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Abstract 

In this work, we report the experimental development and the application of a new 

characterisation tool combining mechanical testing and dielectric characterisation. The 

experimental set-up is essentially a nanoindentation head functionalised for capacitive 

measurements. First the experimental procedure for the characterisation of dielectric thin films is 

given: detailed set-up description, procedure for the capacitance-vs-voltage (C-V) measurements, 

stray capacitance,... Secondly, a complete data-processing method is proposed to perform the 

quantitative analysis of capacitance data. To this end, a fully analytical model has been 

developed, able to relate the C-V curves to the system characteristics (set-up geometry and 

specimen properties) without any fitting parameter. Finally dielectric films with different 

thicknesses and relative permittivities have been tested to validate both the characterisation tool 

and the data-processing method. The analytical model has been used to predict the permittivity of 

each dielectric thin film. The extracted data have been compared to data obtained from a 

calibrated macro-scale technique and showed remarkable agreement. One of the strengths of the 

data-processing method is to eliminate the stray capacitance which usually disturbs local 

capacitance measurements. Even though the effect of mechanical load is not investigated in the 

present study, the experimental proof-of-principle is shown and the data-processing method is 

validated. This work opens prospects for local and quantitative dielectric characterisations under 



mechanical loads. It should also fill a gap between quantitative characterisations at macro-scales 

and spatially highly-resolved characterisations at nano-scale. 

 

Key words: Functional nanoindentation; Local capacitance measurement; Stray 

capacitance; Quantitative data-processing 

 

Highlights:  

 A new set-up combining mechanical and dielectric local characterisations is described 

 

 The set-up is a nanoindentation head functionalised for capacitive measurements 

 

 A complete data-processing method is proposed to perform quantitative analysis 

 

 The procedure eliminates the effect of stray capacitance before quantitative analysis 

 

 The method is successfully applied to the characterisation of model dielectric films 

  



1. Introduction 

The development of small-scale characterisation techniques of dielectric structures has become 

increasingly critical for various application fields: micro- and nano-electronics [1, 2], electronics 

[3], electrochemistry [4, 5], photovoltaics [6], biological science [7],… Traditionally this can be 

achieved through the coupling of Atomic Force Microscopes (AFM) [8] to capacitance sensors 

(or more generally to impedance-meters [9, 10]). After the pioneering work of Matey and Blanc 

[11], the early Scanning Capacitance Microscopes (SCM) that combined AFM to capacitive 

measurements were dedicated to surface topography mapping [12, 13]. These set-ups have then 

been extended to the profiling of dopant distribution in semiconductors [1, 14-16], which remains 

the major application for SCM. In these systems, the capacitance sensor is an inductance-

capacitance-resistance (LCR) resonator operating at ultra-high frequency (usually 915 MHz) 

coupled to a peak detection circuit. The tip-to-sample capacitance                being part of 

the LCR circuit, any change in its value is sensed from a change in resonance, further related to 

dopant concentration. Even though SCM is currently applied to the characterisation of Metal-

Insulator-Semiconductor (MIS) structures, this technique does not apply to dielectric film 

characterisation as there is no voltage-dependent depletion in such materials. A pioneering 

attempt [17] to perform permittivity and alternating conductivity measurements on dielectric 

materials was spatially-limited by the large scale probe (circa 100 µm). Nanoscale Impedance 

Microscopy (NIM) has then been developed to characterize frequency-dependent charge 

transport and polarization mechanisms in dielectric films [3, 4, 10, 18-20]. Contrary to SCM, the 

NIM technique provides the measurement of both resistance and capacitance of the tip-to-sample 

interface: both the amplitude and phase of the current induced by an alternating bias are 

measured. 

However one of the main limitations for the quantitative analysis of either SCM or NIM data is 

the stray capacitance due to the electrostatic interaction between the sample and various parts of 

the AFM (tip cone, cantilever and probe holder [21, 22]). Thus the signal of interest (capacitance 

between the tip apex and the sample) needs to be distinguished from the stray capacitance that 

can be several orders of magnitude larger (typically 100-500 fF against 1 fF). It has been shown 

that this stray capacitance is strongly influenced by AFM scanning conditions [23]. Several 

attempts have been made to remove this stray capacitance from raw data. For instance Lee et al 

[23] report the use of a bucking circuit to subtract an adjustable capacitance to the measured 



admittance. Even though this approach allows high sensitivity measurements, the exact value of 

the stray capacitance is unknown. Schneegans et al have worked on minimizing the stray 

capacitance by shielding and biasing the tip holder [22]. The same team proposed a dual-scan 

procedure to remove environmental effects [24]. Extensive calibration processes based on 

analytical or numerical modelling have also been developed to obtain quantitative capacitive 

measurements [20-22]. 

In parallel to the development of these AFM-based tools, the development of nanoindentation 

testing has been driven by the need for mechanical characterizations of small-scale systems [25-

27]. Capacitive transducers are widely used in nanoindentation systems [28-30] but they are only 

used as gauges to monitor the indenter column displacement. This approach has been further 

extended to capacitance measurements at the sample level but the measurement of tip-to-sample 

capacitance has essentially been used to monitor sample deformation [31, 32]. However the 

coupling of capacitive measurements to nanoindentation tests has been rarely used for the 

characterisation of dielectric properties of materials. To our knowledge, the only study reporting 

capacitance measurements on dielectrics through an indenter tip can be found in [33]: this study 

focuses on the dielectric relaxation processes induced by mechanical loading of piezoelectric thin 

films and the relationship with charge defect generations during loading. However, no 

quantitative analysis of the absolute capacitance and/or of the stray capacitance is reported. 

The present paper first reports the development of a tool able to combine mechanical testing and 

dielectric characterisation. This set-up is essentially a nanoindentation head that has been 

functionalised for capacitive measurements. Secondly, a data-processing method is proposed to 

eliminate the effect of the stray capacitance before the quantitative analysis of the capacitive 

signal. Even though the effect of mechanical load is not investigated in the present study, the 

experimental proof-of-principle is shown and the data-processing method is validated on model 

dielectric thin films. On these films, dielectric permittivity is quantitatively extracted and 

compared to reference a macro-scale characterisation method. 

  



2. Experimental details 

2.1 Instrumentation 

The present set-up combines different commercial instruments, with customized adapter systems. 

Fig. 1 shows a Computer-Aided Design (CAD) drawing of the set-up.  

 

 

Figure 1: CAD drawing of the set-up. 

 

The nanoindentation head is a commercial actuator (InForce 50 actuator from Nanomechanics 

Inc), displaying a maximum load of 50mN and a static load resolution at the µN. The tip was a 

5µm-large boron-doped diamond (BDD) flat-punch tip (truncated cone geometry with 30° 

opening angle). From an electrical point of view, this tip displays a metal-like behavior. In the 

present study, the tip was not used to penetrate plastically within the specimen but only to 

position the electrical probe on top of the dielectric surface, thus building up a MIS structure. The 

effect of the application of a mechanical load will be shown elsewhere. The tip is screwed on a 

3 mm-long ceramic extension, which is screwed on a 1.5 cm-long tungsten extender. The ceramic 

part is necessary to insulate the conductive tip from the grounded extender. Electrical contacts are 

made with thin copper wires connected to fixed sockets. 

Actuator and sample displacements are performed with linear positioners from SmarAct GmbH. 

Typical travel ranges are at the cm scale with a ~1 nm resolution. The set-up presented in this 



paper has three translation axes: one axis translates the actuator along the indentation axis 

(referred as Z-axis), and two axes were dedicated to sample positioning (referred as X and Y 

axes). The overall stiffness of the instrument frame has been checked by indenting fused-silica 

specimen. Stiffness larger than 10
6
 N/m has been extracted, thus validating the mechanical 

behavior of the overall set-up (including the different parts and workpieces along the indenting 

axis). 

Impedance measurements were performed with an E4980A LCR-meter from Agilent with 

sensitivity better than 1 nS for admittance measures at 2MHz. A ‘parallel model’ was used for 

data post-processing (capacitance in parallel with a conductance). For all tests, the parallel 

leakage conductance was shown to be negligible compared to the capacitance of interest (i.e. the 

admittance phase angle was between 88 and 90°). A white LED was used to expose the MIS 

stack to light in order to force the semiconductor inversion regime. LED exposure avoids any 

heating issues which would be detrimental to nanoindentation testing. 

 

2.2 Samples 

As already stated, the present study aims at validating both the experimental set-up and the 

quantitative data-processing method. Thus only model materials (with well-controlled 

characteristics) are presented here: thin silica films deposited on silicon substrates. At this stage 

of the set-up validation, specimens with mm-scale homogeneity are required in order to compare 

the local measures (performed with this set-up) with the measures performed on a calibrated 

technique (Hg-probe system [34]) that operates at the mm-scale. Substrates were n-doped silicon, 

with donor content of ~6.5.10
14

 cm
-3

 (extracted by 4–point probe resistive measurements). 

Substrates have been cleaned with Piranha solution (H2SO4 + H202) before silica growth. Silica 

films have been deposited in two steps: 

 A first dry thermal oxidation has been performed on all specimens to grow a first 49 nm 

silica layer (by silicon consumption). This oxidation process has been performed for 

20min at 1050°C under O2 flow. This first oxide layer ensures an optimal Si/SiO2 

interface with low defect density. 

 An extra silica layer has been further deposited by Plasma Enhanced Chemical Vapor 

Deposition (PECVD) over this thermal oxide. This film has been deposited at 280°C 

under SiH2, N2O and Ar flows. Different thicknesses have been deposited (Table 1). 



Total silica thickness has been measured by ellipsometry, while dielectric relative permittivity 

has been measured on a calibrated Hg-probe system. 

Sample 

Thermal silica 

thickness 

(nm) 

PECVD silica 

thickness 

(nm) 

Total silica 

thickness 

(nm) 

Permittivity 

(Hg-probe) 

A 49 0 49 3.5 (+/-0.1) 

B 49 108 157 4.7 (+/-0.2) 

C 49 135 184 4.4 (+/-0.2) 

D 49 432 481 5.4 (+/-0.2) 

E 49 925 974 5.2 (+/-0.2) 

 

Table 1: Specimen description. 

 

3. Electrical behaviour of Metal-Insulator-Semiconductor structures 

In our approach, the quantitative analysis of capacitance measurements relies on the analysis of 

MIS capacitive behaviour. Thus a short description of MIS diagrams and the related capacitances 

under applied voltage is given here (a more complete description can be found in [35]). 

Let us consider a MIS structure (area  ) subjected to a quasi-static electrical bias     (the 

reference potential is taken on the metal terminal (Fig. 2)). Sweeping     from negative to 

positive voltage forces the structure to switch from accumulation to inversion regimes, which are 

the two extreme possible configurations for a MIS structure. 

 In the accumulation regime (Fig. 3(a)), electrons from the n-type substrate are 

accumulated at the insulator/semiconductor interface. As a result the MIS capacitance 

    
    equals the insulator capacitance      and can be described by Eq. (1), with      and 

     the insulator relative permittivity and thickness, respectively. 

    
         

       

    
          (1) 

 In inversion regime (Fig. 3(b)), the band bending within the semiconductor is strong 

enough to stabilize minority carriers (holes) at the insulator/semiconductor interface. 

Locally, the semiconductor has the properties of a p-type semiconductor. This inversion 

layer is thermodynamically stable, but might require external stimulus to be generated 

(light exposure in the present case). At high frequency (present case), once this inversion 

layer is set, the extension of the depletion region is fixed to its maximal value     . 

     can be expressed by Eq. (2), with     the semiconductor relative permittivity,    



the thermal energy (in J),    the donor density and    the intrinsic carrier concentration. 

In this inversion regime, the MIS capacitance     
    is due to two capacitances in series 

(     and     ), which are both constant (Eq. (3)). 
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In both regimes, the capacitance      which is experimentally measured is the sum of the MIS 

capacitance (either     
    or     

   ) with the stray capacitance        which is unknown (Eq. (4)). 

         
                           (4) 

Finally the Capacitance-versus-Voltage curve (C-V) presents an S-shape as shown in Fig. 3. Both 

extreme levels correspond to the accumulation and inversion regimes. If the stray capacitance is 

independent of the applied voltage, the curve span    (see figure) is only driven by the material 

properties (insulator thickness, permittivities of insulator and semiconductor, doping level,…). In 

that case,    is given by Eq. (5). 

       
        

             (5) 

Only this    span will be further used in the upcoming quantitative analysis. One can notice that 

the stray capacitance is automatically withdrawn by working on this differential magnitude. This 

analytical method eliminates the stray capacitance without any fitting parameter or extensive set-

up calibration (to be compared to the works reported for instance in [20-22]), and should be 

suitable for the analysis of capacitance-measures acquired on any system subjected to a stray 

capacitance that is voltage-independent. 

Within the frame of this simple analytical model (where the ‘parallel plate capacitor’ model can 

be used) the           
         span of C-V curve is simply obtained by subtracting Eq. (1) and Eq. (3), 

thus leading to Eq. (6). 

          
              

         

         
 

    

           
          (6) 

 
  



 
Figure 2: Schematic of the MIS stack, with parallel 
plates. 

 

 
Figure 3: Typical C-V curve with the corresponding band diagrams in accumulation (a) and 
inversion (b) regimes. 

 
 
 
  



4. Experimental 

4.1 Set-up geometry : electrode area and angular misalignment 

The quantitative analysis of capacitance requires the precise knowledge of different magnitudes 

defining the set-up geometry: the electrode area   and the angular misalignment   (Fig. 4). 

As already stated, the probe used in this study was a flat-punch tip, i.e. a truncated cone (Fig. 2). 

As a first approximation, only the flat top part of the tip is considered. The corresponding area 

has been extracted from an AFM mapping of the tip. The electrode radius   has been measured 

to lie between 2.3 and 2.4 µm (i.e. smaller than the expected nominal 2.5 µm). For further details, 

refer to Supplementary material, Supp.Mat.1. 

Because of unavoidable misalignments of the workpieces constituting the set-up, an intrinsic 

angular misalignment   builds-up between the flat-punch and specimen surfaces (Fig. 4). This 

angle has been measured experimentally by two independent methods (see Supplementary 

material, Supp.Mat.2). It lies within 0.0096 and 0.012 rad. This value circa 0.01 rad is rather 

standard for nanoindentation systems [36]. 

  

 

Figure 4: Schematic of the MIS stack with angular misalignment. 

 

4.2 Mechanical contact with the specimen for capacitive measurements 

The first step of the capacitive measurement procedure is to set the flat-punch tip into contact 

with the specimen surface. Once the specimen surface is reached by automated approach, the 

nanoindenter head is set into a force-controlled mode to maintain contact with the surface. The 

typical pressure applied to the sample during capacitive measurements was 100kPa, thus keeping 

material deformation into its elastic domain (no tip penetration within the specimen, no film 



degradation by plastic indentation). The effect of mechanical load on material properties is not 

investigated in the present paper. 

 

4.3 Capacitive measurements 

For all capacitive measurements reported in the present article, the oscillating voltage level     

and the test frequency   have been set to 2.5 V and 2MHz, respectively. Before each C-V 

monitoring, the MIS structure was initially set into inversion regime by applying a large positive 

   
    bias and by exposing it to light for 5 s. Then measurements were performed for     bias 

going back and forth from    
    (inversion regime) to    

    (accumulation regime), with a 1 V 

step. Between each successive capacitance measure the inversion layer was regenerated by 

polarising the sample at    
   . A schematic of this "pulsed" procedure is given in Fig. 5. The 

pulse duration was set to 1 s. Each capacitance measure lasted for ~ 5s.    
    and    

    voltages 

were optimized for each specimen. 

  

 

Figure 5: Voltage chronogram for a full C-V measurement. 

 

4.4 Stray capacitance 

One of the motivations for the development of capacitive-nanoindentation was to control the 

stray capacitance. In typical NIM or SCM experiments, the contributions to the stray capacitance 

are local and they strongly depend on the probe position on the specimen [21-23]. These 



contributions (i) depend on the mechanical load [22,23] and (ii) come mostly from the tip-to-

sample vicinity, involving the asymmetric influence of the AFM cantilever geometry. With a 

nanoindenter, the probe geometry is fixed and is highly symmetrical close to the specimen 

(Fig. 6). The asymmetrical parts of the probe contribute to the stray capacitance at a macroscopic 

scale which smooths the sensitivity to surface topography or chemistry. Consequently, the stray 

capacitance is expected to be voltage-independent (i.e. identical in accumulation and inversion 

regimes) and constant over large areas, which enables its subtraction without any data loss. 

 

 

Figure 6: Schematic of the set-up in close vicinity of tip-to-sample 

contact. The corresponding capacitive couplings are also shown. 

Top right: Scanning Electron Microscope view of the tip. 

 
 
  



5. Experiments 

5.1 C-V curves 

Typical C-V curves obtained on the 5 silica specimens are shown in Fig. 7. On these graphs, a 

capacitance offset         has been subtracted for graphical reading convenience. This offset lies 

around 220-240 fF (Table 2). The dispersion on this offset has been calculated from measures 

performed on several spots recorded 50 µm apart from each other. This dispersion lies below 

0.1 fF for most specimens, leading to a relative dispersion                  lower than 0.05%. 

This low dispersion confirms the low sensitivity of the system to the local tip environment. The 

larger dispersion observed on sample (E) must be due to macroscopic set-up modifications 

between experiments (probably involving motions of the copper wires (Fig. 6)). The spans of C-

V curves (     ) have also been extracted (Table 2). Typical dispersion on       is 0.03 fF, 

which is the sensitivity limit of the LCR-meter (peak-to-peak noise on C-V curves). 

Fig 7 also paves the way to defining a figure-of-merit for dielectric films to be characterized with 

this system. The threshold condition is essentially driven by the ability of the LCR-meter to sense 

the capacitance change    from accumulation to inversion regimes. It is interesting to note that 

sample E is close to this threshold condition, as the S-shape curve is hardly discriminated on this 

sample. According to Eq. 6, at first order,    is proportional to      (which is proportional to 

          according to Eq. 1). Thus a relevant figure-of-merit could be the ratio      (with    the 

film permittivity and   the film thickness). For sample E, this ratio is close to 4 µm
-1

. Therefore, 

this system should apply to the characterization of any dielectric film that fulfills the condition: 

           . 

  



 

Sample 

Total 

silica 

thickness 

(nm) 

      

(fF) 

        
(fF) 

         
(fF) 

(from site 

to site) 

        

       
 
          

         

(fF) 

          
          

(fF) 

A 49 
3.49 (+/-

0.04) 
232.1 0.03 0.01 % 9.51 3.28 

B 157 
1.72 (+/-

0.03) 
225.8 0.07 0.03 % 3.34 1.72 

C 184 
1.52 (+/-

0.03) 
238.5 0.09 0.04 % 2.48 1.4 

D 481 
0.55 (+/-

0.03) 
238.5 0.08 0.03 % 0.86 0.61 

E 974 
0.20 (+/-

0.03) 
224.5 2.06 0.92 % 0.27 0.22 

 

Table 2: Experimental data extracted from C-V curves (+    spans calculated from both models). 

 



 

Figure 7: Typical C-V profiles recorded on samples A, B, C, D and E. 

 

 

 



The dependence of       on the oxide thickness is shown in Fig. 8.       data are then 

compared to the simple ‘parallel’ model developed earlier (          
         from Eq. (6)). To do so, 

the specimen characteristics (permittivity and thickness, reported in Table 1) have been used as 

inputs into the model. As it can be seen in Fig. 8, these           
         data are in rather good 

agreement for the thickest silica film, but they strongly differ as the films get thinner (numerical 

data can be found in Table 2). This discrepancy actually originates from the misalignment issue 

discussed in the “Experimental” section. The angular misalignment between the flat-punch tip 

and specimen surfaces induces an air wedge (Fig. 4) that affects the capacitance measurement. 

With a misalignment circa 0.01 rad, the 5 µm-wide flat-tip leaves a ~50 nm air gap at its open 

end. Even though this air gap is negligible for the thickest films (974nm), it gets comparable to 

the oxide thickness on the thinnest silica films (49nm). In the following section, we propose to 

correct the capacitance measurement from the presence of this air wedge. 

 

 

Figure 8: Evolution of      ,           
         and           

          with the 

oxide thickness. 

 

 

 

 

 

 



5.2 Analytical correction of the angular misalignment  

In this section the analytical model is corrected from the angular misalignment  . 

5.2.1 Description of capacitance contributions 

The total system capacitance is constituted of the tip-to-sample capacitance                in 

parallel with the stray capacitance        (Fig. 9(a)-(b)). The tip-to-sample capacitance is 

constituted of elementary capacitances          (coming from the air wedge) in series with the 

elementary capacitances             (coming from the tip-to-sample interaction) (Fig. 9(c)). 

Thus each elementary capacitance                    is given by Eq. (7). 

                    
 

           
 

 

        
 
  

          (7) 

 

 
  

 

Figure 9: Capacitance modelling schematic. 



5.2.2 Elementary capacitance expressions 

Because the angular misalignment   is small (~0.01 rad), the plate capacitor model can be 

applied to these elementary capacitances (the stray field at the open-end can be neglected). 

Within this hypothesis, they can be expressed as follows (for coordinate references, refer to 

Fig. 10):  

 The elementary capacitance             is given by Eq. (8), with        
  the sample 

capacitance per unit area and       the elementary surface area, which will be detailed 

later on. At this stage,        
  is generic and can account for the sample capacitance 

either in the accumulation regime (       
     

) or in the inversion regime (       
     

). 

                         
           (8) 

 

 The elementary capacitance          is given by Eq. (9), with      the height of the air 

wedge. 

         
       

    
          (9) 

The surface element       corresponds to the hatched sector in Fig. 10(a).       can be 

expressed as       in cylindrical coordinates (Eq. (10)). 

                        for                  (10) 

With   the flat-punch radius and   the angular coordinate. 

The height of the air wedge      corresponds to the height of the hatched sector in Fig. 10(b). 

Similarly, this magnitude can be expressed in cylindrical coordinates (Eq. (11)). 

                                  (11) 

 



 

As a result, the elementary capacitance                 is given by Eq. (12). 

                   
       
              

  
       
 

  
                   

     for                  (12) 

Finally the corrected tip-to-sample capacitance               
          is obtained by integrating 

                   over         (Eq. (13)) : 

              
           

       
              

  
       
 

  
                   

  
 

 
          (13) 

where        
         

     
 when the MIS stack is in accumulation regime, and        

         
     

 

in the inversion regime. Eq. (13) can then be integrated thanks to formal computational softwares 

[37], thus leading to Eq. (14): 

              
          

    
 

       
          

 
       
          

  
  

        
          

  
           (14) 

 

5.2.3 C-V curve span 

As previously, the C-V curve span is the difference between the capacitances in accumulation 

and in inversion regimes. Once more, this difference drops the contribution of the stray 

capacitance, thus leading to Eq. (15): 

          
                        

                            
             

          (15) 

 

 

Figure 10: Air wedge geometrical descriptors: (a) plane view and (b) cross-section.  



Similarly to the ‘parallel’ model, all the required inputs for this ‘misalignment-corrected’ model 

are obtained experimentally, without any fitting parameter. The corresponding data are then 

plotted in Fig. 8 (numerical data are given in Table 2), showing remarkable agreement with 

experimental data for all specimens. 

 

5.3 Permittivity extraction 

The previous section has shown that the ‘misalignment-corrected’ model can predict the span of 

C-V curves if the set-up user already knows the intrinsic film properties (thickness and 

permittivity). In terms of characterisation technique, this tool is rather expected to allow the 

extraction of intrinsic properties from experimental data. To do so, a home-made Python program 

has been developed to extract film permittivity from       (a scanned value of permittivity is 

injected into the ‘misalignment-corrected’ model until the C-V spans fit). Fig. 11 reports these 

fitted data and compares them to permittivity values obtained on the calibrated Hg-probe system. 

This figure clearly shows that permittivity is efficiently predicted. The error bars have been 

calculated from the dispersion on tip radius, angular misalignment and the dispersion on       

(Table 2). It appears that the later (due to LCR-meter sensitivity) prevails for the thickest films 

while dispersion on the set-up characteristics (  and  ) affects essentially the thinnest films. 

 

 

Figure 11: Relative permittivity measured on the different samples. Both 

techniques (capacitive-nanoindentation and Hg-probe system) are compared. 



6. Conclusion 

In this paper, we report the experimental development and the application of a new 

characterization tool made up of a nanoindentation head functionalized for capacitive 

measurements. First, a complete description of the system is given and a particular focus is made 

on the tip geometry and the angular misalignment. Then a complete data-processing method is 

proposed to perform quantitative analysis of the capacitance data. A fully analytical model is 

developed to relate the C-V curves to the system characteristics: set-up geometry and specimen 

properties. The proposed approach is free of adjustable parameter and should be applicable to any 

system with a stray capacitance that does not depend on the applied voltage. Finally, model 

dielectric thin films (with different thicknesses and relative permittivities) have been used to 

validate both the characterisation tool and the data-processing method. The extracted 

permittivities have been compared to a calibrated macro-scale technique and showed remarkable 

agreement. To our knowledge, this is the first time in literature that a quantitative analysis of the 

absolute capacitance is performed by using a nanoindentation head. The main strength of the 

whole procedure is to easily eliminate the effect of the stray capacitance which usually disturbs 

local capacitance measurements. Indeed, thanks to the system geometry, the stray capacitance 

does not depend on the applied voltage and is constant over large areas, which enables its 

subtraction without any data loss. Contrary to AFM-based techniques, the stray capacitance of 

this set-up remains unchanged when the mechanical load varies (no probe geometry change, 

macroscopic scale dependence), which is an advantage for the quantitative testing of load-

induced dielectric phenomena. Moreover its intermediate probe size allows this tool to fill the gap 

between macro-scale (Hg probe) and micro-scale (SCM, NIM) techniques for the 

characterization of dielectric films. Even though the effect of mechanical load is not investigated 

in the present study, the experimental proof-of-principle is shown and the data-processing method 

is validated on model dielectric thin films. This work sets the stage for the quantitative 

investigations of materials with load-dependent dielectric properties. 
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