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Abstract14

Multi-satellite sensing of continental water surfaces (WS) represents an unprecedented and increasing potential for15

studying ungauged hydrological and hydraulic processes from their signatures, especially on complex �ow zones such16

as multichannel rivers. However the estimation of discharge from WS observations only is a very challenging inverse17

problem due to unknown bathymetry and friction in ungauged rivers, measurements nature, quality and spatio-18

temporal resolutions regarding the �ow (model) scales. This paper proposes an e�ective 1D hydraulic modeling19

approach of su�cient complexity to describe braided river �ows from sparse multisatellite observations using the20

HiVDI inverse method presented in Larnier et al. [42] with an augmented control vector including a spatially21

distributed friction law depending on �ow depth. It is shown on 71km of the Xingu River (braided, Amazon22

basin) with altimetric water height timeseries that a fairly accurate upstream discharge hydrograph and e�ective23

patterns of channel bathymetry and friction can be infered simultaneously. The coherence between the sparse24

observation grid and the �ne hydraulic model grid is ensured in the optimization process by imposing a piecewise25

linear bathymetry pro�le b(x), which is consistent with the hydraulic visibility of WS signatures (Garambois et al.26

[27], Montazem et al. [46]). The discharge hydrograph and e�ective bathymetry-friction patterns are retrieved from27

8 years of satellite altimetry (ENVISAT) at 6 virtual stations (VS) along �ow. Next, the potential of the forthcoming28

SWOT data, dense in space, is highlighted by infering a discharge hydrograph and dense patterns of e�ective river29

bathymetry and friction; a physically consistent de�nition of friction by reaches enabling to consider more dense30

bathymetry controls. Finally a numerical analysis of the friction term shows clear signatures of river bottom slope31

break in low �ows and width variations in high �ows which is consistent with the �ndings of Montazem et al. [46]32

from WS curvature analysis33
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1. Introduction38

Fresh water is a crucial earth's resource and its journey from the clouds to the oceans passes through the39

hydrographic network. In order to characterize hydrological �uxes, an essential physical variable is river discharge40

(cf. Global Climate Observing system et al. [22]) representing an integration of upstream hydrological processes.41

In complement of in situ sensors networks which are declining in some regions (e.g. Fekete and Vorosmarty [23]),42

increasingly accurate measurements of hydrological and hydraulic variables, and especially river surface variabilities43

are now enabled by myriads of satellites for earth observations and new generation of sensors (e.g. Vorosmarty44

et al. [56], Alsdorf and Lettenmaier [2], Calmant et al. [13], Schumann and Domeneghetti [54]).45

The forthcoming Surface Water and Ocean Topography (SWOT) wide swath altimetric mission (CNES-NASA,46

planned to be launched in 2021) will provide a quasi global river surfaces mapping with an unprecedented spatial and47

temporal resolution on Water Surface (WS) height, width and slope - decimetric accuracy on WS height averaged48

over 1 km², 1 to 4 revisits every 21 days cycle 50, 5. In addition to decades of nadir altimetry (e.g. Frappart49

et al. [25], Birkett [6], Da Silva et al. [17], Calmant et al. [12]) and imagery (e.g. Allen and Pavelsky [1]) on inland50

waters, SWOT will enable an unprecedented hydraulic visibility, as de�ned from hydraulic analysis in Garambois51

et al. [27], Montazem et al. [47], Montazem et al. [46], of hydrological responses and hydraulic variabilities within52

river networks. Multi-satellite observations of water surfaces from the local to the hydrographic network scale53

indeed represent an unprecedented observability of hydrological responses through hydraulic processes signatures,54

especially on complex �ow zones such as �oodplains or braided rivers. This increased hydraulic visibility represents55

a great potential to learn hydrodynamic behaviors and infer hydrological �uxes.56

The estimation of river discharge from water surface observations (elevations, top width) remains an open and57

di�cult question, especially in case of unknown or poorly known river bathymetry, friction or lateral �uxes. Several58

open-channel inverse problems are studied in a relatively recent litterature in a satellite data context with more59

or less complex �ow models and inverse methods (cf. Biancamaria et al. [5] for a review). Few studies started60

to highlight the bene�t of assimilating synthetic SWOT WS observations in simpli�ed hydraulic models with61

sequential methods, for infering in�ow discharge assuming known river friction and bathymetry (Andreadis et al.62

[3], Biancamaria et al. [4]) or infering bathymetry assuming known friction (Durand et al. [19], Yoon et al. [58]).63

Next, low-complexity methods have been proposed for estimating river discharge in case of unknown bathymetry64

and friction based on the Manning-Strickler's law (Durand et al. [21], Garambois and Monnier [28]) or hydraulic65

geometries (Gleason and Smith [32]) or empirical �ow models (Durand et al. [20], see also Bjerklie et al. [7]). They66
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are tested on 19 rivers with synthetic �SWOT-like� daily observations in 20 and their robustness and accuracy is67

found to �uctuate, the importance of good priors is highlighted; none of the tested river is braided.68

The combined use of dynamic �ow models and optimization methods enables to bene�t from WS observations69

for solving hydraulic inverse problems as shown for �ood hydrograph inference in Roux and Dartus [51] from WS70

width time series used to optimize a 1D hydraulic model or in Honnorat et al. [38], Hostache et al. [39], Lai and71

Monnier [41] by variational assimilation of �ow depth time series in a 2D hydraulic model. The variational data72

assimilation (VDA) approach (see e.g. Cacuci et al. [11] and references therein) is well suited to solve the present73

inverse problem (see Brisset et al. [10], Oubanas et al. [48], Larnier et al. [42] and references therein).74

It consists in �tting the hydraulic model response to the observed WS elevations by optimizing the �input75

parameters� in a variational framework. However, altimetry measurements of WS are relatively sparse in time76

compared to local �ow dynamics. This important aspect of the inverse problem is investigated in Brisset et al. [10]77

with the introduction of identi�ability maps. The latter consist to represent in space-time the available information:78

WS observables, hydraulic waves and an estimation of the mis�t with local equilibrium. These �maps� enable to79

estimate if the sought upstream discharge information has been observed or not within the downstream river surface80

deformations; also they help to estimate inferable hydrograph frequencies Brisset et al. [10] or inferable hydrograph81

time windows Larnier et al. [42].82

The inference of the hydraulic triplet (in�ow discharge Q(t), e�ective bathymetry b(x) and friction coe�cient K)83

from SWOT like WS observations is investigated in recent studies using 1D hydraulic and variational assimilation84

methods (e.g. Brisset et al. [10], Gejadze and Malaterre [29], Oubanas et al. [48], Larnier et al. [42]). However the85

inference of the triplet from WS observations remains a very challenging inverse problem because of the correlated86

in�uence of temporal (discharge) and spatial (bathymetry-friction) controls on the simulated �ow lines. This87

is especially true because of the bathymetry-friction �equi�nality issue�, see the discussions in Garambois and88

Monnier [28], Larnier et al. [42]. Those recently developed VDA methods enable to infer accurately the in�ow89

discharge from water surface observables, considering unknown/uncertain channel bathymetry-friction, but from90

accurate prior information and synthetic WS observations. Note that a strong prior such as a known stage-discharge91

relationship (rating curve) downstream of a river domain as it is done in [48] highly controls the simulated �ow92

lines (�uvial regime); as a consequence the VDA process converge to the discharge hydrograph corresponding to93

the imposed (almost exact) rating curve. In the present study the downstream boundary condition is an unknown94

of the inverse problem.95

A crucial point is the sensitivity of the triplet inference to the prior value from which the inference is started96

and it is only studied in a SWOT data context in Garambois and Monnier [28], Yoon et al. [59], Larnier et al.97

[42], Tuozzolo et al. [55]. The sensitivity of the estimated discharge (in the triplet) to the prior is highlighted98

by recent estimates performed from AirSWOT airborne measurements on the Willamette River (Tuozzolo et al.99

[55]). The temporal signal is well retrieved at observation times but using a biased prior hydrograph results in100
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a biased hydrograph inference - see detailed investigations in Larnier et al. [42]. In view to infer worldwide river101

discharge from the future SWOT observations, especially for ungauged cases, a hierarchical modeling strategy102

HiVDI (Hierarchical Variational Discharge Inversion) is proposed in Larnier et al. [42]. HiVDI approach includes103

low complexity �ow relations (under the assumption of Low Froude and locally steady-state) which improve the104

robustness of the inferences in particular if an average value of Q is provided. (It may be provided by a database or a105

large scale hydrological model). Note that if introducing an a-priori information such as a single depth measurement,106

it enables to reconstruct an e�ective low-�ow bathymetry see 30, 28, 42.107

All the studies mentioned above address single thread natural rivers (∼ 100km in length) without lateral in�ows108

and using synthetic datasets (except in Tuozzolo et al. [55] with AirSWOT data). Moreover very few studies address109

the modeling of e�ective 1D channels from real satellite data (e.g. Garambois et al. [27], Schneider et al. [52]).110

The present paper investigates the e�ective hydraulic modeling of braided river �ows from real multi-sensor111

satellite observations of WS, the challenging inference of the hydraulic triplet (Q(t), b(x), K(x, h)) and its sensitivity112

to observation density in space. Multichannel rivers are characterized by complex hydraulic geometries relationships113

across �ow regimes as shown in Schubert et al. [53] through an analysis of a metric resolution 2D shallow water114

model of a braided portion of the Platte River, US. The key point is to build up a su�ciently complex model to115

describe multichannel river �ows and in coherence with satellite altimetry measurements spatio-temporal scales.116

Based on the inverse method presented in Larnier et al. [42], Brisset et al. [10], an e�ective hydraulic modeling117

strategy is adapted for tackling multichannel river �ows using: (i) e�ective 1D cross sections based on real multi-118

satellite data from low to high �ows (ii) a spatially distributed friction law depending on modeled water depth119

h. The inference of distributed hydraulic parameters patterns is investigated on a 71km long reach of the Xingu120

River (Amazone basin) from real altimetric observations along a single ENVISAT track or from synthetic SWOT121

observations, low identi�ability index (as introduced in 10 and detailed in section 4). The in�uence of the spatial122

density of WS observations on the identi�ability of spatial controls patterns (in the triplet) is studied. A piecewise123

linear bathymetry representation is introduced along with a friction power law with piecewise constant parameters124

to put in coherence the observations and the �ow model grids. Their constraining e�ect on the inversions is studied125

with spatially sparse observations. Furthermore, numerical investigations are performed to test the sensitivity of126

hydraulic inferences to prior hydraulic values and also assess the correlated in�uence of bathymetry and friction on127

the modeled �ow lines (equi�nality) across �ow regimes.128

This study is organized as follows. Section 2 presents the 1D Saint-Venant �ow model and the e�ective modeling129

approach for multichannel rivers including: (i) a spatially distributed friction law depending on modeled �ow depth,130

(ii) the construction of an e�ective channel geometry from multi-satellite observations, (iii) an inverse method based131

on variational data assimilation. Section 3 focuses on the calibration of the e�ective model on 8 years of WS132

observations gained from ENVISAT altimeter on a single track along this braided river. Using this model as a133

reference, section 4 proposes detailed investigations of hydraulic inferences from real ENVISAT or synthetic SWOT134
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observations considering this braided river as ungauged. Section 5 presents numerical sensitivity analysis to the135

hydraulic prior and investigations on the bathymetry friction equi�nality.136

2. E�ective hydraulic modeling approach:137

This section proposes an original 1D modeling approach of adequate complexity for modeling multichannel river138

�ows across regimes and in coherence with satellite observations. The approach is built on an e�ective channel139

cross section derived from multi-satellite measurements and a spatially distributed friction law depending on the140

�ow depth.141

2.1. The �ow model142

River �ow is classically modeled using the 1D Saint-Venant shallow water equations involving an integration143

of the �ow variables over the cross section (see e.g. Chow [15], Guinot [33] for detailed assumptions). In their144

non-conservative form in (A,Q) variables, A the wetted-cross section
[
m2
]
, Q the discharge

[
m3.s−1

]
, the equations145

read as follows [15]:146

147 
∂t(A) + ∂x(Q) = 0

∂tQ+ ∂x

(
Q2

A

)
= −gA∂xZ − gASf

(1)

where g is the gravity magnitude
[
m.s−2

]
, Z is the WS elevation [m], Z = (b+h) with b is the river bottom elevation148

[m] and h is the water depth [m]. The friction term Sf is parameterized with the classical Manning-Strickler law149

such that Sf = |Q|Q/K2A2R
4/3
h with K the Strickler friction coe�cient

[
m1/3.s−1

]
, Rh = A/Ph the hydraulic radius150

[m] , Ph the wetted perimeter. The discharge Q is related to the average cross-sectional velocity u
[
m.s−1

]
such as151

Q = uA. A spatially distributed Strickler friction coe�cient is de�ned as a power law in the water depth h:152

153

K(x, h(x, t)) = α(x)h(x, t)β(x) (2)

where α and β are two constants. Similar approaches based on hydraulic geometry or power law resistance equations154

are developed in the literature for predicting mean �ow velocity for example on a wide range of in situ river �ow155

measurements in Bjerklie et al. [8] or else for gravel bed streams in Ferguson [24]. The friction depends on the �ow156

depth through the proposed power law relation (2) enabling a variation of friction e�ect in function of �ow regime157

for complex �ow zones for instance; this spatially distributed friction law is richer than a constant uniform value as158

it is often set in the literature from a-priori table of frictions in function of river types for instance (e.g. [14]).159

The discharge Qin(t) is classically imposed upstream of the river channel. At downstream the Manning-Strickler160

equation depending on the unknowns (A,Q;K)out is imposed (it is classically integrated in the Preissmann scheme161

equations). The initial condition is set as the steady state backwater curve pro�le Z0(x) = Z(Qin(t0)). This 1D162
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Saint-Venant model (1) is discretized using the classical implicit Preissmann scheme (see e.g. 16) on a regular grid163

of spacing ∆x. It is implemented into the computational software DassFlow DassFlow.164

165

2.2. E�ective braided river model from long altimetric time series, satellite images and a hydrological model166

A L = 71km long portion of the Rio Xingu containing braided reaches is considered (�gure 1, cf. Garambois167

et al. [27],). WS observations are available at 6 virtual stations along a single ENVISAT track (#263) representing168

77 samples of WS pro�les between mid 2002 and mid 2010 (cf. Da Silva et al. [17]); that is
{
Zobss,p

}env
S,P

with S = 6169

corresponding to the locations of the virtual stations simultaneously observed at P = 77 times (see table 1).170

An e�ective hydraulic modeling strategy of this braided river is proposed based on:171

� Cross-sectional water surface widths {W}jersS,2 obtained from JERS mosaics (Courtesy of GRFM, NASDA/MITI)172

in low and high �ows. The e�ective water surface width is the sum of the width of all individual river channels173

for braided reaches.174

� An a priori river bottom {b}rV S obtained from altimetric rating curves from Paris et al. [49]. They are175

determined by adjusting the parameters of a classical stage discharge relationship on WS elevations gained176

by satellite altimetry and discharge simulated with the large scale hydrological model MGB (de Paiva et al.177

[18]) on the temporal window of interest - called true discharge in what follows.178

E�ective cross-sections geometries are de�ned at the 6 virtual stations with the bathymetry b given by altimetric179

rating curves and from e�ective widths such that low �ow width (resp. high �ow) is reached for the �rst (res.180

ninth) decile of observed WS elevations for each cross section. The �nal model geometry is obtained by linear181

interpolation between these 6 e�ective cross sections on the model grid with ∆x = 50m. It is shown in Fig. 1182

along with ENVISAT and SWOT spatial samplings. The friction law 2 introduced above and depending on the �ow183

depth h is distributed using patches with constant values for each reach between two successive virtual stations.184

2.3. The computational inverse method185

This paper investigates the estimation of the hydraulic triplet (Q(t), b(x), K(x, h)) from observations of WS186

variabilities only on a braided river. The employed inverse method is those presented in Larnier et al. [42] (see also187

Brisset et al. [10]) with an augmented composite control vector c; it is detailed in Appendix 7. c contains a spatially188

distributed friction coe�cient enabling to model complex �ow zones (while it is an uniform friction law K(h) in189

Larnier et al. [42]). This de�nition of K(x, h) enables to consider more heterogeneous bathymetry controls.190

The principle is to estimate (discrete) �ow controls minimizing the discrepancy between Zobs the observed �ow191

line and Z the modeled one; the latter depending on the unknown parameters vector c through the hydrodynamic192

model (1). This discrepancy is quanti�ed through the cost function term jobs(c) = 1
2‖Zobs − Z(c)‖2

2
, see Appendix193
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Figure 1: Study zone (top) with ENVISAT track #263 and virtual stations (orange dots); simulated SWOT tracks #133 and #258 on
the 1st and 6th day every 21 days repeat cycle (transparent white). E�ective river bathymetry derived from altimetric rating curves
(Paris et al. [49]) and water surface width from satellite images.
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7 for details. The control vector c contains the unknown �input parameters� of the 1D Saint-Venant shallow water194

�ow model (eq. 1) considering e�ective cross sections (see �gure 1). In the present study, c reads as:195

196

c = (Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN )
T (3)

where temporally and spatially distributed controls are the upstream discharge Qin,p, the river bed elevation br and197

the distributed friction parameters αn and βn.198

The subscript p denotes the observation time p ∈ [0..P ] and r denotes the reach number, r ∈ [1..R].199

αn and βn are the parameters of the friction law depending on the model state h (2) for each patch n ∈ [1..N ]200

with N ≤ R.201

The inversion consists to solve the following minimization problem: c∗ = argmin j(c) (eq. 8).202

This minimization, optimization problem is solved using a �rst order gradient-based algorithm, more precisely203

the classical L-BFGS quasi-Newton algorithm.204

3. Calibration of the e�ective hydraulic model on historical satellite altimetry205

Thi section presents the calibration of the e�ective hydraulic model based on the reference e�ective geometry206

de�ned above (cf. section 2.2). The observed water elevation time series
{
Zobss,p

}env
S,P

at S = 5 ENVISAT virtual207

stations are used to calibrate the friction law of the 1D Saint-Venant �ow model (1). Since friction has a local208

and upstream in�uence on the �ow line (low Froude �uvial �ows, �gure 9) the remaining ENVISAT time series at209

VS#6 downstream of the river domain will be used for infering the full control vector c in next section - recall that210

a normal depth is used as downstream BC (cf. section 2.1).211

A �reduced� control vector ccal = (α1, ..., αN , β1, ..., βN ) consisting in spatially distributed friction parameters212

only is considered here. In order to avoid a spatial �overparameterization� regarding the 5 water height timeseries213

available at VS, the choice is made to spatialize friction on N = 5 patches, on each reach downstream an altimetric214

VS. The inverse method presented in Larnier et al. [42] and described in appendix (section 7) is used here with no215

regularization nor variable change for this �simple� calibration problem.216

An optimal friction distribution c∗cal is found with the inverse method and the calibrated values of αn=1...5 and217

βn=1...5 are summed up in table 1. The resulting water height time series are compared to altimetric observations218

for each virtual station (cf. �gure 2). The spatially distributed friction law 2 enables a fairly good reproduction of219

the observed water level variations on this braided river, across a wide range of �ow regimes, even with an e�ective220

1D model built on multi-satellite data (�g. 2).221

A constant friction in time would lead to systematical errors for a large range of �ows as shown by grey curves222

on �gure 2. The calibrated friction exponents βn range between 0.482 and 1.133 except for the second reach (SV2-3)223

where a small βn is found, that is a barely constant friction across �ow regimes for this small reach (cf. �g. 2). The224
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Virtual station name VS#1 VS#2 VS#3 VS#4 VS#5 VS#6

Flow distance to mouth [km] 1146 1129 1124 1116 1110 1075

Flow distance from the upstream [km] 0 17 22 30 36 71

Drainage area [km2] (MGB model) 193.255 193.255 194.148 194.148 195.882 197.862

Z0 [m] (reference : EGM2008) (Paris et al. 2016) 209.6 207.1 206.9 206.5 204.3 196.5

Wlow(x) Total low �ow width [m] (derived from JERS) 1090 1540 1260 1590 930 930

Whigh(x) Total high �ow width [m] (derived from JERS) 2610 1850 1900 2240 1240 1140

Calibrated friction factor αcal(x) (downstream reach) 12.785 19.574 9.869 4.252 7.425 -

Calibrated friction exponent βcal(x) (downstream reach) 0.482 0.071 0.624 1.133 0.718 -

Table 1: Summary of the e�ective hydraulic model parameters including calibrated friction parameters αcal(x) and βcal(x) (recall
K(x, h) = α(x)hβ(x)) using 8 years of WS elevation variations (ENVISAT data) given e�ective channel bathymetry and upstream
discharge from the MGB hydrological model (de Paiva et al. [18]).

Figure 2: Calibration of variable friction K(x, h) with 8 years of ENVISAT measurements at 6 VS using the variational method with
c = (α1, ..., α5, β1, ..., β5) ; jobs = 0.07. (Bottom right) E�ective friction law in function of water depth for each VS.

spatial pattern of αn values calibrated here correspond to signi�cant friction e�ects, varying across �ow regimes,225

and necessary to e�ectively represent braided reaches using a 1D e�ective cross section. Indeed the latest leads226

to an underestimation of the hydraulic radius Rh = A/Ph hence of the friction term Sf = |Q|Q/K2A2R
4/3
h in the 1D227

Saint-Venant model (see section 2.1) for braided reaches.228

4. Investigations on the inference from WS observations of distributed �ow controls on braided river229

�ows230

This section studies the challenging inference of the hydraulic triplet (discharge, bathymetry, friction) from multi-231

satellite WS observations. The braided Xingu River morphology represents a supplementary di�culty for inversions232

regarding the variability of local hydraulic behaviors accross �ow regimes as evidenced above by the calibrated233
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friction laws (βcal 6= 0). The impact of spatial controls density and bathymetry representation is asssessed in what234

follows regarding the spatial sparsity of observations. First is presented the numerical experiment framework, then235

the inferences with relatively �sparse� ENVISAT measurements and �nally those with SWOT synthetic observations.236

4.1. Inverse hydraulic modeling method with WS elevations gained from nadir altimetry and SWOT237

The e�ective hydraulic model described in section 2.2 and calibrated in section 3 is used as a reference (�target�)238

in the following numerical experiments. The control vector (eq. 3) containing discharge, bathymetry and friction239

is sought with the inverse method decsribed in section 2.3 (see also appendix, section 7). It is tested �rst with real240

ENVISAT time series repesenting a relatively sparse spatial sampling of WS signatures with 6 VS on this 71km241

long river, and next with synthetic SWOT observations sampling the �ow line at ∆x = 200m (RiverObs product,242

see Frasson et al. [26]).243

The Xingu River is observed either by a single along-stream ENVISAT track at 6 observation points (virtual244

stations) of �ow lines every 35 days, or two SWOT tracks providing dense WS observations in space twice per245

21 days repeat cycle (5 days delay, cf. section 2.2). Note that the temporal sparsity of observations (35 days246

for ENVISAT or 5 days between the two SWOT passes every 21 days) only enables to identify low hydrograph247

frequencies, at observation times (see Brisset et al. [10] for a detailled analysis and identi�ability maps). Indeed the248

hydraulic wave propagation time is around Twave ∼ 9h which is much smaller than the lowest satellite revisit time249

of 5 days. This propagation time is calculated using the kinematic wave velocity for rectangular channels ck = 5/3U250

and maximal high �ow velocity U = 2, 17m/s from calibrated model outputs ck = 2.2m/s (second hydrograph peak251

at t = 490 days, see �ow variables on �gure 9). Let Iindent = Twave/∆tobs be the identi�ability index de�ned in252

Brisset et al. [10] as the ratio between �ood wave propagation time and observation time step. This leads to a253

very low temporal identi�ability index for this 71km river: Iident = 7.5 × 10−2 for SWOT and Iident = 10−2 for254

ENVISAT. Consequently, only low temporal dynamics and discharge at observation times are inferable as shown in255

Brisset et al. [10]; SWOT and ENVISAT observations are thus considered separately in the present study.256

The starting point of the VDA process in the parameter space, the so-called prior cprior (cf. section 7), consists257

in a rough hydrological prior: Q(0) = QMGB the mean discharge estimated from the MGB hydrological model, a258

spatially constant α(0) friction de�ned a priori from classical hydraulic ranges (e.g. Chow [14]) and β(0) = 1, the259

bathymetry b(0) is de�ned as a simple straight line over the whole domain for hydraulic analysis �rst. Note that260

the sensitivity of the inference to the prior de�nition is investigated in section 5.261

In a noised observation context, we denote by δ the noise level such that ‖Zobs − Ztrue‖2 ≤ δ for all spatial262

locations r with Zobsr the observed and Ztruer the true WS elevation. A common technique to avoid over�tting noisy263

data, in the context of Tykhonov's regularization of ill-posed problems, is Morozov's discrepancy principle, (see e.g.264

Kaltenbacher et al. 40 and references therein): the regularization parameter γ (see eq. 6) is chosen a-posteriori such265

that j does not decrease below the noise level. In the present numerical experiments, the convergence is stopped if266

jobs(c) ≤ 10−1 or if jobs is not decreased anymore for higher discrepencies.267
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4.2. Inference of distributed hydraulic controls (Q(t),K(x, h), b(x)) with spatially sparse WS observations: real268

ENVISAT altimetric snapshots269

In this section the assimilation is based on WS elevations
{
Zenvs,p

}
S,P

at S = 6 virtual stations observed simul-270

taneously by ENVISAT during 8 years every 35 days, i.e. P = 77. In this spatially sparse observation context, the271

impact of spatial controls density is investigated.272

First, we consider a �full� control vector c (cf. eq. 3) including P = 77 in�ow discharges, all 1D model273

bathymetry points R = 1420 and N = 5 friction patches between ENVISAT virtual stations (cf. section 2.2). The274

infered in�ow discharge, bathymetry and friction are presented in �gure (3) (case Env.a). Despite the satisfying275

value of the hydraulic controls reached at iteration 35, the descent is still possible as shown by jobs decreasing of276

about 20% at iteration 96. Allthough it enables to �t the observations according to the a priori convergence criteria277

de�ned in section 4.1, the solution found after the VDA process is not very accurate nor realistic as shown by peak278

�ow underestimations and signi�cant oscillations of the identi�ed friction and bathymetry. The spatial sparsity of279

observations prevents to infer these relatively dense bathymetry controls; in this case the considered inverse problem280

is underconstrained.281

In order to better constrain the inverse problem in case of sparse spatial observability, a bathymetry represen-282

tation is consistently introduced at the scale of the observation grid and applied to the �ner �ow modeling grid.283

Based on the physical analysis of the SW model (1) behaviour and the WS signature of bathymetry/friction con-284

trols (see Montazem et al. [47], Montazem et al. [46], Montazem [45]), a linear bathymetry interpolation is used285

between successive couples of bathymetry controls de�ned at observation points only. The resulting bathymetry286

b̃(x) ∈ C0(R), ∀x ∈ [0, L] is piecewise linear and strongly constrains the bathymetry pro�le between the sought287

bathymetry points - instead of using only a weak constrains jreg(c) = 1
2 ‖b”(x)‖22 in the optimization process (cf.288

appendix 7) as done in the next section 4.3 with spatially dense SWOT observations. Using this bathymetry con-289

strain with R = 6 bathymetry controls de�ned at each ENVISAT virtual station results in 5 reaches and N = 5290

friction patches are consistently applied to each. This leads to a more robust and accurate inference as shown in291

Figure 4 (case Env.b). The discharge infered for 8 years is fairly correct (RMSE = 520 m3/s, Nash = 0.95) and rel-292

atively realistic bathymetry/friction patterns are found, with some compensations between spatial controls locally293

in space, which is further analyzed in what follows.294

The impact on the infered parameters of searching a spatially uniform friction law is tested with the piecewise295

linear bathymetry representation used above. The resulting discharge inference is fairly correct (RMSE = 608 m3/s,296

Nash = 0.93) and interestingly the bathymetry spatial pattern is well retrieved but shifted above the reference one297

(cf. �gure 5) (case Env.c). The infered friction coe�cients are α = 22.621, β = 0.217, which represents a lower298

friction e�ect on most �ow regimes regarding the calibrated ones (cf. table 1). This infered e�ective friction law and299

bathymetry pattern, leading to somehow e�ective stage-discharge relationships locally given the infered hydrograph,300

enable to approximate the observed WS variations (jobs = 1.269 ) but with a less accurate �t than with spatially301
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Figure 3: Identi�cation of (Q(t),K(x, h), b(x)) with ENVISAT observations and overparameterized c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN

)T
with P = 77, R = 1420, N = 5, bathymetry regularization weight γ = 10−3;

jobs = 0.098 at iteration 35 (top) and jobs = 0.077 at iteration 96 (bottom) (Env.a)

Figure 4: Identi�cation of (Q(t),K(x, h), b(x)) with ENVISAT observations and e�ective c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN

)T
with P = 77, R = 6, N = 5 with a piecewise linear bathymetry b(x)

reconstruction, γ = 0; jobs = 0.118 at iteration 51. (Env.b)

distributed friction (jobs = 0.118). Note in that case of a lower model complexity an underestimation of the low302

�ow discharges.303

These infered friction laws and bathymetry patterns - simultaneously infered with the discharge hydrograph -304

correspond to �e�ective rivers� enabling to �t the observed variability of �ow lines. Recall that the observations305

consist in real measurements of WS elevations gained by nadir altimetry on multichannel reaches of the Xingu River.306

The complexity of the forward-inverse modeling approach, in coherence with the spatial sparsity of observation grid,307

enables to approximate satisfactorily the one of the observed multichannel �ow. The additionnal constrain provided308

by spatially dense �ow lines observations is investigated in the next section with SWOT synthetic data.309

310

311
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Figure 5: Inferrence of Q(t), b(x) and spatially uniform K(h) = αhβ with ENVISAT WS observations and e�ective c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α, β

)T
, P = 77, R = 6, no bathy γ = 0; jobs = 1.269 at iteration 54. The identi�ed friction coe�-

cients are α = 22.621, β = 0.217. (Env.c)
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Figure 6: Identi�cation of (Q(t),K(x, h(x, t)), b(x)) with SWOT-sge observations and e�ective c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN

)T
with P = 276, R = 1420, N = 1419, γ = 10−3; jobs = 0.099 at itera-

tion 41. (SWOT.a)

4.3. Inference of distributed hydraulic controls (Q(t),K(x, h), b(x)) with spatially dense WS observations: SWOT312

synthetic observations313

314

In this section the full hydraulic control c (cf. eq. 3) is infered by assimilating SWOT-like observations. Those315

noisy data are computed using the SWOT hydrology simulator applied to �ow lines from the e�ective hydraulic316

model calibrated above (cf. section 3). The SWOT spatio-temporal pattern over the studied river is obtained by317

overlapping the river centerline and the expected SWOT orbit and swaths (cf. �gure 1). Finally the synthetic318

SWOT-like observables consist in WS elevations
{
ZSWOT
obs

}
r,p

with p ∈ [1..P ] and P = 276 generated on the �ne319

scale model grid i.e. r ∈ [1..1420].320

The in�ow discharge, bathymetry and friction are infered by assimilating SWOT WS observations
{
ZSWOT
obs

}
r,p

321

on the same spatial grid as that of the numerical hydraulic model with cprior1. The estimates are presented on �gure322

(6). The infered discharge hydrograph is accurate (RMSE = 391 m3/s, Nash = 0.97) and bathymetry/friction pat-323

terns are relatively well retrieved. Using SWOT spatially distributed observations and piecewise constant roughness324

enable to constrain the inference of bathymetry controls at a �ne spatial resolution (model grid); the inverse method325

including covariance matrices acting as spatial or temporal smoothers/regularizations (cf. eq. 11 in appendix). The326

infered discharge and the spatially distributed controls are slightly more accurate than previously in a comparable327

inversion scenario with sparse ENVISAT observations in space and piecewise linear bathymetry constrain (case328

Env.b, cf. table 2 and �gure 4). Note that the friction is sought by reaches which enables to consider more dense329

bathymetry controls. Again, the compensation between spatial controls appears locally in space but enables the330

best �t to distributed measurements of WS elevations given the infered discharge (jobs = 0.099).331

332

333

334
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5. Numerical investigation of the bathymetry-friction equi�nality335

The hydrograph is responsible for �ow variability in time, hence enabling to retrieve the temporal dynamics of336

the observed �ow lines (Brisset et al. [10], Larnier et al. [42]). The friction and bathymetry controls have a correlated337

in�uence on the modeled �ow lines therefore leading to an ill-posed inverse problem (cf. Garambois and Monnier338

[28], Larnier et al. [42] for investigations on this �bathymetry-friction equi�nality� in a comparable data-inversion339

context). In this section the in�uence of the prior value on the quality of the inferences with spatially distributed340

controls is investigated. Next, is proposed a numerical analysis of the sensitivity of the friction source term Sf in341

the Saint-Venant equations (1) to the �ow controls (triplet) that are embeded in it.342

5.1. Sensitivity to the prior of the hydraulic inference from altimetric observations of WS signature343

Given altimetric measurements of WS variabilities and the �rst guess cprior1, the inverse method enables to344

infer a complex control vector composed of temporally and spatially distributed controls of the 1D SW model (1).345

In the numerical experiments above, the discharge hydrograph Q(t) is accurately infered at observation times but346

because of the ill-posedness of the inverse problem, compensations can occur between the sought parameters and347

especially between the spatial controls - the bathymetry b(x) and the distributed friction parameters α(x) and348

β(x). As already pointed out in the VDA inferences performed with the DassFlow model using SWOT like data349

in (Brisset et al. [10], Larnier et al. [42]) and AirSWOT data (Tuozzolo et al. [55]), the accuracy of the inferred350

discharge depends on the quality of the prior.351

The sensitivity of the inference to the quality of the prior control vector is investigated here for the most352

challenging inverse problem with spatially distributed controls and sparse ENVISAT data. First the in�ow prior is353

varied of ±30% around the mean true discharge; the river bottom elevation and friction priors are set as previously354

in cprior1. The infered hydraulic controls are presented in 7 and various inference scores are sumed up in table 2.355

For each in�ow prior, the temporal variations of the in�ow hydrograph are very well retrieved as shown on �gure356

7 - runs Env.b2 and Env.b3. However a biased in�ow prior results in a biased hydrograph estimate (with correct357

temporal variations) which is coherent with results of Larnier et al. [42], Tuozzolo et al. [55]).358

Next, the sensitivity to the prior bathymetry and friction is tested. The prior bathymetry is infered with the359

low-complexity system proposed in the hierarchichal HiVDI model chain (Larnier et al. [42]) for ungauged rivers.360

It consists in estimating an e�ective prior bathymetry from WS observables using the low Froude model and prior361

discharge from a hydrological model (QMGB here) and prior friction (α(0), β(0)). Two prior cman1 and cman2 are362

considered with prior friction under/over-estimations compared to calibrated ones (cf. 8). As shown on �gure 8,363

the inference in case Env.b31 (blue) results in an accurate estimation of discharge, very similar to Env.b (purple).364

It is started from a prior cman1 that underestimates river bottom elevation and overestimates the spatially averaged365

friction e�ect compared to calibrated values (cf. �gure 8, bottom). In that case, �tting WS elevations enables366

to infer an e�ective river channel (bathymetry and friction) but also to infer a fairly realistic upstream temporal367
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Figure 7: Sensitivity test to prior dischargeQMGB±30% ; identi�cation (var change) of (Q(t),K(x, h), b(x)) with ENVISAT observations

c =
(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αS , β1, ..., βS

)T
with P = 77, R = 6, N = 5 and with a piecewise linear b(x) and S = R = 5.

�Estimate� (case Env.b) jobs = 0.118 at iteration 51, �Estimate2� (case Env.b21) jobs = 0.125 at iteration 41, �Estimate3� (case Env.b21)
jobs = 0.125 at iteration 25.

control (discharge hydrograph). Using the prior cman2 that overestimates both river bottom elevation and spatially368

averaged friction e�ect results in a comparable �t to the observed WS elevations. However this correct �t stems from369

the compensation between an infered e�ective channel of reduced conveyance capacity (comparable friction e�ects370

but overestimated bed levels) and consequently an infered hydrograph with underestimated low-�ow discharges (in371

yellow).372

373

5.2. Spatio-temporal sensitivity of the friction term374

375

The considered �ow controls (Q(t), K(x, h), b(x)) of the 1D Saint-Venant shallow water equations (1) have a376

complex non linear in�uence on the modeled �ow line and consequetly on the �t to the observed �ow lines. The377

variation of momentum expressed by the second �ow equation is due to a pressure source term −gA∂xZ (including378

the longitudinal variation of �uid-to-�uid pressure, the longitudinal variation of lateral and bottom wall-to-�uid379

pressure) and a dissipation term −gASf . Discharge and bathymetry appear in the momentum and pressure terms380

while all �ow controls are embedded in the friction source term Sf . Note that for a locally steady uniform �ow381

Sf = −∂xZ and an in�nity of friction and bathymetry values can correspond to a single value of discharge (cf.382

Garambois and Monnier [28], Larnier et al. [42]).383

We propose a simple calculation in order to make appear the sensitivity of the friction term to a change on384

controls; let us express the di�erential of Sf assuming Q > 0:385

dSf = d

(
1

K2

Q2

A2R
4/3
h

)

= − 2

K3

Q²

A²R
4/3
h

dK − 2

A3

Q²

K2R
4/3
h

dA− 4

3R
7/3
h

Q²

K2A²
dRh +

1

K2

2Q

A²R
4/3
h

dQ (4)

16



Figure 8: Sensitivity test to prior friction and bathymetry estimated using the �Manning� method from Larnier et al. [42] (cman1
(α(0) = 7.5; β(0) = 0.5) and cman2 (α(0) = 12.5; β(0) = 1)); identi�cation (var change) of (Q(t),K(x, h), b(x)) with ENVISAT

observations c =
(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αS , β1, ..., βS

)T
with P = 77, R = 6, N = 5 and with a piecewise linear b(x)

and S = R = 5. �Estimate� (case Env.b) jobs = 0.118 at iteration 51, �Estimate2� (case Env.b31) jobs = 0.116 at iteration 46,
�Estimate3� (case Env.b32) jobs = 0.122 at iteration 41. (Bottom) prior e�ective friction laws and spatially averaged calibrated friciton
law (αcal = 10.74 and βcal = 0.6, �Cal bar�).

Case Control Prior
RMSE

Q(0) rRMSE
Q(0) Nash

Q(0) RMSE
b(0) RMSE

α(0) RMSE
β(0)

(m3/s) (%) (−) (m) (m1/3−β/s) (−)

Env.a Dense b(x) cprior1 2254 194 −0.01 1.19 4.93 0.49

Env.b Piec. b(x) cprior1 ” ” ” ” ” ”

Env.c Piec. b(x), K(h) cprior1 ” ” ” ” ” ”

SWOT.a Dense b(x) cprior1 ” ” ” ” ” ”

Env.b21 Piec. b(x) Q
(0)
prior1 − 30% 2433 97 0.18 1.19 4.93 0.49

Env.b22 Piec. b(x) Q
(0)
prior1 + 30% 2626 297 −0.37 ” ” ”

Env.b31 Piec. b(x) cman1 (α(0) = 7.5; β(0) = 0.5) 2254 194 −0.01 0.77 5.63 0.34

Env.d32 Piec. b(x) cman2 (α(0) = 12.5; β(0) = 1) 2254 194 −0.01 1.13 5.43 0.49

Case Control Prior
RMSEQ rRMSEQ NashQ RMSEb RMSEα RMSEβ

(m3/s) (%) (−) (m) (m1/3−β/s) (−)

Env.a Dense b(x) cprior1 830 57 0.86 1.97 10 0.46

Env.b Piec. b(x) cprior1 520 61 0.95 1.07 4.8 0.37

Env.c Piec. b(x), K(h) cprior1 608 58 0.93 1.05 − −

SWOT.a Dense b(x) cprior1 391 38 0.97 0.91 5.67 0.2

Env.b2 Piec. b(x) Q
(0)
prior1 − 30% 1229 39 0.7 0.48 7.83 0.28

Env.b3 Piec. b(x) Q
(0)
prior1 + 30% 1473 104 0.57 0.75 5.09 0.22

Env.bm2 Piec. b(x) cman1 (α(0) = 7.5; β(0) = 0.5) 550 61 0.94 1.22 4.64 0.32

Env.bm3 Piec. b(x) cman2 (α(0) = 12.5; β(0) = 1) 885 78 0.84 1.30 5.50 0.35

Table 2: Scores of the inferences (bottom) performed with various priors (top), ENVISAT (�Env�) or SWOT (�SWOT�) observations.
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Since dRh = d(A/P ) = 1
P dA − A

P 2 dP = 1
P (dA−RhdP ) = 1

P (dA0 −RhdP0) + df(h) with A0 = W0h0 and386

P0 = W0 + 2h0 respectively the unobserved low �ow area and perimeter under our modeling hypothesis (cf. section387

2.2 and �gure 1, see also Larnier et al. [42] for details on cross section representation). It follows that f(h) is a388

function depending on the modeled water depth h and of the observed cross-section variation δA above low �ow389

(h0), W0 being de�ned from observables. We get dRh = 1
P

(
1− 2Rh

W0

)
dA0 + df(h) and �nally:390

dSf =
1

K2

Q

A²R
4/3
h

(
−2

Q

K
dK − Q

A

{
2 +

4

3

(
1− 2Rh

W0

)}
dA0 + 2dQ

)
− dφ(h) (5)

with φ(h) = 4

3R
7/3
h

Q²

K2A²
df(h) a function depending on the observed geometry of a cross section above low �ow and391

of the simulated �ow (A,Q hence h (A) given a channel geometry). We rewrite equation 5 as dSf = ∂KSfdK +392

∂A0SfdA0+∂QSfdQ−dφ(h) and under our modeling hypothesis we have ∂KSf < 0, ∂A0Sf < 0, ∂QSf > 0 ∀x, t, i.e.393

opposite e�ects of local values of friction K, low �ow area A0 and simulated local discharge Q values on Sf . Those394

terms are plotted on �gure 9 along the Xingu River, on model grid, from hydraulic variables simulated (forward395

run) with calibrated parameters (cf. table 1). Note that dφ(h) is not studied with this simple method.396

Interestingly, |∂KSf | is about 100 times greater than |∂A0
Sf | or |∂QSf | at high �ow and about 10 times greater397

at low �ow. This is consistent with the singular value of friction that is found 1000 times greater than the one of398

reach averaged discharges by Garambois and Monnier [28] through a singular value decomposition of the normal399

equations of reach averaged Manning equations - applied to 70km of the Garonne River downstream of Toulouse400

(France). In other words, the friction term in the present modeling context must be more sensitive to a change in401

friction than unknown low-�ow bathymetry or discharge.402

Remark that for low-�ow, Sf is more sensitive to discharge than unknown cross sectional area (|∂QSf | > |∂A0
Sf |)403

and conversely for high-�ow. Moreover the spatial variability of the three sensitivities is more pronouced at low �ow.404

Abrupt changes are found at locations corresponding to bottom slope or channel width changes. The in�uences405

of the bottom slope break at x = 30km is clearly visible at low-�ow and the in�uence of the width contraction at406

x = 17km at high �ow, which is fully consistent with the �ndings of Montazem et al. [46]. Further investigations407

on the sensitivity of the full Saint-Venant equations in space and time could be of interest to better taylor and408

constrain methods for tackling hydraulic inverse problems.409

410

6. Conclusion411

This paper investigates the challenging inference of the hydraulic triplet (discharge, bathymetry, friction) from412

real or synthetic altimetric WS observations only on an ungauged multichannel river.413

The HiVDI inverse method presented in Larnier et al. [42] is adapted for reproducing a multichannel �ow by414

introducing a spatially distributed friction law depending on modeled water depth h and by using multi-satellite415
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Figure 9: Evaluation of the partial derivatives of the friction source term Sf ; forward run with the calibrated parameter set (cf. table
1) and true in�ow discharge.

data.416

The friction law coe�cients are spatialized by reach to be coherent with the observation grid and with the (rather417

large) meaningful scale of these parameters in the 1D Manning-Strickler equation (see e.g. Guinot and Cappelaere418

[34]). This e�ective modeling approach enables a fairly accurate reproduction of the multichannel �ows observed419

during 8 years by nadir altimetry (ENVISAT) on this 71km braided river.420

The inference capabilities of hydraulic parameters patterns from real altimetric observations along a single421

ENVISAT track or from the future spatially dense SWOT observations are demonstrated. For the present observed422

multichannel river complexity, the inverse method enables to infer a fairly realistic upstream discharge hydrograph423

along with an e�ective river channel. The estimated bathymetry and friction patterns somehow result in local424

and e�ective stage-discharge relationships. In case of spatially sparse observations, the coherence between the425

sparse observation grid and the dense model grid is ensured using a piecewise linear bathymetry representation426

along with a friction power law with piecewise constant parameters. This constrain on the VDA process provided427

by the above de�ned e�ective bathymetry-friction representation by reach is highlighted with spatially sparse428

ENVISAT observations. Moreover the additional constrain provided by the forthcoming SWOT observations to429

infer a discharge hydrograph and densely distributed spatial controls is assessed on this e�ective multichannel river430

representation; the de�nition of friction by reaches enabling to consider more dense bathymetry controls.431

SWOT observations would represent unprecedented measurements of hydraulic processes signatures from the432

local to the hydrographic network scales, including complex �ow zones such as braided ones. On-going researches433

focus on the detection and use of various hydraulic signatures in WS as highlighted here for bottom slope (resp.434

channel width) breaks in low (resp. high) �ows (see WS curvature analysis and SW model behavior in Montazem435

et al. [46]), on the estimation of reliable priors and inverse problems at the scale of larger river network portions436

including complex �ow zones.437
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7. Appendix: the computational inverse method453

As already brie�y summarized in Section 2.3, the computational inverse method is based on Variational Data454

Assimilation (VDA) applied to the Saint-Venant �ow model (1). The computational inverse method is those455

presented in Brisset et al. [10], Larnier et al. [42] with an augmented composite control vector c, see (3): c contains456

a spatially distributed friction coe�cient enabling to model complex �ow zones (while it is an uniform friction law457

K(h) in Larnier et al. [42]). This de�nition of K(x, h) enables to consider more heterogeneous bathymetry controls.458

It is important to point out that the imposed downstream boundary condition is an unknown of the inverse459

problem. It is constrained with the observed water elevations and infered river bottom slope using a locally uniform460

�ow hypothesis (i.e. Manning equation, cf. section 2.1).461

The cost function j(c) is de�ned as:462

j(c) = jobs(c) + γ jreg(c) (6)

where γ > 0 is a weighting coe�cient of the so-called �regularization term� jreg(c). The term jobs(c) measures the463

mis�t between observed and modeled WS elevations such that:464

jobs(c) =
1

2
‖(Z(c)− Zobs)‖2O (7)
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The norm ‖·‖O = ‖O1/2 ·‖2 is de�ned from an a-priori positive de�nite covariance matrix O. Assuming uncorrelated465

observations O = diag(σZ) with σZ the a-priori observation error on Zobs - σZ = 15cm in this study.466

The modeled WS elevations Z depend on c through the hydrodynamic model (1) and the inverse problem reads467

as468

c∗ = argminc j(c) (8)

This optimal control problem is solved using a Quasi-Newton descent algorithm: the L-BFGS algorithm version469

presented in 31. The cost gradient ∇j(c) is computed by solving the adjoint model; the latter is obtained by470

automatic di�erentiation using Tapenade software [37]. Detailed know-hows on VDA may be found e.g. in the471

online courses Bouttier and Courtier [9], Monnier [44].472

To be solved e�ciently this optimization problem needs to be �regularized�. Indeed the friction and the473

bathymetry may trigger indiscernible surface signatures therefore leading to an ill-posed inverse problem; we refer474

e.g. to Kaltenbacher et al. [40] for the theory of regularization of such inverse problems and to Larnier et al. [42]475

for a discussion focused on the present inverse �ow problem.476

Following Larnier et al. [42], the optimization problem (8) is regularized as follows. First the regularization term477

jreg is added to the cost function, see (6). We simply set: jreg(c) = 1
2 ‖b”(x)‖22. Therefore this term imposes (as478

weak constrains) the infered bathymetry pro�le b(x) to be an elastic interpolating the values of b at the control479

points (i.e. a cubic spline).480

A speci�city of the present context is the large inconsistency between the large observation grid (altimetry481

points) and the �ner �ner model grid. Between the sparse observations points (equivalently the control points),482

the bathymetry pro�le b(x) is reconstructed as a piecewise linear function. It is worth to point out that the483

resulting reconstruction is consistent with the physical analysis presented in Montazem et al. [47], Montazem484

et al. [46], Montazem [45]. (This study analyses the adequation between the SW model (1) behavior and the WS485

signature).486

Next and following Lorenc et al. [43], Weaver and Courtier [57], Larnier et al. [42], the following change of control487

variable is made:488

k = B−1/2(c− cprior) (9)

where c is the original control vector, cprior is a prior value of c and B is a covariance matrix. The choice of B is489

crucial in the VDA formulation; its expression is detailed below. After this change of variable the new optimization490

problem reads:491

min
k

J(k) with J(k) = j(c) (10)

It is easy to show that this leads to the following new optimality condition: B1/2∇j(c) = 0; somehow a492
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preconditioned optimality condition. For more details and explanations we refer to 35, 36 and Larnier et al. [42] in493

the present inversion context.494

Assuming uncorrelated controls B is de�ned as a block-diagonal matrix:495

B =



BQ 0 0

0 Bb 0

0 0 Bα

0 0 0 Bβ


(11)

496

Still following Larnier et al. [42], the matrices BQ and Bb are set as the classical second order auto-regressive497

correlation matrices :498

(BQ)i,j = (σQ)2 exp

(
−|tj − ti|

∆tQ

)
and (Bb)i,j = (σb)

2 exp

(
−|xj − xi|

Lb

)
(12)

The VDA parameters ∆tQ and Lb represent prior hydraulic scales and act as correlation lengths. Given the499

frequency (few days) and spatial resolution of observations (200m long �pixels� for SWOT), the low Froude braided500

river �ows of interest, adequate values for those parameters are: ∆tQ = 24 h and Lb = 3km km We refer to Brisset501

et al. [10] for a thorough analysis of the discharge inference in terms of frequencies and wave lengths and Section502

4.1 in the present river-observation context. In the present study, the friction parameters applied to deca-kilometric503

patches are assumed to be uncorrelated thus the matrices Bα and Bβ are diagonal:504

(Bα)i,i = (σα)2, (Bβ)i,i = (σβ)2 (13)

The scalar values σ� may be viewed as variances ; their values are given in the numerical results section.505
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