach [Ponnusamy,2014]. In particular, the semi-formal 

approach concerns the system design and simulation requirements expressed in an informal context 

such as natural language texts whereas the formal approach concerns the same knowledge 

expressed through behavioural models. In reality, a model developer has to deal with both the 

formal and informal system design and simulation requirements to build a simulation model and it 

is important to provide the practicing model developer a perspective and mechanism to build these 

models with adequate fidelity.  The two perspectives are necessarily based on the level of 

abstraction in the M&S process, i.e. capture and manage fidelity, both informally (qualitatively) 

and formally (quantitatively). These two perspectives are briefly presented in the following 

sections. 

2.2.1 Semi-formal Perspective 

The semi-formal perspective addresses the first or top level challenge of how to define MR from 

informal system specification and scenario description? It essentially concerns only the structure 

of the dynamics which is usually expressed informally in natural language texts, and not their 

quantifiable effect. In other words, semi-formal perspective deals with the different levels of 

abstraction resulting in a structure of the system dynamics or dynamics itself albeit at higher 

abstraction level. This top level perspective to M&S is equally important in understanding and 

explaining complex systems, as the current languages of systems engineering are usually informal 

(text and pictures) but seldom formal or even semi-formal (rigorous domain-specific languages).  

In system engineering, especially in an industrial context, it is known that each component 

systems are developed by different multidisciplinary teams often working transversely and 

transnationally. These component systems usually interact with each other to perform, for example, 

a Multi System Function (MSF) in an integrated system. In the M&S of such complex systems, 

one of the key challenges is the lack of common understanding between the stakeholders, semantic 

inconsistency, and interoperability [Benjamin,2009]. For example, ‘calculate and display aircraft 

position’ function is performed by Global Positioning System (GPS) and inertial data system which 

are communicated to Cockpit Display System (CDS) to inform the pilot. However, from this 
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informal textual description, identification of the functional contribution of each such system to 

MSF, its composition, interaction etc. could be difficult and this equally true for identification of 

other perspectives on the system.   

The designed fidelity approach, introduced in section 1.2, necessitates collection of such 

knowledge about the system to be modeled and scenarios under which it will be operated 

respectively. This is then used to build the Model Requirements (MR) incorporating only the 

essential elements needed for the test which will then be used to develop a Model Specification 

(MS). However, owing to the complexity of different domains of knowledge involved which are 

often implicit and incomplete, it is a tedious task to define this MR manually. This is compounded 

due to the lack of a consistent derivation of low level V&V requirements from high level V&V 

objectives. The requirements traceability between these two domains is seldom one-to-one and the 

inclusions of low level requirements in the high level requirements are traditionally managed by 

heuristics, domain expertise, margins and experience. In addition to this lack of standardization 

and incompleteness of the domain knowledge, there exists no standard method to exploit or reuse 

its contents. This is usually done manually through stakeholder expertise and document review 

which is not only cumbersome but also time consuming and often redundant. These challenges in 

simulation model development necessitate a Model Based System Engineering (MBSE) approach 

which enables a common understanding by making domain assumptions explicit and separate 

domain knowledge from the operational knowledge [Noy,2001]. Such a semi-formal approach 

must be flexible enough to accommodate multiple viewpoints on the system which are often 

interrelated and at the same time be rigorous enough to identify incompleteness or inconsistencies 

between them. In addition, it must be amenable for exploitation through some query mechanisms, 

archival and must be scalable with respect to the domain knowledge and user implementation 

complexity. 

2.2.2 Formal Perspective 

The semi-formal perspective has limitations in capturing the dynamics of (reactive) systems and a 

fidelity approach will only be complete if the fidelity requirements usually expressed as a distance 

notion, e.g.: tolerances over desired behaviour, are adequately captured in modeling. The formal 

perspective, thus addresses second or low level question of how to rigourously specify a model’s 

behaviour with respect to the system it represents? In general, in a classical or even a MBSE 

modeling approach, as remarked by Cowder et al [Cowder,2003], most of the design activities, 

around 90% in some cases, are based on the variants of the existing designs. This is true in V&V 

activities too where existing models are often reused to build a more complex but variant models 

of environmental systems of the SUT. In certain cases, models of such systems called design 

models might be available but could not be used due to practical constraints on resources, platform 

limitations and compositional complexity. However, as remarked in section 1.1, such models are 

developed independent of their end-use fidelity requirements with no formally i.e. mathematically 

rigorous, guaranteed bounds on their behaviours especially after composition, resulting in 

behavioural fidelity issues only to be discovered at the later stages. In addition, with current ad-

hoc methods of model development, a model is developed as ‘fidle’ as possible i.e. as detailed as 

possible hoping it would cater to as many test scenarios as possible during the V&V activity. This 

is clearly a sub-optimal process especially in the context of changing specifications and scenarios. 

On the other hand, questions on a model’s fidelity for a scenario different from the one for which 
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the model is originally developed for are neither answered formally nor apriori to the actual 

simulation.  

In order to mitigate such problems, a component based approach is needed which quantifies 

fidelity of simulation model component’s behaviour with respect to all the system’s behaviour, 

both globally and with respect to the V&V objectives. In addition, in such an approach a 

composition with other models should not result in a compositional complexity i.e. assuming 

fidelity distance of components M1 and M2 be ε1 and ε2 respectively with respect to their system 

specifications, when they are composed to form a third component, M1⨁ M2 = M3, then the fidelity 

of this resulting component, ε3 must be bounded, ε3 ≤ ε1 + ε2 [Tripakis,2016]. This behavioural 

fidelity perspective implies that there must be formal i.e. mathematically rigorous way to quantify 

the simulation model with respect to the system being modeled.  

Formal Methods are descriptive notations and analytical methods used to construct, develop 

and reason about mathematical models of system behaviour. A formal method is a formal analysis 

carried out on a formal model, a model defined using a formal notation [Tiwari,2003]. A formal 

notation is a notation having a precise, unambiguous, mathematically defined syntax and 

semantics. Formal method uses mathematical reasoning to guarantee that properties are always 

satisfied by a formal model. There are various techniques available such as deductive techniques 

(theorem proving) [Duffy,1991], model checking [Clarke,2000], and abstract interpretation 

[Cousot,1992]. Since formal methods possess sound mathematical basis, a false assertion is not 

possible. In general, a formal verification approach intends to prove that the system satisfies (or 

not) a given property and this verification problem could be formalized as a reachability analysis 

problem in a finite labeled transition system which includes the problems of proving safety, 

liveness etc. [Vardi,2009]. This is a method to show that the system defined by a computational 

model such as automata, satisfies the desired properties, i.e. all the behaviours generated by the 

system are those accepted by the specification defined by a specification language such as temporal 

logic [Pnueli,1977]. Though fidelity per se does not intend to (dis)prove a property but only is a 

measure of closeness to system being modeled, the principles of formal verification such as 

reachability analysis could be used to rigorously quantify the fidelity [Ponnusamy,2015]. In other 

words, classical formal verification techniques usually done to demonstrate morphism 

[Ziegler,2000] between specification and implementation is extended to show the morphism 

between the system specification and its abstraction (simulation model) for the purpose of 

quantifying the degree of similarity between them i.e. fidelity distance. 

The formal approach, in general, helps in standardizing and automatizing V&V activities and 

has been increasingly used in the field of software and hardware design [Clarke,2000]. Though 

they are widely used in software verification and to some extent in system design [Alur,2015], 

application of such approach in simulation design domain especially in the context of fidelity has 

not been done adequately. The benefit of using classical formal method, especially in the early 

design verification phase has been widely discussed in literature 

[Ben,2003],[Clarke,2000],[OSKI]. In the case of V&V by simulation, the exponential growth of 

verification effort with design size could be greatly alleviated by using formal tools along classical 

simulation especially before model composition and integration in the simulation platform.  

It is also to be noted that when a formal model is created from an informal knowledge usually 

expressed at higher abstraction levels such as in a semi-formal perspective discussed in section 

2.2.1 to perform a formal analysis, it needs to be ensured that whatever is proved about the formal 

model also applies to what is modeled. Then review or analysis should be used to demonstrate that 



9 

 

the formal statement is a conservative representation of the informal requirement. Thus the two 

perspectives could be seen to be complimentary in capturing and assessing fidelity at different 

layers of abstraction to ensure overall fidelity of the resulting simulation product. 

2.3 KEY BENEFITS 

The intended key benefits of the unified approach proposed in this thesis based on the formal and 

semi-formal perspective to the M&S stakeholders are briefly presented below. 

 

Model Developer - Help find the set of allowable abstractions for model to be developed 

 with respect to V&V objectives. 

 - Provides synthetic & accurate descriptions of simulation end user's 

 intention in order to implement only relevant details. 

 - Use templates and pattern to describe the designed fidelity and apply 

 abstraction. 

 

Simulation User - Help find the model developed by design abstraction that fit their needs 

 in terms of V&V objectives.  

 - Use templates to describe their intention. 

 - Increase confidence in the simulation results. 

 

 

 

Figure 2.1: Proposed Approach 

System designer - Help formalize the system design in a standardized, interchangeable 

 template.  

 

The proposed approach to build the designed fidelity progressively all along the life of simulation 

products is illustrated in figure 2.1. 
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3. THESIS CONTRIBUTIONS 

The overall contribution of the thesis towards an unified approach to the fidelity problem is 

essentially threefold, namely,  

1. Formalization of fidelity problem as an inclusion problem, detailed further in section 3.4 of 

chapter II, in the established M&S notions of the experimental frame [Zeigler,2000]. 

2. A domain model approach in the semi-formal context to assess and define the simulation 

fidelity qualitatively. 

3. A behavioural metric approach in the formal context to assess and define the simulation fidelity 

quantitatively.  

In addition, a process oriented view for each of these approaches to simulation fidelity has been 

discussed in an industrial context. The major contribution of the thesis is the proposition of a 

domain model approach i.e. semi-formal and behavioural metric approach i.e. formal to this 

inclusion problem which is briefly presented in the following sections. The associated publications 

could be seen in the Publications section of this thesis. 

3.1 DOMAIN MODEL APPROACH 

The designed fidelity approach, in the semi-formal context, necessitates the collection of 

knowledge about the system to be modeled and scenarios under which it will be operated which 

normally involves interaction between system designers, testers and model developers. However, 

owing to the complexity of different domains of knowledge involved which are usually at different 

levels of abstraction, it is a tedious task to define the essential elements to be modeled for a given 

test. In order to alleviate this complexity and standardize the knowledge which could then be 

exploited, we propose a domain model approach based on ontologies in chapter III. This domain 

model is essentially a ‘knowledge template’ i.e. an ontology which captures the system design and 

test scenario knowledge into pre-defined, standardized concepts and relationships 

[Ponnusamy,2016],[Thebault,2015]. This approach has been chosen due to the flexibility in 

expressing different domain knowledge in a succinct and standard form through standardized 

language of OWL [OWL], in tools such as Protégé [Protégé] with query [SPARQL] and reasoning 

[Grosof,2003] capabilities. Ontologies, in general, have been widely used to tackle complexity in 

the field of artificial intelligence, semantic web, bioinformatics, information science etc. by 

standardizing and organizing domain knowledge. Though ontologies in the M&S were addressed 

in literature, albeit at high level, for example in [Fishwick,2004], [Oren,2014], [Kezadri,2010], 

they were not explored sufficiently in a MBSE context for simulation model development. In 

addition, a holistic application of ontology, especially to the problem of simulation fidelity, by 

leveraging the flexibility, scalability, reasoning and query capabilities of ontologies has not been 

studied adequately to the best of our knowledge.  

In the teleological modeling of complex engineering systems, different ontologies such as 

Functional representation [Chandrasekaran,1993], Structure-Behaviour-Function [Gero,2004] 

have been discussed in literature. The classical Structure, Behaviour, Function (SBF) framework 

is one of the widely used and mature ontology to specify the system’s function and the causal 

processes that result in them at multiple layers of abstraction [Goel,2009]. In this thesis, we extend 

this classical SBF ontology to the domain of simulation in section 4 of chapter III and introduce 
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additional notions of interface (I) and Operation (O) to describe interconnected system with 

different modes of operation [Ponnusamy,2016]. In the Operation ontology, we have proposed the 

concept of Operating Mode, based on the classical formalisms such as modechart [Jahanian,1994] 

and mode automata [Maraninchi,1998], but is believed to be more amenable to describe a system’s 

modes of operation at higher levels of abstraction. In addition, our domain model comprises of 

different generic concepts (e.g.: Datatype), industry or domain specific concepts (e.g.: Criticality 

Level, Airbus internal standards) and among others, a test ontology to capture the test scenario 

knowledge. The domain model has been constructed based on the academic and industrial state of 

art such as SBF framework, common MBSE approaches such as SysML [SysML,2006] CAPELLA 

[Roques,2016], Airbus internal M&S processes and standards, interviews and discussion with the 

V&V stakeholders which is further elaborated in section 1 of annex.  

 In an industrial context, it is important to illustrate how such a domain model approach 

improves the existing processes with minimal disruptions. A process to utilize this domain model 

to define requirements on a simulation model is proposed in section 5 of chapter III. In particular, 

a three step process of capturing the system and test scenario knowledge through the domain model, 

using reasoning approach to check consistency and using queries to extract information is proposed 

in this thesis. The domain model is implemented in the Protégé tool [Protégé] and different query 

mechanisms were defined to verify and extract information at mulitple layers of abstraction to build 

a MR. The application of this approach is demonstrated with a real industrial case study of the 

aircraft Nacelle Anti-Ice System (NAIS) in section 1 of chapter V . The results from the case study 

discussed in section 1.2 and 1.3 of chapter V were highly promising especially in the context of 

knowledge standardization, reuse, archival and query capabilites. The challenges in practical 

implementation and outlook were discussed in section 6,7 of chapter III and section 1 of chapter 

VI. 

In addition, we have also shown that the output of this MR construction approach could be used 

as an input to the MS construction process by automatically selecting a consistent model from a 

model library based on the recursive procedure proposed by Levy et al [Levy,1997]. In section 6 

of chapter III we have given an operational perspective of this entire MR and MS construction 

process based on the existing industrial processes. 

3.2  BEHAVIOURAL METRIC APPROACH 

The designed fidelity approach, in the formal context, necessitates a component based design 

approach for developing a simpler representation of the constituent systems wherein each 

component must be adequately representative enough to perform V&V on the SUT. The key 

question in this approach is how to measure this fidelity i.e. how closely (or not) does the model 

simulate i.e. ‘mimic’ the system behavior [Ponnusamy,2016]? However, quantifying fidelity, 

especially in a formal manner, is often a challenging task since it requires real system behaviour to 

compare against the model behaviour. This post-priori measurement of fidelity happens often at 

detrimental cost due to over or under specification of models as mentioned in section 1.1. Instead, 

this fidelity needs to be measured a priori both globally and locally i.e. with respect to V&V 

objectives before integration with other models, SUT and deploying on the simulation platform as 

discussed in section 2.2.2. In order to formally quantify this fidelity between a component system 

model and a simulation model, we propose a formal approach in chapter IV which assigns a metric 
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to quantify this degree of similarity with respect to all possible or a subset of behaviours of the 

system based on the notions of game theory and formal verification principles.  

Our approach is based on the quantitative extensions of classical simulation relations 

[Milner,1989] proposed in the context of discrete systems [Henzinger,2013],[Chatterjee,2015] and 

continuous systems in [Girard,2007], [Pappas,2003]. In the former, a distance notion based on two 

player game for automata [Cerny,2010] and interface automata [Cerny,2014] gives a transition-

wise or path-wise distance in the context of implementation, coverage and robustness. In the later, 

an approximate bisimulation relation essentially giving a global error bound i.e. maximum degree 

of dissimilarity between two models at a given time instant is proposed. This is then formally 

verified by geometric over approximation of the reachability set through zonotopes [Girard,2005], 

ellipsoids etc. However, in the field of (discrete) simulation, such global bound is over-conservative 

since according to a scenario a model might still be valid locally despite its global error 

[Ponnusamy,2016]. Similarly, the distance notion proposed for untimed discrete systems in 

[Cerny,2010], [Cerny,2014] and timed discrete system [Chatterjee,2015] concerns only fidelity 

distance evaluated transition-wise for a particular path. This may not be adequate since not all such 

possible paths are explored. In other words, not all scenarios i.e. input combinations are considered. 

This necessitates finding such distance bounds on all possible paths evaluated over a positive real 

valued distance function. This generation of fidelity distance between every possible path of the 

system and simulation model for every possible input is also called as a quantitative reachability 

graph. An analysis of this graph will yield further insight into the adequacy of abstraction globally 

or with respect to V&V objectives. However, to the best of our knowledge, such a mechanism to 

quantify this distance for all possible inputs i.e. a superset of test scenarios between any two given 

models has neither been proposed nor been implemented especially in a fidelity context.  

The behavioural fidelity metric approach is proposed for discrete systems in sections 5 of 

chapter IV whereas some theoretical results for linear continuous systems [Ponnusamy,2016] can 

be found in the annex. In the discrete systems case, our approach concerns both the open i.e. 

reactive to its environment and closed i.e. non-reactive to its environment modeled by automata 

and interfaces respectively [Alfaro,2003]. This is important since behavioural fidelity problem 

arise from a simulation model’s internal structure (modeled as automata) as well as its 

environmental assumptions/guarantees (modeled as interfaces) and it is important to study the 

quantitative reachability approach for both such complementary paradigms. In particular, in the 

case of closed timed systems modeled as timed automata, we have proposed a turn based semantics 

specifically in the context of fidelity for the quantitative reachability graph generation in section 

5.2.1 of chapter IV.  

We have modeled this game based formal fidelity quantification for all such different class of 

systems in (Timed) Petrinet formalism. (Timed) Petrinets, is an extension of classical Petrinet 

formalism [Peterson,1981] with firing time for the events and an extension of it with data handling 

called Time Transition Systems [Berthomieu,2014] is used in our approach. The token based 

formalism of the Petrinets is amenable to model such turn based games which is explained in detail 

in chapter IV. In addition, the availability of state of the art and in house developed Petrinet 

analyzer tool called TINA [Berthomieu,2004] with its graphical editor and reachability generation 

capabilities renders it an attractive choice for our implementation which is discussed further in 

section 6 of chapter IV. Since the quantitative reachability graph generated by TINA is in textual 

form, we have also developed a parser to rebuild all the paths which will then be used to perform 

some analytics such as finding a path with least or maximum distance, distribution of fidelity 
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distance etc. In addition, our Petrinet implementation allows incorporating different fidelity 

distance metrics such as transition weighted error, absolute error, non-weighted error etc. according 

to the user need. The demonstration of our approach and implementation were presented in section 

2 of chapter V for an (un)timed model of a buffer system, untimed interface model of NAIS with 

different types of abstractions. Despite the challenges of scalability of our explicit enumeration 

approach, initial results indicate even for a limited reachability exploration (for example <106 

paths), our method gives valuable insights on the distribution of fidelity which could be then be 

used for deployment, model repair or simply archival. 

In summary, despite the seemingly orthogonal solutions proposed in this thesis, namely domain 

model approach and behavioural fidelity metric approach, they both serve their purpose in 

improving fidelity albeit at different levels of abstraction. The domain model approach standardizes 

and exploits the often informal domain knowledge to build a semi-formal MR with adequate levels 

of fidelity. This would then serve as a baseline upon which the model developer chooses the model 

existing variants whose level of fitness for a given purpose i.e. to validate the SUT using simulation 

is given by our formal approach. Another key benefit of this unified approach is these two methods 

can either be used independent of each other or complementary to each other depending on the 

prevailing fidelity issues and user’s need as seen from the thesis roadmap section. The plan of the 

thesis is given in the next section. 

4. THESIS PLAN 

The key challenge of the designed fidelity approach is to develop a mechanism to collect the fidelity 

requirements and then to evaluate the model against these requirements. This thesis is broadly 

focused on identifying the challenges in developing such a mechanism and solutions for mitigating 

them at multiple levels of abstractions followed by its demonstration on application case studies. 

In the unified fidelity framework context, the semi-formal and formal approaches are detailed in 

chapter III and chapter IV respectively with their application case studies presented together in 

chapter V. The intended key benefits of the approach listed above are evaluated in each such 

chapter and relevant conclusions are drawn which are further discussed in chapter VI. In this 

context, the chapters of the thesis are organized as follows, 

Chapter II : The second chapter addresses the background and problem formulation of our 

designed fidelity approach through the established theory of modeling and 

simulation framework of experimental frame formalism and inclusion 

relations between them. 

Chapter III : This chapter presents the semi-formal approach based on the principles of 

ontologies in building a domain model to capture, formalize and evaluate the 

knowledge of simulation fidelity requirements with respect to the system 

specification to build high level simulation specification with sufficient 

fidelity. 

Chapter IV   : The formal approach based on the principles of formal verification and game 

theory to quantify fidelity of simulation models with respect to their system 

specifications for different class of systems is presented in this chapter. 
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Chapter V   : The results of applying the semi-formal and formal approaches to the case 

studies were detailed in this chapter. 

Chapter VI   : The last chapter focuses on the overall and specific outlook on our unified 

approach, challenges ahead, axes of future work and conclusion. 

In addition, associated information not detailed in the aforesaid chapters such as pseudo code, 

methodology implementation etc. could be found in the annex. The bibliography section contains 

list of references used in the study. 
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CHAPTER II 

EXPERIMENTAL FRAME & INCLUSIONS 

In this chapter, the designed fidelity approach is discussed in the context of a unified perspective 

in building a simulation Experimental Frame (EF) through inclusion relations. In order to better 

understand the problem formulation especially in the context of chapter I, a brief overview of the 

context and background is presented in the following sections. 

 

1. BACKGROUND 

In this section, some generic definitions and background information on system V&V, M&S and 

the associated fidelity notions from the industry and academia are briefly discussed.   

1.1 SYSTEMS VERIFICATION & VALIDATION 

According to Brian Gaines, a system is what is distinguished as a system which essentially means 

that to distinguish some entity as being system is a necessary and sufficient condition for its being 

as a system [Gaines,1979]. A system is usually characterised by what belongs to it and what it 

doesn’t belongs to it. The systems theory focuses on arrangement and interdependent relationships 

between the components of a complex system and distinguishes between a system’s behaviour and 

structure. Such a definition is echoed by the Airbus definition of system as abstract entities, 

introduced by a standardization authority (ATA 100) defined as a set of equipment [FAA,2002]. 

In addition, according to INCOSE, System engineering, a multidisciplinary field, is defined as an 

iterative process of top down synthesis, development, and operation of a real world system that 

satisfies, in a near optimal manner, the full range of requirements for the system [INCOSE,2011]. 

More specifically, IEEE standard 1362 [IEEE,2007] defines a system as a collection of interacting 

components organized to accomplish a specific function or set of functions within a specific 

environment. 

A system can be either closed or open depending on its reactivity to its environment. A key 

property of a reactive system which interacts with its environment is it can be controlled through 

variables called input that are generated from the environment to influence the system and observed 

through outputs which are variables generated by the system and influence its environment. Such 

an interpretation leads to a concise definition of system being a source of data. The process of 

extracting data from such a source i.e. system by exerting with input is called an experiment. An 

experiment could either be real e.g. flight tests or virtual e.g. simulation to perform verification or 

validation activity on the system under test.  

In this context, Validity of a system is measured through validation activities (to answer ‘did I 

develop the right product?’) and Correctness through verification activities (to answer ‘did I 

develop the product right?’) [Brade,2004]. In addition, validity has another perspective with respect 

to product requirement, called requirement validity (to answer did I ask the right questions?). 

Hence product validity is given by its requirement validity and correctness. These V&V activities 
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are carried out according to some V&V plan formulated usually by the system designers or 

architects. Such an activity through an experiment is usually comprised of different sub-

experiments called test scenarios, usually supplied by the test team, which essentially describes 

what is expected of an experiment and how it is done on the system built by the system designers. 

1.2 MODELING & SIMULATION 

In general, the process of describing the system as a model is called modeling and the process of 

experimenting the model is called simulation. A model is essentially an abstract representation 

containing the essential structure of some object or event in the real world. More precisely, 

according to IEEE 610.12-1990 standard [IEEE,1990], a model is formally defined as an 

approximation, representation, or idealization of selected aspects of the structure, behaviour, 

operation, or other characteristics of a real-world process, concept, or system. Thus modeling is 

the process of generating abstract, conceptual, graphical or mathematical models of a real system 

whereas simulation is the imitation of the operation of real-world process or system over time 

[Cellier,1991]. A simulation generates an artificial history of the system behaviour and upon 

observation of that observation history, design decisions or analysis could be made for the real 

system. Hence, the simulation could be used as an analysis tool for predicting the effect of changes 

or as a design tool to predicate the performance of new system [Balci,1997]. 

Marvin Minsky defines a Model for a system as anything to which experiment can be applied 

in order to answer questions about the system [Cellier,1991]. Thus a model is always related to the 

tuple of system, S and experiment, E [Zeigler,2000]. Hence notations like validity, fidelity etc. of 

a model must be addressed in association with the system it represents and experiment which it 

intended to address.  

1.3 FIDELITY 

A brief survey on the notion of fidelity and its manifestations with respect to modeling and 

simulation are given in the following sections. 

1.3.1 Definition 

Fidelity is often used in different contexts both in scientific and non-scientific fields alike, 

however, it would in general, as a classical definition of Oxford dictionary imply, the degree of 

exactness with which something is copied or reproduced. A myriad of interpretations of fidelity, 

especially in the M&S community leads to inconsistency in the Verification, Validation & 

Accreditation (VV&A) activities and this necessitates a precise notion of this generic term. In the 

present thesis fidelity is defined as a notion of ‘distance’ to reality and by assigning a metric this 

distance could be measured quantitatively. Fidelity, henceforth, is defined as the distance from the 

simulation of a system to the simulated system. This definition is akin to widely accepted 

definitions such as the US Department of Defence (DoD) stating fidelity as the accuracy of the 

representation when compared to the real world. Simulation Interoperability Standards 

Organization (SISO) fidelity Implementation Study Group (ISG) formally defines fidelity in 

[SISO,2013] as  
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The degree to which a model or simulation reproduces the state and behaviour of a real world 

object or the perception of a real world object, feature, condition, or chosen standard in a 

measurable or perceivable manner. 

In stating that fidelity should generally be described with respect to the measures, standards or 

perceptions used in assessing or stating it, SISO further defines it by, 

The methods, metrics, and descriptions of models or simulations used to compare those models or 

simulations to their real world referents or to other simulations in such terms as accuracy, scope, 

resolution, level of detail, level of abstraction and repeatability.  

Fidelity can thus characterize the representations of a model, a simulation, the data used by a 

simulation (e.g., input, characteristic or parametric). Each of these fidelity types has different 

implications for the applications that employ these representations. In addition, SISO emphasises 

the referent i.e. simulation fidelity requirements must be carefully defined in terms of how much 

is to be simulated (i.e., entities and characteristics) and what interactions are involved (i.e., 

relationships between entities in the referent). SISO identifies a key obstacle in acceptability of 

M&S methods as a tool to make design decision for real world problems is defining a fidelity 

metric which measures the simulation behaviour. In defining fidelity as a measure of distance to 

reality, abstractions in modeling could be seen as the cause of this distance. An abstraction level in 

complex engineering simulations such as for aircraft is a crucial factor in influencing resources 

deployed to use simulation as a means in system design and development. An incorrect or 

inconsistent choice of abstraction level of model will result in prohibitory complexity in overall 

simulation process and thereby its validity and fidelity. In the next section, the notions of fidelity 

and validity are discussed with respect to this modeling abstractions. 

1.3.2 Fidelity, Validity & Abstraction 

A unified approach to fidelity was done by Roza in [Roza,2004] where a mathematical 

formulation of fidelity and the fundamental concepts underlying its characterization and 

measurement were established, parts of which are comprised in SISO ISG report [SISO,2013]. The 

study establishes that Fidelity quantification and qualification doesn’t equate to validity of 

simulation (Theorem 6, [Roza,2004]). It follows from the preceding result that fidelity is an 

intrinsic or absolute property of any model or simulation characterizing its degree of realism 

(Theorem 3, [Roza,2004]) and an absolute metric of fidelity could never be established owing to 

the inherent levels of uncertainty (Theorem 1&2, [Roza,2004]). In addition, Roza (Theorem 7, 

[Roza,2004]) and Zeigler [Zeigler,2000] states that model fidelity and simulation fidelity do not 

equate. Thus a formal metric relating the fidelity and validity of simulation becomes imperative 

and, this question of relation between the simulation behaviour and its objective could be addressed 

vis à vis the factors affecting the fidelity of simulation outcome with respect to the validity, namely, 

abstractions used in modeling. In framing a metric between the abstraction used in model 

development and its associated objective of use, a bridge could be made between the fidelity 

(degree of realism of model) and validity (degree of correspondence to objective of use). Brade et 

al [Brade,2004] emphasis this relation of fidelity with validity by defining fidelity as a measure to 

show that the model and its behaviour are a suitable representation of the real system and of its 

behaviour with respect to an objective of use of the M&S product. Since fidelity is one of the vital 

drivers in terms of development and deployment cost in simulation, an early quantification of 

fidelity helps in better simulation product development for system validity assessment.  
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1.3.3 Fidelity Classification & Metric 

In the study by Roza [Roza,2004], fidelity has been classified into eight classes namely detail, 

resolution, accuracy, interaction, temporality, causality, precision and sensitivity. Fidelity was also 

classified as esoteric fidelity i.e. an ideal measure and practical fidelity with a proposition on a 

domain independent fidelity criteria evaluation. In evaluating this fidelity, quantitatively or 

qualitatively, the evaluation could be carried out within the ambit of these eight characterisations. 

In specifying the real world reference knowledge specification template, the real world was 

specified as a system of interacting subsystems in a hierarchical object oriented fashion.  

Another classification of simulation fidelity from the end user perspective in terms of 

perceptive fidelity and behavioural fidelity was put forth by Robert Hays [Hays,1980] based on 

definitions of Kinkade, Wheaton, Farina et al. [Kinkade,1972]. The perceptive fidelity 

classification deals with end user experience of the simulator in the following terms: 

Equipment fidelity (physical configuration) – e.g.: a flight simulator to evaluate flight control laws 

has gauges, dials, control sticks etc. 

Environmental fidelity (duplication of environmental context) – e.g.: motion cues, dynamic 

representation of environment such as sky, ground etc. 

Psychological fidelity – e.g.: level of psychological perception of the end user as realistic though it 

may turn out to be otherwise. 

The behavioural fidelity also referred by the authors as task fidelity is akin to generic notion of 

simulation fidelity which is described in this thesis as a degree of representation of real world by 

the simulation. However, these definitions fell short of relating between the representation of real 

world and simulation objectives and its context of usage since a model is always developed with 

an objective behind. It may also be noted that these definitions are more to do with training 

simulators for mature systems rather than with simulators used in system design and development 

especially in the design verification phase of figure 1 of chapter I which this thesis is focussed on.  

In addition to such classification, a metric on fidelity is useful to gauge the rigour of simulation 

models. The metric could either be qualitative (e.g.: low/medium/high) or quantitative 

[SISO,2013], though quantitative metrics are often overlooked, they could well be attributed to a 

related qualitative metric and vice versa. In practice, both qualitative and quantitative metrics are 

useful, since the former is amenable for subjective evaluation by human domain experts and the 

later for objective evaluation of some specific characteristics. However, even before ascribing a 

metric, qualitative or quantitative, we need a mechanism to improve the fidelity of models by 

choosing right level of abstraction which then can be compared against a given metric. In this 

thesis, our semi-formal approach, presented in chapter III, is used to qualitatively (yes/no) evaluate 

fidelity by answering what are all the scenarios that can(not) be modelled based on system 

specifications? Similarly, our formal approach, presented in chapter IV, is used to quantitatively (a 

real valued function) evaluate what is the component model’s fidelity with respect to the system 

specification?  

It may be noted that our designed fidelity approach is not intended to propose a metric per se, 

but to propose a mechanism to improve the fidelity of the overall process which can then be 

assessed with any given metric. Thus it is amenable for further extension or modification of the 

fidelity metric and in doing so the inclusion principles of neither the domain model approach nor 

the formal approach is expected to change. For example, current qualitative evaluation of domain 



19 

 

model approach could be extended quantitatively in future to answer what is the coverage of 

scenarios and what are its impacts on MR? What is the effect of abstraction on a scenario? etc. 

Similarly, our quantitative approach evaluates fidelity based on transition weighted error, further 

explained in chapter IV and this metric could be modified according to the user need without 

changing the underlying game based semantics.   

A classification or definition of fidelity metric as discussed briefly in this section, though 

imperative in understanding the phenomenon better, may still be inadequate for the model 

development for V&V activities. This is predominantly due to their inability to explicitly address 

how to incorporate different such fidelity requirements through modeling abstractions to develop 

simulation model(s). Before discussing it, the concept of simulation product which is comprised of 

this set of simulation model(s), simulation platform, is briefly presented in the next section with 

some perspectives addressing the fidelity aspects of it. These perspectives are important to better 

understand the problems of measured fidelity approach presented in section 1.1 and our solution 

of designed fidelity approach presented in section 1.2 of chapter I. 
 

2. PRELIMINARIES 

In this ection, few preliminary definitions which will enable to better understad the problem 

formulation and context are presented. 

2.1 SIMULATION PRODUCT 

In this study, we define a simulation product as a simulation application i.e. a model or set of 

models, deployed on a simulation platform, and interfaced with the SUT as illustrated in figure 2.1. 

The models simulating the environment of SUT are shown in dark green, interface with SUT is 

shown in orange. 

 

Figure 2.1: Simulation Product  

The simulation application comprises a set of standard simulation models and associated 

configuration files which specify the connections between models, and their scheduling properties 

[Thebault,2015]. The simulation platform usually consists of an IT infrastructure and the 

simulation software. The platform schedules and monitors the execution of the models with respect 

to time constraints of logical or real time simulation. It enables communication between the models 
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and provides the end user with control and observation facilities to operate the simulation 

[Thebault,2014]. 

The simulation application development is based on the knowledge of the operational 

environment of the SUT, which is, in the avionics context, composed of equipment whose 

behaviour is governed by physical laws such as aircraft natural dynamics and other avionic 

systems. In order to enable such an architectural representation, an internal standard may exist in 

the industry to define a common understanding on how the simulator platform shall execute the 

simulation application.  

Simulation products developed at Airbus are ‘enabling products’ which enables part of the 

complete life cycle of the aircraft in product development, testing and training. Simulation models 

represent all or part of aircraft system or equipment as well as the environment, in which the model 

is operating, and are used all along the aircraft development process, Integration, V&V and training 

purposes. The models are either developed by Airbus or requested, through contract, to suppliers 

and these activities are widely spread over different stakeholders. The V cycle for commercial 

aircrafts developed by Airbus with different phases of the product development and validation is 

illustrated in figure 2.2 [Airbus].  

 

 

Figure 2.2: Airbus V Cycle [Airbus] 

In addition, the correspondence with different simulation platforms such as system integration 

benches, functional integration benches and desktop simulators at each phase of the V cycle is also 

given. In the next section, two key perspectives on this simulation product, or more specifically 

simulation application, since our study does not concern platform or model of computation aspects, 

are presented.  

2.1.1 Simulation Product: Twin Perspectives 

In experimenting the model i.e. simulation, it is important to know and differentiate between the 

ability of the model defined by the simulation developer, and expectation on the model defined by 

the simulation end user. In general, there exist two perspectives on the simulation product 

[Albert,2009] namely, 

SOU: Simulation Objectives of Use (SOU), the experimental frame that describes the way in which 

experimentation of the SUT will be performed. This specification will be paired with the SUT to 
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generate quantifiable expected results. The simulation user defines the SOU through some required 

abstractions on models, scenarios along with expected results and tolerances. The end user defines 

these expectations on the simulation product according to the V&V plan for the SUT. In this 

perspective, the simulation product is essentially a black box, with an assortment of configuration, 

software and hardware components. The SOU may be defined by a single or group of different 

simulation end users.  

SDU: Simulation Domain of Use (SDU), the experimental frame that describes the usage domain 

of a simulation application, i.e. its properties and its limitations. The simulation developer defines 

this SDU through some implemented abstractions and therefore the usable scenarios of the 

simulation product. The SDU is the set of models which simulates the SUT environment to answer 

SOU questions on the SUT. In practice, the SDU is developed by different model developers and 

assembled by an integrator before deploying on the platform which in turn is developed by other 

stakeholders.  

These two perspectives are given in the following figure 5.5. It may be seen that the simulation 

product i.e. SDU developed from its specification is evaluated against the SOU to assess the 

simulation product validity. 

 

 

Figure 2.3: Simulation Product – SDU & SOU 

Intuitively, a simulation product is deemed to have sufficient fidelity or simply the simulation 

product itself is valid, if its capabilities i.e. SDU includes expectations i.e. SOU in it. More 

specifically, in section 3, SDU and SOU are presented in the established M&S formalism of 

experimental frames and fidelity evaluated through verification of inclusion relations between 

these two experimental frames.  

In the next section, current industrial practices of fidelity evaluation of such simulation product 

introduced in section 1.1 of chapter I is presented in detail. 

2.2 SIMULATION PRODUCT DEVELOPMENT PROCESS 

The simulation product development usually involves three stakeholders namely model developer, 

system designer and simulation user. The simulation user is usually the V&V task owner who 

defines the SOU derived in turn from the high level V&V objectives in terms of functional, non-

functional and behavioural requirements. In practice, there is a model specialist who translates 
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simulation requirements and system specification into functional and behavioural requirements of 

the model to be built. The model developer builds the model based on this requirement using 

knowledge from existing library of abstractions. The built model assembled and then verified 

against their requirements by the simulation user according to the V&V plan. This is illustrated in 

figure 2.4 [Thebault,2015], where system V&V through simulation process is illustrated with 

associated stakeholders. 

 

 

Figure 2.4: Simulation Product Development Overview 

A simulation product needs to be updated continuously to follow each high level design change 

and also new simulation capabilities for V&V objectives to the end user. In general, this simulation 

application development process is performed by simulation platform teams, who consistently 

interact with the component system developers and simulation users. The simulation application 

development process is briefly illustrated in the following figure [Thebault,2014], 

 

 

Figure 2.5: Simulation Product Development Process [Thebault,2014] 
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It can be seen that the process can be broadly classified into design, integrate and deploy. In 

the ‘design’ phase, functional and performance objectives of the simulation models are defined in 

addition to their interface definition. The second phase, ‘integrate’, is model assembly phase to 

ensure the consistency for its ‘deployment’ on the simulation platform. However, in practice, owing 

to the complex nature of this process, the context of usage is not always captured in accordance 

with modeling abstraction employed in the ‘design’ phase. Thus simulation product development 

is essentially an iterative process based on measured fidelity approach due to the challenges in 

complexity, methodology and continuous evolution of product requirements.  

This iterative process often proves to be costly since a model might be too detailed i.e. over 

fidelity or too little detailed i.e. under-fidelity and this have implications in cost and time of the 

system development process. Thus, in order to mitigate these problems, the context of simulation 

product i.e. model must be taken explicitly into the ‘design’ phase. It may be noted that, despite 

the current approach of developing a model as detailed as possible, there exists no concept such as 

absolute validity of a model and any model, whatsoever its complexity may be, cannot satisfy all 

the possible requirements [Balci,1997]. In essence, as noted by Robinson [Robinson,1997], the 

objective of V&V activity is not to prove that the model is right, but prove that it is incorrect in 

sense that longer the model resists the notion of an incorrect behaviour, more the confidence. This 

interpretation has a direct relation with our notion of designed fidelity approach explained in next 

section where by relating the notion of fidelity i.e. distance to reality, with V&V plan i.e. SOU and 

model behaviour i.e. SDU, enough confidence in the M&S for V&V can be created or assured.  

In the next section, the problem formulation is discussed in the established Theory of Modeling 

and Simulation framework [Zeigler,2000] which defines suitable notions of abstraction and validity 

onto the tuple of Model-Simulator-Experimental frame. A brief overview of the formalism and 

associated definitions are given, followed by a discussion on key perspectives and corresponding 

inclusion relations between them in the context of fidelity. 

 

3. THEORY OF MODELING & SIMULATION FRAMEWORK 

3.1 EXPERIMENTAL FRAME  

In the context of studying a system (through simulation), the concept of EF [Zeigler,2000] is used 

to describe experimental scenarios under which the SUT will be used. An EF, in general, defines 

the controllability (input scenarios) and observability (expected outputs) means to stimulate and 

observe the SUT behaviour in addition to conditions of experimentation. This EF could be 

intuitively interpreted as the environment of the SUT supplying inputs and obtaining its outputs or 

alternatively SUT serves as the environment for EF. This composition of experimental frame with 

the SUT is illustrated in figure 3.1. 
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Figure 3.1: EF & SUT 

In general, an EF could be made of systems or its abstractions i.e. models. We call the former 

as called system experimental frame (EFsys) and the latter as called simulation experimental frame 

(EFsim). This simulation i.e. virtual EF or simply an EF is an operational formulation of the 

objectives and needs of an M&S application. In other words, the EF aims to translate objectives in 

precise experimentation conditions and could be interpreted as a simulation product discussed in 

section 2.1. The following figure 3.21, [Zeigler,2000] better illustrate the relation between the 

system under test (System) under a given condition (Experimental Frame), its representation 

(Model) and its behaviour (Simulation).  

 

 

Figure 3.2: Experimental Frame, Model & Simulator, [Zeigler,2000]   

In replacing a system by its abstraction i.e. model to build an EF, a model could be conceptual, 

formal or executable and are listed as follows in the order of development:  

Conceptual Model: A conceptual model describes the abstracted and idealized representation of 

the real system and holds all concepts of the model (or the simulation), i.e., its decomposition into 

interacting subsystems, the representation of properties of interest in the form of attributes, the 

degree of abstraction and idealization, and the rationale and reasoning that led to the chosen 

representation of the real system in the language of the model’s application domain. Conceptual 

Model serves as communication basis and helps in building an insight essential for comprehension 

and examination of the model as a representation of the real system. In our approach, it may be 

noted that the conceptual model could be interpreted as MR.  

Formal Model: A formal model is the formalized description of the Conceptual Model, compliant 

with a well-defined modeling formalism, expresses the Conceptual Model quantitatively and 

unambiguously, and thereby prepares several methods for its solution. The Formal Model, being 

                                                
1 Reused with permission from Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic 

Systems, Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, Chapter II, Figure 1, Page 26, Copyright Academic Press.    
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solution-oriented, implementation-independent and unmistakable description of the Conceptual 

Model, provides the basis for transformation of the model into the Executable Model. This formal 

model definition could be interpreted as MS in our study. 

Executable Model: An executable model, also called implementation model, technically 

implements the formal model and provides the additional information such as memory allocation, 

model of computation, distribution aspects etc. that allows the model to be executed and operated 

on a computer or in a network of computers. 

The following figure 3.3, [Albert,2009] illustrates the concepts and differentiates among the 

model hierarchy, 

 

 

Figure 3.3: Real World vs Simulation World [Albert,2009] 

In our study, the focus is on the formal and conceptual model since the transformation from 

formal to executable model is usually a correction i.e. verification problem. Thus, in this thesis we 

define the problem of building an EF (SOU or SDU) in two stages, first is the definition of its 

components and how it is built i.e. architecture which corresponds to conceptual model or MR 

definition and second is specifying the component itself i.e. defining behaviour which corresponds 

to formal model or MS.  

An EF, in general, is essentially composed of a generator (G), a transducer (T), an acceptor (A) 

and some environmental models (env). The EF is denoted by EF = {MG  ∪ MT ∪Menv ∪MA}, where 

M refers to the EF component which could either be system or their representations i.e. models. 

The components of EF are given as a tuple M=<T, u, y> with inputs (u), outputs (y) over the time 

base (T). It may be noted that the components could be at different level of abstraction and the time 

could either be bounded or unbounded i.e. untimed.  

A generator MG is the stimulant for SUT whereas MT serves to transform the SUT output into 

an observable form. The validity of SUT for this set of input and output is assessed by an acceptor 

MA which yields a metric on the validity of test output. This is illustrated in the figure 3.4. 

The acceptor output is called Degree of Validity (DoV) given either as a qualitative measure or 

quantitative measure by fA: uA → ℝ[0,1]. In general, there are varying degrees of validity and scope 

of test requirements coverage for a SUT and the classical valid/invalid notion may be inadequate 
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since it cannot differentiate between an EF resulting in more coverage of scenarios than the other 

EF which covers less scenarios. Instead, a quantitative notion of validity assessment is proposed 

by DoV notion to assign a real value as a measure of validity. Intuitively, DoV of 0 means invalid 

and value of 1 means valid with in between values corresponding to partial validity. In the 

following section, some associated definitions of EF are discussed. 

 

 

Figure 3.4: Experimental Frame 

3.2 EF MORPHISM, APPLICABILITY & DERIVABILITY 

The concepts of homomorphism, applicability and derivability were initially proposed by 

[Zeigler,2000] in the framework of M&S and we extend these definitions formally in the fidelity 

context. Informally, a morphism relation establishes behavioural equivalence between a concrete 

model and its abstraction. Applicability and derivability defines a compatibility criterion between 

a SUT and EF, and also between two experimental frames. A fidelity framework needs to address 

abstractions with respect to this morphism relation, answer whether the EF can meet simulation 

objectives and whether the SUT can work with the EF. The concepts are briefly introduced and 

such perspectives are discussed in the following sections.  

3.2.1 Morphism 

A morphism relation establishes correspondence between a concrete model, i.e. system 

specification in our case and its abstract version through abstraction operation. It may be recalled 

from figure 3.4 and chapter I, such abstraction operations are applied on the EF components 

resulting in a new EF. Abstractions are manyfold depending on the simulation objectives and 

hypotheses. We define abstraction operation as α over an abstraction class denoted by c ∈ C where 

C is the set of abstraction classes. Such abstractions are related by binary relations forming a partial 

order. A partially ordered set or a poset is a set P = (≼, S) with reflexive, transitive relation on a 

set S [Milner,1989]. The hierarchy of abstractions could be defined as a partial order relation over 

a finite lattice. An abstraction of EF into other is defined as follows [Ponnusamy,2014]  

 

αc
j
 : EFk

j
 → EFk

j+1
 

 

(1)  
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where j=1..n refers to the abstractions of EF as given in Eq. (1) which is essentially abstraction of 

EF component, Mp
1 ∈ EFk

j
 by an abstraction operation αc

n=1..N resulting in a new abstract EF. 

 

Mp
1 αc

1

→Mp
2 αc

2

→… Mp
n 

(2)  

Different abstraction operations may be feasible over such a finite lattice whose height is 

defined by a set N. The valid set of abstractions among them satisfying some properties of interest 

defined by acceptor, φj=1,2.. are defined by 

 

∀ n ∈ N, ∃ {α
c

n
} ⊨ {φ1, φ2…} (3) 

 

The abstraction operation, α denoted here is generic i.e. it applies to abstraction of model 

behaviour and architecture (number of ports, coupling, structure, data type at interface etc.). Such 

a definition is followed by an inclusion criterion further explained in section 3.4 that will help 

address the simulation validity with respect to the abstractions. 

3.2.2 Derivability 

In general, according to the V&V plan, different EF could be constructed representing the 

scenarios (EFi ∣ i={1..Nsc}) for a given SUT where Nsc is the number of such scenarios. EF could 

be derived from a more general i.e. more capable EF and this operation of derivability is formally 

given by our following definition [Ponnusamy,2016] 

 

Definition 3.1: Derivability refers to ability to derive an EFk+1 from another EFk. 

 

β
k
 : EFk

j
 → EFk+1

j
 

 

where j=1..n refers to the abstractions of EF as given in Eq. (1).  

 

(4) 

It must be noted that this set of derivable EF are included in the EF defined by EF0 as follows 

 

⋃ EFk
j

k=K

k=1

⊑ EF0
j
 

 

(5) 

In other words, a scenario not present in V&V plan could not be derived from the defined 

scenarios. The derivability is transitive due to the inclusion relation between them, 

 

(EFk+1
j
⊑ EFk

j
) ⋀ ( EFk+2

j
 ⊑ EFk+1

j
) ⇒ (EFk+2

j
 ⊑ EFk

j
) (6) 

 

where k ∈ {1. . K} gives the limit of such operation. 
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3.2.3 Applicability 

 The relation between EF and SUT is given through applicability definition [Ponnusamy,2016] 

as follows  

 

Definition 3.2: Applicability is an onto relationship between SUT and EF. 

  

γ
k
 : EFk

j
 → SUTm  

 

where m= {1. .M} refers to the different SUTs according to the V&V plan.  

 

(7) 

An EF is composed of different components and depending on abstraction level, different 

hierarchies of EF are possible for a particular scenario. Such a maximal applicable set of EF is 

given by 

γ
l
max= ⋃ EFk

j

k=K1

k=1

 

(8) 

where  K1 ≤ K.  

The question then becomes, how far a model developer can abstract the components such that 

the resulting EF i.e. SDU is still applicable to SUT and the SOU can be derived from it. Similar to 

applicability, derivability can be described in figure 3.52 [Ponnusamy,2016], which is modified 

from [Zeigler,2000], where all these concepts are shown in a three dimensional lattice typology.  

 

 

Figure 3.5: Applicability, Derivability & Abstractions - modified from [Zeigler,2000] 

                                                
2 Modified with permission from Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex 

Dynamic Systems, Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, Chapter II, Figure 5, Page 34, Copyright Academic 

Press.    
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For a particular EF, derivability shown vertically in EF lattice, is the set of all derivable EF of 

the same EF applicable to same set of SUT as the original EF gives the set of all valid abstractions 

of EF. In this case, all the derivable frames EF0..K
0

 are applicable to a given SUT0 and the applicable 

abstractions (1..n) are the one which under abstraction still obeys this applicability. This 

applicability of abstractions can be seen for each derivable frame and abstractions must be chosen 

such that Eq. (7) is obeyed for the required scenario and given SUT. It can be noted that deriving 

from this EF upwards, the possible scenarios are fewer and the frames become more restrictive. In 

a sense, it is akin to abstraction in lattice i.e. the EFk  ⊑ EFk-1 (scenario inclusion) and YSUTm−1  ⊑ 

YSUTm (SUT output inclusion). 

Followed by the discussion of these generic properties of an EF is our formalisation of the 

problem of building an EF through two key perspectives presented in the next section. 

3.3 EXPERIMENTAL FRAME - KEY PERSPECTIVES 

In building an EF i.e. simulation application or product itself generally, among others, two key 

perspectives emerge which are not only functions of the level of abstraction or modeling formalism 

but also on the proposed solution methodology discussed in later chapters. They are broadly 

classified in our study as architectural and behavioural perspectives. Such a segregation is natural 

in terms of expressivity since the architectural perspective is usually expressed in non-formal 

natural language texts or semi-formal system engineering approaches whereas there exists rigorous 

mathematical basis for behavioural perspective in most of the cases. It is important to note that 

each approach is complementary to other and in practice, a formal model is always derived from 

semi-formal specifications and a semi-formal specification almost always implemented as a formal 

model. In addition, this segregation is important since in reality a (complex) system is built by 

multiple stakeholders with different perspectives which are often interrelated. In order to have a 

truly global approach in improving the fidelity of simulation, it is imperative to incorporate these 

two approaches. These two perspectives are informally introduced as follows,  

Architectural: An architectural perspective addresses how a simulation application is built. It refers 

to the capture and management of fidelity at higher levels of abstractions such as systems, 

functions, interfaces, operating modes, ports, data types etc. which helps in engineering an 

architecture of the simulation application. Some of the key questions addressed in this perspective 

are: what are systems being modeled, what are the functions needed and how they are allocated on 

systems? how the systems are interconnected? what are the equipment in each system? what is the 

granularity of each interface? etc. Essentially this perspective includes, among others, 

Functional View  : What the system need to do to answer the scenarios and how it will do? 

Operational View: How the system is operated, when the system is operated? 

Physical View      : How the system is built? 

In addition, there exist other views such as interaction view i.e. how the system interacts – with 

user and among themselves, stakeholder view, criticality etc. Such a multi-view modeling is 

inherent in any system engineering activity and for the sake of convenience these activities are 

labelled as architectural view i.e. defining a simulation application architecture such that the 

dynamic evolution is modeled further from this ‘black box’ view using a behavioural perspective.    
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Behavioural: The behavioural aspect concerns how the underlying dynamics (temporal or 

atemporal) is represented and how the system does respond to a scenario. In the behavioural 

perspective, dynamic evolution of the systems is modeled through different formalisms (discrete, 

continuous, timed…) and behaviours are captured at the interfaces to study the fidelity of the 

simulation application being developed. It must be emphasized that this notion of behaviour (e.g. 

state or output trajectory) is modeled as a transition system. 

These perspectives are further explained in the context of solution methodology in chapters III 

and IV. In the next section, the inclusion relations between EF are presented to address the 

simulation validity with respect to the abstractions. 

3.4 EXPERIMENTAL FRAME‘S INCLUSIONS 

The architectural and behavioural perspectives of an EF can be attributed to SDU and SOU 

introduced in section 2.1.1. In other words, a SDU and SOU could be defined in an architectural 

perspective e.g.: components, connections, functions etc. and behavioural perspective e.g.: 

tolerance on behaviour etc [Ponnusamy,2014]. The abstractions made when the model i.e. SDU is 

built must match a set of acceptance conditions given by the SOU [Foures,2013]. An experimental 

frame typology could be thus found by having equivalence classes according to the system 

considered (system, equipment, type of system, software, etc.) and the system properties 

(performance, robustness etc.) targeted by the V&V activity [Albert,2009]. Thus, the objective will 

be to define a way of (in)formally quantifying the fidelity of a simulation and to define a 

methodology for finding and implementing the abstractions consistent with the simulation 

objectives. The problem then becomes how to abstract the EF components such that the distance 

or 'error’ i.e. fidelity introduced by the abstraction operation results in EF consistent with user 

requirements i.e. SOU. Recalling a simulation product is said to be with sufficient fidelity if its 

capabilities represented as an EF i.e. SDU in architectural and behavioural perspective includes 

expectations represented as another EF i.e. SOU in the same perspectives, a generic inclusion 

relation is introduced in this context as follows,  

 

SOU ⊆ SDU (9) 

 

This generic inclusion relation is further explained in terms of architectural and behavioural 

perspectives in the sections 3.4.1 and 3.4.2 respectively. The following figure 3.6 illustrates this 

inclusion relation along with the EF concepts introduced in sections 3.2.1 to 3.2.3. The figure could 

be better understood from the process perspective discussed especially in section 2.2. In general, 

from the definition of EF, the components MG,T,A corresponds to the scenario under which the SUT 

and its environment, Menv operates whose system specification, Msys is given by the system 

designers. This system specification can be abstracted by an abstraction operation, α either by the 

simulation user or model developer. The model is called a reference model if the simulation user 

defines a set of acceptable abstractions, αSOU. However, in reality such a reference model seldom 

exist as the SOU is usually described at higher levels operational perspective and in practice Menv 

itself. In practice, the model developer, based on system specification, Msys develops models,  Menv
SDU  

using abstractions, αSDU. The scenarios under which this model could be used is given by the MG,T,A
SDU . 

These scenarios must include the scenarios defined by the user i.e.  MG,T,A
SOU . In other words, there 
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must be a derivability relation between β
SOU

 : MG,T,A
SDU  → MG,T,A

SOU  such that the resulting EF i.e.  Menv
SDU 

and  MG,T,A
SOU , can be applied to the SUT using the applicability relations, γ

SDU
. 

 

 

Figure 3.6: SOU & SDU - Applicability, Derivability & Abstractions 

In addition, it may be seen that the SOU defined by the simulation user is an operational 

formulation of the SUT operational domain which in turn is defined by the operational end user.  

3.4.1 Architectural Inclusions 

The inclusion relations of Eq.(9) in an architectural perspective refers to inclusion of architectural 

elements required by SOU in the SDU. In practice, this is a two-step process, which is further 

elaborated in chapter III, with checking consistency and inclusion followed by design space 

exploration. The first step involves evaluating whether elements of an abstraction class, αc
n required 

in SOU exist in SDU. The second step complements the first step since SOU is almost always 

described in higher levels of abstraction whereas SDU is finely but at times overly detailed. This 

necessitates exploration of design i.e. SDU to extract architectural elements with respect to SOU.     

3.4.2 Behavioural Inclusions 

The behavioural inclusion is defined in terms of inclusion relations between SOU and SDU input 

and output behaviour segments. Intuitively, the model and by extension the EF developed i.e. SDU 

must be capable of producing at least the same behaviour as expected by the SOU either exactly or 

within bounds defined by the SOU. The behavioural aspects of EF including the inclusion relations 

are discussed below starting with a formal definition of an EF.  

Formally an EF is defined in the form of the following tuple [Traoré, 2010] 

 

EF=<T, uEF, yEF, ΩuEF
,  ΩyEF

, SU>    (10) 
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where ΩuEF
⊆(T,uEF), ΩyEF

⊆(T,yEF). 

with     T is the time base 

uEF are the input variable of EF  

𝑦EF are the output variable of EF  

ΩuEF
 are the set of admissible input segments for the experimental control 

Ω𝑦EF
 are the set of EF output segments  

SU is the set of conditions, also referred to as summary mappings establishing relationship 

between inputs and outputs within a frame. 

Similar to figure 2.1, this EF definition can be illustrated along with the SUT input segment, 

ΩuSUT
 and output segment, ΩySUT

 as follows, 

 

 

Figure 3.7: EF Definition & SUT 

It may be noted the EF input, ΩuEF
 need not necessarily be SUT output, ΩySUT

 alone, but also 

have some free experimental control inputs which is not depicted here. Let us denote the EF input, 

ΩyEF
 which serves as input to the SUT, ΩuSUT as simply Ω𝑦. Then, in the context of behavioural 

fidelity, following Eq.(9), the general inclusion relation between the admissible model segments 

with respect to its capabilities becomes,  

 

Ω𝑦SOU
 ⊆ ΩySDU

 

 

(11) 

The architectural and behavioural perspectives of EF as SDU and SOU are presented with 

respect to the abstractions in the context of a fidelity framework in the next section. 

 

4. FIDELITY FRAMEWORK & INCLUSIONS 

The implementation of the fidelity framework, as remarked in chapter I, is twofold, capturing and 

managing or assessing fidelity. Capturing fidelity needs refers to the collection of fidelity 

requirements from the SOU in terms of allowable abstraction or required abstraction precision. 

Assessing fidelity refers to quantitative assessment by a (in)formal abstraction compatibility 

criterion between allowable and implemented abstractions i.e. SOU and SDU respectively. Before 

addressing a methodology to implement these two aspects, some perspectives on this framework 

and notions on fidelity distance in the context of abstractions is discussed in this section.  
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From the definition of the EF specification in Eq.(10), let us denote the system specification 

(Msys), its reference abstraction i.e. model (MSOU) and implemented abstraction (MSDU). Let us 

denote the property of a model by φ which generalizes the scenarios definition i.e. given inputs, 

MG and expected outputs MA in section 3.1. Then the V&V cycle in figure 1 of chapter I, can be 

illustrated in terms of such hierarchical abstraction and requirements. The figure 4.1 can be 

interpreted as follows, a system specification (Msys) is said to be valid, denoted by Mφsys , if it 

satisfies the properties, φsys which are in turn needed to validate some properties φSUT  of the SUT. 

Then, in an ideal validity assessment of system by simulation, the simulation user i.e. SOU defines 

a set of acceptable abstractions (αSOU) resulting in a reference model behaviour representing the 

system, MSOU and this becomes a necessary and sufficient model if it satisfies φSOU. Similarly, the 

model developer i.e. SDU, based on system specification, develops models implementing 

abstractions (αSDU) resulting in a certain model behaviour, MSDU satisfying φSDU. A faithful 

simulation replaces the Mφsys  by studying MφSOU  derivability from MφSDU  and thereby allowing 

to conclude about the SUT. Thus the objective is to develop MSDU consistent with MSOU  to answer 

questions on the SUT. It may also be noted that, from section 2.1, the MG,T
SOUderivability comes from 

 MG,T,A
SDU  or MA

SOU derivability from  MA
SDU.  

 

 

Figure 4.1: Abstraction in Modeling & Simulation 

In addition, it must be emphasized that the question of requirement validation is not addressed 

here and it was assumed that the given simulation requirements are valid with respect to its system 

requirements and the system specification is valid with respect to φsys i.e. Mφsys is simply noted 

as Msys. 

It is known that an abstraction operation, α is essentially a ‘modeling rule’ to reduce the 

complexity of a model and to have a simulation model with sufficient fidelity, the abstraction 

mandated by the SOU must be derivable from the one actually implemented by the SDU. However, 

in reality, the user requirements which are usually expressed in an operational perspective do not 

give α𝑆𝑂𝑈 explicitly and even when available, it will be incomplete. Thus the SOU is seldom 

expressed as a reference model or MφSOU , and is usually expressed in terms of some properties and 

specifications i.e. φSOU for behaviour and architecture. In particular, acceptable behavioural 
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abstractions are indirectly expressed as acceptable error tolerances and high level specifications for 

architecture. In the architectural perspective, often fidelity requirements are only expressed as 

necessary architectural elements and not as tolerance over them i.e. only as absolute sense. For 

example, a typical requirement says a component M1,2 of type αc
𝑛 and M3 of type αc

𝑛+1 is needed to 

validate a scenario but not as at least M1 and M3 needed for simulation. In addition, since SOU is 

often at higher abstraction level, it seldom says about composition of M1,2,3 and usually it is left to 

model developer to develop this model specification. Thus in architectural perspective only 

inclusion is checked qualitatively whereas in behavioural perspective it is quantitatively checked 

vis à vis the fidelity tolerances on behaviour. Thus the key question in a fidelity framework is how 

to find a mechanism to address the issue of identifying and implementing abstractions in an 

architectural perspective and quantifying the adequacy of implemented abstractions in behavioural 

perspective.     

In particular, in the architectural perspective, fidelity is simply evaluated qualitatively as a 

Boolean notion i.e. yes/no whereas in the behavioural perspective a quantitative metric is attributed. 

In general, two key perspectives for a fidelity assessment emerge, namely, verification & synthesis. 

In a verification perspective, a fidelity assessment method yields a fidelity distance i.e. a metric 

(qualitative/quantitative) for a given SDU abstraction. The key idea is: are my abstractions 

compatible with a metric assigned on its compatibility? Instead, in synthesis perspective, for a 

required fidelity defined by the SOU, a fidelity method gives a necessary and sufficient SDU 

abstraction. The key idea here is: what are my compatible abstractions with respect to a metric? 

However, owing to the fact most of simulation models are built by reusing existing model 

components and difficulties in fixing a realistic metric by the test team, the present study only 

concerns the verification aspects of fidelity. In this context, some generic distance notions on 

fidelity are briefly discussed in the next section. These distance notions correspond in general to 

both architecture and/or behaviour perspective. 

4.1 FIDELITY DISTANCE 

In this section, notions of fidelity distance are introduced from the perspectives of SDU and SOU. 

Let the model fidelity, εF , be defined as the distance of the MSDU from the real system, Msys. It 

must be noted that the simulation fidelity, SF, and simulation model fidelity, εF, are different with 

the former being affected by factors such as the model of computation (C), execution platform (P) 

etc. which are not discussed in the scope of our study. Thus the simulation fidelity is the aggregation 

of all component fidelities, SF = ∑ (ΣεF +PF+ΣCF+...) [Ponnusamy,2014]. However, for the sake 

of simplicity the simulation model fidelity is called as simulation fidelity and implicit in this 

statement is the assumption that other factors such as PF etc. are perfect. Though this may not be 

true in reality, most of fidelity issues arise from how the system is modeled i.e. εF which is the 

focus of this study. 

Fidelity, resulting from abstraction, is based on both the SUT type and type of operation i.e. 

SOU. It is to be noted that the fidelity per se is an absolute realism measure of the SDU (what the 

model can do) independent of the SOU (how the model is intended to be used). However, an 

absolute definition of fidelity is neither feasible nor useful since a model is always abstracted with 

an objective behind [Gross,1999], [Brade,2004] & [Roza,1999]. A more pertinent question is what 

is the right level of abstraction for the SDU with respect to SOU? Or succinctly, how do we 

formally relate fidelity and validity? 
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Let ε be this distance notion, also referred as abstraction precision and there are two types of 

distance namely εSDU and εSOU. In particular, the absolute fidelity, εF
abs can be defined as, 

 

εF
abs = εSDU + εX 

   

(12) 

where 𝜀𝑆𝐷𝑈 denotes the EF fidelity distance with an unknown additional distance, εX, implied by 

the implementation aspects such as model of computation etc. Since in our study εF
abs ≈ εSDU, then 

δF, a fitness measure for closeness of abstraction between the SOU and SDU is introduced 

[Ponnusamy,2014] as, 

 

δF = εSDU/εSOU 
   

(13) 

If  δF =1, then it is at the right level of abstraction and δF < 1, then the abstraction is too precise 

(over fidelity) and vice versa. In the measured fidelity approach, εSDU is defined independent of 

the εSOU and instead of such an absolute measure, a relative measure called the relative fidelity, 

εF
rel which takes into account εSOU apriori need to be defined in the design fidelity approach such 

that Eq.(13) is improved. It may be recalled that these distances, both absolute and relative, are 

quantitative measures in the behavioural perspective and qualitative measures in the architectural 

perspective in our study. In other words, the architectural inclusion and the resulting relative 

distance is evaluated qualitatively whereas in behavioural perspective the distance is measured 

quantitatively, both as a global measure, εF
abs and as a relative measure, εF

rel. This approach is also 

similar to two stage fidelity quantitative metric proposed in [SISO,2013] where the first stage 

answers whether the fidelity is true(>0) or false (0) and the second stage answers if it is true, how 

far it is greater than 0 on a positive scale. In our case, the binary (true or false) question corresponds 

to the inclusion question (yes/no) and if included, then how far does the behaviour similar to system 

is evaluated on a quantitative scale. 

In general, a SDU abstraction is valid if it is compatible with the SOU abstraction and this level 

of compatibility yields a measure of required abstraction. Consider a system dynamics of order i.e. 

state space size, nsys = 5 abstracted to nsdu = 2 with nsou = 3. This is a case of over abstraction 

with respect to objective as δF > 1. However if the objective is different, say nsou = 1, then it is a 

case of under abstraction with δF < 1. Thus the correct abstraction is subjected to the SOU 

definition i.e. a model may have low fidelity but still be valid. 

Consider another simple example, let us assume an ideal system output of Ysys = 1° at interface 

of the SUT, which is abstracted by the SDU and SOU as range of values, an interval abstraction 

defined by [min max]. The abstraction is valid if the acceptable range is bigger than the available 

range and relative fidelity is high as the two ranges are closer.   

Proposition 4.1: Let 𝛼𝜀𝑆𝐷𝑈and 𝛼𝜀𝑆𝑂𝑈  be abstractions of SDU and SOU with distance 𝜀𝑆𝐷𝑈 and 𝜀𝑆𝑂𝑈 

respectively, a simulation product is said to be faithful if the developer abstractions are more 

precise than user abstractions i.e. 𝛼𝜀𝑆𝐷𝑈 ⪯ 𝛼𝜀𝑆𝑂𝑈. 

In the framework of fidelity, the abstraction inclusion can be interpreted in verification as well 

as a synthesis perspective [Ponnusamy,2014]. The SOU lays out the required rule in terms of 

allowed fidelity distance, εSOU. The verification problem is checking the distance of allowable 

abstraction, εSOU, against the abstraction implemented, MSDU, 
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fver(Msys,MSDU)=εSDU 

 

(14) 

Then, by definition of inclusion, a simulation model is valid when εSDU ≤ εSOU. In other words, 

the unknown reference model MφSOU  is verified against implemented model MφSDU  through the 

precision of abstraction. In the other case, namely synthesis, for a given precision, εSOU, a 

corresponding user abstraction is found, MSOU. 

 

f syn(Msys,εSOU)= MSOU 

 

(15) 

Consider first example, it is akin to asking what is nsou (a modeling rule) for a given fidelity 

requirement. Then it is essentially a problem of correction i.e. implementation of reference model 

MSOU as MSDU in the environmental model.  

By partial order relation, for abstraction MSDU
i  where i = 1. . n are different levels of model 

abstractions, if 

 

MSDU
i ⪯MSDU

i+1  

MSDU
i+1 ⪯MSDU

i+2  
 

(16) 

Then 

 

MSDU
i ⪯MSDU

i+2  (17) 

  

The optimal abstraction is the one whose precision of abstraction is closest to the required 

precision. 

In addition to abstraction of model behaviour, model interfaces are abstracted based on their 

syntax definitions and the behaviour they handle. The architecture (number of ports, coupling, 

structure) and behaviour of the EF and SUT interfaces must be applicable and defined in terms of 

a partial order relation. Such a definition followed by an inclusion criterion will help address the 

simulation fidelity with respect to abstractions.  

 

5. CONCLUSION 

In this chapter, the problem of capture and manage fidelity of our designed fidelity approach 

has been discussed as an inclusion problem in the EF formalism. This inclusion problem has been 

formalised in architectural and behavioural perspective and are assessed qualitatively and 

quantitatively. A method to verify this inclusion based on a domain model approach for 

architectural perspective is presented in chapter III and based on a formal approach for behavioural 

perspective is presented in chapter IV. 
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CHAPTER III 

SYSTEM SIMULATION DOMAIN 

MODEL APPROACH 

 

In this chapter, an ontology driven domain model approach for improving the fidelity of the 

simulation by developing models through the inclusion of simulation objectives for the system 

V&V is presented. The application of this domain modeling technique and semantic web principles 

to identify, extract and build a MR and then a MS is presented in the following sections. 

 

1. INTRODUCTION 

In the M&S of complex systems, recalling section 2.2.1 of chapter I, one of the key challenges in 

modeling is the lack of common understanding between the stakeholders, semantic inconsistency, 

and interoperability [Benjamin,2009]. The designed fidelity approach necessitates collection of 

knowledge about the system to be modeled and scenarios under which it will be operated called 

System Description (SD) knowledge i.e. Msys and Test Requirements (TR) i.e. MSOU in general and 

MG,T,A in particular respectively. This is then used to build the Model Requirements 

(MR), MφSOU  through inclusion relations discussed in section 3.4 of chapter II such that the 

resulting Model Specification (MS) or SDU i.e. MSDU when composed with the SUT satisfy φSOU.  

In general, in building a MS it is imperative for the model developer to understand and 

incorporate only the essential elements needed for the test and usually this MR is given by the 

model specialist. However, owing to the complexity of different domains of knowledge involved 

which are often implicit and incomplete at different levels of abstraction, it is a tedious task to 

define this MR manually. This is compounded due to the lack of a consistent derivation of low 

level V&V requirements from high level V&V objectives as illustrated in the figure 2.4 of chapter 

I. In addition, since modeling can be interpreted as a ‘reasoning’ problem i.e. inclusion of relevant 

information about the system being modeled, it is important to identify, relate and organize this 

information from the domain knowledge [Ponnusamy,2015]. However, this is often a tedious task 

which necessitates a domain model approach with reasoning and knowledge exploitation 

capabilities.  

An ontology helps to formalize this knowledge and build a domain model since a model can be 

interpreted as a set of concepts with some relationships between them. An ontology, as defined by 

ISO 15926, is a formal representation of a set of concepts within a domain and the relationships 

between those concepts [ISO15926]. A formal ontology is a controlled vocabulary expressed in an 

ontology representation language with a grammar to express something meaningful within a 

specified domain of interest [Noy,2001]. Such ontology could be used to build a domain model or 

a meta-model which is an explicit model of the constructs and rules needed to build specific models 
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within that domain of interest. As remarked by Pidcock in [Pidlock], a valid meta-model is an 

ontology, but not all ontologies are modeled explicitly as meta-models.  

In the case of M&S, the flexibility of ontology in expressing different domain knowledge in a 

succinct and standard form could significantly improve the modeling activities by explicitly 

incorporating the model context of usage and thereby ensuring better simulation fidelity. 

Ontologies serve as an attractive option due to their standardization in terms of OWL [OWL] 

language, scalability, and availability of tools such as Protégé [Protégé], Topbraid Composer 

[Topbraid] etc. with SPARQL [SPARQL] query capabilities. An additional advantage of 

ontologies is its reasoning i.e. ability to infer knowledge which is otherwise hidden or scattered. 

The existence of plug-in reasoners with Protégé tool such as Fact++ [Fact++], Hermit [Hermit] etc. 

helps to draw inferences and check consistency. The inferred ontology can be queried for specific 

needs with SPARQL, a query language which is used to retrieve and manipulate data stored as 

Resource Description Framework, RDF, a semantic web standard [Sintek,2002]. In addition, as 

remarked in [Wagner,2012], [Jenkins,2012], ontologies could be used in conjunction with industry 

standard SysML [OMG] based MBSE and this will help practicing engineers to capitalize on the 

graphical syntax of SysML and reasoning capabilities of ontology. 

  

2. STATE OF ART 

In understanding and explaining complex systems, usually there exist multiple views of 

representation since a single perspective may not be adequate to represent the underlying 

complexity. The system engineering languages such as SysML [OMG], CAPELLA [Roques,2016] 

which supports MBSE activities addresses this need for multiple viewpoints at different layers of 

abstraction. However, despite its widespread use in system engineering due to its graphical 

interface and scalability capabilities, such general purpose languages have a closed semantics and 

not very flexible to build a domain model [Jenkins,2012]. On the other hand, since a system (or a 

model) could be considered as a representation of some concepts and relationships between them 

i.e. knowledge, ontologies could be useful in building such a domain model. Ontologies for system 

engineering were explored by Graves et al [Graves,2008] to standardize knowledge exchange 

between stakeholders during product development and utilize the reasoning capabilities for 

consistency evaluation. The benefits of such an approach in representing static properties such as 

product structure and challenges in representing dynamic properties were discussed for air systems 

engineering. This study was then extended to leverage the formal semantics, logical reasoning of 

ontologies with standard and graphical system engineering approaches using SysML by model 

transformation between them in [Wagner,2012], [Jenkins,2012]. Though such novel approaches 

were interesting in building a rigorous MBSE framework, it does not concern the development of 

ontology per se for the M&S domain. 

The interest of ontologies in the M&S domain has been discussed in [Fishwick,2004] 

[Miller,2004], [Lacy,2004] and an ontology based dictionary of generic M&S terms has been given 

in [Oren,2014]. In particular, Miller et al [Miller,2004] discusses the potential of leveraging the 

query, navigation and web-based exchange capabilities [Miller,1997] for M&S. In [Durak,2016], 

the authors presented an ontology for simulation systems engineering, where the contribution of 

system engineering to simulation product development has been discussed. Similarly, an ontology 

for system V&V has been proposed in [Kezadri,2010] with various formalisms and techniques for 

http://www.w3.org/TR/rdf-sparql-query/
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the purpose of knowledge sharing between stakeholders. However, all these studies focus on high 

level knowledge standardization in terms of formalisms, definitions, and taxonomy of M&S. A 

holistic application of ontology in simulation model development for system validation especially 

in an industrial process context has not been explored adequately to the best of our knowledge. In 

addition, using reasoning and query capabilities of ontologies to check for completeness and 

consistency between two different knowledge bases i.e. SDU and SOU to build a MR has not been 

explored and this is a particular contribution of our approach. This study envisages such an 

integrated approach which consolidates knowledge capture via domain model and exploitation 

techniques to not only build a MR but also build a modeling abstraction library and automated 

assembly of model for near seamless deployment. 

The domain model proposed in this study is based on academic and industrial state of art, 

interview and questionnaires with stakeholders, Airbus internal V&V processes, documentations 

and standards. In order to build a domain model with multiple viewpoints, we have used the 

classical system teleological ontology of Structure, Behaviour, Function (SBF) proposed in 

[Gero,2004]. The SBF ontology is based on the standard definition of system [Simon,1969], and 

Functional representation ontology [Chandrasekaran,1993]  and specifies the system’s function and 

the causal processes that result in them at multiple layers of abstraction [Goel,2009].  Applications 

of this SBF framework include automated design and problem solving in the fields of mechanical 

design [Deng,2002], construction [Clayton,1999], computer aided design [Colombo,2007]. 

Originally intended for design science, this framework is used to represent designing as a set of 

processes linking structure, behaviour and function together [Gero,2004]. Such representation is 

amenable for our designed fidelity approach since a V&V activity is essentially focused on 

functional and non-functional (e.g.: performance) validation. In particular, the connection between 

behaviour and function in this ontology is useful for example, to capture knowledge such as a 

behaviour i.e. causual process such as ‘push throttle’ on a structural element ‘Throttle lever’ results 

in a function ‘propel aircraft’. However, these notions, originally intended for teleological 

modeling of complex systems, could be restrictive and too abstract in expressing the test scenarios 

in the V&V context which is usually expressed in detail from an operational perspective (e.g.: use 

cases in SysML or operational layer in CAPELLA) over some architecture or high level behaviour. 

In order to enhance the classical SBF framework we have proposed the concept of Interface and 

Operation into a SBFIO ontology. The Operating Modes formalism proposed in this approach is 

similar to mode automata [Maraninchi,1998], mode chart [Jahanian,1988] but is lightweight and 

believed to be more flexible and amenable to ascribe functional or system behaviour at higher 

levels of abstraction. Such a less formal notion is needed to extract a firsthand knowledge on a 

system, its mode of operation and associated dependent modes without resorting to a detailed 

modeling to build a MR.   

In addition to such standard ontology, a viable domain model approach needs to incorporate 

the underlying processes of simulation product development discussed in section 2.2 of chapter II. 

This is especially true when the V&V activities in general and M&S activities in particular are 

geographically and organizationally scattered. There has been very few studies in this regard 

[Monceaux,2007], however, of late there has been growing focus on leveraging the potential of 

ontologies especially in aerospace system engineering [Zayas,2010], [CRYSTAL,2014] and V&V 

applications. Such studies have broader scope as they concern the overall V&V process whereas 

our problem is more specific to V&V by simulation. In addition, our approach not only attempts to 
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build a domain model per se but also demonstrate its viability in MR and MS construction with use 

case studies.  

In addition to building a MR, ontologies could also be used to classify different abstractions 

used in modeling by the model developers to build a model library, aids in model selection and 

assembly. A long term benefit of such approach will be to capitalize on the validated abstraction 

class for a particular scenario which will reduce the modeling time followed by model integration. 

Modeling abstraction classifications have been made by [Frantz 1994], [Albert,2009] etc. though 

an ontology implementation has not been done adequately. In addition, the problem of manual 

model selection from a library is also a time consuming error prone approach. Levy et al in 

[Levy,1997] proposes a recursive procedure to extract a consistent model from the library 

according to some requirements. However, a limitation of this approach is it presumes the library 

is well documented in terms of abstractions employed. However, this is seldom the case since 

abstractions employed by model developers are not formalized adequately. Hence, in our approach 

we have implemented the abstraction ontology proposed in [Albert,2009] and then we leverage the 

reasoning capabilities of ontologies to build and fill the model abstraction library. This would then 

serve as an input for the recursive procedure implementation to find the consistent model 

automatically. Similarly, SPARQL query capabilities of the ontology approach for the simulation 

model assembly were discussed in [Novk,2011]. However, it may be restrictive as it would match 

model interfaces absolutely whereas in reality there exist a hierarchy. Hence, we extend the concept 

of abstraction hierarchy defined over lattice in formal verification [Cousot,1992] and semantic 

annotation [Lickly,2011] to the V&V domain and an informal distance notion is ascribed to the 

elements of lattice to improve the model assembly query results.  

The overall ontology based approach to simulation model development and the system V&V 

by simulation ontology concepts are elaborated in section 4. This MR and MS construction based 

on the domain model approach is discussed in a process oriented perspective in section 5,6. 

 

3. PRELIMINARIES 

3.1 LANGUAGES & FRAMEWORKS 

The concepts and relationships of the ontology are expressed in Web Ontology Language 

(OWL) from the W3C consortium in the form of classes, individuals and properties [OWL]. This 

language is originally intended for semantic web where information in the web is given explicit 

semantics and thereby enabling machines to process information. The OWL extends the Resource 

Description Framework (RDF) [RDF] and RDF Schema (RDFS) which represents information 

about resources in a graph form, with the expressive and reasoning power of the description logic.  

3.2 LOGICS & REASONING 

In the formal knowledge representation, Description Logic (DL) [Baader,2005] based on the 

predicate logic such as first order logic, describes a domain in terms of concepts i.e. classes, roles 

i.e. properties or relationships and individuals. This logic focuses on tractable reasoning such as 

satisfiability, subsumption, consistency etc. which can be verified by reasoned and thus complex 

concepts can therefore be built up incrementally out of simpler concepts. Reasoners infer this 

relationship by reification, a concept in logic where an instance of a relation is made the subject of 
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another relation [Grosof,2003]. The OWL language, based on this DL, capitalizes the well-defined 

model theoretic semantics of DL whose properties such as complexity, decidability are better 

understood to represent and exploit knowledge in a formal and consistent manner. 

3.3 QUERY 

The concepts and relationships of the ontology are expressed in RDF form of a triple with a 

subject, predicate and object. Let us denote this by a tuple < 𝒞𝑠, 𝒫, 𝒞𝑜 > where 𝒞𝑠 and 𝒞𝑜 are subject 

and object concepts with 𝒫 being the predicate i.e. property associating them. For example, the 

triple < 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦, 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑒𝑠, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > could be interpreted as a Quantity e.g. ‘height’ 

characterizes a function e.g. ‘Display Altitude’. In this ‘height’ and ‘display altitude’ are the 

individuals i.e. instances of the class ‘Quantity’ and ‘Function’ respectively. This information can 

be queried using the Simple Protocol and RDF Query Language (SPARQL), which is a SQL-like 

language for querying RDF data [SPARQL]. Queries are constructed in triple pattern of subject, 

predicate and object using TURTLE syntax with conjunctions, disjunctions and optional patterns 

such as to filter, sort etc. [TURTLE]. Sample queries can be found in the annex. 

 

4. SIMULATION FIDELITY DOMAIN MODEL  

In developing a domain model it is important to incorporate different viewpoints in the system 

teleological perspective such as Structure, Behaviour, Function (SBF) ontology [Garo,2004]. 

However, these notions could be restrictive in expressing the test scenarios in the V&V context 

and we have extended them with the notation of interface (I) and Operation (O) to describe 

interconnected system with different modes of operation. Together, the ontology is called a SBFIO 

ontology and in addition it has different generic (Ports, Variable, etc.) and domain specific concepts 

(ATA chapter, System ID, Siglum, etc.). 

 

 

Figure 4.1: SBFIO Domain Model 
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This ontology and its underlying rules are used to build the system simulation domain model which 

is implemented in the Protégé tool [Protégé]. The SBFIO part of domain model is illustrated in 

figure 4.1 [Thebault,2015], [Ponnusamy,2016]. For the sake of brevity not all the concepts are 

discussed in this section and the focus is only on the important concepts of the domain model. A 

major part of the domain model is listed in the section 1 of annex for reference.  

4.1 SBFIO ONTOLOGY 

The key concepts of the SBFIO ontology covering such a perspective are briefly given as follows: 

Structure: In addition to classical architectural descriptions of how the system is built (e.g.: 

composition) [Garo,2004], [OMG], spatial information is included in our domain model. Besides 

ensuring geometric consistency aspects, the spatial information could be related to the 

corresponding physical phenomenon and the interaction between the systems.  

Behaviour: A system behaviour is the temporal evolution of the system when subjected to some 

scenario and behavioural abstraction will be briefly discussed in section 4.3. However, this 

concerns only high level description of behaviour whereas a formal approach to low level concrete 

behaviour is presented further in chapter IV. 

Function: Function describes the system objectives and how they are achieved [Roques,2016]. We 

also define a system’s function as essentially an energy flow manipulation and ascribing domain 

specific laws to such flow type the phenomenon can be modeled. For example, an aircraft actuator’s 

function is to move the control surface according to pilot’s command which involves electrical to 

mechanical energy conversion. Based on such abstract information the associated laws can be 

inferred from the library developed by the domain experts. 

Interface: Interface refers to how the systems interact among themselves (e.g. I/O ports) or with 

the external user (e.g. push button). We define interface as the system boundary that can have 

different attributes such as range, precision etc. It may also be seen as a manifestation of the 

observable behaviour and is essential in ensuring the consistency at interconnection and 

composition.  

Operation: Operation generally refers to the concepts of ‘operating modes’ and ‘operating 

condition’ of the EF which are introduced in detail in the following section.   

4.1.1 Operating Condition 

Operating Condition (OC) implies the conditions of environment of the SUT and is used to 

ascribe assumptions behind models especially at higher abstraction level. In other words, it refers 

to the assumptions of the EF components and is used in succinctly expressing and identifying 

operational domains and dependencies. For example, an operating condition of a flight control 

system at ‘takeoff’ phase implies associated assumptions for the engine performance model at this 

phase. In the next section, operating modes are explained.  

4.1.2 Operating Mode 

Operating Modes (OM) extends the classical notion of mode-charts [Jahanian,1994], and is  

similar to mode automata [Maraninchi,1998] but is believed to be more flexible and amenable to 
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ascribe functional or system behaviour at higher levels of abstraction. Mode charts is a specification 

language for real time systems whose semantics are given by Real Time Logic (RTL) 

[Jahanian,1988], a logic for reasoning about the absolute timing of events. Modes are essentially 

partition of a system’s state space and a system can have different possible modes (e.g.: Switch-

On/off, Engine-Start/Stop). Then our definition of OM is based on a simple causality relation for 

interconnected systems with interdependent modes (e.g.: Switch-On THEN Engine-Start). This 

definition is amenable to ascribe functional behaviour or a semantic behaviour vis à vis the system 

description. In contrary to the rigorous but less flexible formalisms such as mode automata 

[Maraninchi,1998], our definition refers to the operational manifestation of a model under a given 

scenario from a static perspective and eases the understanding of Test Requirements (TR) and 

System Design (SD) which are usually at different levels of abstraction. In other words, the effects 

of a component’s mode on other components can be observed statically and this helps in better 

understanding the necessary elements to be modeled whose real dynamic behaviour will be 

analyzed later using established formalisms such as mode automata. 

Definition 4.1: Let us denote a system component by Ci having modes Mj
i ∊ Mi where i and j refers 

to the component id and the corresponding mode respectively. The dependency between modes are 

given by mode inter-connection Ii
k:Mj

i → ⋃ Mj
k

j  i.e. a mode of a component, Ci may affect one or 

more modes of other component, Ck such that Ii
k ⊆ {Mi ∪Mk}. The OM then becomes a tuple 

[Ponnusamy,2016],  

 

OMik =< Ci, Ii
k, Ck > (1) 

 

where the connected modes of Ci are called guards i.e. causative and that of Ck are called states i.e. 

resultant. Transitions between modes occur whenever the guard mode changes. The transition 

Tn→n+1 defines transition from one operating mode, OMn to another, OMn+1when the guard 

conditions changes i.e. becomes true denoted by ˫ symbol. This is given by, 

 

Tn: Mj
i 𝗑 τ →  Mj′

i │τ ∶  Mj′
i ˫ 

 

(2) 

where Mj
i ∊ OMn and Mj′

i ∊ OMn+1. The mode description and its transition is represented in the 

following figure [Ponnusamy,2016], 

 

 

Figure 4.2: Operating Modes & Transition Diagram 

For example, consider a system with four components, Ci=1..4 each having different modes. The 

dependencies in between them are shown as dotted lines in figure 4.3, for example, the mode M1
1 

affects M1
2 which in turn affects M1

4 i.e. components C4 is dependent on C1. These modes can be 

interpreted as reachability space where each state is a possible operating mode of the block and 

preceding state is the guard operating mode. In other words, when the guard condition is true the 
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entailment relation between these two modes result in final mode. The evolution from guard to the 

mode involves dynamics and at each mode too there could be an associated behaviour. 

 

 

Figure 4.3:  Mode Dependency Example 

Such dependencies could be illustrated using OM in the following figure 4.4, which could be 

then reasoned and queried to find implicit information such as modes (un)affected by a particular 

mode or its attributes (e.g.: type of system, associated designer etc.). In practice the system designer 

need only gives the component and its dependent modes and the link between different such pairs 

are extracted automatically. This is useful since the designer usually knows the causality relation 

only few components upstream and downstream and it is thus important to relate between all such 

information to have holistic view before modeling the system. In other words, this helps in 

capturing each component’s operational environment assumptions in terms of modes. In the figure 

below, the causality relation in mode is denoted by solid arrow line and the transition between 

modes by dotted arrow lines. In addition, transition can be constrained, for example, once mode 

M3
1 is activated it cannot be switched to other modes of the component and hence the end state will 

always be M1
5. Thus the transitions can be primary i.e. affects other OM or secondary i.e. does not 

affect other OM e.g.: OM5. 

 

 

Figure 4.4: Operating Modes 

From such illustration, queries can be made on the instantiated domain model for applications 

such as identification of the transitions between modes and the necessary dependencies to be 

modeled. For example, reachability notions such as the mode M1
4 can be reached from M2

1 by 
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changing the mode to M1
1 can be queried. Similarly there are two ways of reaching M2

2 and 

associated (or the shortest) path can be queried.  

This description will also be useful in high level functional failure mode and effect analysis. A 

failure could be interpreted as the inability of the system mode to transit in response to its associated 

causality conditional i.e. guards change. Consider a TR stating simulate C2 failure and this 

requirement necessitates inclusion of components associated to C2 such that any mode change in 

upstream component i.e. guards does not have effect on C2 since it is already failed and effect of 

downstream components i.e. states with respect to it. From SD it is known that C2 can fail at M1
2 or 

M2
2 and in case of failure at M1

2 it can be easily infered that M2
1 will not have any effect and it must 

be included to check the effect. In addition, OM4 can be abstracted for simulation of OM5 since it 

does not have any transition associated. Similarly recovery procedures such as in case of M1
2 failure 

to respond to transition M2
1, M2

2 can be reached through OM5 if there exists a transition i.e. guard 

change M3
1 to M2

1 can be seen. It may be reminded that all such inferences are static i.e. from 

instantiated domain model through queries and this helps in inclusion of necessary abstractions to 

be implemented for a given test requirement before dynamically simulating. 

4.2 TEST ONTOLOGY 

In addition to the SBFIO ontology, a set of concepts to capture the TR in terms of the scope of test, 

test mean i.e. simulation platform etc. are defined in our domain model approach. Some of the 

constituent concepts include test condition which describes the conditions enabling a test in terms 

of SBFIO, test procedure and expected outcomes. In addition, other concepts such as class, 

criticality, cluster, stakeholder etc. are defined to capture the associated attributes of the test 

required (refer section 1 of annex).  

In the next section, similar to ontologies which capture the system design and test knowledge 

from system designer and simulation user respectively, an ontology to capture the modeling 

knowledge from the model developer is presented in the context of building a MS through 

component model selection and assembly. 

4.3 MODELING ABSTRACTION ONTOLOGY 

In the M&S of complex systems where the legacy models are usually reused to incrementally build 

and assemble to form larger, even with a consistent MR, quite often it is difficult to select a model 

from the library and assemble them. This is predominantly due to the absence of standardization 

of the modeling mechanism i.e. abstraction employed which is usually mastered by the engineers 

but not formalized. The problem of choosing an abstraction to represent a phenomenon i.e. 

modeling, in essence is a reasoning problem as posed by Levy et al in [Levy,1997] since a model 

developer reasons about a given physical system at different levels of abstraction. Similarly, in the 

field of Artificial Intelligence (AI), qualitative simulation has been proposed by Kuipers et al which 

is based on qualitative reasoning about systems [Kuipers,2001]. This reasoning over different 

abstractions available as a library presumes every model is well documented in terms of abstraction 

employed. However, this is seldom the case and this incompleteness of the library is due to the lack 

of formalized description of different types of abstractions and relations between them. In the next 

section, based on the works of Albert [Albert,2009], a domain model of this modeling abstractions 

on four axes of scope, computation, data and time is implemented in Protégé and the reasoning 

capabilities were exploited to build and fill the model abstraction library. In addition, an algorithm 
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based on [Levy,1997], has been implemented as SysML activity diagram (refer section 3 of annex) 

to select an abstraction consistent with requirements from this library.  

4.3.1 Classification of Abstractions 

A model is built to represent one or more system viewpoint described in section 4.1 via 

abstractions. There exist different taxonomies for abstractions employed in M&S by [Frantz 1994]. 

In our approach, modeling abstractions are broadly classified into four classes namely, architecture, 

data, computation and time [Albert,2009] They are briefly described below, 

Architecture: Architecture is a structural notion describing the scope and topology of the model 

using techniques of omission and functional aggregation. 

Computation: Computation refers to the modeling and capture of system evolution i.e. dynamics. 

This behavioural notion includes concepts of I/O relation, accuracy, mathematical precision and 

dynamic interaction. Abstraction techniques such as equilibration and exogenisation 

(simplification) are used under this class. 

Data: Data dimension refers to the representation of dynamics as data. This includes concepts of 

data type, unit, domain, resolution and precision with associated abstraction techniques such as 

type coercion. 

Time: Time class refers to the temporal granularity of event ordering described in the simulation 

scenario and its compatibility with the model in terms of wall clock time, simulator time and 

mathematical time.  

A brief illustration of this model abstraction taxonomy [Albert,2009] implementation in 

Protégé tool in figure 4.5. For the sake of brevity, the class definitions are not discussed in detail 

since the focus is, for a given a class description, how to reason and select corresponding modeling 

abstractions.  

 

Figure 4.5: Modeling Abstraction Taxonomy 
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In general, the abstraction classes are identified 𝑐 ∈ 𝔐, where 𝔐 is the domain model shown 

in figure 4.1. Consider a model M𝑖 defined by an abstraction operation  
αc
i , where αc

i  is a member of the abstraction class αc set as described above. This model definition 

is valid for a certain condition called Operating Condition defined in section 4.1.2. For example, 

an aerodynamic model with abstraction of only laminar flow is valid for a range of Reynolds 

number, Re<Relimit. Recalling that the hierarchy of abstractions is related by binary relation 

forming a partial order (≼) as follows. 

 

M0
α1
1

→ M1
α1
2

→ …MN 
 

(3) 

where M0 refers to concrete model and n=1..N are possible abstractions. 

The model abstraction library lists the models and their corresponding abstraction and operating 

conditions as described in the table 4.1 [Ponnusamy,2015]. The abstractions defined manually by 

the developer or user are indicated by the ‘*’ sign and those which are inferred then by reasoning 

capabilities of the ontology to complete this table to the extent possible, are denoted by ‘+’ sign. 

Table 4.1: Model Abstraction Library 

Model 
Abstraction Operating 

Condition αc
i  αc

i+1 αc+1
i  αc+1

i+1  

M0 *   * OC1 

M1   + * OC1 

….     OC1 

MN + * *  OC1 

                                                              * defined, + inferred 

 

The models described by such a partial relation forms a lattice. Lattice or Hasse diagram is a 

mathematical diagram of this partial order relation. Such models described over lattices are grouped 

based on the abstractions. Since a valid abstraction is an operation from a concrete model to an 

abstract model, where, whatever is true about the concrete model is true in the abstract model but 

the reverse is not necessarily true, the properties can be inferred from such inheritance relations. 

From Eq. (3) for models M𝑛 and M𝑛+1 and their requirements φ defined over some temporal logic 

such as Linear Temporal Logic (LTL) or Signal temporal Logic (STL) [Donze, 2014], if 

 

M𝑛+1  ⊨  {φp=1..P}  ⇒ M𝑛  ⊨  {φp=1..P} (4) 

 

Thus for an abstraction belonging to the same class αc
i=1..n arranged over the lattice, implementation 

of an abstraction αc
i+1 also mean the implementation of abstraction αc

i  due to partial order relation 

αc
i ≼ αc

i+1. The model abstraction library is thus filled based on these inheritances and 

dependencies identified by reasoning over the partial order relations. These inclusion relations are 

exploited to fill the modeling abstraction library and this approach is illustrated with a battery 

example in section 5.2.1. In the next section, a process oriented view of utilizing this domain model 

to build the MR and then to build a MS is briefly presented. 
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5. PROCESS OVERVIEW 

The domain model presented in section 4 serves two purpose, namely, to build a MR and then to 

build a MS. The MR construction is based on the concepts of domain model discussed in sections 

4.1-2 and the resulting MR will be then be used to select component models and assemble them to 

build a MS based on abstraction ontology discussed in section 4.3. The two processes, namely MR 

construction and MS construction, are briefly presented in the following sections.  

5.1 MR CONSTRUCTION PROCESS 

The MR construction through the domain model approach essentially has three different steps 

namely,  

1. Formalization: Formalize text based SD and TR into domain model instances as SDU and     

SOU respectively. 

2. Verification   : Verify the inclusion of SOU in SDU  

3. Extraction      : Extract the necessary abstractions from SDU to build MR 

5.1.1 Formalization 

In the formalization phase, the text based SD and TR are translated to the domain model 

instances by the system designer and the simulation user respectively. However, this process of 

translating natural text into domain model is manual at present and a brief discussion on automated 

translation of this text into instances using Natural Language Processing (NLP) techniques is 

briefly addressed in the section 1 of chapter VI. 

5.1.2 Verification 

In the verification phase, the resulting TR and SD models are checked for the consistency, for 

example, to check whether instantiations mutually are consistent. In the second step of verification, 

these two models are overlaid, for example by making the instance of SUT required in TR and the 

corresponding element available in SD as identical. The resulting model is evaluated by the 

reasoned, for example by Fact++ [FACT++], to find implicit information and queries can be made 

to check the consistency between them. An example could be querying whether the SUT required 

by TR and the corresponding element available in SD are of same type or does same function or 

have same interfaces etc. 

5.1.3 Extraction 

The extraction phase corresponds to the SD design exploration where the required instances of 

the SD are extracted based on the TR instances. This could either be done manually or through 

queries. For example, a query could be written to extract only the equipment connected to the SUT 

and this can be further filtered according to the equipment specified in TR. Some of the sample 

queries are listed out in the annex. 
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The process is illustrated in the following figure. In addition to the sequential process to 

construct a MR, the archival and reuse capabilities are also illustrated. The approach could help in 

creating repository of MR, SD and TR which will be a significant value addition for enterprise in 

terms of knowledge capitalization and reuse. An example of using the inference and query 

capabilities of this domain model approach to identify and justify abstractions consistent with the 

test scenarios is illustrated in section 1.2 and with a failure mode case study in section 1.2.3 of 

chapter V. 

 

 

Figure 5.1: MR Construction Process Overview 

5.2 MS CONSTRUCTION PROCESS 

The MR construction by the model specialist is followed by MS construction by the model 

developer and integrator which involves three steps, namely, 

1.  Model Abstraction 

Library 

Construction 

: Formalize abstractions used to build component model 

specifications into abstraction ontology instances. 
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2.  Automated Model 

Selection    

: Select the simplest yet consistent model according to the MR from 

the library using the automated model selection process. 

3.  Automated Model 

Assembly   

: Extract the models with compatible interfaces for assembly. 

The process of MS construction is illustrated in figure 5.1 in conjunction with MR construction 

process. It can be seen that the MR construction phase is followed by model selection using the 

abstraction ontology described in sections 4.3 and selection process to be discussed later in section 

5.2. In the next sections, the abstraction library construction using the abstraction ontology 

described in section 4.3 is explained with an application case followed by model selection based 

on the implementation of recursive procedure proposed by Levy et al [Levy,1997]. Though the 

main application case for the domain model approach in MR construction is presented in chapter 

V, this relatively simple application case is illustrated here to demonstrate the synergies of 

reasoning aided domain model approach in automated model selection with the MR construction. 

5.2.1 MODEL ABSTRACTION LIBRARY CONSTRUCTION, MODEL SELECTION: 

APPLICATION CASE 

The application case is a battery system similar to the one described in [Levy,1997]. The battery 

is connected to a solar panel of a satellite and the function of the battery is to provide power to the 

panels when the satellite is at the far end of earth without the sunlight. It is known that a phenomena 

exhibited by the system can be modeled in different ways. Thus the battery can be modeled in 

different perspectives (e.g.: model voltage phenomena, charge level or a combination of both) and 

for each perspective it can be modeled in varying granularity of details (e.g.: voltage is independent 

or dependent of charge level). Every such model may correspond to different operating condition 

and the challenge is to find an abstraction consistent with the required operating conditions and 

phenomena. 

5.2.1.1 Model Abstraction Library Construction 

The model abstraction library based on table 4.1 [Ponnusamy,2015] for this application case 

has models with Voltage (V) as output with different abstractions on ChargeLevel (CL), time (t), 

Temperature (T) is given in table 5.1. The model ids are given by the following set, Mi=1..6 = 

{Constant Voltage, Binary Voltage, Normal Degrading-1, Normal Degrading-2, Charge Sensitive, 

Temperature Sensitive}. The Operating Condition (OC) corresponds to state of damage and 

rechargeable conditions. For this case, there are only two conditions namely {not damaged} and 

{not damaged, rechargeable} denoted by OC1 and OC2 respectively.  

Let us denote a class, c and its instance by a notation 𝔈 and 𝔗 respectively then an instance of 

class is denoted by 𝔈:𝔗. Consider a sample model M5, Model:ChargeSensitive which describes the 

evolution of voltage as function of charge level and time under a condition not damaged. The 

Quantity: ChargeLevel and Quantity:Time is defined to characterize the battery function, 

Function:Recharge. An instance could be defined or inferred and the objective is to minimally 

define these instances and infer the rest. For example, a model with OperatingCondition: 

rechargeable upon inference becomes not damaged too. This rule is encoded in ontology through 

a subsumes relation such that if OCi subsumes OCj then OC1 = OC1⋃OC2. Similarly, other domain 
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specific rules could be implemented by domain experts and such template will be useful for other 

stakeholders to find the dependencies through inference. 

Table 5.1. Battery Model Abstraction Library 

M 

Abstraction 

OC αIO
1  αIO

2  αIO
3  αIO

4  

 α1
𝑐𝑜𝑚𝑝

 α2
𝑐𝑜𝑚𝑝

   

M1 V*=𝐶0     OC1 

M2  V*=𝑓0(𝐶𝐿)    OC1 

M3  V*=𝑓1(𝑡)    OC1 

M4  V+=𝑓1(𝑡) V*=𝑓2(𝑡)   OC1 

M5    V*=𝑓2(𝑡, 𝐶𝐿)  OC2 

M6     V*=𝑓2(𝑡, 𝑇, 𝐶𝐿) OC2 

* defined, + inferred 

 

In addition, queries can be made on the instances to extract required data or match related data. 

For example, models could be grouped under an assumption classes based on the output quantity, 

Voltage (V) in this case. Then, using SPARQL queries, all models having same outputs can be 

extracted and grouped. Similarly, instances of a class ParameterDependancy defining the 

quantities characterizing the function under an operating condition can be queried to answer 

teleological questions such as listing functions which depends on same parameters etc.  

In the following section, only a few abstractions for each class are explained and this method 

can be extended for others too, provided a hierarchy can be built with binary relationship between 

them as described by Eq.(3). 

5.2.1.1.1 Architectural Abstractions  

The architecture relations such as system-subsystem-equipment-component are expressed 

through Structure_Composed_of relationship. For example, the battery system is composed of 

component such as terminals, switches etc. An instance Model:Binary_voltage_Model with the 

relation Structure_Composed_of to another instance Structure_part:  

Binary_voltage_Model_Terminal which in turn related to other instance such as port etc. 

Intuitively, a simulation user requirement of simulating a battery port implies simulation of its 

parent system.  

5.2.1.1.2 Data Abstractions  

A hierarchy of data types could be created using data_part property similar to architecture. A 

simulation model data type abstraction is deemed valid if the data type is at least less abstract than 

required by the user. For example, describe Data Types (DT) as Float ≼ Int ≼Boolean, and the 

simulation user required data type DT𝑢𝑠𝑒𝑟 as Int and that of model developer, DT𝑑𝑒𝑣 as float. It is 

inferred that ‘int’ is also a ‘float’ and hence the data type abstraction is deemed valid. These lattice 

declarations could be extended to other concepts in the context of static model analysis for 

mitigating model composition errors [Lickly,2011].   
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5.2.1.1.3 Computation Abstractions  

Consider a type of computation abstraction such as accuracy which is the difference between 

exact solution and approximate solution due to modeling abstractions of the behaviour. One such 

abstraction is the Model order which refers to the degree of freedom or in other words the ability 

of model to capture the rate of change of the dynamics. The model dynamics defined with same 

input quantities could be related with ‘Model_Order_part’ relationship with the dimension of its 

space i.e. the complexity of the model. Let the order be defined as, 𝕆:M→𝒩, where 𝒩 is set of 

natural numbers. If (M2)≼(M1), M2 is more capable than M1 and it intuitively implies the former 

model captures the dynamics of the later as well. Hence the model abstraction at higher order infers 

the model simulates lower order dynamics too.  

In the battery example which models the output voltage as function of different parameters 

based on their Input-Output (IO) relations. The abstraction hierarchy αIO
i  corresponds to the 

number of inputs for the function, fm where m ∈ 𝒩 is the order of function. For the models of same 

IO inputs, the hierarchy can be further decomposed on the model order. In the Normal Degrading-

1 & 2 case, the second order model, M4 also simulates first order behaviour given by the model M3. 

Similar such reifications i.e. information enrichment can be done for members of other classes such 

as architecture etc.  

The next task after completion of the model abstraction library is to select the model consistent 

with requirements which necessitates the construction of the lattice which will be explored by the 

recursive algorithm. The lattice structure can be generated by a lattice plug-in or Formal Concept 

Analysis (FCA) tools [Ganter,2005] such as Lattice Miner where the abstraction library is given as 

input in the form of objects and attributes. Similar to the lattice described in  [Levy,1997], the 

generated lattice for models with Voltage as output is shown in the figure 5.2. The objects i.e. 

models are noted in red and attributes are noted in blue and the inclusion hierarchy can be seen. 

For example, the Model:Temperature Sensitive is modeled by temperature, CL and time whereas 

the Model: ChargeSensitive does not model temperature effect. In other words, the latter model is 

an abstraction of the former or lower the lattice element higher is the complexity. 

Similar lattice can be generated for other consequence quantities or any other assumption 

classes. This would allow to complete the model abstraction library and this can be done in a 

hierarchical manner especially. Upon completion of such a library, the next task is to select a model 

which best suits the requirements and this implementation is discussed in the next section. 

 

 

Figure 5.2: Lattice for Voltage Assumption Class 
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5.2.1.2 Automated Model Selection  

In this section, an implementation of the recursive algorithm [Levy,1997] to identify a necessary 

and sufficient simulation model is presented [Ponnusamy,2015]. The algorithm is executed over 

the instantiated domain model i.e. model abstraction library previously constructed in section 5.2.1. 

The resulting output is a selection of consistent model with necessary and sufficient abstraction 

which is built in the form of parametric diagram to be directly simulated.  

Then the model selection problem is to find a necessary and sufficient consistent model called 

scenario model i.e. model attribute of ModelSelection class, from the given input of domain theory, 

i.e. a set of model abstraction from the library, called assumption classes, and a query. A query is 

characterized as follows 

  a list of quantities, quantity whose value to be predicted by simulating the system, 

  a list of exogenous quantities, Einput whose elements are assumed to be given and to be outside 

the scope of the simulation for which scenario model is constructed. 

A domain theory is characterized by a set of assumption classes. An assumption class is a set 

of models which describe the same phenomenon, i.e. having the same output quantity in their 

consequence based on different and often contradictory modeling conditions. Quantity, as 

described in section 4.1, is an atomic expression denoting time dependent attributes associated with 

the participants in a model instance. On the other hand, Consequences are statements that are true 

whenever the phenomenon represented by the models takes place. Consequences can also be any 

other logical assertions that are true in a state in which an instance of the model exists. Activation 

conditions are statements that indicate when the phenomenon represented by the model takes place 

by specifying constraints on the participants of the model and on its quantities. The conditions 

include both structural constraints on the participants as well as constraints on the ranges of quantity 

values. Models are related to each other by a refinement/generalization relationship Rel. A model 

can be related to zero or many other models which are simpler i.e. more abstract or complicated 

i.e. less abstract.  It is assumed that every assumption class has a single most complicated model 

and a single simplest model. In other words, the lattice is finite with a minimum and maximum.  

These concepts were implemented in SysML [OMG,2006] which is detailed in section 3 of 

annex and the lattice structures are instantiated according to this implementation. The selection 

algorithm implemented as activity diagram, which is could be found in the annex, is then used to 

recursively find the consistent yet simplest model. The results for the models which correspond to 

the query ‘Voltage’ for conditions not damaged is given in the figure 5.3. Informally, the algorithm 

starts with simplest model and progressively adds the assumption according to the requirement 

until all the necessary assumption classes are added out of which a simplest model is chosen. In 

this case, the final scenario model is {battery-damaged, charge-sensitive, accumulation-with-

ageing} and each selection is highlighted in grey at the end of each iteration in the figure 5.3. 

Though the results differ in CL assumption class at the third iteration [Fig 11, Levy et al] the 

objective is not the algorithm implemented as an activity diagram and its results per se but a 

description of model library and further model selection in graphical system engineering notion 

such as SysML for better standardization and understanding of the underlying semantics of the 

process coupled with ontologies. This is further discussed in section 1 of chapter VI. 
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Figure 5.3: Model Selection Results 

In the next section, an automated mechanism for assembling different such models is briefly 

explained. 

5.2.2 Automated Model Assembly Implementation 

In a component based design framework, the assembly of components is an important but often 

ignored aspect and many integration problems arise due to interface compatibility. In assembling 

i.e. connecting two models, compatible models are selected from a library of models by matching 

their input and output parameters of their interfaces. In [Novàk,2011] this task is discussed via 

queries of ontology but in an absolute sense i.e. two models are compatible only if the output of 

first model is same as the input of second model. This could be true for matching parameters, units 

etc. but for conditions such as matching data types etc. it could be stringent. Consider an example 

where a battery model (M1) modeling voltage is connected via an electrical circuit to an antenna 

model (Ant). The battery output datatype could be ‘int’ whereas the antenna model input datatype 

is ‘float’. A boolean type checking gives an error despite a float is also an int datatype. In our 

ontology, when such an instance occurs, the connection is deemed compatible as shown in figure 

5.4(b), since in the datatype lattice described in section 5.2.1.1.2, Float ≼ Int. This is evaluated by 

simply measuring the length of its relative position in the lattice chain (e.g.: int is located lower 

than double hence it has higher length and only elements with lower length is chosen for input type 

compatibility).  

Let us consider an example where the engine model is connected to accelerometer (Acc) model 

to measure the acceleration, a, induced by the thrust, F. The acceleration can be calculated either 

as function of force or mass or both and from the set of candidate models shown in figure 5.4.(d) 

[Ponnusamy,2016] it is evident that second model cannot be used here. From the two available 

models the first one is chosen for its higher precision if the output datatype is same (or better).  
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(a)  Incompatible Assembly       (b) Compatible Assembly 

     

(c) System Assembly                  (d) Model Candidates 

Figure 5.4: Model Assembly 

The associated pseudo-queries for this example are given in the section 2.1 of annex. Similar 

such queries can be written to match or extract other system attributes. The model assembly phase 

by the model integrators can be seen in figure 5.1 to build a final model specification, MS i.e. 

simulation product which will then be deployed on a platform for validation activities.  

In the next section, an operational perspective of both the MR and MS construction process is 

presented. 

 

6. OPERATIONAL PERSPECTIVE 

In an industrial setting an essential prerequisite for any method proposed to improve the model 

fidelity is that it must be amenable for integration into the system development process and also 

need to be user friendly for the practicing engineers. It is thus important to illustrate how the 

proposed method will be operated and quantify its effect on the ‘as is’ process. In this context, the 

operational perspective of the proposed domain model is presented in the figure 6.1 

[Thebault,2015]. It can be seen that the proposed approach replaces text with domain model 

concepts and aided by reasoning over implicit information to make them explicit and evaluate their 

consistency with respect to each other. This is followed by model selection process and the selected 

model is instantiated in a classical simulation tool such as Modelica [MODELICA] etc. The phases 

of MR construction, component model selection and assembly along with respective stakeholders 

can be seen from the figure 6.1. The simulation domain model described in section 4 for MR and 

MS construction and the implementation of model selection algorithm are denoted in dotted oval. 

This process can be easily integrated in the standard M&S process in industry and it can be 

seen that this is a non-intrusive method for the engineers since building and exploiting abstraction 

library is intended to be automated with minimal effort. However, as with any domain model 

approach in industry, initial effort will be high for tool development, workforce training, process 

management and deployment. But as several studies demonstrate MBSE is an important enabler in 

system development especially due to rapid and complex evolution of corpus of engineering 

knowledge in an organization and the need to capture systematically this engineering knowledge 
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for standardization and exploitation. The practical challenges in development and deployment of 

such an approach is discussed in chapter V and VI. 

 

 

 

Figure 6.1: Operational View of M&S domain model 

   

7. CONCLUSION 

The ontology driven domain model approach presented in this chapter helps ensuring traceability 

between different abstraction layers and ensures viewpoint consistency and thus enables seamless 

integration of models and deployment. Such ontology aided simulation design process will enable 

different stakeholders in simulation to define, solicit and manage knowledge usable for M&S in a 

consistent way. It helps the test team to optimize the test scenario through inclusion principles and 

the modularization of ontologies helps in test independence to reduce redundant test combinations. 

It alleviates the general difficulty of the lack of synchronization and standardization between 

system development and testing by incrementally and iteratively improves the systems design and 

testing knowledge with the program schedule. This not only helps in modeling knowledge 

archiving and reuse for streamlined development of system variants but also for better coordination 

and decision making in the program development. Realization of such an objective will help 
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improve the level of confidence in simulation results for the system V&V and help better utilization 

of simulation resources by selecting the best available resource according to the test objectives. 
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CHAPTER  IV 

BEHAVIOURAL FIDELITY METRIC 

 
In this chapter, a formal approach in behavioural fidelity quantification for different class of 

simulation models is addressed. The problem of formally quantifying the fidelity i.e. distance 

between the simulation model behaviour vis à vis the system model behaviour is presented through 

simulation relations and its approximations, game theoretic notions and reachability theory.  

 

1. INTRODUCTION 

In the V&V of complex engineering systems, it may be recalled from section 1 of chapter I that the 

ability of models to replace systems by faithfully reproducing their behaviour is called ‘fidelity’. 

This effectiveness of simulation in reproducing the reality is measured by quantifying the distance 

between a system and its simulation behaviour formally i.e. for all possible behaviours in order to 

have acceptable degree of confidence in this V&V process. This problem is presented as the 

problem of quantifying the fidelity of the EF components in this chapter. The current study does 

not concern the fidelity of the system specification i.e. design model but the simulation model i.e. 

a subset of design model for the purpose of V&V.  

In this chapter, a behavioural fidelity metric for different class of dynamic systems is discussed 

based on the quantitative simulation relations proposed in the literature, for example in 

[Henzinger,2013],[Chatterjee,2015],[Girard,2007]. In this study, the term dynamic systems imply 

systems modeled as state transition systems whose evolution is a function of events and/or time. 

The broad objective is, given two dynamic systems, one being a system specification and other 

being an abstraction i.e. a model or possibly a legacy model, how to quantify the degree of fidelity 

between them for all possible behaviours. In other words, how close (or far) does the model 

matches the events and/or event timings of the system for all possible sequence of events. In the 

following sections, an informal notion of behavioural fidelity is introduced followed by a formal 

quantification using the concepts of quantitative simulation functions, reachability theory and its 

implementation.  

 

2. BEHAVIOURAL FIDELITY  

In the M&S of complex systems, especially for the purpose of V&V, one of the fundamental 

questions in using models to represent a dynamic system is how closely does the model simulate 

i.e. ‘mimic’ the system behaviour?. Simulation or Model Fidelity, also called representativity or 

faithfulness, is this ability of a model to do whatever the system it intends to represent does 

[Ponnusamy,2016]. In other words, under similar environmental assumptions i.e. inputs, a model 

with higher fidelity reproduce as many behaviours as the system. This fidelity could be interpreted 
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as a distance to reality from the fidelity distance definitions in chapter II and there needs to be a 

mechanism to quantify this distance with respect to all possible behaviours of the system, εF
abs or 

a subset of behaviours i.e. with respect to SOU, εF
rel, before its deployment on a simulation 

platform.  

In this section, it is assumed that EF architecture is defined for example by a MBSE process 

described in chapter III. The problem then becomes how to ensure the EF behaviour i.e. aggregate 

behaviour of EF components is consistent with user requirements or more specifically, how to 

quantify the EF component abstractions such that the resulting composition as an EF will result in 

a behaviour at the EF-SUT interface consistent with user requirements.  

The behavioural fidelity problem can be posed as the compatibility of EF behaviour at the 

interface to SUT from the perspectives of SDU and SOU. In other words, relative fidelity is the 

distance between the output of an expected EF i.e. EFSOU  and available EF i.e. EFSDU . Recalling 

Eq.(11) of chapter II, inclusion relation between two such frames whose outputs are denoted by 

ΩySOU  and ΩySDU  respectively, the fidelity of an EF is said to be sufficient i.e. EF is representative 

if 

 

ΩySOU  ⊑ ΩySDU  

 

(1)  

The problem then becomes how to abstract the EF components such that the distance or 'error’ 

introduced by the abstraction operation results in EF behaviour at its output interface consistent 

with user requirements. In general, a key point in such fidelity quantification for a dynamic system 

is the origin of the fidelity distance i.e. how a model is built since there exist different ways of 

modeling. Some of the commonly employed abstraction mechanisms as listed in [Albert,2009] are 

state aggregation, omission, linearization etc. In the current study, the abstractions are structural 

i.e. omission of a particular transition. However, the general fidelity quantification technique 

remains the same irrespective of the abstraction mechanism employed. An abstraction operation 

over state space of size nsi

j
 is defined as follows, 

Definition 2.1: Let the abstraction, αi
j 
: Rnsi

j

→Rnsi

j+1

, be a surjection, mapping a model Mi
j
 to its 

abstract version, Mi
j+1

, where  nsi

j
 >nsi

j+1
. The hierarchy of abstractions are related by a binary 

relation forming a partial order. The height of the lattice, ℒαi is given by the size of j={1..n} and 

the position at the lattice corresponds to abstraction level. 

 

Then the valid set of abstractions among the different set of abstractions for a given model i=n 

is defined by 

 

∀ n ∈ j, ∃ { αi
n } ⊨ {φ1, φ2…φz} 

 

(2)  

where φi=1..z are the requirements defined in formalism such as temporal logic. 

 

The EF fidelity problem as defined in section 2.2.2 of chapter I and section 3.4.2 of chapter II, 

can then be represented as problem of finding (synthesis) or checking (verification) abstraction(s) 

{ αi

j 
} of the system specification, Mi such that the model behaviour is bounded by the required 

fidelity distance, εF, with respect to the expected behaviour at the EF interface to SUT. 
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αi

j 
∣ ΩySDU~εF

ΩySOU  

 

(3)  

The distance notion can be attributed at the EF interfaces and where the required fidelity is usually 

given as a distance i.e. tolerance at the SUT input interface. However, in practice, the distance 

requirements are usually not cascaded top down to individual components which are in turn 

designed by different stakeholders which necessitates boundedness of this distance under 

composition. A directed metric [Alfaro,2009] on this behavioural distance, both global and relative, 

will ensure this boundedness based on the triangular equality principles where the distance between 

Msim
1  and Msys

1  does not increase when composed with Msys
2 . Assuming a sequential composition of 

models such that, Msys
1 ⊕Msys

2 ⊕Msys
3  the distance becomes 

 

ε(Msim
1 ⊕Msim

2 ) + ε(Msim
2 ⊕Msim

3 ) ≤ ε(Msim
1 ⊕Msim

3 ) (4)  

    

In addition, this boundedness under composition is helpful in top down fidelity distance 

specification as well where this distance i.e. net error εEF = ∑ εi
Nc
i=1  can be decomposed and 

cascaded down for each model (Mi, εi) to be developed. The procedure is iterative and assignment 

of tolerance to each component is made in collaboration with the system designer and test team. 

The next section briefly explains how to define the maximum error tolerance i.e. fidelity 

specification at the EF or component interfaces. 

An informal description of our approach to fidelity quantification for timed systems is briefly 

presented before a formal description for timed and untimed systems in section 5.  

2.1 FIDELITY & ITS QUANTIFICATION – AN INFORMAL INTRODUCTION 

Let us consider a V&V activity where some properties of the SUT, φSUT are evaluated by 

stimulating and observing this SUT in conjunction with its environment. In this V&V by 

simulation, these environmental systems Msys are replaced by their models, Msim through some 

abstraction operation, 𝛼 such as state omission or aggregation. Such abstractions create distance 

with respect to the real system’s behaviour called fidelity, δF and it needs to be quantified for all 

possible behaviours. This is illustrated in figure 2.1. This quantification is absolute if it is done 

independent of test cases i.e. some subset of all possible stimulants and relative if it is done with 

respect to the test cases. An absolute fidelity metric is the (set of) distance measure(s) over the 

simulation model for all possible scenarios of the system. By contrast, a relative measure is scenario 

driven i.e. it focuses more on the trajectories related to a given scenario than the others. However, 

prior to quantifying this fidelity vis à vis its test scenarios, the global measure i.e. for all possible 

scenarios, needs to be addressed. This intuitively means, how far the model ‘mimics’ all the 

possible transitions of the system? In this study, absolute fidelity is first presented which would 

intuitively mean that all possible inputs, the simulation model behaves (within some bounds) same 

as that of the system and thus the SUT could not see differentiate among them. The relative fidelity 

distance quantification is essentially a variant of the absolute fidelity distance quantification 

method discussed in this chapter. 
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Figure 2.1: Simulation Fidelity 

Let us consider a system specification, Msys given by the system designer and a candidate 

simulation model, Msim as shown in figure 2.2. The dynamics are modeled as a finite labeled timed 

transition system where for example, from initial state upon receiving a label ‘a’ (e.g. an input) the 

system moves to the next state in 2 time units. Alternatively, it may move from initial state to a 

final state upon receiving a label ‘c’ in 1 time unit [Ponnusamy,2016]. 

 

 

Figure 2.2: System & Simulation Model 

Consider a scenario where the simulation user requires a simulation model which is at least 

80% representative i.e. it is required to capture the transitions with 80% (timing) accuracy. For the 

sake of simplicity, consider the labels of two models are same and they differ only with the time. 

A model developer, who is tasked with developing or reusing an existing model needs to quantify 

the model vis à vis this system specification before integrating with other model fragments and 

deploying on a platform. The objective in this case is to measure the timing difference for each 

transition and doing for all possible combinations yields a formal fidelity measure. Recalling 

fidelity is the ability of a model to match every move of the system to the desired degree of 

accuracy, a two player game can be played between them. Such two player games were widely 

discussed in the context of software verification, for example in [Kupferman,2000], 

[Henzinger,2013],[Chatterjee,2015]. In this game the first player also called an attacker plays the 

role of system whereas the second player also called defender plays the role of simulation model. 

A model is said to be with sufficient fidelity (or representative) if the defender wins the game with 

an acceptable degree of accuracy. In other words, every move of attacker is matched by the 

defender by the corresponding move if it exists. If the label exists but the timings different, the 

defender can still make the move albeit incurring a penalty for cheating so and this measure of 

cheating intuitively corresponds to how far the simulation model captures the transition timings of 

the system model. The concept of ‘cheating’ in alternating game has been used in the fidelity 
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context and it has a literal connotation as well since lexically cheating is the opposite of fidelity 

which translates to degree of faithfulness. In the given example, first the attacker makes a move 

with either label ‘c’ at 1s or ‘a’ at 2s. For the ‘c’ move, there exists no counter move by the defender 

and the game is lost. On the other hand, for the ‘a’ move by attacker, defender responds with same 

label in 4s and the time cheat is 2s. For the next move of attacker with ‘b’ label at 2s, defender’s 

response is 1s and the time cheat is -1s. The net timing error is then 1s at the end of two transition 

and this error increases linearly for every loop made by the attacker on system model. The resulting 

errors are evaluated against the user requirement at the end to determine the model adequacy.  

2.2 NEED FOR FORMAL QUANTIFICATION 

In playing the game as described in previous section, the players are often confronted with different 

choices and hence there exists different strategies at each play. One of the challenges in playing 

this game is the choice of the strategy. Though different types of strategies have been discussed in 

literature [Chatterjee,2005], [Chatterjee,2012] most of them are in the context of playing a game 

on the system vs environment to reach a specific objective such as safety. However, in our case, 

the objective is to capture how close the game between simulation and system is, such that, they 

both allow same conclusion to be drawn for an evaluation against a specific V&V objective. In 

other words, a system may or may not satisfy a particular V&V objective, but, the objective of the 

simulation model is to faithfully reproduce whatever the system may choose to do. Hence it is 

important to evaluate all possible strategies i.e. a reachability graph. In addition, such an exhaustive 

exploration needs to quantify the degree of fidelity in every possible path i.e. a quantitative 

reachability graph, ℛ𝜀(Msys, Msim). This would not only give a path-wise fidelity measure for all 

possible paths but also help in analyzing the global fidelity as well. This global fidelity could be 

interpreted as a mean fidelity measure. 

Let us illustrate the need to formally quantify this distance by a simple example. Consider the 

game between the system, Msys and some (legacy) simulation models, Msim
1,2  as shown in figure 2.3.a 

and 2.3.b,c. In general, it may be noted that the problems of behavioural fidelity come from two 

sources, namely, un-modeled dynamics and incorrectly modeled dynamics of the system. The 

former refers to the missing transitions whereas the latter refers to the incorrect transitions. For 

example, the transition e is not modeled in the simulation model (Figure 2.3.b) and the transition b 

is incorrectly modeled i.e. it is modeled as label g in the simulation model (Figure 2.3.c). Such 

information can be quantified via these games. Now, let us play this game informally with player 

1 choosing label a in the system model. This label is matched by player 2 playing on the simulation 

model and the error is 0 for both Msim
1  and Msim

2 . Now the player 1 chooses b, then player 2 does 

not cheat in the case of the first simulation model, Msim
1 . But in the case of the second, it cheats by 

playing on transitions g, h or c and the error is 1 (or ½ in case total transition weighted). This 

continues and in fourth play, when player 1 chooses e, player 2 playing on first simulation model 

has no more moves and the game is lost. On the other hand, the other path i.e. {a,c,f} of player 1 

can be matched exactly by both the simulation models. For the sake of illustration, total transition 

weighted errors associated in the quantitative reachability is given in the table below for the first 

four plays. Thus it can be seen clearly that exploring all the paths of models in this turn base game 

gives significant insight into the fidelity characteristics of the simulation model [Ponnusamy,2016]. 
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a. 𝑀𝑠𝑦𝑠 b. 𝑀𝑠𝑖𝑚

1  c. 𝑀𝑠𝑖𝑚
2  

Figure 2.3: System and Simulation Models 

Table 2.1: Quantitative Reachability Graph 

Play 𝜀(𝑀𝑠𝑦𝑠, 𝑀𝑠𝑖𝑚
1 ) 𝜀(𝑀𝑠𝑦𝑠, 𝑀𝑠𝑖𝑚

2 ) 

1 0 0 

2 {0,0} {0.5,0.5,0.5,0} 

3 {0,0} {0.67,∞,0.67,0} 

4 {∞} {0.67, ∞} 

 

In generating such a quantitative reachability graph, how the error is measured could be 

different depending on the user requirement. However, such an exhaustive approach independent 

of V&V objectives mean evaluation of all possible behaviours of a system specification against a 

model i.e. absolute fidelity. In practice, only a subset of the system’s state space is explored based 

on a V&V plan and only such trajectories need be reproduced by the model with adequate accuracy 

i.e. relative fidelity. This could be factored in our approach by relatively measuring this distance 

with respect to the trajectories which are part of the V&V plan and this is briefly discussed in 

section 5.1. These perspectives are discussed in detail for different class of dynamic systems in 

sections 5,6. It may be noted that a truly absolute measure of fidelity is with respect to the reality 

which is neither feasible nor useful [Roza,2004] and hence in our study specification is assumed 

correct and approximated to be the real system.  In the following section the scope of our fidelity 

quantification study is presented followed by the current state of art in behavioural quantification. 

2.3 SCOPE OF STUDY 

Broadly, the dynamic systems are classified based on the temporal and/or state aspects i.e. the 

evolution of a system could be a function of time or state or both. The following table concerns the 

autonomous system i.e. without input but holds true for input driven systems as well. The dark 

green highlighted classes of systems. It may be noted that this classification does not consider 

stability or non-determinism e.g. probabilistic systems. In addition, hybrid systems encompass both 

continuous and discrete dynamics [Tomlin,2003]. 
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Table 2.2: Dynamic System Classification I 

Parameter Stateless Discrete State Continuous State 

Untimed Static System Untimed Automata 

(UA) 

n/a 

Discrete 

Time 

Discrete Timed 

System 

Timed Automata 

(TA) 

Discrete Time 

System (DT) 

Continuous Time Continuous Timed 

System 

Discrete State System 

(DSS) 

Continuous System 

(CT) 

 

However, such a modeling paradigm is limited to a component perspective i.e. it is a closed 

world environmental assumption where a system is presumed to receive compatible inputs from its 

environment i.e. other models. In other words, the assumptions which a component makes on its 

environment are not explicitly considered [Alfaro,2003]. The notion of interfaces has been widely 

used especially in the component based software design and has been increasingly discussed in the 

component based system (or model) design as well [Benviste,2012][Alfaro,2005]. In this approach, 

also called contract based design, an interface implements a component i.e. environmental 

assumptions are explicitly modeled through a formalism similar like classical automata called 

interface automata [Alfaro,2001]. An interface automata models the input and output behaviours 

of a component at its interface. More precisely, it captures the input assumptions and out guarantees 

and thus amenable to model and reason about the environment of a model. Such assume/guarantee 

frameworks are an active research area in the context of ‘contract based design’ [Benviste,2012] 

for managing complexity, heterogeneity in systems design and V&V. Similar to (un)timed 

automata formalism modeling discrete state evolution with/without time a classification for 

interface automata can be presented in table 2.3. 

Table 2.3: Dynamic System Classification II 

Parameter Classical Automata 

 

Interface Automata 

Untimed Untimed Automata 

(UA) 

Untimed Interface 

Automata (UIA) 

Discrete  

Time 

Timed Automata (TA) Timed Interface 

Automata (TIA) 

 

It must be emphasized that in reality, since cyber physical systems and avionics systems in 

particular are modeled at different layers of abstraction, different fidelity quantification needs to 

be developed to ensure adequate levels of fidelity through the various phases of system 

development and V&V. For example, a flight management system could be modeled as an 

(un)timed automata whereas the aircraft performance is modeled through differential equations. 

These systems then interact with other systems built by different stakeholders and it is important 

to address behavioural fidelity issues in a unified perspective. Our study concerns both these open 

and closed world environmental assumptions since behavioural fidelity problem could be posed at 

these two levels of abstractions for dynamics. In case of closed assumptions it becomes, under 

closed environmental assumptions how far does the simulation model behaviour different from the 

system? In case of open assumptions, it becomes, how far does the simulation model differs from 
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the system in terms of its environment i.e. input assumptions and output guarantees? It can be seen 

that, both these approaches are often complementary with first question aids in defining 

behavioural fidelity of an internal structure of component and second question aids in defining its 

composition. The fidelity quantification study has been presented for (un)timed automata and un-

timed interface automata along with tool implementation in sections 6.1 and 6.2 whereas 

continuous systems were discussed section 6 of annex.  

 

3. STATE OF ART 

In the formal verification of dynamic systems, automata theory [Clarke,2000] has been extensively 

studied and used, especially in the discrete world such as software verification. In this paradigm, 

the dynamic system is modeled as Kripke structure or labeled state transition system which consists 

of states and transitions which are labelled between those states. In this modeling, the behaviour of 

a system could be interpreted as a sequence of letters (labels) representing observable events 

collected as a language which can be checked against its requirement, both specified as ω 

automaton [Thomas,2002]. This linear view of checking language, also called language inclusion 

is PSPACE hard for finite state machines [Henzinger,2013]. On the other hand, in a branching time 

view where the behaviours are captured through tree automata, the algorithmic complexity is only 

polynomial time. This is based on the concept of simulation relations, introduced in [Milner,1989], 

which relates two systems based on this branching view and gives a sufficient (but not necessary) 

condition to check the language inclusion between them. The classical notions of simulation 

preorders and simulation relations essentially states two models are (bi)similar if every transition 

of one model is matched by the other (and vice versa). In this context, game theory, in particular 

two player games since has become an important enabler for many of such verification or synthesis 

problems [Grädel,2002]. Game theory, in general is a framework for decision making where two 

or more players take some decisions to achieve a goal either in a collaborative or adversarial 

manner [Myerson,1991]. However, all these simulation relations are boolean in nature i.e. either 

the model is exactly similar to the other or not and such boolean notions are too restrictive for 

practical purposes [Henzinger,2013]. It is not possible to distinguish between a more similar model 

and less similar model among the set of non-similar models. In our designed fidelity approach, this 

is akin to choosing a component simulation from a library of existing models to replace a system 

design model. 

Quantitative extensions of these classical boolean notions [Alfaro,2005] were proposed for 

different class of systems, for example discrete systems in [Cerny,2010][Van,2006], continuous 

systems in [Girard,2007] etc. These quantitative approaches have been applied to the design of 

safety controllers, formal verification, model reduction etc. for continuous, discrete and hybrid 

systems. In this study, such relations are used in the context of simulation fidelity i.e. quantify the 

degree of similarity between the system and simulation model. Though intended for software 

verification where a program implementation is compared against a specification, and 

progressively studied in the context of cyber physical systems [Henzinger,2013], it is natural to 

extend this paradigm to the domain of simulation where a model could be interpreted as an 

implementation of a system specification.  

In the field of (discrete) simulation, this quantitative distance notion based on the two player 

game proposed for automata [Cerny,2010], timed automata [Alur,1994] [Chatterjee,2015]  gives a 
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transition-wise or path-wise distance in the context of implementation, coverage and robustness. 

Such a ‘simulation’ wise bounds are not adequate not all possible paths are explored and this 

necessitates finding bounds on all possible trajectories i.e. a quantitative reachability. However, to 

the best of our knowledge, such a mechanism to quantify this distance for all possible inputs i.e. a 

superset of test scenarios has not been implemented. This requires generation of a quantitative 

reachability graph where every possible transition of system is evaluated over a positive real valued 

distance function. An analysis of this graph will yield further insight into the adequacy of 

abstraction globally or with respect to V&V objectives as these global distances could be over-

approximate since a model could be locally valid despite its poor global fidelity.  

In the continuous systems, approximate bisimulation relations were proposed in [Girard,2007] 

and for linear systems it essentially give a global error bound i.e. maximum degree of dissimilarity 

between two models at a given time instant and this can formally be verified by geometric over 

approximation of the reachability set through zonotopes [Girard,2007], ellipsoids [Maler,2002] 

postpriori etc. However, this approach, as pointed in [Chatterjee,2015] does not take timing 

information into account. On the other hand, the studies on quantification of timed systems in 

[Henzinger,2005],[Chatterjee,2015] etc. has neither been discussed in the context of (multi-

formalism) M&S especially for V&V nor has there been any method to explore all the player 

strategies.  

A formal approach, as discussed in section 2.2, need cater not only to different formalisms of 

dynamic systems but also to its interpretations such as closed or open system in order to holistically 

assess fidelity at multiple layers of abstraction. Since behavioural fidelity problem arise from a 

simulation model’s internal structure (modeled as automata) as well as its environmental 

assumptions/guarantees (modeled as interfaces) it is important to study the quantitative reachability 

approach in the context of interfaces too. Alfaro, in [Alfaro,2001], proposed the formalism of 

interface automata to specify temporal aspects of system interfaces whose transitions are modelled 

as automata. The simulation pre-orders for such systems were given by alternating simulation 

relations by Alur et al in the context of open systems as a two player game between a model and 

its environment [Alur,1998] and its quantitative extensions in [Cerny,2014] similar to quantitative 

simulation games. This approach too is focussed on different metrics but lacks a formal mechanism 

to explore all player strategies. In addition, in all the game theoretic frameworks, for open and 

closed assumptions, there has not been any tool implementation especially with capabilities to 

perform some analytics to quantitatively assess different simulation models and their fitness for 

use.    

An important enabler of such an approach especially in an industrial context is the availability 

of user friendly tools especially in the system simulation perspective. There exists plethora of 

sophisticated formal verification tools such as NuSMV for finite state systems [Cimatti,2005], 

ABSINT [Cousot,1992] etc. especially for software, UPPAAL for timed systems 

[Bengtsson,1996], UPPAAL-TIGA for timed games etc. [Chatain,2009]. However, our study 

needs a modelisation and an explicit reachability enumeration for analysis which are not available 

in current tools to the best of our knowledge. Hence, we chose to model this game based formal 

fidelity quantification for all such different class of systems in (Timed) Petrinet formalism. (Timed) 

Petrinets, is an extension of classical Petrinet formalism [Peterson,1981] with firing time for the 

events and is widely used in specification and verification of time dependant systems. An extension 

of it with data handling called Time Transition Systems [Berthomieu,2014] is used in our approach. 

The token based formalism of the Petrinets are amenable to model such turn based games in 
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addition to the availability of state of the art and in house developed Petrinet analyzer tool called 

TINA [Berthomieu,2004]. The tool has a graphical editor and reachability generation capabilities 

which renders it an attractive choice for our game semantics modeling and quantitative reachability 

graph generation. This game based fidelity quantification has been implemented in the ProDEVS 

[Vu,2015] tool in conjunction with TINA which is presented in detail in section 6.  

This approach has been presented in sections 4-6 for different class of discrete transition 

systems. In case of continuous transition systems this abstraction is presented as a controlled 

invariant problem based on works of Pappas [Pappas,2003], [Pappas,2000] in the context of EF as 

in section 6 of annex.  

 

4. PRELIMINARIES 

4.1 AUTOMATA & SIMULATION RELATIONS 

Let us briefly define some preliminaries before describing the game theoretic fidelity notions 

[Cerny,2014]. It may be recalled that dynamic systems (with finite states) are modeled by a Finite 

State Automata (FSA) in automata theory. A FSA is defined by a tuple, T =< Σ, X, x0, δ, R >, where 

Σ is a finite non-empty set of alphabets or labels, X is the finite non-empty set of states, x0 ⊆ X is 

the initial non-empty state set, δ: X ⨯ Σ → 2X is the (nondeterministic) transition function and R ⊆ 

X is the set of accepting states. An accepting run of T over a finite word ꙍ=w0w1… ∈ Σ is the 

sequence of states x0x1… ∈ X such that xn ∈ R. Then the language of T, ℒ(T) is the set of words 

accepted by T. 

Let us consider two transition systems, T1 =< Σ1, X1, x1
0, δ1 > and T2 =< Σ2, X2, x2

0, δ2 >, with 

τ1 ∈ δ1, τ2 ∈ δ2, then T1 simulates T2 is denoted by T1 ≼S T2 and it holds if there exists a binary 

relation f ⊆ X1 × X2 such that if (x1, x2) ∈ f then 

 

- ∀ (x1, τ1, x1
′ )  ∃ (x2, τ2, x2

′ ) such that (x1
′ , x2

′ ) ∈ f (5)  
 

and it becomes bisimulation, T1 ≈BS T2 when  

 

- ∀ (x2, τ2, x2
′ )  ∃ (x1, τ1, x1

′ ) such that (x1
′ , x2

′ ) ∈ f (6)  
 

It may be noted that the game theoretic approach assumes formalization of the knowledge about 

the labels i.e. transitions of the system and simulation model. In other words, the homomorphism 

relation is established between the labels i.e. equivalence of labels. This assumption is reasonable 

since the two models being developed by different stakeholders needs to have coherency in labels 

(ex: labels job and j refers to the same input event i.e. an incoming job) before establishing the 

simulation relation and quantifying the error between them. 

These simulation relations, and in addition alternating simulation relations were extended to 

quantitative game graphs and this notion is used in the next section to quantify the distance between 

system and simulation model behaviour for different class of systems in section 5. 
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4.2 TWO PLAYER GAME: SYSTEM VS SIMULATION  

Game theoretic notions have been used in verification as well as synthesis perspectives in the 

formal modeling and analysis of systems [Henzinger,2013]. In this section, a two player game is 

briefly introduced followed by the game between the system and simulation model in the context 

of quantifying its degree of similarity i.e. fidelity.  

A (finite) game graph is a tuple, 𝔤 = < X, X1, X2, E, x0> where X a finite set of states is partitioned 

as X1 and X2 for the first and second player respectively, E ⊆ X ⨯ X is the set of edges, x0 is the 

initial state of the play [Cerny,2010]. The dynamics of the transition system described by its states 

and transitions are interpreted as nodes i.e. states and edges of this game. The game starts with a 

move the first player followed by the second player and this continues until one wins. The strategy 

of the player to choose each move may or may not depend on the history of previous moves and in 

this study we employ the memory-less strategy. The set of visited states in the game is called a play 

which is denoted by ρ = ρ1ρ2… and this is akin to the path of a transition system or trace if there is 

a propositional evaluation at each such state. 

In the context of fidelity where the game is played between the system model and the simulation 

model, the latter is deemed representative if the defender wins. However, this necessitates all the 

moves i.e. transitions of the attacker must be matched. This is too restrictive and infeasible at times 

and hence the notion of ‘cheating’ similar to the one introduced in [Cerny,2010] is used. Then this 

degree of cheating (or alternatively accuracy) can be measured by a weighted error function, 𝜀 such 

as limited average for number of play, np , in the game between T1,2 with the error function, e 

comparing labels at the end of each play. It is defined as follows, 

 

ε(ρ) = lim inf
np→∞

1

np
∑ e(ρi, ρi+1)

np−1

i=0

 

 

(7)  

For example, an error of 0.3 means 30% of transitions are ‘cheated’ or alternatively the model 

is 70% representative.  The error function satisfies the reflexivity and triangular inequality i.e. for 

all T1,2,3, ε(T1, T1)=0 and ε(T1, T3) ≤ ε(T1, T2) + ε(T2, T3)  respectively [Cerny,2010]. It is easy 

to see that lesser the propensity of the simulation model to cheat, the higher the fidelity will be i.e. 

cheating is opposite of fidelity.  

In addition, from Eq.(7) which gives a path or trajectory wise fidelity measure, the mean fidelity 

for all possible such trajectories whose size is Nb, at the end of a play, np is given by 

 

εnp
avg
=
1

np
∑ ε(ρi)

Nb−1

j=0

 

 

(8)  

As remarked in [Henzinger,2013], an error could be measured transition wise or moving average 

etc. and in this study the error is calculated as weighted sum with respect to transition. 

Based on the different modeling formalisms listed in table 2.2 and 2.3, these games can be 

broadly classified as  

i. Untimed 
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ii. Timed 

iii. Untimed Interface 

iv. Timed Interface 

These can also be interpreted as component (timed and untimed automata) and interface (timed and 

untimed interface automata) perspective as described in detail in section 5.3. The semantics of each 

game is different especially in the context of simulation fidelity. In the following sections each 

game is presented along with the tool implementation except for the timed interface. In addition, 

the relative approach is presented for each class of systems briefly. 

 

5. FORMAL FIDELITY QUANTIFICATION 

In this section, our formal fidelity quantification approach is presented for differnt class of discrete 

systems. The approach for untimed and timed systems with closed environment assumptions 

(component perspective) are given in section 5.1 and 5.2 resepctively and for untimed system with 

open environmental assumptions (interface perspective) is given in section 5.3.  

5.1 UNTIMED SYSTEMS 

In this section, systems whose evolution is a function of only the event also known as label is 

considered i.e. time abstract. Formally, the game between system, Msys and simulation model, Msim 

denoted by 𝔤(Msys, Msim) with state space Xsys ⨯ Xsim is defined as follows [Ponnusamy,2016], 

 

Player 1 move : (xsys, τsys, xsim) ⟶ (xsys
′ , τsim, xsim) 

Player 2 move : (xsys, τsim, xsim) ⟶ (xsys
′ , τsys, xsim

′ ) 

(9)  

 

In this game, player 1, also called as attacker, plays on the system model and player 2, also called 

as defender, plays on the simulation model. Informally, the game is played as follows,  

1. Player 1 plays on system model and hands back the token to player 2. 

2. Player 2 plays on the simulation model, matches if the same label exists or cheats with the 

existing label and hands back the token to player 2 

3. The play is over and the error is calculated, for example using Eq.(7).  

The next play begins and this continues until any one player wins or the play itself is terminated 

externally, whichever is earlier. For every move of the attacker, the defender matches the move or 

cheats over the move and incurs a penalty. The attacker wins if the defender is not able to match 

his move and the defender wins if it matches every move of the attacker or attacker has no more 

moves. The game is a perfect information game i.e. the defender has full visibility on the attacker’s 

move. This game is played in such a way that, the defender plays only the attacker’s label if it is 

available in simulation model and if not, it plays all the possible choices. In particular, simulation 

relation exists if player 2 always has the winning strategy.  
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5.1.1 Relative Simulation Fidelity Distance 

Similar to quantifying the global fidelity, the untimed games can be extended to quantify the 

relative fidelity as well. Let us consider the example in figure 2.3 and consider a V&V scenario 

informally (or formally via some temporal logic) stating whenever the user gives the label a and 

then c, f should always be the output with no error. This scenario is satisfied by both the simulation 

models. On the other hand, consider another scenario, stating whenever a user gives the label a and 

then b, d should always be the immediate output. In this case Msim
1  does better with error 0 than 

Msim
2  with error 0.5. If the scenario is, given the label a and then b, eventually the user must observes 

e, then  Msim
2  is better than Msim

1  where the game has been lost. Thus, such a local notion helps in 

replacing system models with simulation models locally or ‘relative’ to the objectives. In other 

words, globally a simulation model could be far from representing the system but it may be 

adequate to represent the system for a particular V&V scenario. This relativeness vis à vis scenarios 

could be taken into account through relative weighting i.e. penalizing more the cheats on labels 

associated to the scenarios and less the cheats on other labels.  

Let us denote the actions of interest on system model, Msys by τφ ⊆ τsys ∈ δsys and whenever 

the defender cheats on these actions it incurs higher penalty than when it does not. The error 

weighting function is given by e: δ ⨯ N → ℝ0
+ where δ =  δ1⋃ δ2 and N refers to number of 

transition. It may be recalled from section 4.2 before that the two player game with turns m=1,2 

the distance is calculated at the end of every defender move i.e.∀2n where n ∊ N is the number of 

transitions. The two different weights are denoted by w1 and w2 respectively which could either 

be a simple positive number or a function of transition w1,2(n).  Let the label and state of a transition 

τ ∈ δ be ξ and x such that ξ ∈ Σ, x ∈ X, then [Ponnusamy,2016] 

 

∀τsim∊ δsim, {ξsim≠ξsys  ⋀ ξsys ∈  τ
φ} ⇒ εφ = w1(ℰ) 

                      {ξsim≠ξsys  ⋀ ξsys ∉  τ
φ} ⇒ εφ = w2(ℰ) 

                 else                           εφ = 0 

(10)  

 

In assigning weights to the ‘cheating’ transition, more weight w1 is given to transitions related 

to V&V requirements called ‘primary’ transitions and less weight, w2 is given to other transitions 

called ‘secondary’ transitions. This relies on the discounting principle that models cheating on 

primary transitions are penalized more and the earlier the cheat, more will be the penalty. In 

contrary, secondary cheats are penalized more with increasing time. Intuitively, models erring 

earlier on primary transition are viewed pessimistically whereas models erring earlier on secondary 

transitions are viewed optimistically on the assumption that they will eventually correct 

themselves. An example of the discounted and differential weighting is illustrated in following 

figure 5.1 where w1,w2 refers to primary and secondary weights. 

 

Figure 5.1: Linear Weighting 
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There are other possibilities of weighting such as quadratic or band limited etc. and is a design 

parameter in model verification or synthesis process. It may be noted that the transitions made by 

attacker are given a weight 0 whereas the defender transitions are weighted according to the 

attacker transition. 

For the sake of illustration, consider for every cheating move, nc ≤ np, let the weight varies in 

steps of -0.1 for primary weight i.e. w1 = (1 − 0.01nc) and +0.1 for secondary weight with each 

transition i.e. w2 = 0.1nc such that |w1 +w2|<1. Let us consider two simulation models shown in 

figure 5.2 with the corresponding system model Msys being illustrated in figure 2.3.a. Let the 

scenario be, whenever a (or a and then b) is given there is possibility to get at least four e’s at the 

end of ten transitions.  

 

  
b. 𝑀𝑠𝑖𝑚

3  c. 𝑀𝑠𝑖𝑚
4  

Figure 5.2: Simulation Models Relative Fidelity 

In general, a scenario independent error quantification will yield a global value of 0.4 at the 

end of tenth play for both the models. Instead, the labels in scenario ‘a’, ‘e’ are given more 

weightage during cheating and intuitively one can see that, Msim
3  is better than Msim

4 . At the end of 

tenth play, 𝑛𝑐 is 4 for both the models and, the relative error becomes 𝜀(Msys, Msim
3 )=0.16 and 

𝜀(Msys, Msim
4 ) = 0.384. Such relative weighting can be integrated in the quantitative reachability 

graph generation. However, the weighting needs to be chosen carefully, a too stringent weighting 

may not show much difference with absolute error calculation and a too lenient weighting leads to 

spurious results. Further work is needed in this direction which is discussed in section 7  in this 

chapter and section 2 of chapter VI.  

5.2 TIMED SYSTEMS  

The fidelity quantification for systems whose dynamics is influenced by both event as well as time 

is described in this section. Timed automata [Alur,1994] is a classical formalism used to represent 

real time systems and this formalism extends the classical finite automata with clock variables 

constraining the system behaviour. Similar to Eq.(9), the formal definition of timed automata and 

the simulation relations between them are presented as follows.  

Let the time domain be 𝕋 with non-negative set of reals ℝ+ and over this time domain the timed 

automata is defined by 𝒯=< Σ, X, T, x0, δ, R >, where Σ is a finite non-empty set of alphabets or 

labels, X is the finite non-empty set of states, C is a finite set of clocks, x0 ⊆ X is the initial non-

empty state set, δ: X ⨯ Σ ⨯ T → 2X is the transition function and R ⊆ X is the set of accepting states. 
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An accepting run of 𝒯 over a finite word ꙍ=w0w1… ∈ Σ is the sequence of states x0x1… ∈ X such 

that x0 ∈ x
0. Then the language of , ℒ(𝒯) is the set of words accepted by 𝒯. 

Let us consider two transition systems, 𝒯1 =< Σ1, X1, T1, x1
0, δ1 > and 𝒯2 =< Σ2, X2, T1, x2

0, δ2 >, 

with τ1 ∈ δ1, τ2 ∈ δ2, then T1 simulates T2 is denoted by 𝒯1 ≼S 𝒯2 and it holds if there exists a binary 

relation f ⊆ X1 × X2 such that if (x1, x2) ∈ f then 

 

∀ (x1, τ1, x1
′ )  ∃ (x2, τ2, x2

′ ) such that (x1
′ , x2

′ ) ∈ f 
 

(11)  

and it becomes bisimulation, T1 ≈BS T2 when  

 

∀ (x2, τ2, x2
′ )  ∃ (x1, τ1, x1

′ ) such that (x1
′ , x2

′ ) ∈ f 
-  

(12)  

These simulation relations are usually boolean i.e. a simulation model either simulates the system 

or not. Quantitative extensions of these boolean notions are based on finite-state turn based two 

player game graphs [Chatterjee,2015], [Henzinger,2005]. These games are informally presented in 

the next section followed by formal explanation. 

5.2.1 Timed Simulation Games 

It may be recalled from section 5 that in the untimed game starts from state x0 ∈ X with a player 1 

making the move to x1 ∈  X
1 to which the player 2 counters by making a move x2 ∈  X

2. The first 

play is over now and the game is started again. At the end of first play, if the player 2 cannot match 

player 1’s move it is allowed to cheat and in doing so incurs a penalty and there are different ways 

of measuring this cheat such as weighted mean etc. Every move on the system model by the first 

player is followed by the second player on simulation model and this continues until one wins. 

However, in timed game, the turn based semantics of the game does not strictly hold true due to 

the temporal nature. The evolution of player 1 is independent of the player 2 since the objective of 

player 2 is to match player 1 timings. In other words, player 2 is not allowed to win by infinitely 

blocking the player 1’s turn whereas it wait until player 1 finishes its turn [Ponnusamy,2016].  

 

Proposition 5.1: Player 1 can block time of player 2 

 

Let us assume a system and simulation model in the figure 5.3 

 

 
 

(a) Msys (b) Msim
1  

Figure 5.3: Blocking Game 

In this case, without blocking, player 2 label ‘b’ is fired earlier then if player 1 moves ‘c’ 

instead, there is a cheat whereas in reality the player 2 does not cheat for ‘c’ transition. The 
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blockage of time helps to avoid this problem. Intuitively, a simulation model has to mimic system 

model so it has to see what the system does first or else it may end up in cheating if a way not to 

cheat is possible.  

 

Proposition 5.2: Player 2 cannot block time of player 1 

 

This assumption, also found in literature [Chatain,2009], could be explained with the following 

example of game between a system and simulation model in the figure 5.4. In this case, the third 

model is a better approximation of the first model than the second. However, if the game is played 

for <1002 time units both the simulation models are deemed unfit and the system model cannot 

move further from state B. This can be mitigated by segregating the evolution of system model 

from that of simulation model. In such case, the time difference is 998 time units for the third model 

and ∞ for the second model. 

 

 

(a) 𝑀𝑠𝑦𝑠 (b) 𝑀𝑠𝑖𝑚
1  (c) 𝑀𝑠𝑖𝑚

2  

Figure 5.4: Non-blocking Game 

Then, formally, the game between system, Msys and simulation model, Msim is denoted by 

𝔤(Msys, Msim) with state space Xsys ⨯ Xsim. Let σi
1,2 be label and ti

1,2 be associated transition time 

and of player 1 and 2 respectively at play i, τsys ∈ δsys and τsim ∈ δsim, player actions of selecting 

a transition from one model and handing over the turn to other player i.e. enabling transition of the 

other model are denoted by p1: τsys⟶ τsim and p2: τsim⟶ τsys. For a given play of positive 

integers, i ∈ 𝕀+, player 1 move is defined as follows,  

 

(xsys, τsys, xsim)
p1
→ (xsys

′ , τsim, xsim) 
(13)  

 

with the transition time of simulation model  

 

ti
2 = ti

2 + tBi|tBi = ti
1        if  ti

1 > ti
2 

 

(14)  

where tBis the blocked time for player 2. Then the player 2 move is defined as 

 

(xsys
′ , τsim, xsim)

p2
→(xsys

′ , τsys, xsim
′ )  if {

σi
1 = σi

2

ti
2 ≤ ti+1

1  

 

(15)  

The play is terminated if σi
1 ≠ σi

2 regardless of their transition times and the player 1 is deemed 

won. In all other cases, the next play, i+1, is started with player 1 move if ti
2 > ti+1

1 . At the end of 
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each completed play, the time difference between the corresponding transitions i.e. labels, ∆ti is 

calculated using [Ponnusamy,2016],  

  

∆ti = (ti
2 −∑tBi

i

n=1

) − ti
1 

(16)  

  

It may also be seen that such error function being a directed metric [Chatterjee,2015] satisfies 

the reflexivity and triangular inequality i.e. for all, ∆t (𝒯1, 𝒯1)=0 and ∆t (𝒯1, 𝒯3) ≤ ∆t(𝒯1, 𝒯2) + ∆t(𝒯2, 𝒯3) 

respectively. This helps in incremental model development and assembly with bounded timing 

error on the resulting composition. 

The timing error quantification through this game based approach can be extended to system 

and/or simulation models whose transition timings are not defined precisely but in an interval as 

well. Let us define such interval for the system and simulation model as [t1,2
lb

 t1,2
ub

] where lb and 

ub refers to lower and upper bounds on transition timings. In this case, intuitively the interval 

difference is the timing difference and Eq.(14) becomes, 

 

ti
2lb = ti

2lb + tBi|tBi = ti
1lb        if  ti

1lb > ti
2lb (17)  

  
where tB is the blocked time for player 2. In other words, the transition of player 2 is enabled once 

player 1’s lower bound transition time is enabled. Then the interval timing error, [∆ti
lb  ∆ti

ub] is 

calculated as, 
 

∆ti
lb = (ti

2lb −∑tBi

i

n=1

) − ti
1lb 

∆ti
ub = (ti

2ub −∑tBi

i

n=1

) − ti
1ub  

(18)  

 

However, such interval error quantification needs to be further studied and is not yet 

implemented in our tool and only transitions fired at punctual time i.e. t1,2
lb
= t1,2

ub is considered 

in this study. 

In discussing fidelity quantification through such game based approach, one of the key 

difficulties as discussed earlier is exploring the player’s strategies. In this context, a reachability 

graph generation which explores all the player’s strategies to quantitatively determine the 

corresponding transition timings is presented in the next section. 

5.2.2 Timed Quantitative Reachability 

In the timed games generating a reachability set is an exhaustive exploration of all the player 

strategies similar to section 2.2. However, in contrast to untimed games, continuous evolution of 

time for the attacker and blocking for the defender need to be taken into account in the play and 

error quantification as well. Consider the example, initially proposed in figure 2.2 of section 2.1, 
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in this case, the game is played with blocking as explained in section 5.2.1. In this example, the 

defender is blocked for ‘a’ or ‘c’ move after which there is no blocking since the second transition 

of simulation model is faster. The pseudo reachability graph of this game is given for the purpose 

of illustration in figure 5.5. The transitions of attacker and defender are given in solid and dotted 

arrows respectively. The first play is over at 6s and the second play is over at 7s and it can be seen 

that the blocking time is 2s. Since there is no matching transition for attacker move on ‘c’ label the 

game is locally lost on this path. Then the timing error is calculated as ∆𝑡1 = (6 − 2) − 2 = 2 and 

∆𝑡2 = (7 − 2) − 5 = 0 and so on. It can be easily seen that the pair wise timing error can be deducted 

from this aggregate time, for example, the timing difference for second turn is -2 time units. Such 

evolution can be analyzed and visualized for better understanding of the model fidelity. This is 

further demonstrated in the application case in section 2.3 of chapter V and implementation is 

presented in section 6.1 [Ponnusamy,2016].  

 

 

Figure 5.5: Quantitative Timed Reachability Graph 

5.3 BEHAVIOURAL FIDELITY QUANTIFICATION AT INTERFACES 

In system modeling, the classical assumption of a system being closed i.e. does not react to it is 

environment or where the assumptions on its input environment are closed is inadequate for 

representing embedded systems whose behaviour is influenced by its environment. The closed 

system’s assumption of known inputs i.e. environment provides proper inputs is too strong an 

assumption since it assumes an ideal world where each system developer has same environment 

assumptions and interconnection between them poses no problem [Alfaro,2005]. But this is not the 

case as each system is developed with its own environmental assumptions and it needs to be 

captured for correct composition. In contrast, the open system’s behaviour is influenced jointly by 

its internal structure modeled as a transition system and its environment. The open system 

dynamics can be described by a two player game between environment (choice of input) and 

internal structure (choice of output) [Alfaro,2003]. This game based notion helps in refinement and 

composition of systems i.e. compatibility (each component is prepared to receive any request that 

the other may issue, if not it results in implementation violating spec i.e. no more behaviours 

included). 
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5.3.1 Interface & Fidelity 

In the M&S, as discussed in section 2.3, the fidelity problem can be posed as environmental 

assumption problem. The user requires SUT be tested at some environment called scenario i.e. 

SUT requires its environment to provide proper input to produce some behaviour that will be 

validated according to some V&V criteria. On the other hand, the designer supplies EF with his 

own assumptions. Intuitively, the required assumption i.e. scenario must be a part of supplied 

system’s environmental assumption for the sake of compatibility and fidelity arises out of this 

compatibility problem i.e. mismatch of assumptions. At higher level these can be captured by 

ontologies or SysML [OMG,2006] but it must be captured at lower behavioural level too which 

necessitates a formalism. In this context, Interface automata are useful here since it says two 

interfaces are compatible if there exists at least one environment in which they can work together.  

In V&V, a model replaces the system and composed with SUT besides other systems. Let the 

model and system be generically called component implementing some interfaces [Alfaro,2005]. 

Fidelity, recalling definitions in section 2, is nothing but a measure of a model’s ability to replace 

a system such that SUT cannot differentiate between them. Such behavioural fidelity issues 

naturally come from two problems. First, how the model component is modeled i.e. internal 

structure: assuming the environment provides proper inputs does the transition system adequately 

produce the real system component behaviour? Second, does the environment provide proper input 

such that if the component is modeled right it produces the real system behaviour? Interface 

automata capture theses environmental assumptions, assert that the environment provides proper 

inputs and captures the I/O behaviour of a component. Refinement relations establish this replacing 

of system components with model components without any compatibility issues with other 

components and it can be approximate. The level of approximation is fidelity measure i.e. measure 

of violation in SUT environmental assumption by models. In the next section, notions of refinement 

are introduced informally with respect to abstraction. 

5.3.1.1 Refinement & Fidelity Quantification 

It may be recalled from section 4 that the relation between systems behaving similarly is given 

by classical simulation preorder relations. In [Alfaro,2001], Alfaro extends these relations to open 

systems through the game perspective for system refinement and composition via alternating 

simulation preorders. Alternating simulation is defined as the relation between states of two 

systems A and B such that, at related states, all the outputs that can be generated by A can be 

generated by B and all the inputs that can be accepted by B can be accepted by A [Alur,1998]. 

Alternating simulation preorders helps in establishing refinement relations between systems. 

Intuitively a system A is said to refine system B when B can be replaced by A. In other words, 

refinement relations refer to behaviour containment and this game theoretic notion leads to a 

uniform framework in the synthesis or verification of transition systems. 

In general, refinement, which is a top down approach of interface based design approach is 

opposite of abstraction, which is a bottom up approach of component based verification. It may be 

recalled that, a simulation model component is an abstraction of system component and can replace 

systems if it can reproduce all the system behaviour. Refinement relations are better suited to 

establish this relationship between two transition systems than trace inclusion or simulation 

relations as shown in [Alfaro,2001]. Considering a relation between a system model and its 

representation i.e. a simulation model, the notions of trace inclusion states all behaviours of 
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simulation model are included in the behaviour of system model. This assumes all input behaviour 

of simulation model are subset of the system model and this notion is restrictive for reactive 

systems which interact with its environment. Instead, a contravariant refinement with respect to 

inputs and outputs via alternating simulation relations which plays the same role of simulation 

between transition systems. Thus, instead of classical refinement relations between a specification 

and its implementation discussed in the literature, this study extends them into M&S i.e. between 

simulation model and the system model. Let us consider a simple example below where the system 

model and simulation models are given.  

 

 
(a) 𝑀𝑠𝑦𝑠 (b) 𝑀𝑠𝑖𝑚

1  

Figure 5.6: Trace Inclusion vs Refinement principles 

It can be seen that the trace inclusion relations do not hold. However, the simulation model 

refines the system model as the simulation model accepts as many input behaviour as system and 

for same input behaviour for two systems simulation model produce a subset of system model 

output behaviour. Such relations are useful if the V&V requirement is to observe output d! followed 

by input a? and c? which both models satisfies. On the other hand, if the requirement is only to 

observe b! followed by a? input then the simulation model can be abstracted by removing c? and 

d! while still holding the alternating trace containment limited to the validation objectives though 

not universally. This local refinement or trace containment notion helps in replacing system models 

with simulation models locally or ‘relative’ to the objectives. The degree of refinement is given 

based on a distance notion between system and simulation models and this distance notion is 

dependent on the requirements. In other words, globally a simulation model could be far from 

representing the system but it may be adequate to represent the system for a particular requirement. 

This approach is better illustrated with the following example. Consider a V&V activity on a 

simple controller whose function is to supply fluid to a hydraulic system by opening or closing 

valves. It has a push button interface which can either be ‘on’ or ‘off’ and a light interface which 

is illuminated only when the button is pushed ‘on’ to indicate the status of controller. The 

completed or receives a message nack? and reports FAIL! in case of failure. For the sake of 

redundancy there is a backup valve that will be used only if the valve is failed to open and this is 

commanded with open backup valve! The system model is illustrated in figure 5.7. 

Let us consider three candidate simulation models already available or supplied by the vendors 

as illustrated in figure 5.8. Consider a test scenario where the objective is to verify the time delay 

between the user action on the push button and the corresponding status of the light. Intuitively, 

the model M2 seems to be highly representative of the system. However, for the given objective, 

this model is too detailed whereas the third model is poorly representative as it does not have output 

corresponding to the light. But the first model is adequately representative though it is poor in 

absolute terms. 
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Figure 5.7: Controller System model 

 

 
(a) Msim

1  (b) Msim
2  (c) Msim

3  

 

Figure 5.8: Controller Simulation Models 

Let us consider another scenario where the objective is to verify the failure output in case of 

receiving push OFF? and nack?. Clearly the first model is not useful, the second model does not 

model the failure output whereas the third model does not differentiate between the open and close 

scenarios. The third model is better with respect to this requirement, however the requirement does 

not explicitly state failure in valve closing or opening. In this case, the second model is better 

though it does not model the failure output. In simple words, fidelity of simulation depends on the 

intended use of model and this intention of usage is imperative to perform V&V activities on the 

SUT. This example can be illustrated better with a distance notion on interfaces proposed by Cerny 

et al in [Cerny,2014]. 

In this simple example, the SUT i.e. the controller does not have an environment and the 

question is on the granularity of the model vis à vis its requirement. However, one can imagine this 

question becomes further complicated with the presence of environmental models whose 

granularity needs to be designed such that it is representative enough for the SUT validation. In 

other words, to validate this controller for a scenario, what level of abstraction needs to be chosen 

in its environmental models such as models of valves, switching logics, communication channels 

etc. at their respective interfaces? In this case it may be reminded that the environmental models 

are abstracted with respect to the V&V objectives of the SUT.  

Thus, in addition to the component based design (or verification) perspective which is the 

existing norm, an interface based design perspective which is increasingly discussed in literature 

[Alfaro,2004],[Benviste,2015] especially in the embedded systems design ensures fidelity by 

capturing the degree of environmental assumption congruence between different interacting 

models. Thus the perspectives of verification and refinement could be seen as complimentary to 
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each other in the V&V process. Despite the abundance of academic work in this area of contract 

based design, such a paradigm is still in its infancy especially in the industry. In the following 

sections, the problem of fidelity quantification is extended to this formalism as a two player game 

between the system and its model formalized as an untimed interface automata. Refinement 

relations between system and simulation experimental frames were presented based on alternating 

simulation relation [Alfaro,2004] and its approximations for interface automata [Cerny,2014]. The 

distance notion of interfaces is presented in the context of simulation fidelity and a simulation 

objective dependent weighting is proposed to measure this distance similar to section 5.1. This 

game-theoretic distance notion is extended to generating quantitative reachability between the 

system and simulation model specified as untimed interface automata in the ProDEVS/TINA tool 

similar to sections 5.1-2. 

5.3.2 Interface Automata & Experimental Frame 

An experimental frame, recalling from section 2 of chapter II, is composed of different components 

and in such a component based design framework it is important to characterize the behaviour at 

the input and output interfaces of the components. Interface automata proposed in [Alfaro,2001] is 

one such formalism used to capture the temporal aspects of software component interfaces. In this 

study, it is extended to EF components in the context of simulation fidelity through refinement 

relations between two interface automata. An interface automata is a deterministic labeled 

transition systems in which the labels correspond to input and output actions. In other words, unlike 

classical automata an interface automata segregates and models the component’s visible and 

internal behaviour explicitly. 

5.3.2.1 Interface Automata & Alternating Simulation Relations 

Formally, an interface automata [Alfaro,2001] extends a finite state automata with input and 

output actions and is defined by the following tuple, TIA =< X, X0, τI, τO, δ >, where X is the finite 

nonempty set of states, X0 ⊆ X is the initial nonempty state set, two disjoint sets  τOand τI referring 

to output and input actions, transition function is defined by δ: X ⨯ τ → 2X with τ = τI ⋃ τO. In 

general, denoting an action as σ ∈ τ, a transition from state x1 ∈ X to a state x1
′ ∈ X can be written 

as (x1, σ, x1
′ ). 

Alternating simulation relations extends simulation relations for alternating transition systems. 

For two transition systems described by interface automata, T1
IA =< X1, X1

0, τ1
I , τ1

o, δ1 > and T2
IA =<

X2, X2
0, τ2

I , τ2
o, δ2 >, alternating simulation of T1

IA by T2
IA by T2

IA ≼A/S T1
IA holds if there exists a binary 

relation f ⊆ X1 × X2 such that if (x1, x2) ∈ f then 

 

- ∀ (x1, σ1
I , x1

′ )   ∃ (x2, σ2
I , x2

′ ) such that (x1
′ , x2

′ ) ∈ f 

- ∀ (x2, σ2
O, x2

′ )  ∃ (x1, σ1
O, x1

′ ) such that (x1
′ , x2

′ ) ∈ f 

(19)  

In the next section, we present EF in interface automata formalism as it communicates with SUT 

through interfaces. Alternating simulation relations for interface automata is then presented to 

establish refinement relation between EF in the context of V&V by simulation. 
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5.3.2.2 Experimental Frame & Refinement 

Let us denote the EF interface automata as  

 

EF =< X, X0, τ
I, τO, δ > (20)  

  

where X is the finite nonempty set of states, X0 ⊆ X is the initial nonempty state set, two disjoint 

sets  τOand τI referring to output and input actions, transition function δ: X ⨯ τ → 2X with τ =
τI⋃ τO. The EF is input deterministic and internal actions omitted in the definition which follows 

the broadcast interface automata proposed in [Alfaro,2001]. The input and output actions are given 

with the ‘?’ and ‘!’ sign respectively. 

The idea of refinement discussed in previous sections can well be extended to EF, consider the 

composition of experimental frame with the SUT, recalling the illustration in section 3 of chapter 

II, 

 

 

Figure 5.9: EF & SUT Composition 

Extending the notions of refinement to EF, the objective is to replace the original EF made of 

real systems with the simulated EF made of models of the systems. In other words, simulation EF 

refines the system EF and we define this refinement relation in terms of alternating simulation 

relations as described in section 5.3.2.1. In this context, the following definitions are presented.  

Definition 5.1: A simulation is said to be representative when 𝐸𝐹𝑠𝑖𝑚 ≼𝜀 𝐸𝐹𝑠𝑦𝑠 where 𝜀 ≤ εφ 

Following the refinement relation definition in section 5.3.1.1 it is straight forward to see the 

connection between fidelity and refinement. 

Definition 5.2: A simulation model is said to be representative when 𝑀𝑠𝑖𝑚 ≼𝜀 𝑀𝑠𝑦𝑠 where 𝜀 ≤ εφ 

The simulation is said to be representative i.e. with sufficient fidelity if the value of the game 

described similar to the one described in section 4.2 is less than the fidelity tolerance, εφ.  

Definition 5.3: The simulation experimental frame refines the system experimental frame is denoted 

by  

 

EFsim ≼ EFsys (21)  

  

if the following holds true 

 

τEFsys
I ⊆ τEFsim

I  (22)  
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τEFsys
o  ⊇ τEFsim

o  

 

and there exists EFsim  ≼A/S EFsys | xEFsim
0 ≼A/S xEFsys

0  

This comes from the following applicability definition which states a precondition for using a 

simulation EF in place of system EF,  

Definition 5.4: An 𝐸𝐹𝑠𝑖𝑚 is said to be applicable to SUT if it refines 𝐸𝐹𝑠𝑦𝑠 

From applicability conditions of Eq.(7) of chapter II, for inputs and outputs to be compatible 

with SUT, the EFsim must accept as many inputs as EFsys and when subjected to same scenario i.e. 

input it must produce a subset of output behaviours of EFsys. From the perspective of SUT, it 

receives only what is being produced by EF whereas the EF receives what is produced by SUT. 

This compatibility conditions ensures EF produces fewer outputs than the SUT can accept and this 

compatibility applies to simulation EF as well. 

Definition 5.5: An 𝐸𝐹𝑠𝑖𝑚 refines 𝐸𝐹𝑠𝑦𝑠
2  if  β(𝐸𝐹𝑠𝑦𝑠

1 )=𝐸𝐹𝑠𝑦𝑠
2  and 𝐸𝐹𝑠𝑖𝑚 ≼ 𝐸𝐹𝑠𝑦𝑠

1  

This statement refers to scenario inclusion since derivability is relation between different EF’s 

i.e. scenarios. It means a simulation EF can replace a new system EF provided it is derived from 

an EF which is refined by simulation EF. In other words, the same simulation EF can be used 

instead of system for a scenario which is shown to be a subset of the original scenario. 

5.3.2.3 Alternating Simulation Games for System Model Refinement 

From section 3 of chapter II, an EF is composed of different components EF = ∑{Mi} where 

i=1..Nc be number of components. Let us recall the notions for them by a generic word Mi and if 

the component is real system it becomes Msys
i  and its representation for simulation is Msim

i . 

Conditions of compositionality are given in [Alfaro,2001] and due to the composition, the 

refinement relation extends to the component models as well and it becomes, 

 

Msim
i ≼ Msys

i  (23)  

  

The refinement relation given above could be characterized by two player alternating simulation 

on the system model and simulation model. Let those two models be represented by an interface 

automata as follows 

 

Msys =<  Xsys, Xsys
0 , τsys

I , τsys
o , δsys > 

Msim =<  Xsim, Xsim
0 , τsim

I , τsim
o , δsim > 

(24)  

  

The simulation model refines system model, Msim ≼ Msys when the following holds true 

 

τsys
I ⊆ τsim

I  

τsys
o  ⊇ τsim

o  

Msim  ≼A/S Msys | xMsim
0 ≼A/S xMsys

0  

(25)  
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Then, let the game be defined as follows, 

 

𝔤Msys,Msim =< X, X
1, X2, E, x0 > (26) 

 

where X = X1⋃X2 and let some {x1x2} ∊ Xsys , {x1
′ x2
′ } ∊ Xsim and σsys

I,o
 ∊ τsys

I,o  and σsim
I,o

 ∊ τsim
I,o  

Then the attacker can choose either input from system or output from model given by: 

- Input from system such that   : x1
σsys
I

→  x2 ∊ δsys 

- Output from model such that : x1
′
σsim
o

→  x2
′  ∊ δsim 

whereas the defender can choose either input from model or output from system given by: 

- Output from system such that : x1
σsys
o

→  x2 ∊ δsys 

- Input from model such that    : x1
′
σsim
I

→  x2
′  ∊ δsim 

This refinement relations can be extended for composition as well, considering that two models are 

composed together to build a EF,  EF = ∑{Msys
1,2 } such that input of Msys

1  is the input of EF and output 

of Msys
2  is the output of EF. Denoting the composition between the models by composition operator 

⊕, then Msys
1 ⊕Msys

2 . The compositionality principle [Cerny,2014] states, 

 

Msim
1 ⊕Msim

2  if (Msim
1 ≼ Msys

1 )⋀(Msim
2 ≼ Msys

2 ) (27)  

 

Thus an EF can be composed of simulation models replacing system models if the refinement 

relations hold between them. In the next section, instead of exact refinement an approximate 

refinement is explained with approximate alternating simulation in the global fidelity quantification 

as well as in a V&V context. 

5.3.2.4 Experimental Frame Approximate Refinement  

In [Cerny,2014], similar to section 5.1-2, boolean notions of interface refinement through 

alternating simulation preorder is improved to a quantitative notion where the distance between 

interfaces called interface simulation distance has been proposed. This directed metric is based on 

alternating simulation game and properties such as triangle inequality, notions of over or under 

abstraction were discussed. These approximate refinement relations are denoted by ≼𝜀, where 𝜀 be 

the degree of approximation such as limited average in Eq.(7,8). It can be seen that when 𝜀 = 0, it 

becomes exact alternating simulation relation and for increasing 𝜀 > 0, the alternating behavioural 

inclusion becomes lesser. Similar to section 4.2, the two player game perspective where the players 

cheat and thus incurring a penalty is extended to refinement of systems modeled as interface 

automata in which the game is played on the system and its abstraction. In this game, the attacker 

can choose either the output transition of simulation model or the input transition of system model. 

On the other hand, the defender can choose either the output transition of system model or the input 

transition of simulation model. The error quantification semantics of this turn based game is similar 

to the timed and untimed classical automata games and hence not discussed in detail here. The 

quantitative reachability graph is generated similarly as well and the implementation is discussed 

in sections 6.2. 
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Similar to section 2.2, let us illustrate the need for a differential weighting alone by initially 

applying the absolute weighting method by assigning a positive but equal weight of 1 for every 

cheating transition of the defender and measure the value of game by a limit average of errors. 

Consider game between system model in figure 5.7 and simulation model Msim
1  in figure 5.8, the 

attacker takes input push ON? and moves to next state. The defender responds by taking the same 

input and the error is 0. For the next move, the attacker chooses light ON! for which the defender 

responds by same action and the error is still zero as the defender matches every attacker’s move. 

However, for the third move attacker chooses input nack? for which the defender has no choice 

but to cheat and moves to next state. This continues and the error keeps accumulating with the net 

error shown at the end of one full iteration is shown in table 5.1. On the contrary, consider the 

second model, Msim
2 , the cheating occurs only at the fourth transition when the defender fails to 

respond to the choice nack! of attacker. Again the defender cheats when attacker chooses and the 

net error becomes 0.5. For the first requirement mentioned in section 5.3.1.1, both models are valid, 

however the first model is simpler despite its poor absolute fidelity.  

Table 5.1: Equal weighted error of models 

Step, i ε(Msim
1 ) ε(Msim

2 ) ε(Msim
3 ) 

1 0 0 1 

2 0 0 1 

3 1/3 1/3 2/3 

4 2/4 2/4 3/4 

5 3/5 2/4 4/5 

6 4/6 2/4 5/6 

 

Consider the second requirement of failure output on system, again the second model fares 

better than the third model in terms of representativeness. However, it can be seen that the key 

requirement of FAIL! output is not present in the second model though it is present in the third 

model. The second model is essentially insufficient to represent the required phenomena i.e. failure 

output and cannot replace the system. In contrast, the third model though cannot differentiate 

between the push button position, and valve position, is a reasonable abstraction of the system as 

it models the failure output on receiving ?nack message as specified in the requirement.  

In both these examples, it can be seen that the equal weighting for cheating transition is not 

adequate since some simple but more erroneous model cold be adequate enough for a scenario 

compared to a complex but less erroneous model. The cost must take into account this subtle 

relation of granularity with respect to the requirement. In other words, transitions related to 

requirements must be penalized more than the transitions which have no effect. To this effect, the 

error model is modified with a differential weighting to account for these differences and cost is 

given by a standard objective function such as limit average. 

5.3.2.5 Differential Weighted I/O Error Model: 

An input/output error model [Cerny,2014] based on the transition relevance to requirements is a 

function E: τI ⨯ τI → ℝ0
+ for input and E: τO ⨯ τO → ℝ0

+ for output. This needs to be a directed metric 

satisfying reflexivity and triangular inequality which states for all τ1,2,3 ∊ τOor τI, E(τ1, τ1) = 0 and 

E(τ1, τ3) ≤ E(τ1, τ2) + E(τ2, τ3) respectively.  
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Let us denote the actions of interest on system model by τφ ⊆ τsys where τsys = {τsys
I  ⋃ τsys

o } 

and whenever the defender cheats on these actions it incurs higher penalty than when it is not. The 

error weighting function is given by e: δ ⨯ N → ℝ0
+ where δ =  δ1⋃ δ2 and N refers to number of 

transition. In the two player game with turns m=1,2 the distance is calculated at the end of every 

defender move i.e.∀2n where n ∊ N is the number of transition. The two different weights are 

denoted by W1 and W2 respectively which could either be a simple positive number or a function 

of transition W1,2(n).   
 

∀ δ2 ∊ δsim,  {σsim
I ≠σsys

I  ⋀ σsys
I ∈  τφ}  ⇒  e = w1(n)   

                {σsim
I ≠σsys

I  ⋀ σsys
I ∉  τφ}  ⇒  e = w2(n) 

                 else          e = 0 

∀ δ2 ∊ δsys,  {σsys
o ≠σsim

o  ⋀ σsys
o ∈  τφ}  ⇒  e = w1(n) 

               {σsys
o ≠σsim

o  ⋀ σsys
o ∉  τφ}  ⇒   e = w2(n) 

                   else          e = 0 

(28)  

 

In particular, weights are assigned based on the moves on the system input or output. In order 

to explain the subtleties of this weighting consider the example in figure 5.7 and 5.8 where 

intuitively one can see that first model is better than the third since the desired output light 

ON!(OFF!) is not present in it. However, to quantitatively decide this, it is important to impart this 

knowledge into the error model via these weights. In the game when the attacker chooses output 

of model command! the defender cheats the original transition of system i.e. light ON! with this 

model transition. However, since it cheats on system transition it is checked with V&V objectives 

and assigned higher weight. The case for cheats on system inputs is straightforward. 

Let us apply this approach with linear weighting such as in figure 5.1 to the two cases described 

before. For the sake of illustration, consider for every cheating move 𝑛𝑝, let the weight varies in 

steps of -0.1 for primary weight i.e. w1 = (1 − 0.1np) and +0.1 for secondary weight with each 

transition i.e. w2 = 0.1np such that |w1 +w2|<1. Consider case 2, where the objective is to verify 

FAIL! output for push OFF? and nack? input. The game commences with attacker input move on 

push OFF? for which the defender responds by cheating on push? input on simulation model M3 

incurring a cost 0.1. The attacker then chooses output command! on M3 where the defender has to 

cheat with close valve! on system model with a penalty 0.2. However, for subsequent attacker 

moves the defender is able to match them and the error remains same. This is not true for model 

M2 which does not model the nack? output and thus incurs high penalty 0.9 at third transition and 

further 0.8 at fourth transition for cheating on FAIL!. The same phenomenon can be seen in first 

model too and for this requirement the first models are not useful. For the case 1, however, both 

models can be used if the requirement is only until four transitions and beyond the second model 

is more representative though it does not contribute to the requirements but only being more 

absolutely representative. 

The implementation of absolute fidelity quantification alone is presented in section 6.2 similar 

to other formalisms of sections 5.1-2 as the implementation of relative quantification is 

straightforward and our focus is more on generating a quantitative reachability to do further 

analytics. However, it must be noted that, the value of the game is computed in PSPACE time and 

dependent on largest weight used. In this case, due to the presence of two weights, the complexity 
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becomes 𝒪(|w1||w2||X|
3|E|) where the two weights are given by w1and w2, E are the number of 

edges and X  be the number of game states. 

Table 5.2: Equal weighted error of models 

(a) Light ON/OFF case    (b) Failure output case for OFF position 

 

 

 

 

 

 

 

 

 

6. IMPLEMENTATION 

The game semantics described in previous sections has been implemented in ProDEVS, a DEVS 

simulation platform [Vu,2015]. ProDEVS is a Discrete EVent Simulation (DEVS) platform and 

amongst other features such as FMI co-simulation, it can also be used to do model automata 

(classical and interface) and perform formal verification with TINA toolbox [Berthomieu,2004]. 

TINA toolbox is used to the edit and analyse (Timed) Petrinets, an extension of classical Petrinet 

formalism [Peterson,1981] with firing time for the events and an extension of it with data handling 

called Time Transition Systems. Such a formalism is widely used to represent the timed execution 

of discrete event systems interleaved with (possibly zero) delays. DEVS is a more general case of 

the FSA formalism with embedded time and differentiation between input and output labels i.e. 

akin to interface automata but with time. Since we intend to extend the current quantitative 

approach to timed interface automata, and then further to DEVS formalism, we construct classical 

automata and untimed interface automata models in ProDEVS. On the other hand, the game 

semantics are modeled in (un)timed Petrinet formalism since Petrinets, with their token based 

formalism, are amenable to modeling such turn based games between two FSA. These games are 

automatically modeled in Petrinet which could be then visualized using the graphical editor of the 

TINA toolbox. In addition, using the TINA reachability generator [Berthomieu,2014] along with 

the data encoding in guards and actions of the underlying Petrinet transitions, the quantitative 

reachability graph could be generated. This graph is then parsed to perform some analytics for 

better understanding of the model fidelity.  

Let us formally introduce Petrinet, a formalism widely used to represent the timed execution 

of discrete event systems interleaved with (possibly zero) delays. The timed petri-net is an 

extension of classical petri-net formalism with firing time for the events. Though Petrinets per se 

is a richer formalism to model transition systems due to its ability to model parallel processes, we 

will restrict our Petrinet models to FSA where the states are finite and have no parallelism. 

Formally, a Petrinet is a tuple defined as follows, 

 

M =< P, τ, A,w, p0 > (29)  

  

Step, i ε(M1) ε(M2) ε(M3) 
1 0 0 0.1 

2 0 0 0.4/2 

3 0.9/3 0.9/3 0.4/2 

4 1.6/4 1.6/4 0.4/2 

Step, i ε(M1) ε(M2) ε(M3) 
1 0 0 0.9 

2 0 0 0.8 

3 0.1/3 0.1/3 1.6/3 

4 0.4/4 0.4/4 1.6/3+0.1/4 

5 0.9/5 0.4/4 1.6/3+0.4/5 

6 1.6/6 0.4/4 1.6/3+0.9/6 
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- P is a finite set of symbols called places 

- 𝜏 is a finite set of symbols called (timed) transitions with P ∩ 𝜏 = ∅ 

- A ⊆ (τ×P) ∪ (P×τ) is the set of arcs defining the flow relation 

- w: A → N is the function defining the respective weights of the arcs, N=1 in our case 

- Is: τ → I+ is static interval function with 𝐼+, the non-empty set of positive real intervals 

including 0. 

- p0 : P → N is the initial marking 

Informally a transition, 𝜏 is enabled if there is a token at the corresponding place, 𝑝 ∈ P and 

moves to the next state defined by the flow relation. This token and place formalism of Petri-net is 

amenable to model the two player turn-based game which is alternating in terms of player turns. In 

the current study no concurrency is assumed and the resulting games have only total states. A state, 

s of a Petri net is a couple < 𝑚, 𝐼 > where m is the marking and I is the interval function, I: τ → I+ 

which associates to each enabled transition at marking m a temporal interval. In addition, only 

intervals under the form [θ, θ], i.e. deterministic event timings are considered although firing at 

timings drawn randomly from uniform distribution is also possible.  

It can be easily seen that a Petrinet with neither weights nor parallelism is a classical automaton 

and with time, it becomes a timed automaton. For the sake of brevity, let us denote places as states 

and markings denote the current state. Informally a transition, 𝜏 is enabled if there is a token at the 

corresponding place, 𝑝 ∈ 𝑃 and moves to the next state defined by the flow relation. This token and 

place formalism of Petrinet is amenable to model the two player turn-based game which is 

alternating in terms of player turns. In the current study no concurrency is assumed and the resulting 

games have only total states. 

The classical (un)timed games or untimed interface games are constructed in a single Petrinet 

file and could be run directly from the ProDEVS. Since Petrinet simulator per se does not handle 

data, these are encoded as guards and actions on the transitions through associated ‘c’ files to 

generate ‘dll’ files. The generated reachability graph is in text form and the data needs to be parsed 

for better understanding and visualization. The parser, written in JAVA and integrated in ProDEVS 

has many functions such as plotting the evolution of cheats along the play, distribution of cheats 

etc. The sample pseudo algorithm is presented in section 5 of annex. In particular, it constructs a 

reachability tree which can then be visualized. The replay feature allows to choose a particular 

cheat from the cheat distribution plot to see the associated path to better understand when and 

where the simulation model behaviour differs with respect to the system. The methodology is 

briefly given in the figure 6.1 [Ponnusamy,2016].  

 

 

Figure 6.1: Implementation 
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It can be seen that the modeling and parsing are done in ProDEVS with rest being in TINA. 

Alternatively, the modeling and game can be done in TINA-ND graphical editor tool as well and 

the reachability is generated by TINA later. It may be seen that, given a system design model and 

a simulation model in same formalism, for example in timed automata, the game is constructed 

automatically and the resulting output is exhaustive error quantification over all possible 

transitions. The simulation user or the developer may then decide to improve the simulation model 

or relax the V&V requirements. This approach, apart from quantifying the global fidelity 

independent of V&V objectives, is also useful in iteratively refining the design with respect to 

V&V scenarios especially in the early system development when the design is not frozen. 

6.1 UNTIMED & TIMED GAMES IMPLEMENTATION 

The untimed games implementation is straightforward with turn semantics of open interval timed 

transitions i.e. [0,∞] to model the untimed behaviour. In addition, for the sake of simplicity only at 

exact i.e. deterministic event timings are considered although firing at timings drawn randomly 

from uniform distribution too is possible. In our timed games implementation, branching is taken 

into account in two different fashions. For the sake of illustration consider two automata, first one 

firing at exact time and second at an interval as in figure below. The first type of branching is 

straight forward where the earliest event is fired, for example in figure 6.2 it is always a2 and in 

case of interval both during interval [2,3]. However, often according to the phenomenon both 

branches need to be explored. Intuitively, for example in figure 6.2.a, it means a state can make a 

transition either at 2 time units or 3 time units depending on the event and in such cases both 

branches are explored. 

 

 
(a) Msim

1  (b) Msim
2  (c) Temporal Evolution 

Figure 6.2: Branching in Timed Automata 

This is implemented in Petrinet by the following mechanism of introducing an intermediary 

instant transitions (𝜏𝑎1𝑏1 , 𝜏𝑎1 , 𝜏𝑏1) and states. The dark circle denotes the token and vertical bars 

denote the transition and when a transition is enabled the token is passed to the successor state. 

Further details on Petrinet formalism and its simulation can be seen in [Berthomieu,2014] whereas 

the game model can be seen in the section 3 of the annex. The semantics of this branching for Msim
1  

in figure 6.2.(a) is illustrated in figure 6.3. 
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Figure 6.3: Branching Implementation 

Denoting the number of original transition branches at place, 𝑝 by 𝑛𝑏 such a modification 

increase the complexity to 2nb + 1. For example, in figure 6.2.a there were two transition branches, 

nb=2 which then increases to 5 transitions in figure 6.3. Similarly, the branching of figure 6.2.(b) 

can be constructed. Further details on play truncation, error estimation and reachability 

construction are illustrated along the application case in section 2 of chapter V and section 3 to 5 

in annex. These timed and untimed games implementation is illustrated in the following figure. 

 

 

Figure 6.4: Automata Games Implementation 
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6.2 UNTIMED INTERFACE GAMES IMPLEMENTATION 

In this game, there is a distinction between input and output transitions and similar to untimed 

automata game Player 1 starts the play and it is complete when player 2 finishes his turn. The only 

difference in semantics in addition to non-interface games there are identifiers for input and output 

types which are connected to input and output transitions of models respectively. The play is over 

if player 2 cannot have either an output transition on system or input transition on simulation model. 

The implementation is presented in detail in section 4.4 of annex along with the reachability 

constrution and analytics similar to previous sections in section 5 of annex. For the sake of brevity 

a flowchart similar to figure 6.4 is not presented. 

A brief discussion on fidelity quantification in the context of infinite state systems i.e. continuous 

systems based on the principles of geometric control theory [Pappas,2003] can be found in section 

6 of annex.  

 

7. CONCLUSION 

A formal quantitative approach to simulation fidelity based on simulation relations and two player 

game is presented is presented in detail for discrete systems and with some preliminary theoretical 

results for continuous systems in section 6 of annex. Broadly the contribution is threefold, first, 

extending timed games into a fidelity problem, implementing this game in Petrinet formalism for 

discrete systems (timed and untimed), generation of quantitative reachability and analysis with 

some fidelity metrics. A key possibility with such quantitative reachability graphs is to utilise 

efficient graph search algorithms to analyse for the shortest or optimal traces which gives further 

insight into the simulation model behaviour with respect to the system behaviour.  

However, this explicit enumeration of traces along with their (timing) distances may suffer 

from the curse of dimensionality and of limited use in large scale systems. This may be mitigated 

by using efficient data structures such as using Binary Decision Diagrams (BDD) and studies need 

to be made in abstraction, and abstraction refinement techniques, especially for continuous 

systems. The abstraction problem could be posed as a planning problem of reaching a set of states 

by taking advantage of the BDD based symbolic methods. For continuous systems, discussed in 

section 6 of annex, the problem of finding abstraction maps which preserves bisimulation property 

as well as compliant with fidelity tolerance requirements was identified as a controlled invariance 

problem to ensure bounded distance. Further research is needed in better understanding this relation 

between abstractions and end use objectives. In addition, efficient parsing techniques for data 

analytics such as visualization needs to be developed since this requires reconstructing an explicit 

reachability graph and exploiting it further which could be prohibitively expensive especially for 

large scale systems. These challenges and future work including some perspectives on on-going 

work on model synthesis are further discussed in the section 2.2 of chapter VI. 

Despite the challenges ahead both academic and industrial, this quantitative perspective will 

enable different stakeholders in the system V&V process to develop and reuse models with a known 

and assured level of fidelity. For example, the model developer could gain key insights into the 

model behaviour and chooses the best abstraction of the system vis à vis the scenario. On the other 

hand, the system test team would have a measure of fitness on the models being used for the V&V 

which would mitigate unfeasible or unclear model fidelity requirements. In addition, this would 
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benefit the system designer in making improvements or modifications to the system model. These 

benefits would allow not only to select a consistent model with sufficient level of fidelity according 

to the test case with different criteria such as performance, robustness etc. but also to help in 

quantifying the fidelity of the overall V&V process. Such a quantitative framework to fidelity will 

enable significant benefits in avoiding redundant modeling and validation effort thereby saving 

cost and time in product development especially in replacing real tests with simulation i.e. virtual 

testing.  
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CHAPTER  V 

APPLICATION CASE STUDIES 

 
In this chapter, the case studies for the semi-formal and formal approaches are presented. The case 

study for the ontology based semi-formal approach is a real industrial case study from Airbus 

whereas formal approach is demonstrated with academic case studies. 

 

1. DOMAIN MODEL APPROACH CASE STUDY - AIRCRAFT NACELLE ANTI-ICE 

SYSTEM 

The principles of ontology based domain model approach in building a MR which explicitly takes 

fidelity requirements has been presented in chapter III along with the domain model development 

in Protégé tool. A real life industrial case study needs to be taken to demonstrate the feasibility of 

such an approach in technology readiness for the industry. We have considered different case 

studies: engine failure case modeling, control system V&V and aircraft engine Nacelle Anti-Ice 

System (NAIS). The NAIS was chosen due to its relative simplicity compared with other highly 

complex systems, data availability and other industrial constraints. 

A generic description of the aircraft Nacelle Anti-Ice System (NAIS) is presented followed by 

instantiation of the domain model built from the ontology defined in section 4.1-3 of chapter III.  

1.1 NAIS EXPERIMENTAL FRAME 

The NAIS is an aircraft system which used to prevent ice accretion at the engine nacelle inlet by 

blowing hot gases from the engine exhaust. The system is activated whenever aircraft flies at icing 

conditions and this system is comprised of controllers, valves, solenoids, ducts etc. The NAIS 

system is connected to other aircraft systems such as Flight Management System (FMS), engine 

monitoring system, Full Authority Digital Electronic Control (FADEC) etc. The system is 

(de)activated by the pilot using the push buttons, P/B in the cockpit panel which sends the signal 

to the NAIS monitor and the underlying software validates the command and then sends it to the 

controller, C. The controller according to the feedback from pressure transducer, PT energizes or 

de-energizes the solenoid, S1,2,3 which the then opens or closes the valve V1,2. The flow control 

through valve changes the downstream pressure which is monitored by the pressure transducer.  
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Figure 1.1: NAIS System 

 

Let us consider a V&V activity where this system or a component of it needs to be validated 

against some test scenarios laid out according to the V&V plan in different test benches. In order 

to perform these tests on a component(s), controller of NAIS in our case, the problem is selecting 

elements of NAIS (e.g.: valves) and the associated systems (e.g.: Flight Management System), 

environment (e.g.: engine) with respect to this component(s) and its scenario. The figure 1.2 

[Ponnusamy,2016] illustrates, albeit in an abstract sense, this experimentation in EF formalism 

where the environment representing the context under which the controller will be tested. The 

general system interaction is shown by solid line and the scenario specific observability of 

phenomenon (e.g.: pressure data from sensor) is denoted in dotted line. This EF description helps 

in a lucid visualization of what is being tested and what is needed for the test in addition to how it 

is tested (controllability) and what is expected of the test (observability).  

 

 

Figure 1.2: Experimental Frame of NAIS Controller 
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1.2 MR CONSTRUCTION 

Recalling figure 5.1 of chapter III, the first step in MR construction is the domain model 

instantation from SD and TR body of knowledge.  

1.2.1 Formalization: Domain Model Instantiation 

Following the process described in section 5.1 of chapter III, the TR and SD are converted into 

domain model instances. Let us denote, the domain model concept and its corresponding instance 

by notation, 𝔈:𝔗 and the relationship between concepts by 𝔈
𝖗
→𝔈. For example, from SD 

architectural descriptions of controller connected to solenoids (electronic type equipment), S1,2,3 

through different channels, this textual info is translated as Equipment:controller 
𝑖𝑠𝑆𝑡𝑟𝑢𝑐𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑜
→                

Equipment:S1). This process is repeated and the list of instances is shown in figure 1.3. For the sake 

of clarity, instances of SD and TR are noted by prefixes ‘SDD_’ and ‘LTR_’ respectively.  

The instances in bold are defined with explicit relationships with other individuals or classes 

or both, for example Designer:Designer-EYAK2 
𝑑𝑒𝑠𝑖𝑔𝑛𝑠
→      System:SDD_NAI, whereas the others are 

simply defined without any associations. This is particularly useful in dealing with complex TR 

and SD where only minimum instances need to be defined explicitly with the other instances are 

inferred using the reasoned and associated with properties or classes if there exists an implicit 

relationship. Such inferred instances or classes or relationships are shown as highlighted instances 

in figure 1.4. For example, Equipment:LTR_EEC 
𝑖𝑠𝑆𝑡𝑟𝑢𝑐𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑜
→                Equipment:LTR_Solenoid_A 

refers to the structural connection between ‘EEC’ and ‘solenoid_A’ in the LTR. In addition, another 

instance ‘PRSOV_A’ is related to this ‘solenoid_A’ through  Equipment:LTR_PRSOV_A 
𝑖𝑠𝑆𝑡𝑟𝑢𝑐𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑜𝑚
→                   Equipment:LTR_Solenoid_A. This entails that LTR_EEC is connected to 

PRSOV_A as well since the underlying property ‘isStructConnectedTo’ (which is inverse of 

‘isStructConnectedFrom’ and vice versa) is defined as transitive property [Protégé]. Similarly, 

other properties can be defined in the domain model according to the knowledge being formalised. 

Some such concepts and relationships can be found in the annex along with some metrics on the 

domain model in general and the application case in particular. 

It may be reminded that neither SD nor TR expressed in natural language can be translated in 

its entirety and the goal is to translate them only to the extent possible. In case of TR which usually 

has different test some of may subsume each other (derivability and applicability definitions in 

sections 3.2 of chapter II). Thus, for the sake of practicality, the most complicated test case is taken 

and translated into corresponding domain model instances and in our study such cases only where 

chosen resulting in a total of about 92 instances. 
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Figure 1.3: NAIS TR & SD Instances 

 

 

Figure 1.4: NAIS TR & SD Inferred Instances 
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1.2.2 Verification & MR Extraction 

The phase after formalization of the SD and TR knowledge as domain model instances is verifying 

whether instantiations are consistent according to underlying domain model rules. The inbuilt 

reasoner of Protégé such as Fact++ [Fact++], Pellet etc. is used to evaluate this consistency which 

identifies reasoned instances in addition to defined instances. For example a relation, 

Equipment:FMS 
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠
→       Function:Manage Flight is deemed inconsistent as only a concept, 𝔈 

named System can perform a function i.e. System 
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠
→       Function.  

The figure 1.5 illustrates some of the instances with respect to their classes and the relation 

with other class instances. For example, the class Multi_System_Function has different instances 

both from TR and SD i.e. LTR_* and SDD_*. Such information can be efficiently extracted and 

manipulated using SPARQL queries. Let us show this by taking a sample instance SDD_NAI of 

class System. From various instances and their relationships defined and reasoned, it can be easily 

seen that this system is designed by the system designer EYAK5 and performs a function, 

SDD_Ensure_Pressure_Regulation of class Multi_System_Function. In addition, this function 

needs a function SDD_Provide_Thrust performed by other system SDD_Engine which in turn 

designed by another designer. These dependencies are show by dotted rectangle in the figure and 

this not only helps to check the explicit consistencies but also extract implicit elements through 

reasoning and evaluate the consistencies. 

 

 

Figure 1.5: NAIS Instances Design Space Exploration 

In addition, the verification and/or design space exploration to extract MR can be done using 

SPARQL queries where instances of particular concept denoted by 𝔗(𝔈) or having a relationship 
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𝔗(𝔈)  
𝖗
→𝔗(𝔈) can be queried, matched etc. The application of queries on verification and design 

space exploration is presented below.  

1.2.2.1 Verification  

A simple case of verification is checking whether the SUT required in TR exists in SD 

according to some criteria such as type, maturity level, etc. In our case, for the sake of illustration, 

the SUT defined in TR i.e. controller denoted by ‘LTR_EEC’ and having a name as EEC is matched 

with an instance in SD having the same name. If the SD has an instance, the associated system it 

belongs to and the designer of that system is extracted. From the results it can be seen that SD has 

a controller denoted by instance ‘SDD_EEC’ with the same name as TR instance and the system it 

belongs is ‘SDD_NAI’ designed by ‘Designer_EYAK2’. Thus the query can be customized 

according to the user requirement. 

 

 

Figure 1.6: SUT Consistency Evaluation 

An important but often overlooked aspect is comparing the requirements and specification 

instances before exploring the design space to extract necessary modeling elements to be included 

in MR. A key example is illustrated in figure 1.7, consider the real SD and TR instances depicting 

the structural connections to the SUT i.e. controller, C. In practice due to the unavailability of TR 

it is a common practice to utilize an available equivalent TR of a similar system. In the current 

study such a TR was used along with the SD of the actual system. It can be seen that, on comparison 

the architecture of two systems were different, for example only two solenoids were present in TR 

whereas SD has three and so are their respective connections. This by extension have implication 

on building MR since a test case defined for an element present in TR but not in SD is spurious 

and conversely the test case for elements in SD but not in TR cannot be directly extracted which 
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needs further deliberation with the stakeholders. Such information can be seen by querying the 

instances and comparing one to one before the MR extraction through design space exploration 

phase. 

 

Figure 1.7: Architectural Comparison 

1.2.2.2 Design Space Exploration  

The second verification step is followed by superimposing the SD and TR instances which 

could be done by linking the required SUT from TR, 𝔗(SUTReq) and the available SUT from SD, 

𝔗(SUTAvb). The associated elements are extracted either manually or through pre-defined queries. 

An example of design space exploration is given in this section. Let us consider a test scenario 

which states ‘the controller, C must open valve, 𝑉2 in time 𝑡1s and close valve in 𝑡2s’. The controller 

and valve in TR are denoted by ‘LTR_EEC’ and ‘LTR_PRSOV_A’ and then intuitively, it may be 

seen that in order to model the response of valve to the controller input, the valve and its associated 

instances must be extracted from SD. Similar to SUT consistency evaluation in previous example, 

in this case the presence of valve in SD is checked and if it exists all the equipment which are 

needed for this valve to operate are extracted. From exploring the design space i.e. SD, it can be 

seen that the equivalent valve ‘SDD_PRSOV_A’ needs other equipment, solenoids in this case 

denoted by ‘SDD_S2’ and ‘SDD_S3’. In turn the valve may have different modes of operation and 

each of the mode are associated to the solenoid mode (energies or de-energized) based on the 

operating mode definition which is explained further in the next section. The queries are given in 

section 2.2 of annex and only the output is shown in figure 1.8. 

 

 

Figure 1.8: NAIS Instances Design Space Exploration 

In addition, there are other queries written to extract for example, systems and functions needed 

to simulate, OM to simulate the NAIS behaviour to controller input under normal and failure 

conditions etc. An application of the OM concept to the failure mode simulation of NAIS valve is 

presented in the following section similar to example in section 4.1.2 of chapter III. It may be noted 

that the other parts of this study including different query mechanisms used in building the MR has 

not been discussed in detail for the sake of brevity but presented in annex. 
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1.2.3 MR for NAIS Failure Scenario 

Let us consider a test scenario where TR requires the simulation of valve V2 failure at closed mode. 

The test request typically says at which conditions the failure is triggered, where and what are the 

expected outcomes. On the other hand, SD of NAIS describes all the possible behaviour of system, 

in this case, dependency of valve V2 modes with the solenoid S2,3 modes (e.g.: valve is open when 

solenoid is energized & closed when solenoid de-energized). It then becomes imperative to identify 

the components and its associated modes causally affected by this failure condition. Inferring the 

instantiated OM concepts and querying over this knowledge, desired information such as 

dependent component or the components that can be abstracted can be obtained with ease. It 

alleviates the burden of the tedious and often error prone task of keeping track of disparately located 

but hidden information which is related to each other. Following the notation given in section 4.1.2 

of chapter III, the SD then becomes [Ponnusamy,2016] 

C1 = {V2}   M1
1 = open              M2

1  = close           M3
1 = regulating 

C2 = {S2}    M1
2 = de-energised,    M2

2 = energised 

C3 = {S3}  M1
3 = de-energised,     M2

3 = energised 

The OM is built from the mode data and is illustrated below, for the sake of clarity each OM is 

shown separately. 

 

   

Figure 1.9: Operating Modes of Valve and Solenoid 

Consider a test on the controller to validate its failure monitoring and reconfiguration of valves. 

It can be seen that, in order to simulate the valve failure when closed, it is imperative to simulate 

the solenoid S3 in de-energized mode to see it does not have any effect. However, this information 

is not explicitly given in TR as it describes expectations on system at higher levels of abstraction 

whereas SD describes all possible behaviours of system. Thus it becomes important to identify 

only the necessary functions and associated systems to be modeled to avoid over or under detailing 

of models. 

In addition, such an approach will help visualize and identify possible emergent behaviour 

which may not have been modeled otherwise. For example, from the valve which is failed at the 

closed position, the regulating mode can be reached in two steps by having S3 de-energized and S2 

energized. Similar extensions are possible and such information is usually not given explicitly 

either in SD or in TR, and this formalism helps the model specialist in writing a MR with autonomy. 

This particular example, though done manually, is found to increase the efficiency during test since 

provisions for failure triggering is explicitly identified and provided along with necessary 

functionalities to model the failure propagation. 
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1.3 DISCUSSION 

A classical way to measure the efficiency of this approach is to compare with the manual MR 

construction. Two key metrics of interest are, how far this method yields (at least) the same results 

as the manual approach and how quick it does it. For this particular case study, for a subset of MR 

construction, it is found to be at least twice as efficient as the manual-experience based heuristics 

approach, which is arduous and error prone at times. In addition, the coverage of results is about 

80% against manual approach. However, as noted in chapter III, this approach is only 

complementary to the classical manual approach whose necessity will always exist in a 

collaborative system engineering process and a truly automated MR construction is a far cry from 

the reality. Nevertheless, as seen from this case study, this semi-automated process helps 

significantly in standardization, extraction, archival and exploitation of the system design and V&V 

activity knowledge.  

 

2. FORMAL APPROACH CASE STUDIES 

In this section, the implementation of quantitative approach discussed for different class of discrete 

systems is presented. The application case is a buffer system and different abstractions of it are 

used to demonstrate the approach. In case of untimed interface games, a simple NAIS model as 

shown in section 5.3 of chapter IV is used as case study. 

2.1 AUTOMATA: BUFFER SYSTEM CASE STUDY 

The buffer is a simple FIFO which receives jobs from the job generator and sends them to the 

processor whenever the processor is free. It works as following, whenever a job is received the 

queue, q is incremented and decremented when the job is sent to the processor. The received and 

sent jobs are denoted by label e0 and s0 respectively, processor status by e1. Let us imagine the 

processor to be the SUT and the requirement is to model the buffer with sufficient fidelity such that 

some scenarios, φi=1
N  on the processor can be tested. This experimentation is illustrated as an EF 

in figure 2.1 [Ponnusamy,2016]. 

 

 

Figure 2.1: Processor Experimental Frame 

It can be seen that in addition to the generator and buffer, the experimentation may involve a 

Transducer to interpret the processed and generated jobs and an Acceptor which compares the jobs 

generated vs processed to ascertain the validity of the processor. The system specification of buffer, 
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Msys, is supplied by the designer and the scenarios by the test team. The model developer who 

intends to build an abstraction i.e. a model of this buffer, Msim, needs to quantify his model with 

respect to the system both globally and with respect to φi=1
N . The games are discussed for timed and 

untimed model in the following sections. 

2.2 UNTIMED BUFFER MODEL 

Consider an un-timed automaton modeling buffer behaviour. The guards and actions are denoted 

by {} and [] respectively. The system model, 𝑀𝑠𝑦𝑠, and four candidate simulation models, Msim
1..4 , 

are shown in figure 2.2 and 2.3 respectively [Ponnusamy,2016], 

 

 
 

Figure 2.2: Buffer System Model, 𝑴𝒔𝒚𝒔 

 

 
 

(a) 𝑀𝑠𝑖𝑚
1  (b) 𝑀𝑠𝑖𝑚

3  

 

 

(c) 𝑀𝑠𝑖𝑚
2  (d) 𝑀𝑠𝑖𝑚

4  

Figure 2.3: Buffer Simulation Models 

For example, the game between the two models, system model and simulation model 1 (c) is 

informally described as follows, 
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𝑛𝑝 = 1: From initial state, S0, player 1 chooses transition e0 and moves to S1. Player 2 does the 

same. 

𝑛𝑝 = 2: From S1 the player 1 chooses e0. The player 2 cannot match and thus cheats with s0. 

This continues forever and one can see the weighted error is simply (np − 1)/np. Similar games 

can be played between other models. Figure 2.4 illustrates the distribution of trajectories, also 

called traces, based on the (absolute) weighted fidelity i.e. (1 − ℰ) which is usually shown in 

percentage. It can be seen that higher the number of trajectories close to 100% or required fidelity, 

the higher the simulation model fidelity. For the sake of illustration only trajectories up to the third 

play from a total of 103 plays are shown.  
 

 

Figure 2.4: Trajectories Fidelity Distribution 

From this graph, one can see that out of four trajectories generated at the end of the third play 

by the system, only one is matched by the simulation model exactly and the second trajectory (in 

rose and green) cheats twice out of three transition i.e. 33% representative, whereas the fidelity of 

the other (in blue) is 67%. A particular trajectory can be picked up for visualization by clicking on 

the graph as shown in the upper left box inside the figure 2.4 and in addition, the mean fidelity, in 

this case ~67% is also shown. The reachability tree is presented in figure 2.5 for the sake of 

illustration. This reachability can also be analyzed as a measure of total number of cheats per turn 

with respect to the total number of trajectories at that turn. For example, in the above example out 

of four trajectories two are cheating at the third play and in general, lower this ratio, the worse will 

be the fidelity. This is illustrated for all the four models in Figure 2.6. In addition, the number of 

trajectories cheated (in black) and the total number of trajectories (in red) at each play is also given. 

In the case of relative cheating, instead of absolute weighting in error calculation, relative 

weighting is employed. Let us consider a scenario, 𝜑1 stating that the processor must process all 

the jobs generated, or in other words, no job is lost by the buffer. For this particular scenario, 

weighting is more on e0 and less on other labels similar to example in section 5.1. Similar such 

weightings can be done for other scenarios and analysis is done as in figures 2.5, 2.6 

[Ponnusamy,2016]. In addition, sensitivity of weights to the error for a given scenario can be 
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studied as well to ascertain a viable trade-off between model abstraction i.e. complexity and 

fidelity. 
 

 

Figure 2.5: Quantitative Reachability 

  

(a) 𝑀𝑠𝑦𝑠 vs 𝑀𝑠𝑖𝑚
1                                                                       (c)  𝑀𝑠𝑦𝑠 vs 𝑀𝑠𝑖𝑚

3  

 

  

(b) 𝑀𝑠𝑦𝑠 vs 𝑀𝑠𝑖𝑚
2                                                     (d)  𝑀𝑠𝑦𝑠 vs 𝑀𝑠𝑖𝑚

4  

Figure 2.6: Trajectories Distribution 
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2.3 TIMED BUFFER MODEL 

In this section, timing aspects are taken through timed games for the given buffer system 

specification, 𝑀𝑠𝑦𝑠 and two simulation models of the system, 𝑀𝑠𝑖𝑚
1,2  as shown in figure 2.7 and 2.8 

respectively [Ponnusamy,2016]. The transition labels are typically given in the form of tuple <{}, 

𝜎, t, []> where {},[] refers to guards and actions respectively. In this case, the guards and actions 

are on the queue variable, q. 

 

 

Figure 2.7: Buffer Timed System Model,  𝑴𝒔𝒚𝒔 

 

 
 (a) 𝑀𝑠𝑖𝑚

1  (b) 𝑀𝑠𝑖𝑚
2  

Figure 2.8: Buffer Timed Simulation Model 

This game can be either played state bounded or equivalently play bounded. In the former, the 

maximum number of state classes generated during reachability construction is fixed whereas in 

the latter the play is terminated only if all the winning trajectories (if it exists) where σi
1 = σi

2 of 

player 2 are played. In addition, a play can be terminated prematurely if the number of lost 

trajectories exceeds a certain user defined bound. Different such techniques could be employed to 

manage the game and interpret the results to determine the fidelity according to the user 

requirement. In the following section some fidelity metrics are discussed for the buffer model. 

2.3.1 Analysis Results 

The timed fidelity game is played between  Msys and Msim
2  and a quantitative reachability graph is 

generated for a maximum 103 state classes. Since the size of the resulting 

ℛ𝜀   is limited, the first question is how many traces are generated and how long they are i.e. length. 

In total 4661 traces were generated with 3640 traces has maximum trace length of 26 transitions. 

It may be reminded that in this case, the system model makes infinite number of turns regardless 
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of the simulation model and incompleteness of each trace is predominantly due to the truncation 

of reachability states generated. The distribution of all such transitions can be visualised in the 

following figure 2.9 [Ponnusamy,2016]. It can be seen that most traces have one or two transitions 

empty due to reachability graph truncation and this information can be used to limit or extend the 

limit of exploration. 

 

 

Figure 2.9: Trace length vs Number of traces 

For each trace, the number of plays may be different i.e. a play might be lost but still the trace 

contains only player 1’s transitions. It can be seen from figure 2.10 that simulation model can match 

the transition labels for a maximum of 5 plays for 45 traces. For each of these traces, associated 

timing error can be extracted similar to figure 2.5 [Ponnusamy,2016]. 

 

 

Figure 2.10: Total number of plays distribution 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

50

100

150

200

250

300

350

Trace Length

N
u
m

b
e
r 

o
f 

tr
a
c
e
s

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Plays

N
u
m

b
e
r 

o
f 

T
ra

c
e
s



107 

 

For example, the trace with transition sequence e0
2
→ s0

1
→e1

3
→ e0

2
→ s0

1
→e1 of system model 

can be matched by the corresponding sequence e0
3
→ s0

1
→e1

4
→ e0

3
→ s0

1
→e1 of the simulation 

model and the net timing error is 3 time units at the end of fifth play. However, for some other 

traces it can match only partially, for example one can intuitively see that a job can arrive at any 

state for the system model whereas the simulation model can take job only at state S0. In such 

traces, (e.g. e0
2
→ e0

2
→s0

1
→… by the system) the game is partially lost and such information too can 

be obtained. 

Another key information of interest is the lead information i.e. how far the system is in advance 

before the simulation model and this represents the overall lag of the simulation model with respect 

to system. A near perfect simulation model has less lag and increase in lag is either due to the play 

being lost in that trace especially for systems with loops such as buffer or simulation model timings 

are higher. The following figure shows this difference and it can be seen that almost all lag is due 

to the play being lost in corresponding traces. At maximum only one transition i.e. e0 is matched 

for 995 traces. 

 

 

Figure 2.11: Transition difference distribution 

A key aspect which is not discussed is the role of V&V objectives in this fidelity quantification. 

In the current study, all the differences in transition timings are equally weighed. However, in 

reality a model is developed with some V&V objectives behind and in such cases some transitions 

are of more interest than the others. Let us consider a requirement:  𝜑1 on SUT stating that all the 

sent jobs must be processed by the processor i.e. no job is lost. In other words, an ideal buffer must 

store and send the jobs to processor as a function of processor status. In case of first simulation 

model this is not true as the processor status is not modeled. This is characterised by the losing 

game in the third play of the game whenever the system makes a move with e1 label. However, in 

case of second simulation model the game is not lost but the event timings are different. On the 

other hand, consider requirement,  𝜑2 on SUT stating processor expects at least one job at delivered 

by the buffer at 3s and in this case first simulation model matches exactly the transition timings 

𝑒0
2
→ 𝑠0

1
→𝑒0 compared to the 𝑀𝑠𝑖𝑚

1 . Thus, depending on the requirement, some transition timings 

are weighed more with weighting 𝑤1, than the others with weighting 𝑤2 as shown in sections 5.1 
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of chapter IV. Such a relative weighting approach though not shown here is illustrated in the annex 

with a simple example. 

2.4 INTERFACE AUTOMATA  

In this section, an application case to demonstrate fidelity quantification for untimed interface 

models is discussed. Let us recall figures 5.7 and 5.8 of chapter IV of the controller system and the 

first simulation model.  

 

        
 

(a)  𝑀𝑠𝑦𝑠 (b) 𝑀𝑠𝑖𝑚
1  

Figure 2.12: NAIS Controller Model 

The game is played between these two systems based on the theory given in section 5.3.2 and its 

implementation in 6.2 of chapter IV.  

2.4.1 Analysis Results 

The game is played such that it generates atleast 10000 state classes though TINA is capable 

of generating more. The resulting reachability graph is parsed and the fidelity evolution is shown 

for first seventeen plays. In other words, the depth of reachability graph is 52 as a play has three 

transitions. In this seventeen plays, a total of 14048 trajectories were generated whose fidelity 

distribution of is illustrated in figure 2.13. The maximum fidelity acheivable is 53% for 2592 

trajectories and minimum 36% for 512 trajectories. It can be seen that in most of the cases, this 

simulation model can produce atleast one out of two transitions of the system model i.e. 50% 

fidelity. It may be noted that this error might be different depending on where the play is terminated 

and it may be chosen according to the SOU. 
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Figure 2.13: Fidelity distribution 

In the next figure, the fidelity evolution similar to figure 2.6 in section 2.2 for untimed interface 

automata games is illustrated. The upper bounds and lower bounds of achievable fidelity is marked 

by red and green curves at each play.  
 

 

Figure 2.14: Fidelity evolution 

It can be seen that initially the fidelity is 100% since for the first play the player 2 can match 

pushON? or pushOFF? input move of the player 1 on sytsem move by the same move on simuation 

model. Similarly for the second play lightON! or lightOFF! output move of the player 1 on 

simulation model can be matched exactly by player 2 on system model. However, if player 1 

chooses to play for example ackON? on system model then the player 2 has to cheat with its input 

action and thus the fidelity becomes 2/3 i.e. 66%. Thus the fidelity starts to degrades progressively 

though it rises and falls intermittently since the system model and simulation model comes back to 

inital state after some transitions.  
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Similar such studies were done for other models shown in figure 5.8 of section 7 in chapter IV 

to select the best model both globally and locally i.e. with respect to SOU. The relative weighting 

approach, discussed in section 5.3.2.5 of chapter IV, is not shown here as in principal the analytics 

is same such as the one shown here with the only difference being the effect of weighting can be 

varied and analysed with respect to the fidelity distance calculation.   

2.5 DISCUSSION  

It may be noted that despite the novelty of the approach in quantifying fidelity explicitly and 

formally, as noted in chapter IV, it is not scalable for higher dimensional systems or higher number 

of plays. Despite the fact that reachability generation is fairly easier with TINA which uses state 

of art techniques to generate the graph, exploiting it is difficult. The exploitation requires an explicit 

reconstruction of this reachability graph with associated error information at the end of every play. 

The current method involves classical reconstruction based on parsing the output file which 

essentially starts at the end of the tree and progressively builds the tree backwards until the inital 

state is reached. The algorithm, given in annex, though is efficient since it avoids redundant 

exploration whenever a branch is encountered, it still needs to be improved using efficient data 

structures and other programming techniques. In addition, the current analytics involve only 

information such as evolution of fidelity distance, distribution of associated trajectories etc. This 

could be augumented with additional information such as how are those trajectories related and 

which player 1’s move causes higher or lower error and vice versa for player 2 etc. Such 

information could be then used to refine the simulation or system design further. Nevertheless, this 

approach once implemented, even for a limited number of plays gives a formal distribution of 

fidelity withrespect to or independent of scenarios which could be reused for similar or derivative 

systems i.e. systems which are a variant of the original systems validations. 

 

3. CONCLUSION 

The application of ontology based semi-formal approach and quantitative reachability based formal 

approach has been presented. The semi-formal approach is applied on a real industrial scale 

problem whereas the formal approach is applied on various classes of illustrative academic and 

simplified industrial examples. The formal approach needs to be extended to higher dimensional 

industrial models which are currently being carried out. The semi-formal approach, with its 

encouraging preliminary results, is currently being compared against classical system engineering 

approaches [Roques,2016], [SysML,2006] for different case studies along with improvements 

being done on methodology refinement and tool development for the stakeholders. The future work 

and overall conclusion is discussed in the chapter VI. 
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CHAPTER  VI 

OUTLOOK & CONCLUSION 

 
In this chapter, current and future work for two approaches discussed in chapters III and IV are 

presented.  

 

1. OUTLOOK ON SEMI-FORMAL APPROACH 

The domain model approach presented in chapter III needs to be further developed, automated 

and integrated with the engineering process with user friendly interfaces. The SBFIO ontology 

used to define this domain model could be improved with additional concepts based on naïve and 

basic physics and other domain specific concepts. This is particularly useful to document 

hypothesis behind specifying a system by system designers which will be later used by the model 

developers. The preliminary results of the application case described in chapter V demonstrate the 

flexibility of this approach in archival and exploitation of domain knowledge. The future work also 

includes development of a user friendly graphical interface for domain model instantiation, queries 

and formalization of a centralized ontology management process which are imperative for its 

utilization across the enterprise. 

One of the fundamental challenges in this domain model approach is its validity. Though the 

very purpose of ontology is to establish a set of vocabulary which are validated, in our approach a 

mix of established as well as new vocabulary were introduced since our primary concern is to 

capture and exploit the system design, testing and modeling knowledge. This will naturally be 

followed by the validation with concerned stakeholders and ontology refinement. In addition, this 

being a flexible approach, extending it to many other domains, the complexity of such ontology 

might become prohibitive and render the approach difficult to use in practice. Hence, our approach 

concerns only the M&S domain with a specific focus on MR extraction from the SD and TR 

knowledge. Even in such a focused application specific domain model approach, not all the 

concepts of TR and SD could be formalized and in order to have a reasonably adequate model with 

tractable complexity, only some important and frequently used concepts and relationships were 

implemented to illustrate the flexibility and adequacy of the approach for our problem.  

It may be noted that the queries used to extract artifacts from TR and SD body of knowledge is 

based on specialized language such as RDFS [Sintek,2002] which may not be amenable for the end 

user. The queries need to be customized often according to the model specialist need and this may 

be a challenging task especially in an industrial setting where the domain model in all probability 

will be managed by a separate entity. Most often than not, queries fail to deliver answer due to 

incomplete or wrong domain model instantiations and the users may not be aware of the origin of 

this problem. In order to mitigate, query relaxation techniques [Foukou,2016], [Smits,2013] which 

return associated alternative answers will be valuable to the end user to further explore and identify 
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inconsistencies, incompleteness which will be further used to refine the MR in relation with SD 

and TR. 

Another key challenge besides the validation of this domain model approach is the complicated 

task of parsing documents written in natural language into the domain model concepts described 

in chapter III. This process is currently manual and involves stakeholders to manually instantiate 

the domain model which is cumbersome and at times error prone though they could be identified 

to a certain extent [Ponnusamy,2016]. There are some initial studies based on Natural Language 

Processing (NLP) techniques such as text mining [Ileiva,2005] to automate this process, it is far 

from being done especially in an industrial context. This problem needs to be studied with cognitive 

techniques such as data analytics and deep mining based on iterative learning techniques for better 

usage of this domain model. These cognitive techniques, by extension are also being studied to 

automatically construct ontologies from existing body of knowledge such as text 

[Dahab,2008],[GATE]. Such an approach, in addition to being complementary, will also help in 

validating our approach which was a manual construction based on a study of processes, documents 

and existing practices.  

A possible drawback of our approach is the implementation of class definition in Protégé and 

model selection implemented in other language for example in SysML. This is done in order to 

leverage the flexibility, scalability, query and reasoning powers of ontology with the control flow 

execution, graphical interface capabilities of SysML. However, this approach has limitations in 

terms of effort and at times redundant since instantiations are done twice, first in ontology tool such 

as Protégé and second for the model selection in SysML (or any other tool). This necessitates an 

integration of SysML and OWL as remarked by [Greves,2009] and [Wagner,2012]. Such a mutual 

transformation between SysML and ontology will help practising engineers to capitalize on their 

graphical syntax and reasoning capabilities respectively and thereby ensuring seamless design and 

product V&V activities. For the problem of design fidelity approach, despite its graphical multi-

layered approach, practical limitations such as lack of operational capability and activity 

information in SD or TR, persistence of ambiguity due to natural language, lack of ability to create 

a class of functions or their reuse etc. needs to be addressed. In this context too, ontology based 

approach serves complimentary to such classical industry standard graphical system engineering 

methods. In addition, feasibility studies are being made to assess and provide feedback on using 

other MBSE approaches such as Cappella tool based on Arcadia framework [Roques,2016] for 

aircraft system architecture definition and simulation with respect to our approach. 

An important area to be addressed in the overall V&V process is the synthesis of requirements. 

Requirements are usually written in natural language text and unless they are managed by tools 

such as DOORS [DOORS], it becomes a tedious task to consistently update, trace or modify the 

requirement database. An active area of research is to move from informal natural language 

description to a more semi-formal MBSE approach and in some cases formal description in some 

temporal logic such as Linear Temporal Logic (LTL) [Pnueli,1977] or Signal temporal Logic (STL) 

[Donze,2014] etc. especially for formal approach. A more formal definition of requirements would 

enable better rapid prototyping of systems. Such a method will help in coherent model development 

and deployment from top level requirements capture to low level behavioural modeling by mapping 

the related concepts at each intermediary step. In addition, studies are being carried out to extend 

this approach for other perspectives of experimental frames discussed in chapter II.  
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1.1 MAPPING TO BEHAVIOURAL FRAMEWORK 

There exists a gap between the rigorous behavioural abstraction frameworks based on simulation 

relations presented in chapter IV and less formal system engineering approaches such as domain 

model approach presented in chapter III [Retho,2013]. It has been widely emphasized that the 

complexity of current engineering systems requires integration of different layers of abstraction 

and consistency between them. In classical system engineering tools such as SysML, there exists 

mechanism such as Syndia [Syndia] allowing interconnection between behavioural simulation 

tools in addition to CAD tools etc. to SysML. However, our inclusion problem necessitates 

formalization and exploitation of knowledge to write MR such that these capabilities are useful in 

specifying a model, MS consistent with MR i.e. a verification problem. In our study, the formal 

approach assumes all the model’s behavioural tolerances are explicitly specified at least at 

compositional level i.e. TR is complete. However, this is usually not the case as the MR 

construction in terms of behaviour for simulation product components not specified explicitly in 

TR is still an open problem. For example, questions such as, what are the allowable tolerances on 

behaviour of a model or what are allowable abstractions to model rise time of a model output and 

what are its impacts on fidelity etc. are questions traditionally done based on expertise and 

measured fidelity approach. In addition, questions on how are these behavioural requirements 

impact other perspectives such as system, function etc. and vice versa. 

One of the main reasons is the absence of a connection between these two levels of abstraction 

especially in the inclusion context. The concept of Operating Modes (OM) could serve as a 

connection between high level functional description through the domain model approach and low 

level behavioural description through quantitative transition system. Since OM are high level 

behavioural description, this would lead to better identification and modeling of transitions to 

capture the low level behaviour, especially during incremental model synthesis. These operating 

modes can be mapped to automata which model the system behaviour and this may then be 

applicable to hybrid automata defined by invariants, guards and resets as well [Tomlin,2003]. Such 

behaviour can be formally verified by reachability analysis and significant progress has been made 

in the control community in developing various geometric abstractions such as zonotopes 

[Girard,2007], polyhedrons etc. to perform reachability analysis over dynamic systems 

[Stursberg,2003]. In addition to verification, syntheses of abstractions are also studied with the help 

of approximate bisimulation techniques in [Girard,2007] & [Pappas,2003]. Alternatively, such a 

model can be executed using a discrete event system (DEVS) simulator such as ProDEVS, or state 

of art DEVS simulators such as CD++ [Wainer,2002] or classical simulators such as like 

SIMULINK or Modelica [MODELICA]. This domain model for model execution complements 

the domain model for model building. Such an integrated domain model approach helps in 

standardizing M&S activities and thereby improves the overall fidelity.  

In the semi-formal approach, fidelity is qualitatively determined and as discussed in section 3 

of chapter III, hierarchical ordering of abstractions and the notion of lattice distance will lead 

naturally to quantification. Similarly, the semi-formal requirements need to be mapped to formal 

system requirements as discussed in chapter IV in order to have a unified approach to the problem 

of fidelity. However, these studies are still in its infancy and studies need to done to bridge this 

behavioural approach with the semi-formal domain model approach to build a unified framework 

addressing the simulation needs capture at from high level to low level model behavioural 

requirements definition.  
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2. OUTLOOK ON FORMAL APPROACH 

The formal fidelity quantification approach discussed in chapter IV is limited in its scope of class 

of systems, abstraction mechanisms. The current abstraction mechanism is only of omission (states 

and/or transitions) for discrete systems and future works include the extension of this approach to 

other widely used abstractions such as state aggregation. The choice of error model (discounted 

average, mean average etc.) in our approach and its associated weighting function, though 

beneficial in terms of its flexibility to represent fidelity distance in different perspectives, is still a 

challenging task to identify, converge and implement. The current heuristics based method needs 

to be improved and in this regard, an ontology of different error models need to be developed to 

standardize such implementation especially in the context of class of fidelity requirements such as 

performance, robustness etc. 

The open vs closed systems fidelity perspective in terms of classical and interface automata 

needs to be further developed especially from a process perspective. The component perspective 

of what does it do i.e. automata vs interface perspective of how can it be used i.e. interface 

automata, though complimentary to each other, need to be integrated in unified process where the 

model developer chooses the formalism according to the need. For example, in cases of input 

universal i.e. closed assumptions automata games could be used for fidelity quantification and in 

cases of input existential i.e. open assumptions interface games could be used. In both such 

approaches, our formal quantification method assumes equivalence on actions i.e. labels as 

described in section 5 of chapter IV. In reality, this is usually not the case, however, an ontology 

will help in standardizing the convention for using labels which are common across different model 

specifications.  

The interface distance notion of experimental frame needs to be augmented with internal 

actions and such an approach will help in modeling the internal behaviours of components and this 

will help further in unifying the component and interface perspective especially in the fidelity 

context. In the current behavioural approach presented, in addition to the problems being studied, 

it must be noted that the quantitative notion needs to be related in the EF context of transducer and 

acceptor. Since transducer and acceptor depend on observations of abstracted model, the 

approximate language equivalence i.e. fidelity distance must be compatible such as EF cannot 

expect incompatible precision on outputs of an abstracted model. Also, the abstracted system can 

have different control input than original system and this need to be studied through the EF 

component abstraction such as abstractions of generator. The controllability and observability 

analogy of dynamic systems also have to explored in the context of experimental frame to extend 

the approach to higher dimensional systems such as section 6 of the annex.  

As discussed in section 7 of chapter V, a possible axis of future work is to extend the formal 

approach to DEVS V&V [Labiche,2005], [Wainer,2009], [Saadawi,2009]. In [Albert,2016], a 

Petrinet implementation of the parallel and classical DEVS has been discussed and this is currently 

being studied in the context of game theoretic quantitative formal verification for DEVS models. 

In addition, Giambasi et al [Giambasi,2003], discuss the mapping between DEVS which is 

deterministic in nature and timed automata which allows for non-determinism. This mapping based 

on simulation relations has been used for the formal verification of DEVS in [Giambasi,2003]. 

However, a mapping between DEVS and timed interface automata which explicitly takes into 

account the timing as well as input/output events is far from being complete. This is also due to 

relative infancy of timed interface formalism and its formal verification aspects. It is worth 



115 

 

exploring such an approach since the formal verification of DEVS model allows, for example, to 

prove that the implementation of high level specification modeled in timed (interface) automata as 

a DEVS model is correct or incorrect.  

The fidelity quantification approach concerns predominantly discrete state and/or time systems 

and to a limited extent on continuous systems (section 6 of annex). The discrete dynamics could 

be augmented with stochastics into probabilistic automata and our distance based approach could 

be complimentary to existing probabilistic model checkers such as PRISM [Kwiatkowska,2001]. 

Despite the focus on discrete systems, in reality, the models of many domains especially control 

are usually continuous whereas informatics domain is discrete with hybrid models having discrete 

with embedded continuous dynamics. In the formal verification for continuous models, state 

enumeration is done symbolically by geometric over-approximation using zonotopes etc. in 

quantitative verification of properties such as safety which is usually independent of SOU. On the 

other hand, model checking with its explicit enumeration suffers from state-space explosion and 

not useful for continuous systems. A solution is to convert continuous systems into timed automata 

formalism and do model checking [Maler,2008]. This is useful to find a degree of similarity 

between two systems through a timed-game theoretic approach. However, this is challenging since 

it involves state space partition which must be done right to avoid any spurious behaviours as 

remarked by the authors. By contrast, this degree of similarity for continuous systems given by 

approximate bisimulation is a global measure i.e. all trajectories of system are bounded by this 

measure with respect to other system and this can be demonstrated via symbolic reachability post 

priori i.e. assuming same timing of events. In the field of simulation, finding bounds on each 

trajectory i.e. a quantitative reachability suffers from the curse of dimensionality as it is explicit 

enumeration of states. Thus a compromise is to have a rough timed automaton of a continuous 

system and then play the game with its counterpart to determine this error. In this case, the global 

fidelity is introduced by first approximation of changing formalism and then the usual fit of 

similarity between the systems. But this may not change our approach since the fidelity measure is 

relative i.e. independent of this approximation by timed automata. Let us consider a trivial example 

by converting a discrete timed system into timed automata. Let us take a state space system, state 

y is input driven while state x is not, then the continuous and discrete versions are given by 

 

ẏ = 2x + y + 6u          ẋ = 5x (1)  

yt+1 = 2xt + yt + 6ut       xt+1 = 5xt (2)  

                                                 

Let us imagine two sampling time, ∆t1= 0.5, ∆t2= 0.1 time units. In terms of timed automata i.e. 

a Petrinet with no partial states, a discrete system of form ṡ = As + Bu where A, B are fixed 

matrices, s is state and u is input will take the form as follows, 

 
a. Timed automata                                       b. Reachability 

 
Figure 2.1: Timed Automata & Reachability 
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The guards and actions perform the new state computation. Then the example in Eq.(2) 

becomes,  

 

                          

a. System Model                                                                b. Simulation Model 

Figure 2.2: Effect of Sampling 

Let us consider the system and simulation model, intuitively, one can see that for every move 

of system at 0.1 s the simulation model fails to match and the time difference is 0.4 and system is 

ahead by 4 transitions. However, this is counterintuitive if we view them at t=0.5 where the outputs 

will not be different (if gain is static). Thus the difference is essentially time view or the label view 

and our game is timed view i.e. to quantify timing difference between transitions of two systems. 

Such approaches need to be further studied especially in the context of fidelity quantification. 

In this context, using fickle transitions in timed Petrinet [Berthomieu,2014] potentially opens 

new ways of formal verification of continuous systems through Quantised State Simulation (QSS) 

[Cellier,2008] approach which then can be extended for hybrid systems verification. We are 

currently studying quantitative fidelity approach between two continuous systems which 

essentially uses a QSS1 [Cellier,2008] approach and timed game semantics similar to section 5.2 

of chapter IV to quantify the similarity between these two systems. This approach includes timing 

information of continuous systems and is expected to be complementary to quantitative approaches 

such as [Girard,2007] which uses symbolic reachability without timing information. However, 

such explicit enumeration inevitably will lead to state space explosion and efficient symbolic 

methods in such quantification need to be studied in future. 

2.1 FIDELITY SPECIFICATION 

A key practical challenge is the availability of the system specification, especially in formal 

language such as timed automata. Even in case of such availability, there could be interoperability 

issues between the modeling formalisms used by the model developer and the system designer.  In 

addition to this challenge of availability of a formal model, an important but often ignored aspect 

of simulation is its fidelity distance specification i.e. maximum permissible distance between the 

system and simulation behaviour, εφ. The classical bottom up approach usually defines this 

requirement in an informal and vague manner such as ‘as representative as possible’ or ‘closer to 

real system’ without actually specifying the real need in quantitative terms. Such qualitative 

requirement for models often leads to inconsistency in system validation. On the other hand, this 

problem stems from the gap in knowledge between the stakeholders. The test team typically knows 

the scenarios to test systems but not the models whereas, the design team knows about the system 

but not the scenarios. Thus it is imperative for the model specialist to elicit this disparately located 

but often related knowledge to frame the model fidelity requirements. In this context, the usage of 

ontologies would help to standardize and exploit this knowledge to write the MR. However, this 

approach is useful only at high level to define requirements on functions, modes, structural 

composition etc. and less relevant to specify behaviour especially for components not explicitly 

given in TR.  
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In order to formally specify model behaviour, it is important to use temporal logic [Pnueli,1977] 

formalisms such as Linear Temporal Logic (LTL) or Computation Tree Logic (CTL).  Recalling 

definitions in sections 4.1 of chapter IV, the model and its specification are in essence a description 

of temporal evolution through computation and these computations can be interpreted as words 

over some alphabet. Thus the model and its specification relationship is essentially a relation 

between the languages in an automata perspective. The fidelity requirements then could be 

expressed on this automata formalism as some tolerance over the language of the automata defined 

for the system being simulated. These requirements are compared with the implemented tolerance 

which is measured as value of two player game as shown in our formal approach for different class 

of discrete systems. 

A temporal logic formula is built up from finite set of atomic propositions with logic and 

temporal operators. The tolerance model is given over these basic formulas and the tolerance can 

either be on label or on time or both. The tolerance is defined over the language ℒ in terms of 

alphabets, its limit or both. Recalling the automaton definition, Tε =< Σ, Xε, X0, δ, R
ε > where the 

language ℒ(Tε) corresponds to the set of words accepted by Tε. It may be noted that the alphabet 

remains same whereas the state set and accepting state is different. For example, if the requirement 

is ◊(2b?⟹c!), which informally means an input of two successive b’s eventually (denoted by ◊ 

operator) results in an output of c. The system shown in left side of the figure below satisfies the 

property however when this requirement is relaxed with a tolerance on the alphabet as ◊(b?⟹c!), 

this is satisfied by both the model shown in the right and system.  

 

 

Figure 2.3: Fidelity Tolerance Example 

 

In addition, the fidelity requirements are usually expressed with some constraint set such as 

atleast, atmost or exactly. For example, consider atleast requirement over some label and assume 

a system with output denoted by b! and the TR states atleast three b’s are observed every five 

transitions. When replacing this system by a model, the fidelity requirement on this model can be 

defined by this tolerance model. The three broad combinations possible as follows: atleast two b’s 

observed every five transitions, atleast three b’s observed every six transition and atleast two b’s 

observed every six transition.  

The tolerance model can equally be defined for Signal Temporal Logic (STL) which is an 

extension of LTL with real time and real valued constraints [Donze,2014]. This could be useful in 

requirement synthesis studies such as [Donze,2013] where a counter-example guided inductive 

synthesis approach to generate requirements in a specification language based on STL is discussed. 

Such a model definition can be integrated as a library with standard requirement management 

tools such as DOORS [DOORS,2014], REQTIFY [REQTIFY,2015] for defining model 

requirements for model developers. Such a method allows flexible and standardized definition of 

tolerance requirements of simulation. However, such a definition could be a cumbersome process 

since the test team almost always requires models with near zero tolerance whereas, the model 

developers are unable to develop models satisfying such requirements owing to inadequacies and 

immaturity in upstream knowledge about systems being developed by system designers. This 
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definition of tolerances is thus an iterative process and using MBSE approaches will help in 

keeping track of this evolution and document it for a standardized knowledge exchange between 

the stakeholders. 

2.2 SIMULATION MODEL SYNTHESIS  

The game theoretic notion of EF could be well extended from the verification perspective to the 

synthesis perspective i.e. synthesizing a model given a specification. This synthesis could either be 

component synthesis modeled as an automata or an interface synthesis modeled as interface 

automata and in this section only interface synthesis under study is discussed. This correct by 

construction approach has long been attention of research especially in the computer science 

[Alur,2015] and control domains [Baleani,2005],[Mazo,2010]. However, a simulation model 

synthesis for system V&V has never been explored adequately to the best of our knowledge. 

Simulation model synthesis is similar to classical open systems synthesis problem which is 

essentially solving a satisfiability problem for every possible input. The only difference is test 

requirements are given with respect to SUT and the model is synthesized with respect to the system 

model. In other words, the synthesized simulation model could replace the original system model 

iff it simulates the system model dynamics within the bounds given in the test requirements. It is 

illustrated as follows, 

 

Figure 2.4: Model Synthesis 

This section briefly presents a preliminary recursive procedure under study for synthesizing a 

simulation model through incremental addition of states and checking alternative simulation 

relation between the system and simulation model. A brief overview is given here to complement 

the verification perspective discussed in chapter IV. The procedure being studied is discussed only 

for untimed interface automata which is informally presented as follows, 

1. The recursive procedure starts with a simplest partition of system model, Msys taken as 

simulation model, Msim. This model could either be given as an initial guess or simply the 

initial state and its outgoing transition pair is taken. 

2. Refinement is checked through alternating simulation relations between the system and 

simulation model. If the refinement error is below the bound the procedure terminates. 

3. If the refinement error is above the bound, then the simulation model is improved with 

subsequent states and transitions of the system model. This is done by comparing the 

outgoing transition with specification, if the input/output action is present in specification 

then the transition is conserved else abstracted. If no successor transition is present a 

dummy transition is added with action and label. 

4. Goto Step 2 and repeat the procedure until termination. 
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It may be noted that the precondition for tolerance evaluation is the reachability objective i.e. 

only when the simulation model has the corresponding action required in the specification the 

refinement is checked. The procedure is illustrated with the example in figure 2.5, consider a V&V 

objective of failure simulation when controller is pushed off. In other words, in case of failure of 

valves during closing, the controller must output FAIL! upon receiving nack? input. Intuitively the 

other section of system model can be abstracted since they do not contribute to the implementation 

of the specification.  

The pseudo algorithm is given below, let the outgoing transitions actions of a state 𝑥𝑖  be given 

by Aout: xi → σi. The state at end of every transition is denoted by xi
N, where i refers number of 

successor states at the end of a transition n whose limit is given by N. It can be seen that the 

successor states can be nondeterministic due to branching and here we assume N to be finite i.e. 

finite discrete dynamics.  

Step 1:  At each transition, for the state, xi
n,  get all outgoing transitions σi

n of that state 

Step 2: Get the next transition state xi
n+1 

Step 3: Get all outgoing transitions σi
n+1 of that state 

Step 4: Check that ∀ σ ∈ σi
n+1, σ ∈ τφ, add that successor state to model along with its 

transition else keep the successor empty 

Step 5: Repeat this procedure until all actions of τφare included in model or n=N. 

Step 6: Measure the interface simulation distance between two models and 

verify  𝒱(GMsys,Msim) ≤ ε
φ, if satisfied, terminate the procedure 

Step 7: 

 

If not satisfied, improve xi
n by adding successor states of system and start procedure 

from it 

Step 8: Goto Step 2 

The iteration continues until the model respecting the bound is found and if the procedure does 

not terminate the error tolerance could be relaxed or system model refined. The termination of this 

naïve iterative procedure depends on the complexity of the specification i.e. more the actions 

present in specification then higher is the complexity of the resulting model. It can be seen that this 

procedure is immediate look ahead i.e. only the immediate successor state’s outgoing transitions 

are visible and abstraction is decided based on that. This refinement can be improved by scaling 

factor such as look ahead of several transitions but at the price of complexity. A potential pitfall of 

this procedure is its look ahead nature. Let us slightly modify the example by changing the output 

action after opening the backup valve to backup OK! meaning there is a difference in output of 

controller in normal and back up mode of operation. 

Consider a simple (counterexample) requirement that an ack? input is immediately followed 

by OK! output. It may be seen that the system does not satisfy this requirement and an adequately 

representative model should allow to draw the same conclusion. Intuitively, the ideal model would 

be the one without nack? for closed valve and open backup valve branches but not the open valve 

branch as it leads to ack? of backup valve which gives different output backup!. However, a simple 

simulation model shown in figure 2.5.b with error of 0.405 says ack? is always followed with OK! 

which is erroneous. This model is iteratively improved with states and it may be seen that the final 

model is almost the same as system model with error 0.267 which is an over approximation of the 
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ideal simulation model. On the other hand, this procedure yields a correct abstraction by taking 

into account the V&V objectives. The error of 0.267 comes when the attacker selects nack? branch 

of closing valve which the defender cannot match. The attacker’s strategy of maximizing error can 

be seen and the resulting error bound intuitively accounts for every transition of system model.  

Thus this method is tied inextricably with the reachability objectives or in other words the 

complexity of the method is proportional to the complexity of the desired reachable states. It is 

then important to frame adequate but reasonably complex fidelity requirements. For example, a 

requirement εφ=0.1 is too stringent whereas εφ=0.5 is too lenient as it may result in first simulation 

model being valid. 

 

 
(a) System model          (c) 𝑀𝑠𝑖𝑚

4 , 𝜀 =0.267 

 

 
(b) 𝑀𝑠𝑖𝑚

1 , 𝜀 =0.405 

Figure 2.5: Controller Simulation Model Synthesis 

   

In order to better understand the procedure, consider a tree structure of reachability graph. The 

graph on left refers to system model reachability and the right refers to synthesized model 

reachability. Let us recall the state are denoted by xi
n and transition for xi

n as σim
n  with m being 

number of outgoing transition. For the sake of simplicity, the input or output actions are not 

denoted. Let us assume the requirement is to get the output σ21
4  at the end of fourth transition i.e. 

reach x2
4 from the initial state denoted with an unfilled circle. The procedure starts with initial state 

and since the outgoing transition of its successor is not specifically mentioned in requirement 

the x1,2
1  states and the associated transitions are abstracted. However, the outgoing transition of 

successor of  x2,3
2  state namely  x2

3 is associated with transition σ21
4  and thus kept as it is. Similarly, 

at x2
3, the state x3

4 is dropped.  
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Figure 2.6: Reachability perspective of synthesis procedure 

The error of synthesized model is evaluated by approximate alternating simulation relations in 

section 5.3 of chapter IV. It must be noted however that this approach may not be adequate to 

guarantee termination for stringent fidelity requirements coupled with very large state space 

models. Intuitively, mandating a near representative model implies inclusion of all elements of the 

system and this natural tendency of ‘over specification’ results in over detailed model with respect 

to the test scenarios. Thus a reasonable definition of fidelity tolerances is essential to obtain a model 

with adequate complexity and usually such requirement is given based on capitalization of previous 

experience and engineering judgment. 
 

3. CONCLUSION 

A semi-formal approach based on domain modeling and a formal approach based on quantitative 

reachability could lead to a unified framework encompassing high level fidelity needs capture to 

low level implementation. It may be noted that as the simulation product development process 

progresses, the method and tool used will become more formal and this multi modal i.e. unified 

approach of using a combination of formal and semiformal techniques will help managing the 

fidelity of models better. However, application of such formal and semi-formal methods to large 

scale industrial systems which are typically system of systems with different layers of abstraction 

will be incremental and the proposition described in this thesis is one such method for simulation 

model development. In reality, simulation as an enabling method for design and development of 

systems will not be replaced by formal verification such as reachability, at least not in the near 

future and not in some specific domains (e.g.: Human Machine Interaction, Failure Detection 

Isolation etc.). Hence, the onus should be on model development through component based 

approach where each component models are verified independently with an associated metric 

before composition and subjected to some use cases by classical simulation or state of the art co-

simulation techniques using Functional Mockup Interfaces [FMI,2010] standards etc.  
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ANNEXURE 

 

1. DOMAIN MODEL IMPLEMENTATION 

The domain model concepts and relationships are briefly presented in this section. Some of the 

important concepts of our ontology introduced in section 4 of chapter III used to build our semi-

formal domain model approach is listed below. The description is by no means complete and is 

given only for the sake of illustration. As remarked in chapter III, the approach defines a 

methodology to build a MR consistent with TR and SD rather than validate the domain model 

itself. The concepts, relationships, constraints and axioms used in the approach is preliminary and 

need to be further studied and agreed upon by the concerned stakeholders. The flexibility of the 

approach allows to have this validation progressively with ease. However, it must be emphasized 

that the inclusion approach proposed in this thesis will remain the same irrespective of the ontology 

contents along with design space exploration mechanisms using queries presented in our approach.  

The domain model construction, as remarked in section 4 of chapter III, is based on the follwing  

i. Academic state of art such as SBF framework [Gero,2004], [Graves,2008], ontologies in 

V&V [Kezadri,2010], and state of art system engineering languages such as SysML 

[OMG], CAPELLA [Roques,2016]. 

ii. Industrial state of art such as the use of ontologies in (aerospace) industry [Jenkins,2012], 

in industrial M&S, MBSE approaches in industry especially in V&V activities  

[Monceaux,2007], [Zayas,2010], [CRYSTAL,2014]. 

iii. Survey of the existing practices at Airbus on standards, methods, documentations and 

processes such as 

a. M&S standards for model development and sharing between stakeholders 

b. Multisystem and overall aircraft V&V strategy and processes 

c. Reports from inhouse fidelity improvement projects and working groups with their 

lessons learnt and recommendations  

iv. Questionnaires and interviews with stakeholders such as various system design teams, 

simulation user teams and model development team including model specialists.  

v. Application of SPARQL query and reasoning of the domain model approach, discussed 

futher in section 2 of this annexure, is driven by the user need. In our study, existing MR 

for different such systems were studied to find the commonly recurring elements such as 

requirements and constraints on functions, modes, equipments, their operating condition 

etc. Then specific queries are developed to extract such information to build a MR. This 

approach allows saving time in reusing existing queries for different requirements and at 

the same time is flexible to incorporate a new query. 

vi. In addition, scenarios from different TR and design from different SD were studied to 

include only frequently recurring elements since in reality it is impractical to convert all the 

knowledge of system design and its operation into a domain model. 

The following figures 1.1 to 1.3 give a brief overview of the resulting ontology concepts. The 

figure 1.1 taken from the ontology editor Protégé illustrates the SBFIO framework. 
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Figure 1.1: SBFIO Ontolgy 

 

 

 

 

 
  

 

Function: Describes functions, its 

compositions and their interconnections – 

Logical view. 

System: Describes systems performing 

functions, its compositions and their 

interconnections – Logical view. 

Interface: Describes physical and logical 

interfaces and their types 

Operation: Describes operating condition 

and operating modes, mode dependencies – 

Operational view 

Structure: Describes structural composition 

and interconnections – Physical view 
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Figure 1.2: Ontology Classes I 

 

V&V Plan: Test conditions, Expected 

results, test procedure 

Define SUT and Experimental Frame 

Systems 

Define Hierarchy of requirements (SoS, 

system level, overall product level) 

V&V Plan: Platform description, owner, user 

and other attributes 

V&V Plan: Test request form (lab/ground/..) 

V&V Plan: Test ID, class of test, high level 

objectives, references, and other attributes 
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Figure 1.3: Ontology Classes II 

The following figure presents properties used in our study. From chapter III and definitions of 

ontology in Protégé, a property might be object property or a data property. The object properties 

are illustrated in figure 1.4 whereas some data properties are in figure 1.5. For example, recalling 

the notation of relationship between concepts as 𝔈
𝔯
→𝔈, where 𝔈 and 𝔯 are concepts and relationship 

respectively, then for example, a statement ‘a parameter characterises one or more function(s)’ is 

translated as an object property association, Parameter 
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑒𝑠
→           Function. Such property 

association could be of type functional (one-to-one relation), transitive, inverse. Similarly, data 

properties can be defined, for example, a statement ‘an equipment located in rear of an engine’ is 

translated as, Equipment 
𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑧𝑜𝑛𝑒
→              string where ‘rear of engine’ string associates the spatial 

location of the equipment. 

 

Define parameters characterizing a 

function, input or output units etc. 

Define type of EF component 

(System/Simulation) 

Define variables representing a parameter 

and its attributes such as datatype, name, 

range, input or output, units. 
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Figure 1.4: Object Properties 

 

 
 

Figure 1.5: Data Properties 

The property associations with classes are briefly illustrated in figures 1.6 to 1.7. The classes are 

marked in yellow circles with predicates in arrow and individuals of classes in violet diamonds.  
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Figure 1.6: System-Function-Equipment Ontology 

 

 

 

Figure 1.7: Operation Ontology 
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Figure 1.8: Parameter-Variable-System-Function Ontology 

Some metrics on the part of our domain model obtained from the Protégé tool is listed below. 

Some key figures are listed in left pane and associated metrics in the right pane. It can be seen that 

the size of this part of domain model is relatively small with about 160 classes and 116 properties 

which may change according to its (in)adequacy on the application case. The size of the instantiated 

domain model vary between about 3600 to 9300 triples with 3620 triples for unfilled domain model 

followed by 4797 for filled i.e. instantiated domain model and 9295 after reasoning. Another 

measure yields 998 for unfilled, 1027 for unfilled and reasoned, 1239 for filled and 2046 for filled 

and reasoned instances for NAIS model. However, it must be noted that despite this being a 

measure it changes and evolves over time according to added or modified knowledge. 

It is worth noting from section 1 of chapter V that though the innate scalability of ontology is 

appealing, care must be taken to build an ontology with sufficient tractable complexity. A highly 

complex ontology and domain model will result in practical difficulties in instantiation, query 

development and ontology management thus obviating the very purpose of reducing the 

complexities in building a MR with sufficient fidelity.  

 
Axiom: 1850 

Logical axiom count: 1430 

Declaration axioms count: 356 

Class count: 160 

Object property count: 105 

Data property count: 11 

Individual count: 92 

 

DL expressivity: SROIQ(D) 

SubClassOf: 196 

EquivalentClasses: 2 

DisjointClasses: 7 

GCI count: 0 

Hidden GCI Count: 2 

SubObjectPropertyOf: 29 

EquivalentObjectProperties: 0 

InverseObjectProperties: 18 

DisjointObjectProperties: 0 
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FunctionalObjectProperty: 15 

InverseFunctionalObjectProperty: 8 

TransitiveObjectProperty: 17 

SymmetricObjectProperty: 1 

AsymmetricObjectProperty: 1 

ReflexiveObjectProperty: 0 

IrrefexiveObjectProperty: 1 

ObjectPropertyDomain: 72 

ObjectPropertyRange: 74 

SubPropertyChainOf: 0 

SubDataPropertyOf: 0 

EquivalentDataProperties: 0 

DisjointDataProperties: 0 

FunctionalDataProperty: 6 

DataPropertyDomain: 9 

DataPropertyRange: 11 

ClassAssertion: 415 

ObjectPropertyAssertion: 526 

DataPropertyAssertion: 21 

NegativeObjectPropertyAssertion: 0 

NegativeDataPropertyAssertion: 0 

SameIndividual: 1 

DifferentIndividuals: 0 

AnnotationAssertion: 64 

AnnotationPropertyDomain: 0 

AnnotationPropertyRangeOf: 0 

 

Figure 1.9: Domain Model Properties 
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2. SPARQL QUERY IMPLEMENTATION 

In this section, some of the sample queries used for design space exploration and verification is 

listed.  

2.1 MODEL ASSEMBLY EXAMPLE 

A sample query to compare three simulation models input interface with system model input 

interface similar to figure 5.4 of chapter III. In this case, two of the models have same parameter 

(e.g. Force, F) but different datatypes (e.g: double, int); The query below first matches the models 

having same parameters then list the lattice length so that the element having closest distance can 

be chosen as the best abstraction [Ponnusamy,2016]. 
 

PREFIX mm:<http://instantiated model name***.owl#> 

PREFIX nn:<http:// instantiated model name ***_infered.owl#> 

#the query needs to be customized to suit the respective class, object and data properties respectively 

SELECT  DISTINCT ?iclist ?source ?dest ?system_var_out_name ?system_var_in_name ?sim_var_in_name ?sim_block 

(COUNT(DISTINCT ?sim_var_class) AS ?sim_var_class_no)  

WHERE 

( 

#List all system Interconnection 

 ?iclist rdf:type mm:Block_InterConnection; 

        mm:connectsFrom ?source; 

        mm:connectsTo ?dest. 

#check Source Port and Destination Port have same variable names eg:F for force 

?source_port a mm:SourcePort;                      owl:sameAs ?system_port_out.?system_port_out mm:isAssociatedTo 

?system_param_out. ?system_param_out mm:representedBy ?system_var_out. ?system_var_out mm:hasVariableName 

?system_var_name. ?system_var_name mm:hasVariableNameString ?system_var_out_name. 

?dest_port a mm:DestinationPort;                      owl:sameAs ?system_port_in. 

?system_port_in mm:isAssociatedTo ?system_param_in.?system_param_in mm:representedBy ?system_var_in. ?system_var_in 

mm:hasVariableName ?system_var_name1. ?system_var_name1 mm:hasVariableNameString ?system_var_in_name. 

#check variable datatypes 

FILTER(CONTAINS(?system_var_out_name, ?system_var_in_name)) 

?sim_block mm:Simulates ?source;            mm:hasBlockParam ?q. 

 ?q a mm:InputParameter. ?q mm:representedBy ?b. ?b mm:hasVariableName ?d.  ?b mm:hasVariableDataType ?jj. ?ii 

rdfs:subClassOf* mm:VariableDataType. ?jj a ?sim_var_class. ?d mm:hasVariableNameString ?sim_var_in_name. 

FILTER(CONTAINS(?sim_var_in_name, ?system_var_in_name) ) 

?ii rdfs:subClassOf* mm:VariableDataType. 

?jj a ?sim_var_class. 

) 

GROUP BY ?sim_block ?iclist ?source ?dest ?system_var_out_name ?system_var_in_name ?sim_var_in_name 

 

 



150 

 

2.2 DESIGN SPACE EXPLORATION EXAMPLE 

A query corresponding to the design space exploration described in section is given below. 
 

PREFIX mm:<http://www.simulation_library.org/simulation_library_ontology.owl#> 

SELECT DISTINCT ?c_req ?c_avb  ?c_avb_1 ?m_avb_1 

WHERE { 

?m a mm:TestScope. 

?m a mm:OperatingMode. 

?c_req mm:hasMode ?m. 

?c_req mm:hasName ?n1. 

?s mm:composedOf ?c_avb. 

?s mm:isdesignedBy ?sd. 

?c_avb mm:hasName ?n2. 

?c_avb mm:hasMode ?m_avb. 

?c_avb mm:isConnectedFrom ?c_avb_1. 

?c_avb_1 mm:hasMode ?m_avb_1. 

?s mm:composedOf ?c_avb_1. 

?s mm:isdesignedBy ?sd. 

} 

  



151 

 

3. AUTOMATED MODEL SELECTION ALGORITHM IMPLEMENTATION 

The model selection algorithm of [Levy,1997] is implemented in SysML for the automated model 

selection presented in the domain model approach section 5.2.1 of chapter III. SysML is chosen 

since it may become a defacto standard in MBSE framework and in future our ontology based 

approach serves as complimentary to such framework. It could be possible to transform ontology 

models to SysML and vice versa, such as using OWL2UML plugin in Protégé 4.1 or by other 

transformation mechanisms which are being studied [Jenkins,2012] and then initiating the 

algorithm. The SysML implementation consists of block diagrams to define the domain model and 

activity diagrams for the description of the algorithm. The modeling tool used is MagicDraw 

SysML [NoMagic] with its Cameo Simulation Toolkit plugin for the execution of built models, in 

our case execution of activity diagram over the instantiated domain model. It may be noted that an 

activity diagram specifies input to output transformation through controlled sequence of actions 

and the model selection algorithm is formalized in it and executed. An iterative expansion region 

is used for list iterations, ‘readStructuralFeature’ and ‘addStructuralFeature Value’ actions for 

attribute’s getters and setters of classes, call behaviour actions for modularity and reusability of 

functions, merge and decision nodes for choices and conditions. Though the activity diagram is not 

presented, model selection and the domain theory as block diagram is illustrated below 

[Ponnusamy,2015]. 

 
 

 
 

Figure 3.1: Model Selection SysML Block Diagram 
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Figure 3.2: Domain Theory SysML Block Diagram 

 

However, it must be noted that the implementation is not validated especially for its complexity, 

scalability and further works needed in this aspect. Alternatively, other general purpose languages 

could be used to implement such an algorithm. 
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4. PETRINET IMPLEMENTATION 

4.1 AUTOMATED GAME CONSTRUCTION 

The construction of games manually is a cumbersome and often error prone process especially 

when the models are large. The ProDEVS software, introduced in section 6 of chapter IV, allows 

the automated construction of games between the system and simulation models, or generically 

between any two models modeled under the same formalism. This is a process of autofusion where 

the two models are fused with the game model represented by 𝔤. The label containment verification 

step allows to find the intersection between two models labels which will later be used to build 

psuedo models (for untimed games). These two pseudo models are chained with the game model 

resulting in 𝔤(Msys, Msim).  Since the distance is calculated indirectly based on the comparison 

between data value of each transition, the associated data file is also constructed automatically 

using random or user defined values for each transition. From the label containment verification, 

only the common labels between two models are assigned the same value. Then the data embedding 

is done by compiling the *.c file to *.dll file which is then used by TINA to initiate the game and 

generate the quantitative reachability graph. The output will be a *.txt file which is then fed back 

to ProDEVS parser to reconstruct the reachability tree and perform some analytics 

 

 

Figure 4.1: Automated Game Construction Process 

The untimed games implementation for both the classical and interface automata in Petrinet 

formalism in explained necessitates vioding spurious or redundant plays by the player 2 in cases 

of branching in system and/or simulation model. This is taken into account by building an 

intersection set which gets updated dynamically. The intersection is introduced as follows, from 

the definitions of Tsys =< Σsys, Xsys, xsys
0 , δsys > and Tsim =< Σsim, Xsim, xsim

0 , δsim >, let us define 

the intersection set between the set of alphabets as Σint = Σsys ∩ Σsim and the set of transitions from 

a given state xsim
i ∈ Xsim as τ

xsim
i ∈ δsim. Then, denoting a label and state of a transition τ by ξ ∈ Σ 

and x ∈ X respectively leads to,   
 

∀ξsys ∈ τsys ˄ ξsys ∈ Σint , e(ρi) = {
0           if ξj ∈  τxsim

i  ˄ ξj = ξsys ˄ ξj ∈ Σint

∞           if ξj ∈  τxsim
i  ˄ ξj ≠ ξsys ˄ ξj ∈ Σint

 
(1)  
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where j refers to the number of  transitions from a given state 𝑥𝑠𝑖𝑚

𝑖  and i refers to number of such 

states. The intersection is managed in Petrinet by adding extra i.e. psuedo transitions and places for 

the transitions at the intersection. The static transition label intersection set, 𝛴𝑖𝑛𝑡 is given as an input 

along with two models which then gets updated as the game progresses. This helps in avoiding 

redundant plays where the simulation model can match the system model but in addition plays the 

other available transition which in reality is redundant. Such conditions may also be encoded in the 

underlying data files as guard conditions on simulation model transitions. Though these methods 

may reduce the number of redudant trajectories being generated, adding pseudo transitions 

increases the compexity of the game. However, there is no other method known at this stage to 

manage this problem. This is applicable to untimed games only and since for timed games the 

distance is calculated only on transition timings.  

4.2 UNTIMED GAMES IMPLEMENTATION 

The fidelity quantification for untimed simulation models based on automata games is presented 

in this section. Let us recall the notions, system model, 𝑀𝑠𝑦𝑠 and simulation model, 𝑀𝑠𝑖𝑚 and the 

two players be player 1 and player 2. The game is described as follows, 

 

1. Player 1 plays on 𝑀𝑠𝑦𝑠 and player 2 plays on 𝑀𝑠𝑖𝑚  

2. Player 1 first plays its transition, then hands token to player 2  

3. Player 2 plays its transition and then hands back token to player 1. The play is complete now.  

4. Error is calculated at the end of each play and then next play begins.  

 

There is a place for each player with player 1’s place marked initially along with a marked place 

to denote the start of turn. The cheat or nocheat transitions are mutually exclusive taken according 

to the equivalence of labels at the end of a given play. This is amenable to calculate the mean 

distance such as in Eq.(7,8) of section 4.2 in chapter IV. 

 

Table 4.1: Untimed Game Model Description 

Description Player 1  Player 2   Play Start  Play End  Matching 

transition  

Non-

matching 

transition  

Type Place Place Place Place Transition Transition 

Name  player1  player2  turn_start  turn_end  nocheat  cheat  

 

The rules for automatically chaining the game model illustrated in figure 4.2 with user defined 

system and simulation models is given as follows, 

 

1. All transitions of system model, Msys has two input and one output.  

2. All transitions of simulation model, Msim has one input and two output.  
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Every transition of Msys and Msim are connected to this game model as follows, for example every 

transition of Msys is connected from two places namely ‘player1’ and ‘turn_start’ i.e. two inputs 

and connected to a place ‘player2’ i.e. one output. This is described in the following table. 

  

Table 4.2: Untimed Game Auto-chain Rule 

 Msys Msim 

From player1, 

turn_start 

player2 

To player2 player1, 

turn_end 

 

The resulting auto-chained model where the game is played is illustrated for the 𝔤(Msys, Msim
1 ) 

described in the application case in section 2.1-2 of chapter V. 

 

 

Figure 4.2: Untimed Game Model 

 

In the following figure, an implementation of the game of the application case is shown. The system 

and simulation model can be seen chained along with the game model which controls the turn based 

semantics of the game. 
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Figure 4.3: Untimed Game Implementation 

 

4.3 TIMED GAMES IMPLEMENTATION 

The timed games implementation and the quantitative reachability generation is presented in this 

section. Let us recall the notions system model, 𝑀𝑠𝑦𝑠 and simulation model, 𝑀𝑠𝑖𝑚 with players be 

player 1 and player 2. Then the play is sequentially defined in the following steps as defined in 

section 5.2 of chapter IV. 

1. Player 1 first plays its transition on Msys and then hands token to player 2 and keeps playing 

2. Concurrently, Player 2 plays its transition on  Msim iff the label matches and then hands back 

token to player 1.  

3. The play is complete now. Error is calculated at the end of each play and then next play begins. 

Note player 1 could be ahead by many transitions. 

 

The description for the places and transitions of this game implementation in TINA-ND are 

given below, 

Table 4.3: Timed Game Model Description 

Description Player 1 

place 

Player 

2 place 

Play End 

place 

Non-matching 

transition 

Total Play Count 

Type Place place place transition place 

Variable 

name 

player1 player2 

 

turn_end cheat total_play_count 

 

The game model is automatically chained with the user defined 𝑀𝑠𝑦𝑠 and using the following 

rules. 

Simulation Model 

Game Model 

System Model 
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1. All transitions of system model, 𝑀𝑠𝑦𝑠 has one read type input and one output. 

2. All transitions of simulation model, 𝑀𝑠𝑖𝑚 has one regular type input and two output. 

Table 4.4: Untimed Game Auto-chain Rule 

Transitions 𝑀𝑠𝑦𝑠 𝑀𝑠𝑖𝑚 

Inputs player1 player2 

Outputs player2 player1, turn_end 

 

3. The transition cheat has one input from place turn_end and one output to place 

total_play_count with time [0,0]. 

 

It may be noted that unlike untimed games there is no need for turn_start as player 1 plays 

continuously. Informally, a game is lost when the player 2 has no moves or cannot match labels. 

And the game is won when the player 2 has a matching move exactly i.e. no time difference or 

approximately i.e. with time difference where the error starts increasing. In the game, player 2 first 

checks whether player 1 move’s label is available, if exists, it always takes it and this checking is 

based on the intersection verification described in previous section. The game model and the auto-

chained model for the case 𝔤(Msys, Msim
2 ) of section 2.3 of chapter V are illustrated in figures 4.4 

and 4.5 respectively. 

 

 

Figure 4.4: Timed Games Model 
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Figure 4.5: Timed Games Implementation 

 

4.4 UNTIMED INTERFACE GAMES IMPLEMENTATION 

The untimed interface game distinguish between input and output transitions and hence the game 

is alternating play as discussed in section 5.3 of chapter IV. This game is defined sequentially as 

follows,  

1. Player 1 can play on input of Msys or output of Msim and hands over the turn to player 2. 

2. Player 2 can play on input of Msim or output of Msys 

3. Error is calculated at the end of each play and then next play begins. 

 

In addition to places in the table 4.1 for untimed automata games, two more places in and out 

connected to input and output transitions of models respectively in the interface games. The game 

model can be seen in the following figure, 

 

System Model 
Game Model 

Simulation Model 
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Figure 4.6: Untimed Interface Game Model 

The rules for the auto-chain with the user defined suystem and simulation model are given below 

1. All transitions of 𝑀𝑠𝑦𝑠 and 𝑀𝑠𝑖𝑚 has two input and two output. 

Table 4.5: Untimed Interface Game Auto-chain Rule 

 𝑀𝑠𝑦𝑠 𝑀𝑠𝑖𝑚 

Input Output Input Output 

From player1 

turn_start 

player2 

out 

player2 

in 

player1 

turn_start 

To player2 

in 

player1 

turn_end 

player1 

turn_end 

player2 

out 

 

2. At start, only player1 and turn_start has token. 

3. The transition nocheat and cheat has one input from place turn_end and one output to place 

turn_start 

4. In addition, the transition nocheat and cheat has one input and output to a single place called 

p_sink 

 

The fidelity distance i.e. error calculation is similar to untimed games. An illustration of the NAI 

application case for the game 𝔤(Msys, Msim
1 ) discussed in section 2.4 of chapter V is given below. 
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Figure 4.7: NAIS Interface Fidelity Game Implementation 

  

Simulation Model 

Game Model 

System Model 
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5. REACHABILITY TREE RECONSTRUCTION 

The parser used to reconstruct the output reachability graph from TINA is briefly presented in this 

section. The (pseudo) reachability tree reconstruction is given followed by a part of parser 

analytics. The parser reconstructs the reachability tree until termination i.e. available data generated 

from TINA or until user defined depth. Informally, the exploration starts from initial state defined 

by ‘trans_init’ and the successor transition label identified as ‘label’ and located at ‘label_node’ in 

the data is iteratvely read and stored in reachability tree variable ‘R’ along with the corresponding 

error ‘error’. In the course of exploration, locations where branches occur are stored and once the 

exploration reaches the end, from the branch location data ‘branch_list’ the algorithm switches the 

initial location to the last location where the branch occurred and from it the next branch is taken 

and explored further. This process is repeated until all the branches are explored. The pseudo-

algorithm implemented as linked list is given below. It must be noted that the performance of the 

algorithm is not evaluated and benchmarked yet.  

 

 

// Initial values 
Init: trace=0, trans=1,trans_init=1,j=1;k=2;id=1;branch_list_end(1)=0;dum=2;branch_list=(); 

//Iterative exploration 

While trace>0 

  for trans=trans_init:depth 

     if (isempty(label)==true) 

        terminate 

     end     

     list.node(trans+1).value=label; 

     label_node = label_node_list(id); 

     if (isempty(label_node)==true) 

         output('insufficient classes : try generating more classes ') 

         terminate;           

      end   

      list.node(trans+1).next=label_node+1;  

      label_node_len=length(label_node); 

     if(label_node_len>1)&&(trans_init!=trans) 

         branch_list(j)=[trans length(label_node):-1:2]; 

          j=j+1; 

      end 

      R(trans+1,trace,1)=d1(id); 

       R(trans+1,trace,2)=error(1); 
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  end 

            

  end 

 

    if(isempty(branch_list)==true) 

        output('R graph generation over ') 

        break 

    end 

     

   branch_list_end=branch_list(end); 

    if(length(branch_list_end)>1)        

      id=branch_list_end(end); 

      trans_init=branch_list_end(1); 

      trace=trace+1; 

      R(1:trans_init,trace,1)=R(1:trans_init,trace-1,1); 

      R(1:trans_init,trace,2)=R(1:trans_init,trace-1,2); 

      branch_list(end)=branch_list_end(1:end-1); 

      if(length(branch_list(end))==1) 

        branch_list(end)=[]; 

        j=j-1; 

      end 

  

   end 

 end 

 trace=trace+1; 

end 

 

// Analytics  

Output('Total no of trajectories generated  :   ', Column_size(R)); 

Output('Length of trajectories generated  :  ', Row_size(R));  

Output('Number of plays :  ',Row_size(R)/3)); // only for untimed games  

epsilon=100-R(3:3:end,:,2)); // extract error data from R tree 

plot(epsilon);  

plot(minimum_epsilon_values); 
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plot(maximum_epsilon_values); 

C_mean = epsilon(end); 

//fidelity distribution 

max_fid=max(Cmeans); 

min_fid=min(Cmeans); 

histogram(Cmeans); 
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6. BEHAVIOURAL FIDELITY FOR CONTINOUS SYSTEMS  

6.1 APPROXIMATE BISIMULATION RELATIONS  

Bisimulation, originally introduced in computer science has been brought to control [Van,2004] 

and it is a notion that unifies state space equivalence and reduction. Approximate Bisimulation 

relations developed by Pappas, Girard et al in [Girard,2007] within the framework of metric 

transition systems extends this notion of bisimulation to continuous systems similar to definitions 

of Eq(7,8).  

A metric transition system is a transition system whose outputs are equipped with a metric such 

as the Euclidean distance. Consider two transition systems  ∏1,2 which essentially refer to a system 

specification and its abstraction defined in Eq.(6) as, 

 

∏
n
=< Sn, Xn, Ʈ

n
, Sn

0
, Yn, On  > , n=1,2   (1)  

  

where 

Sn  are the set of states  

Xn are the set of inputs 

Ʈn are the transition maps, Ʈn : Sn × Xn → 2
Sn 

Sn
0 are the set of initial states Sn

0 ⊆ Sn  

On are the output maps On : Sn→Yn equipped with a metric d. 
 

The Approximate Bisimulaion (AB) relations are intended to capture the most significant 

characteristics of a system dynamics and neglect the less important ones [Girard,2007] similar to 

quantitative simulation relations. The degree of approximation is given by the precision of the AB 

function (ε) and this precision provides a bound of the distance between the output trajectories of 

a system and its abstraction. The set of output trajectories, {(Y,X) ∣ Y=O(S)}, denoted by ℒ(T) is 

called the language of the transition system, ∏. The behavioural equivalence between two systems 

described by homomorphism relation is given here in terms of the observational equivalence i.e. 

language inclusion and equivalence. 

From [Girard,2007], two metric transition systems ∏1 and ∏2 are said to be bisimilar with a 

precision ε, if there exists bisimulation relation, fε and for all (s1, s2) ∈ fε 
 

d(O1(s1), O2(s2)) ≤  ε 

{ ∀ x ∈ X, ∀ s1
'  ∈ S1(s1,x) , ∃ s2

' ∈S2(s2,x) ∣ (s1
' ,s2

' ) ∈ 𝑓ε } 
{ ∀ x ∈ X, ∀ s2

'  ∈ S2(s2,x) ,∃ s1
' ∈S1(s1,x) ∣ (s1

' ,s2
' ) ∈ 𝑓ε } 

 

(2)  

Such bisimulation relations could be expressed as bisimulation function,  ƒ
𝐵

. The function  ƒB: S1 × 

S2→ℝ
+ is a bisimulation function between ∏1 and ∏2, if for all (s1, s2) ∈ S1 × S2 
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 ƒ
B
(s1, s2)   ≥  max 

{
  
 

  
 

d(O1(s1), O2(s2)), 
sup

x∈X

s1
' ∈S1(s1,x)

inf

s2
' ∈S2(s2,x)

 ƒ
B

(s1
' ,s2

' ) ,

sup

x∈X

s2
' ∈S2(s2,x)

inf

s1
' ∈S1(s1,x)

 ƒ
B

(s1
' ,s2

' )  

}
  
 

  
 

 

 

(3)  

where the bisimulation function ƒ
𝐵
 bounds the distance between the observations for a couple 

(s1, s2) by precision ε ≥0 such that  ƒ
B
(s1, s2) ≤  ε and non-increasing under operational dynamic 

conditions [Girard,2007].   

Thus the AB notions for continuous systems are similar to quantitative (alternating) simulation 

relations with only difference being how the state space is enumerated i.e. explicitly in discrete 

case and through geometric over approximation in the case of continuous systems. While the focus 

for discrete systems is developing a mechanism to formally and explicitly quantify the fidelity, 

both globally and locally, the focus for continuous systems is formalization of such (bi)simulation 

relations in the V&V context globally and specifically for a class of linear continuous systems. In 

the following sections, some consistency conditions for continuous systems abstraction is briefly 

presented. 

6.2 CONSISTENT BEHAVIOURAL ABSTRACTIONS 

The fidelity distance, also known as abstraction precision in section 4.1 of chapter II between a 

concrete system and its abstraction is related to fidelity. This implies that abstraction is finding a 

surjection map and valid abstraction is finding the surjection map consistent with the SOU. To 

recall, Surjection, also called abstraction in general, is an onto mapping where the codomain of a 

function is also its range. A function f:A→B  is a surjection means that every b ∈ B  is in the range 

of f. Surjective functions here are used in mapping entities from high dimensional space to a low 

dimensional subspace. Based on the propositions given in section 2, the following proposition can 

be stated [Ponnusamy,2016]. 

Proposition 6.1: For a given fidelity requirement, defined over some metric, 𝛿𝐹, the set of valid 

abstractions are given by  

 

αSDU↦εSDU ∣ εSDU ≤ εSOU 
 

(4)  

and the representative abstractions are given by 

 

αSDU↦εSDU ∣ εSDU ∼ εSOU 
 

(5)  

From the definition of abstraction as surjection, it follows that valid and/or representative 

abstractions are member of the lattice,  ℒ𝛼𝑖 . 

It is well known from the behavioural systems theory that, the concept of states, similar to the 

one described in Eq.(1), is used to capture the necessary information about the evolution of a 

system. In other words, the problem stated above is how to partition state space of a dynamic system 



166 

 

such that its abstracted semantics allows to conclude about its concrete semantics. Here the 

concrete semantics is assumed to represent real system. In [Julius,2004], Julius et al presented 

systems behaviour through state maps and states that relationship between bisimulation and lattice 

structure of the state maps. The abstractions or state map reductions are discussed through 

equivalence classes as position in the lattice. This study can be seen as continuation of this 

proposition and extends this bisimilarity preserving abstraction operation to the experimental frame 

formalism. 

An important challenge of the system abstraction is the computation of bisimulation 

functions ƒ
B
(s1, s2) between the system and its abstraction. This problem was addressed for 

constrained linear time invariant systems through the introduction of quadratic and truncated 

quadratic bisimulation functions [Girard,2007]. It was remarked that the choice of surjection map 

to form an abstraction prior to constructing the approximate bisimulation function is heuristics 

based, provided, it respects the observation preserving and controlled invariant properties 

[Girard,2007]. However, different such surjections are possible for the same level of abstraction 

leading to different precisions and if a certain precision is being desired by the user of the model, 

then it becomes important to relate this expected precision with this choice of surjection. 

Thus, instead of choosing an admissible surjective map such that the precision of abstraction 

formalized as a semi definite optimization problem is minimal, the surjection map must be chosen 

such that the precision of abstraction is arbitrarily closer to the required precision. The existence 

of such an admissible surjection map gives the Necessary & Sufficient (N&S) abstraction 

consistent with the simulation objectives defined through precision, εSOU. From Eq.(4), the valid 

or necessary abstractions (N) i.e. the set of all admissiable surjections necessary for validity 

assessment is rewritten in terms of bisimulation function yielding precision εSDU as follows 

 

αN: = αSDU ↦{ εSOU  - ƒB
(s1,s2) } ≥ 0 

 

(6)  

In conjunction with Eq.(5) & (6), the sufficiency condition gives the abstraction with minimal 

granularity i.e. level of detail with respect to the objectives. Thus the Necessary & Sufficient (N&S) 

is given by 

 

αN&S = min(αN) (7)  

6.2.1 Model Composition 

It is known from EF definitions in chapter II that the models are usually composed hierarchically 

with interconnections between them and it is necessary to quantify the propagation of the effect of 

abstraction in composition. Similar to (alternating) simulation relation definitions in chapter IV, 

due to the transitive nature of bisimulation functions, composition of bisimulation functions is 

possible, which in turn is amenable to standard engineering approach of hierarchical composition 

in system development.  

Consider two systems which are approximately bisimilar and it follows that their respective 

abstractions are also bisimilar [Pappas,2003]. This entails that composition of resulting abstracted 

systems also will be bisimilar [Girard,2007] and thus providing bounds on the EF composed of 
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different such systems. This morphism relation, similar to the one shown in [Julius,2004], can be 

seen from the following figure, 

 

 

Figure 6.1: Composition of Bisimulations 

It can be seen that the morphism relations are established between two models (𝑓𝐵𝑖,𝑗
𝑛 ) and also 

among the hierarchies of models (𝑓𝐵𝑖
𝑛), where i, j are models and n refers to abstraction operation. 

These compositional concepts will be further discussed in the context of applicability and 

derivability of the experimental frames in section 3.2.2-3, of chapter II.  

6.3 CONSISTENT ABSTRACTIONS OF LTI SYSTEMS 

In this section, a class of dynamic systems, namely, Linear Time Invariant systems with (LTI) 

constraints on input and states is taken and abstractions consistent with simulation objectives are 

explained. Consider linear system with constraints on input, 𝑥1,2 ∈ [𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥] and state, 𝑠1,2 ∈
[𝑠𝑚𝑖𝑛 𝑠𝑚𝑎𝑥] described by state transition matrix A1,2 input matrix, B1,2 and output matrix C1,2 as   

 

ṡ1=A1s
1
+B1x1 

y=C1s
1
 

(8)  

 

and its abstraction 

 

ṡ2=A2s
2
+B2x2 

 

(9)  

where the abstraction is given by the linear surjective map, 𝐻, as 𝑠1 = 𝐻𝑠2 
In such an abstraction operation, the map must be chosen such that it ensures propagation of 

desired properties such as stability, controllability and observability between the concrete system 

and its abstraction. Pappas et al in [Pappas,2000] & Van der Schaft in [Van,2004] proposed the 

extension of computer science notions of bisimilarity to dynamical systems and characterized it 

with controlled invariant concepts originally developed in the context of differential geometric 

control theory. Recalling the conditions for observation preserving partition [Pappas,2003],  

 

Ker(H) ⊑ Ker(C1) (10)  

The bisimulation conditions for linear continuous systems are given in the following equation  

 

A1Ker(H) ⊑ Ker(H) + Ʀ(A1,B1) (11)  
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where Ʀ(A1,B1) gives reachability.  

It is remarked that in order for the partition to have the bisimulation property and thereby 

preserving transition, its null space must be a controlled invariant subspace. Controlled invariant 

space, introduced in the seminal papers of [Basile,1992], is a stability like notion where in the 

evolution of constrained dynamical system, constraint satisfaction can be guaranteed for all time 

iff the initial state is contained inside a control invariant set. However, as explained in section, this 

bisimilarity preserving surjections needs to be augmented with inclusion of objectives in the 

framework of designed fidelity.  

6.3.1 Finding Consistent Surjective Maps  

As explained in section 4 of chapter II, Fidelity or more specifically relative Fidelity refers to 

finding the necessary and sufficient abstraction with respect to requirements. Implicitly, such an 

abstraction must ensure semantics compatible with behavioural requirements (εSOU). This section 

explores the possibility of finding bisimilarity preserving surjections with fidelity using 

geometrical systems theory concepts. 

It has been shown that computing the coarsest bisimulation resulting in maximum complexity 

reduction corresponds to computing the maximal controlled or reachability invariant subspace 

inside the kernel of the observations map [Pappas,2000]. A coarsest partition of state space gives 

maximal controlled invariant set, Hmax and there exists a fix point algorithm to do it. The key 

question is the computation of a partition yielding desired precision instead of maximum 

complexity reduction by coarsest bisimulation. Since maximum controlled invariant set by its 

definition is the smallest possible set having all the invariant set, the computation of such map will 

result in an inclusion relation [Ponnusamy,2016] 

 

Ker(HSOU) ⊑ Ker(Hmax) 
 

(12)  

where HSOU is the reference user surjection which is mostly unknown and if known, fidelity 

becomes simply a problem of verification i.e. implementation.  

The valid surjection maps are given by Eq.(4). However, quite often, fidelity needs to be optimal 

and the corresponding abstraction is called is Necessary & Sufficient abstraction. The necessary 

conditions are given by Eq.(6) and the sufficiency conditions described in Eq.(7) then becomes, 

 

Ker(HSOU) ∼ Ker(HSDU) 
 

(13)  

Besides, a straight forward computation of HSOU may not be feasible since it is very difficult to 

obtain an abstraction without any knowledge of system functionality which in turn is different in 

different modes of operation. Instead, the approach should be finding criteria of maps which are 

valid with respect to requirements in addition to Eq.(12). However, there exists no fix point method 

to determine minimal controlled invariant set [Pappas,2003] and similar argument can be applied 

to an invariant set existing in between the two extremum invariant sets.  
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The surjective criteria in Eq.(12) & also limits the definition of SOU i.e. it gives a feasibility 

criteria. Considering the set of valid abstractions given by 𝐻𝑖=1..𝑛 does not include εSOU, it follows 

that, 

 

HSOU ⊈ {Hi=1..n} 
 

(14)  

In other words, the abstraction is not feasible and the desired precision cannot be achieved. It 

may be noted that, within an abstraction hierarchy, 𝑖, different abstractions, j=1..l corresponding to 

different invariant sets respecting bisimilarity conditions too can form a lattice similar to one 

described in section. But finding the coarsest bisimulation for each order Hi,j+1 < Hi,j might yield 

an idea about feasible precision such that if εmax ~ εf, the partition is sufficient and if εmax > εf, 
refinement is needed. The problem of finding surjections whose null space is controlled invariant 

subspace with respect to fidelity requirements needs to be explained in the M&S standard of 

experimental frame formalism.  

The question then becomes, similar to maximal controlled invariant set, how far a modeler can 

abstract the components such that the resulting EF is still applicable to SUT (whose validity is 

being assessed by simulation). In terms of surjection, what are the allowable surjections such that 

the resulting EF is still applicable to a SUT [Ponnusamy,2016]. In other words, what is the coarsest 

bisimulation possible between a model and its abstraction such that the abstracted EF is applicable 

to SUT. Implicit in this statement is the allowable bounds on the abstracted behaviour i.e. 

abstraction precision. Applicability of an EF can thus be related by quantifying the abstraction. 

Thus the problem explained in the previous section can be rephrased as a problem of finding 

controlled invariance of EF Model being abstracted (i.e. nullspace of surjection map) such that the 

resulting EF holds applicability property of the concrete EF. A method based these preliminary 

relations between fidelity, abstractions in EF formalism needs to be developed to address these 

issues to build models with assured behaviour on bounds and thereby ensuring fidelity. 
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THE END 

 



 


