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ABSTRACT 

Heatwaves are responsible for many deaths due to hot weather. Natural ventilation is promoted as a cooling 

solution to reduce the impacts of climate change because of its energy-saving potential.  

This paper addresses the prediction of heat-related health risk situations in naturally ventilated dwellings, where 

indoor thermal conditions depend on external climate and occupant behaviour. Thus, the operating limits of a 

dwelling vary according to its dynamic thermal response to indoor and outdoor stresses. 

To secure a building design, a method to improve the prediction of heat-related health risks is proposed that links 

predicted percentage dissatisfied (PPD) and wet-bulb globe temperature (WBGT) indicators to distinguish a 

moderately warm situation from a heat stress situation (WBGT>29°C). Simulations are performed for a dwelling 

during the 2015 heatwave in Paris (France) to test the method. 

In the example, natural ventilation was found to reduce the indoor temperature, but there remains ambiguity 

regarding the ability of natural ventilation to provide moderate conditions. According to the scope of the ergonomic 

standards, "moderate thermal environment" and "heat stress" temperature ranges are not contiguous. Bridging of 

this gap requires establishing thermal comfort ranges and heat stress thresholds adapted to people according to 

their acclimatisation level and their sensitivity to heat. 
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1 INTRODUCTION 

A well-established relationship exists between extremely high temperatures and human morbidity and mortality 

[1] [2]. Heatwaves represent a real risk to vulnerable populations such as the unacclimated, elderly, and sick as 

well as infants. The main predisposing factors for heat-related illness are given in a World Health Organisation 

(WHO) report [2]. The 2003 heatwave in Europe killed approximately 70 000 people [3] and caused 14 800 excess 

deaths in France [4]. This heatwave led the French Minister of Health to introduce a National Heatwave Plan 

(NHP) in 2004. The NHP defines actions aimed at preventing health impacts during episodes of extreme heat. The 

NHP includes a Heat Health Watch Warning System (HHWWS) [5]. The 2006 heatwave in France suggested that 

the NHP measures had been effective, with 4 400 fewer deaths than anticipated [6]. Therefore, French people are 

now better prepared to handle significant heatwaves than they were previously. The 2006 heatwave in France 

caused 2 000 excess deaths in an 18-day period, while the 2015 heatwave caused 3 300 excess deaths in a 26-day 

period. Despite the prevention measures, the impacts of heatwaves remain significant and demand continued 

research.  

According to the literature, five types of heat-related risk factors can be considered: environmental factors (e.g., 

lack of vegetation, urban heat island, urban density, pollution, air humidity, occupational heat-exposure, building 

construction quality), socio-demographic factors (e.g., age, gender, heat acclimatisation level, and specific 

populations such as disabled persons, the elderly, infants, pregnant women, workers, and athletes), health factors 

(e.g., obesity, pre-existing diseases, and drug intake), social factors (e.g., poverty and social isolation), and 

behavioural factors (e.g., inadequate clothing, reduced mobility, and consumption of caffeinated or alcoholic 

beverages) [2] [3] [7]. Following the 2003 heatwave, a case study showed that the risk factor increased 4-fold for 

people who lived on the top floor of an uninsulated block of flats [8]. Other factors, such as the number of windows 

and the inability to create draughts by cross-ventilation were associated with increased death rates [9]. 

The effects of heat are worsened by the urban heat island effect, which results from the increased heat retention of 

buildings and paved surfaces compared with transpiration, shading, and air flow promotion by vegetation. Today, 

one quarter of the French population is over the age of 60, and three quarters of the population live in urban areas. 

In the coming decades, the ageing and urban populations will increase, leading to an increased risk of heat-related 

deaths. Long-duration heatwaves and prevailing warm annual conditions are becoming increasingly likely because 

of the warming of the planet. Significant increases in extreme heat risks are projected under all climate change 

scenarios. 

The previous review outlines the great challenges associated with climate change, and because air conditioning is 

an effective way for people to protect themselves from heat-related effects, the sales of these systems are impacted 
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by the “fear of heat waves” [10]. Approximately 5% of French dwellings are equipped with mechanical cooling 

systems [11]. Thus, the potential for the popularity of air conditioning to increase is high, which would lead to 

increased energy consumption and CO2-related emissions. Indeed, M. Santamouris estimated that the current 

cooling energy consumption of 0.7 PWh/year from residential buildings throughout the world will increase to a 

value between 1.7 and 11.8 PWh/year by 2050. The significant variation is deeply linked to the large uncertainty 

of the future dissemination of air conditioners in dwellings [12]. Thus, limiting the distribution of air conditioners 

is a great challenge, and natural ventilation may be a solution. 

A naturally ventilated school [13] was presented1 as an example of a building adapted to climate change. A 

supplement to the CEN Guide 32 [14] regarding climate change adaptation standards recommended the following: 

“give[s] preference to equipment that is not weather sensitive”. A contrast exists between these two comments, 

and which of these guidelines designers should follow remains unclear. Cautiously, the CEN Guide 32 [14] 

recommends the following: “ensure buildings can […] provide thermal comfort in a changing climate”. However, 

whether natural ventilation would be reliable enough to prevent thermal stress and the associated dire 

consequences is not discussed. The operating limits of natural ventilation need to be determined to evaluate 

whether natural ventilation is a safe alternative solution. Thermal comfort is a daily requirement, whereas heat 

stress avoidance is only required only at rare events. The link between both requirements can be established with 

the frequency of climate events. Figure 1 is based on an IPCC report [15] and explains this link in the context of 

climate change. 

 

 

Figure 1: Schematic depiction of the effects on extreme temperatures when both the mean and variance increase 

for a normal temperature distribution based on an IPCC report [15] 

1 11th International Weather and Climate Forum, April 2014. 
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Figure 1 represents a probability distribution of current daily outside temperatures, i.e., the previous climate, and 

a projection of the future climate, i.e., the new climate. This theoretical climate projection shows a spread of the 

distribution with a shift toward increasingly warm daily temperatures. A first estimation of the median temperature 

is given for the Paris area. Probability densities were calculated with data provided by Aladin, the regional climate 

model of Météo-France [16], for two thirty-year periods, from 1971 to 1990 for the previous climate and from 

2041 to 2070 for the new climate, under the highly pessimistic RCP 8.5 scenario [17]. For summer, the daily 

median temperature is 17.5°C for the previous climate and 20.7°C for the new climate with probability densities 

of 13 and 8, respectively. 

At the end of the distribution, in the red and pink areas, the probability densities of the temperatures increase under 

the new climate. Because the energy system is not sized according to extreme and rare events, the lowest 

temperatures limiting the pink area for the previous climate and the red area for the new climate can be considered 

the sizing points for a cooling system. Therefore, these sizing points can be quantified using the ISO 15927-2 

standard [18], which recommends that the threshold be established at a value whose probability of being exceeded 

is less than 1%. When calculated at the 99th percentile for the previous example of the Paris area, the sizing 

thresholds are 26.1°C and 30.8°C for the previous and new climates, respectively. These figures for Paris lead to 

a distribution close to the theoretical distribution proposed in Figure 1. 

For air-conditioned dwellings, the sizing point requirement is to provide thermal comfort, but for hot climate 

events, such a requirement is not defined. However, with climate-dependent passive systems, a prolonged 

moderately warm period might also cause indoor thermal stress and a possible increase in heat-related morbidity. 

Thus, for these technical solutions, especially for naturally ventilated dwellings, the border is porous between the 

sizing point and the risk range, and the requirements must be defined. The design is then difficult to achieve, as 

the weather requirements to study thermal stress cannot be selected only through climate analysis. 

The long-term goal is to help professionals design naturally ventilated buildings adapted to climate change so that 

their potential to avoid heat-related health risks during both present and future heatwaves is known. Therefore, 

establishment of the running limits is essential. The aim of the paper is to develop a method at the design stage to 

examine the indoor thermal environments of these non-air-conditioned dwellings, which are popular in France, 

during a heat stress period in a changing climate. 

In this paper, an overall view of the method is introduced. The principles of the method, which are based on 

different requirements according to thermal comfort or heat stress, are explained. For professional use, indices for 

thermal comfort and heat-related health risks are provided by international standards ISO 7730 [19], and ISO 7243 

[20], and the numerical models that are used are also strongly linked to the standards ISO 13790 [21] and EN 
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15242 [22]. The method is tested using the example of a typical dwelling in France to confirm its functionality and 

to define the limits of standards. First, the results are presented and compared to different thresholds relative to 

heat stress depending on human physiological limits and on levels of acclimatisation. 

2 METHOD  

First, the principle of the method for interpreting the results regarding mitigation and adaptation to climate change 

is presented. Then, the method is described step by step. Finally, the example used to test the method is introduced. 

2.1 Method principle 

Thermal comfort requirements and heat-related health requirements must be distinguished. In reference to the 

automotive segment, after a crash test, occupants are expected to be safe. On the same theory, under a heat stress 

test, the dwelling should protect people from health hazards, whereas in the most frequent periods, thermal comfort 

is required. Thus, the intended indoor thermal conditions are not the same under extreme and common weather 

conditions. Figure 2 presents increasing health risks versus increasing discomfort. A safe indoor environment is 

on the left, and an unsafe environment is on the right. The blue arrows show the method proposed to design a 

building to save energy and ensure occupant health.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Relationship between thermal comfort and health risk 

Solutions that guarantee comfort under usual circumstances—from the top left to the bottom left—should also 

protect the occupants from health hazards under extreme events—from the top right to the top left. However, an 

indoor environment characterized by one index as comfortable and another as thermally stressful should be 

avoided. Such an environment is represented by the black box in Figure 2. The intersection at the boundary 

between thermal comfort and heat stress is needed to apply the method.  

2.2 Main steps of the method 

The primary steps of the method are introduced in Figure 3. According to the long-term goal, the tools available 

for building design are mainly standards related to: 
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 the hygrothermal performance of buildings to select climate data and to calculate the internal temperatures of 

a room and 

 the ergonomics of the thermal environment for comfort and heat stress. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Chronological sequence of the basic steps of the method 

2.3 Biometeorological indicators  

For a passive building, the weather selection for a risk analysis cannot be limited to a climate analysis as the health 

impact is also needed. The HHWWS classifies NHP actions into four levels: 

- Seasonal vigilance, continuously activated from 1st of June to 30th of September, 

- Warning level, when the thresholds are to be reached within three days. Preparation for staggered 

implementation of the preventive measures detailed in the NHP, 

- Heatwave alert, when the thresholds are reached. Implementation of the appropriate sanitary and social 

measures, 

- Maximum mobilization level, when the thresholds are reached and the heatwave tends to last or when 

exceptional conditions are met. 

The HHWWS was developed on the basis of a retrospective analysis of mortality and meteorological data from 

fourteen pilot cities representative of the different climates of mainland France [5]. Several heatwave indicators 

were tested in relation to the levels of excess mortality. An indicator that mixes minimum and maximum 

temperatures was chosen. Excess mortality levels were set at 50% for Paris, Lyon, Lille and Marseille and 100% 

for the other smaller cities. The biometeorological indicator (IBM) is, therefore, the combination of the paired 

minimum and maximum biometeorological indices (IBMin and IBMax, respectively), where IBMin is the sliding 

Description of the case study: 

 Weather data (hot weather and (IBM) biometeorological indices) 

 Building (size, aspect, and physical characteristics of the envelope, ...) 

 Occupants (activity, clothing, and behaviour, especially window-opening strategy) 

Calculation of indoor conditions: 

 Simulation software for dynamic thermal and air flow rates for building energy performance design  

 Physical parameters (temperatures: air, operative, and mean radiant; and relative humidity) 

Comfort indices: 

Predicted Percentage Dissatisfied (PPD) and 

Predicted Mean Vote (PMV)  

Heat stress indicators and sanitary thresholds: 

 Wet-Bulb Globe Temperature (WBGT) 

 Heat index chart  

Results: 

Relationships between thermal comfort and heat stress indices 

Text published in Energy and Buildings, 183, January 2019, p. 408-417 [https://doi.org/10.1016/j.enbuild.2018.10.033]

6



mean over three days of minimum temperatures, and IBMax is the sliding mean over three days of maximum 

temperatures. The HHWWS is regularly assessed and updated annually [23]. 

2.4 Occupant behaviours 

An indoor thermal environment is strongly impacted by the occupants. Metabolic water vapour and heat production 

depend on activity levels. Moreover, window opening strategy, solar shading practice and appliance use are deeply 

linked to occupant behaviours. Thus, building occupation is needed to predict indoor temperature and humidity. 

Behaviour scenarios are more reliable when done in cooperation with building project stakeholders. In this paper, 

the given scenarios for the example are introduced in section 2.7. 

2.5 Thermal and air flow rate models 

Indoor environmental conditions are calculated with a dynamic thermal model linked with a mass air flow balance 

model that includes large opening windows and is called COMETh [24]. This integrated model has been used by 

French thermal regulations since 2000 [25], first for summer thermal comfort, then for heating, cooling, 

ventilation, sanitary hot water and lighting consumptions. COMETh is acquainted with thermal design engineers 

at a national scale and can calculate indoor environment conditions for different occupant behaviours and under 

different climates. 

Thermal balance is computed with a 5RC equivalent electric representation of the building components, which is 

similar to the ISO 13790 [21] simplified model but has been slightly modified to improve the calculation of free-

running indoor temperatures. This calculation has been successfully compared to the ASHRAE 140 standard [26], 

including cases with hourly free float temperatures [27]. The operative temperature, Top (°C), is calculated at each 

hourly time step with air (Ta (°C)) and mean radiant (Trm (°C)) temperatures and assuming that convective and 

radiant transfers around the body have the same magnitude. 

 Top=
 𝑇𝑎+𝑇𝑟𝑚

2
 (1) 

Trm is obtained using the Walton radiation model [28]. Solar radiation flux is distributed on walls according to the 

thermal dynamic behaviour of the walls within an hour. Two types of walls are considered according to their 

hourly periodic penetration depth of a thermal wave, which is calculated based on ISO 13786 [29]: 

 thick walls, in which the thickness is larger than its hourly penetration depth, are in a transitory state, 

 thin walls, in which the thickness is smaller than its hourly penetration depth, are in a steady state. 

However, for each thick wall, the layer between the inner surface and the hourly penetration depth is in a steady 

state. Thus, this layer is also considered a thin wall. 

The daily thermal capacity of the walls is calculated according to ISO 13786 [29] and linked to the temperature 

node of thick walls. All thin walls and thin layers of thick walls are gathered in an equivalent thin wall, with a 
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node temperature linked to the air temperature node. The radiation flux absorbed by the temperature node of the 

equivalent thin wall corresponds to the ratio between the hourly and daily thermal capacities. The hourly thermal 

capacity of the equivalent thin wall is the sum of the hourly capacities of each thin walls or layers of thick walls 

calculated using ISO 13786 [29].  

The air change rate is calculated according to the De Gids and Phaff air flow model through large openings [30]. 

This model has been used for the IEA Annex 20 research, especially in single-sided ventilation studies [31], and 

is selected here because it is used in the European standard that addresses calculation methods for the determination 

of air flow rates in buildings, namely, EN 15242 [22]. This model also presents a good balance between the limited 

amount of input data available at the design stage and the model accuracy according to Larsen [32]. Moreover, the 

model provides a general expression of the ventilation rate Q (m3/s) through an open window as a function of T 

(K), the indoor-outdoor temperature difference Uwind, the wind velocity (m/s), and fluctuating terms:   

         𝑄 =
𝐴

2
× √𝐶1𝑈𝑤𝑖𝑛𝑑

2 + 𝐶2𝐻∆𝑇 + 𝐶3             (2) 

where A (m²) is the area of the window opening; H (m) is the height of the opening; C1 is a dimensionless wind 

coefficient equal to 0.001; C2 is the buoyancy constant equal to 0.0035; and C3 is the turbulence constant equal to 

0.01.  

For humidity balance, the incoming and outgoing dry air flow rates are supposed to be equal. Without cooling 

systems, the variation in absolute humidity is given by equation (3). 

 
𝑑𝑤𝑒𝑥

𝑑𝑡
=

∑ 𝑄𝑖𝑛(𝑤𝑖𝑛−𝑤𝑒𝑥)+𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐿𝑎𝑡𝑒𝑛𝑡 𝑙𝑜𝑎𝑑𝑠

𝑉𝜌𝑖𝑛𝑑𝑜𝑜𝑟
 (3) 

Qin is the incoming air flow rate (kg/s); win (kg/kg) is the absolute humidity of the incoming air; wex (kg/kg) is the 

absolute humidity exhausting from the dwelling; internal latent loads (kg/s); V is the dwelling volume (m3); and 

indoor (kg/m3) is the indoor air density. wex is assumed to be equal to the absolute humidity within the dwelling.  

The Cranck Nicholson method is used to link the thermal and air flow models. The time step result is the average 

between the end and beginning time step solutions. The solution at the end of the previous time step is assigned to 

the beginning of the next time step. Thus, the beginning temperature value is used to calculate the air flow rate 

through windows and the humidity balance at the end time step. 

The models assume that the indoor temperature and humidity are spatially homogeneous, and each wall has 

isothermal surfaces. The radiation balance is calculated for a cube with the same absorption and emissivity for all 

walls. To linearize the radiation equation, the inside wall temperatures must be similar. According to these 

assumptions, only an overall thermal feeling can be assessed, while the effects of draught, vertical air temperature 

differences or radiant asymmetry are not evaluated. 
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2.6 Thermal comfort and thermal stress indices 

Indices and their thresholds have to be selected to find the boundary between the thermal comfort area and heat 

stress. Therefore, a literature review was conducted. 

Goromosov [33] carried out studies in apartments in hot climates (outdoor temperatures ranging from 35°C to 

38°C). The outcomes suggest that people feel “comfortable” at an indoor temperature of 25°C, which is associated 

with a heart rate (HR) of 65 beats/min. People feel “warm” at 27°C (HR=68 beats/min), “hot” at 31°C (HR=72 

beats/min) and “hot and oppressive” at 34°C (HR=74 beats/min). 

Weihe reviewed the health impacts of adverse thermal conditions [34]. A range from 17°C to 31°C was defined 

as an acceptable range for thermal comfort neutrality without health impacts. Then, the symptoms of discomfort 

and health risks are listed, and they include fatigue, lack of appetite, and hyperthermia at temperatures higher than 

31°C, while the health effects are heat stroke and heart failure at temperatures significantly higher than 31°C [34] 

[35]. 

The Heat Index Chart (HIC) developed by the US National Oceanographic and Atmospheric Administration [36] 

provides, according to the temperature and humidity, physiological disorders in cases of prolonged exposure to 

heat. The health effects are classified in four levels: caution level (fatigue), extreme caution level (muscle cramps, 

physical exhaustion), danger level (heatstroke possible), extreme danger level (high risk of heat stroke). For 

sedentary activity (circa 1.2 met) and light clothing (circa 0.6 clo), the thermal comfort indices show that the 

comfort requirements are met as far as the Top does not exceed circa 26°C.  

The standards are accepted in France as supporting good design practices, and standard ISO 7730 [19] is used. 

This standard addresses the analytical determination and interpretation of thermal comfort using calculation of the 

PMV and PPD indices, and its scope is limited to moderate thermal environments, i.e., an air temperature below 

30°C.  

Those thresholds are mainly air or operative temperatures in a homogeneous environment. For the HIC index, the 

temperature is given with humidity assumptions, which are marked on the same temperature scale from thermal 

comfort to heat stress thresholds (Figure 4).  

 

  

 

 

 

 

Figure 4: Comfort and health continuum in warm and hot temperatures  
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The PPD was built with original data collected in a climate chamber [37]. The experimental device is therefore 

different from a room with a free-floating temperature, which may modify the interpretation of thermal comfort. 

The standard EN 15251 [38] provides in its informative annex an adaptive thermal comfort approach for rooms 

without air conditioning. According to this approach, thermal comfort limits are provided by an indoor temperature 

threshold that depends on the outside temperatures on the previous day. The upper limit of the acceptable indoor 

temperature in calm air is 32.7°C, and it can rise to 34°C with a 0.5 m/s air velocity. These thresholds are greater 

than the temperature recommended by the World Health Organization (WHO). Thus, to secure the design, 

thresholds proposed by adaptive comfort are not used.  

A set of standards is available for continuous assessment of the thermal environment from thermal comfort to heat 

stress. ISO 15265 standard [39] addresses the risk assessment strategy for the prevention of stress or discomfort 

and recommends using ergonomic indices measured or calculated depending on whether the building is in the 

operating or design stage. The recommendations of this standard are used when possible. 

Indeed, the thermal comfort and heat stress indices must fit together and be compatible with the physical models 

used to calculate the indoor thermal environment. The choice of indicators is therefore dependent on the thermal 

model, which requires inputs, including occupant behaviour and activity and their associated metabolic heat loads, 

the opening of windows and use of solar protection, and assumptions regarding clothing insulation levels. The 

spatial and temporal scales of the indicators must be mutually consistent and consistent with the thermal model 

hourly time step and the spatial homogeneity of the indoor thermal environment.  

These criteria and ISO 11399 [40] are then used to select two main standards with adjacent scopes: 

 ISO 7730 [19] for a moderate thermal environment with a Predicted Mean Vote (PMV), 

 ISO 7243 [20] for a hot thermal environment with a Wet-Bulb Globe Temperature (WBGT). 

Both indices are consistent with an hourly time step and are calculated to express thermal comfort or heat stress 

for the body as a whole in a homogeneous indoor environment during the time step. The thresholds of the indices 

depend on assumptions relative to occupant behaviours, which are used to calculate the indoor thermal 

environment. 

The Predicted Percentage Dissatisfied (PPD) can be obtained from the PMV. In this study, Ta, Trm and relative 

humidity (RH) are calculated by the model, while indoor air velocity (Va), metabolic rate (Met), and clothing 

insulation (Clo) are given data. However, Va is not calculated using the thermal model. To evaluate thermal 

comfort, two air velocities are used to calculate the PPD, one low (0.1 m/s), representative of still air, and the other 

high (0.4 m/s), representative of an air flow pattern that is limited to avoid annoying draughts [41].  
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The WBGT index is a weighted sum of the natural wet-bulb temperature, tnw (°C) and globe temperature, tg (°C). 

For indoor conditions, the WBGT formula without sun loads is used: 

 WBGT=0.7 tnw + 0.3 tg (4) 

The WBGT is to be measured. Thus, ISO 7726 [42] is used to establish the link with the thermal model. tg can be 

assumed to be equal to the Top calculated with the model. To obtain tnw, the natural wet-bulb temperature from 

the Malchaire formula [43] is used: 

 (𝑡𝑛𝑤 − 𝑡𝑤𝑏) =
0.16(𝑡𝑔−𝑡𝑎)+0.8

200
(560 − 2𝑅𝐻 − 5𝑡𝑎) − 0.8 (5) 

All temperatures are in °C, and RH is in percent. All parameters are calculated by the model except twb, which is 

the psychrometric wet-bulb temperature. According to psychrometric chart, twb is the cross-section of a continuous 

enthalpy curve and an air saturation curve. Enthalpy is calculated with ta and RH, as given by the model. However, 

Malchaire [43] specifies that good accuracy is obtained for Va values below 0.15 m/s. For an air velocity higher 

than 0.15 m/s, the tnw is lower than the natural wet-bulb temperature calculated with formula (5) and higher than 

twb. Thus, for air velocities greater than 0.15 m/s, the WBGT ranges from a low value calculated with formula (4) 

where tnw is replaced by twb to a high value calculated with formula (4) using tnw. This range is possible if Ta and 

Tg are close. According to ISO 11399 [40], the WBGT allows a quick and easy evaluation of thermal conditions. 

When WBGT thresholds are exceeded, the ISO 11399 [40] standard recommends using Swreq (W/m²), the required 

sweat rate from ISO 7933 [44]. Therefore, Swreq is used for a high level of risk. Swreq is more precise than WBGT 

and presents exposure thresholds of less than one hour, which is below the time step of the thermal model used 

here. 

The selection of indices and their thresholds is not imposed; rather, it requires technical and scientific approaches 

and the designer and building owner bear liabilities. In the paper, the use of standards, especially the first alert 

level, i.e., the WBGT, provides stakeholders a safe level in the design of buildings. 

A practical approach using an example is used to determine the boundary between thermal comfort and heat stress. 

2.7 Example description 

The climate conditions, dwelling characteristics and occupant behaviours that were selected for numerical 

simulation are given in the following sections. 

Without future climate data available for the numerical model (a set of 8 meteorological parameters with an hourly 

time step), a heatwave episode is chosen according to the HHWWS (§2.3). The selected period is the first week of 

July 2015 in the Paris-Orly area in France. Table 1 summarizes the IBM thresholds and daily values. 

 

 

Text published in Energy and Buildings, 183, January 2019, p. 408-417 [https://doi.org/10.1016/j.enbuild.2018.10.033]

11



IBM Thresholds  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

IBMin (°C) 21 15 16 16 18 19 20 21 

IBMax (°C) 31 29 28 31 34 35 36 33 

Table 1: IBM thresholds and daily values during the selected heat wave 

A three-room middle-floor dwelling without an air-conditioning system is selected. The dwelling has a 68 m² 

surface area and a 170-m3 volume, with a single-sided ventilation that is mainly oriented to the south (Figure 5). 

 

Figure 5: Scheme of the dwelling geometry 

The insulation and airtightness levels that were recommended in Effinergie guidebooks [45] are used. A 0.19 

W/(m².K) U value is used for the walls, and a 0.3 value is used for the temperature correction coefficient for the 

buffer zone (i.e., the stairwell). External insulation and the concrete structure lead to heavy inertia. Daily and 

hourly thermal capacities of each wall are calculated with ISO 13786 [29]. The Th-I French professional rules [46] 

are used to obtain dwelling thermal capacity C kJ/(K.m²), which is given per square meter of the dwelling surface 

area. The daily C value is 264 kJ/(K.m²), and the hourly C value is 115 kJ/(K.m²). The window characteristics 

(Table 2) are selected with the Th-S French professional rules [46]. Diffusing blinds completely cover the windows 

but allow partial light. This choice is efficient in protecting the indoor environment from heat and is a safe solution 

in a heat-related health risk approach.  

Area (m²) 

Uw 

(W/(m².K)) 

Direct solar 

transmittance 

[47] 

Secondary internal 

heat transfer factor 

[47] 
Description 

11 (8.26 

south and 

2.73 north) 
1.6 0.09 0.05 

4/16/4 double glazing, low-emissive glass, 

argon-filled gap, light-coloured outer solar 

protection, solar transmission rate of 0.2. 

Table 2: Window characteristics 

According to the French regulations [48], the mechanical ventilation system provides air renewal of approximately 

0.3 air change per hour (ACH) and runs at all the times. The airtightness of the building envelope leads to an 

infiltration air flow rate of less than 0.1 ACH. The southern windows are open when the outside temperature is 
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below the indoor temperature, which is supposed to be an optimal cooling strategy. The northern windows are 

never open. The air flow rates through the windows are calculated according to the De Gids model [30], with a 1.5 

m height for the opening and 3 opening window areas of 0 m², 1 m² and 5 m².  

Internal heat loads and humidity production are given according to human activity. Three occupants are supposed 

to be present in the dwelling throughout the day and awake from 8 AM to 11 PM, as in the French thermal 

regulations [49]. The metabolic data are selected to match the ISO 7730 [19] and ISO 7243 [20] scopes. The 

activity of each occupant is assumed to be sedentary (1.2 Met, i.e., 126 W). Body water vapour losses are not 

dependent on the indoor temperature. For each occupant, an 85 g/h metabolic vapour production is used, which 

matches sedentary activity at 28°C [50]. At each hourly time step, the appliance loads range from 8 to 12 W/m² 

during the time awake.  

The PMV is calculated according to ISO 7730 [19], with 1.2 Met, 0.6 Clo for clothing insulation, and two air 

velocity (Va) values, 0.1 m/s and 0.4 m/s. These assumptions are also used to select the threshold proposed for the 

WBGT; ISO 7243 [20] recommends not exceeding a 29°C WBGT for unacclimated people. 

3 RESULTS  

Table 3 gives the air change rates and temperatures during the investigated period. The mean, standard deviation 

(SD), minimum and maximum (min : max) values are given for the three open-window conditions.  

Open windows 

(area, m²) 

ACH (h-1) 

Mean   SD (min : max) 

Top (°C) 

Mean   SD (min : max) 

TOutside (°C)  

Mean   SD (min : max) 

No (0 m²) 0.4   0.007 (0.38 : 0.41) 37.6    1.7   (34 : 40) 26    5.3  (17 : 39) 

Low (1 m²) 1.4    0.3   (0.65 : 1.9) 29.5   1.9   (25 : 33) 26    5.3  (17 : 39) 

High (5 m²) 7.6      1.6    (3.5 : 9.8) 26.6   1.9   (23 : 30) 26    5.3  (17 : 39) 

Table 3: Temperatures and air change rates during the heatwave 

In these simulations, opening windows at the right time is needed to avoid heat stress. Widely opened windows 

increase the ventilation rate, and the maximum and minimum Top can be lowered by approximately 10°C. 

Increasing open window areas from 1 to 5 m² leads to a 3°C decrease in Top. To better understand the interaction 

between natural ventilation and the indoor environment, the indoor temperature courses are represented in Figure 

6. The green circles represent the Top for the high-airing condition, and the blue crosses represent the Top for the 

low-airing condition. The upper limit of the thermal comfort range, the red line, is calculated for a PPD under 10% 

according to ISO 7730 [19], with a 0.4 m/s air velocity and assuming a 50% relative humidity. This threshold is 

exceeded on the 5th and 6th days even with a high open window area. 
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Figure 6: Impact of outside temperature on indoor temperatures during the heatwave.  

The high and low ventilation rates lead to similar temperature courses. High ventilation reduces the gap between 

the indoor and outdoor night temperatures (solid black line). During the final five days of the heatwave, the 

operative temperature ranges from 25°C to 30°C when the windows are open wide (5 m²) and from 27°C to 33°C 

for a 1 m² window opening. These values are lower than the outside maximal temperature, which reaches 39°C. 

In these examples, natural ventilation is efficient at reducing the temperature. Nevertheless, it is unclear whether 

the indoor environment is comfortable or if it causes heat stress. 

Assumptions related to metabolic activity introduced in §2.7 are used to select the threshold proposed for the 

WBGT, as ISO 7243 [20] recommends not exceeding a 29°C WBGT for unacclimated people. Each index is then 

calculated during the awake period. Table 4 presents the main results relative to thermal comfort and heat stress. 

Multiple times, Ta and Trm exceed the recommended comfort standard limits. When this situation occurs, the letters 

[O.R.] (Out of Range) are added after the PPD values in Table 4. For a 0.4 m/s air velocity, two WBGT values are 

given in the table: an overestimation value calculated with tnw from the Malchaire formula [43] and an 

underestimation value, in italics and heavily lined, calculated by replacing tnw with the dry bulb temperature twb. 
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Open 

windows 

(area m²) 

Air 

velocity 

(m/s) 

Relative 

Humidity (%) 

min : max 

PPD (%) 

Mean   SD  (min : max) 

WBGT (°C) 

Mean   SD  (min : max) 

No (0 m²) 

0.1 32 : 45 99.9   0.32  (98 [O.R] : 100 [O.R])  29.5    0.9  (27.4 : 30.7) 

0.4 32 : 45 99.9   0.25  (98 [O.R] : 100 [O.R])  

29.5    0.9  (27.4 : 30.7) 

29.2    0.9  (27.1 : 30.4) 

Low (1 m²) 

0.1 31 : 61 51.5    23.7  (7 : 87 [O.R]) 23.5    1.5  (20.4 : 26.4) 

0.4 31 : 61 42.6    25.25  (5 : 86 [O.R]) 

23.5    1.5  (20.4 : 26.4) 

23.1    1.6  (19.9 : 26.2) 

High (5 m²) 

0.1 39 : 69 23.2    18    (5 : 67 [O.R]) 22.2      2  (18.7 : 25.5) 

0.4 39 : 69 17.6    14.5  (5 : 59 [O.R]) 

22.2      2  (18.7 : 25.5) 

21.9    2.1  (18.1 : 25.2) 

Table 4: Indoor thermal comfort and heat stress indices during the heatwave 

When windows are closed, the indoor environment conditions greatly deteriorate, and the WBGT awareness limits 

are exceeded. With wide-open windows (5 m², high area), the indoor conditions are generally maintained at a 

moderate thermal environment within the scope of the standard. The calculated WBGT is lower than the proposed 

standard limits. In the two contrasting situations, the ergonomic standard indices are reliable. For a 1 m² window 

opening, the results are more difficult to analyse than for a wide opening. The mean PPD value for a 0.4 m/s air 

velocity is close to the recommended ISO 7730 limits [19] but does not reach the thermal stress threshold.  

To study the boundaries between comfort and heat stress, the PPD is plotted versus the WBGT for the example 

with a low opening area (Figure 7). Both indices are calculated during the heatwave.  

 

Figure 7: PPD versus WBGT for a building with a 1 m² window opening during the heatwave  
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Blue and red circles indicate the PPD calculated with a 0.1 m/s air velocity, and green and black dashes indicate 

the PPD calculated with a 0.4 m/s air velocity for a range of WBGT values. Red circles and black dashes indicate 

that the PPD is calculated out of the standard recommended range. The PPD values calculated with a 0.1 m/s air 

velocity (blue circles) are mainly above the x-axis, which is at 10% dissatisfied. Thus, according to ISO 7730 [19], 

the indoor thermal environment is often uncomfortable. Due to a 0.4 m/s air velocity, thermal comfort is improved 

with an increased number of hours during which the PPD is below 10% as shown by the green dashes. 

For PPD values above 60% for a 0.15 m/s Va and 45% for a 0.4 m/s Va, the moderate thermal environment range 

is exceeded. Numerous red circles and black dashes indicate that the indoor environment is often over the moderate 

thermal environment limits. However, the red circles and black dashes are also below the heat stress limits 

according to the 29°C WBGT threshold, and thus, according to ISO 7243, reducing the thermal stress is not 

required, and a more detailed analysis, i.e., calculation of the required sweat rate according to ISO 7933 [44], is 

not necessary. However, for a 33°C Top (Table 3), it is optimistic to consider that the situation provides healthy 

conditions. Indeed, when 32°C is exceeded, the ISO 15265 [39] observation scale recommends preventive steps.  

Moreover, the different ways in which indoor air humidity affects WBGT and PPD make it difficult to distinguish 

between the moderate thermal range and the heat stress threshold. In our example, the indoor humidity is in a 

narrow range most of the time, with a 44% mean RH value and 7.5% SD, although it occasionally ranges from 30 

to 60% (Table 4). Thus, for a WBGT between 23°C and 26°C, the indoor environment can be in the moderate 

thermal range or somewhat outside this range without entering the heat stress range. Thus, in this situation, the 

gap between the two standard indices is too large to determine whether the indoor environment is safe. 

4 DISCUSSION 

PPD and WBGT are attractive indices because they can be obtained from physical environmental parameters and 

are consistent with the building thermal model. These indices and thresholds from the literature help to build the 

first step towards a continuum between thermal comfort and heat stress.  

According to the thresholds, the method is limited to healthy people without special requirements. Although the 

scope is limited to an apparently homogeneous population, the observed gap indicates that a sharp border between 

thermal comfort and heat stress does not appear.  

Two physical parameters, namely, Va and RH, are striking. The weight assigned to humidity in the WBGT seems 

too strong for the moderate thermal environment limits. Moreover, the WBGT thresholds appear to be too high 

for low air velocities. Thus, a return to the initial experimental conditions used to build WBGT and its thresholds 

is necessary. G.M. Budd [51] explains that the impacts of evaporation increase with temperature. However, the tnw 

weight factor is set to 0.7 in the WBGT. In the moderate thermal environment (44% mean RH and 7.5% SD) 
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studied, the dry temperature weight factor (set at 0.3) should increase and lead to an increase in the WBGT in the 

tested example with a 1 m² window opening. The WBGT does not indicate air velocity reduction effects. Because 

the WBGT was developed for an outside environment, the Va values that led to the identification of the WBGT 

safety thresholds were probably higher than those in our study. However, heat resilience is strongly reduced at low 

Va values because of the reduction of air potential evaporation [51]. For an indoor environment without wind, the 

existing WBGT limits might be reduced. Meyer, Rapp and Vogt [52] recommend avoiding the exceedance of a 

25°C value for the WBGT, which would lead to an overlap of the moderate thermal environment and heat stress 

ranges in the calculated example. A 25°C WBGT leads to a PPD above 48% and 36% for a 0.15 m/s and a 0.4 m/s 

air velocity, respectively. The overlap occurs far from the 15% PPD, the thermal comfort threshold recommended 

by the annex A of ISO 7730 [19]. 

WBGT was invented in the 1950s to avoid heat illness in the US army [51] and thus is strongly dependent on this 

type of population. The PMV is also focused on healthy people, whereas the WBGT was invented for a population 

that is likely highly resistant to heat stress. The difference in thermal stress sensitivity of these populations also 

explain the observed gap. 

Many of the detailed relationships between indoor thermal climate and human health are poorly understood in 

epidemiological terms. The physiological responses to a given thermal stress are variable; thus, it is difficult to 

accurately predict an individual response. Indeed, according to Candas [53], two kinds of adaptation to heat exist. 

The first adaptation is a behavioural response to reduce heat stress, and the second adaptation is a physiological 

response that limits the consequences of heat strain under heat stress. The physiological response depends on the 

sensitivity of an individual and their level of acclimatisation. However, according to Hanna [54], acclimatisation 

occurs after long-term heat exposure mixed with gradual physical activity. Thus, acclimatisation depends on the 

physiological state of an individual and their training. Thus, a comfort to health risk continuum should be built for 

each type of person according to their physiology and training. The distribution of people through three levels of 

acclimatisation, as proposed by Hanna [54], could be used to establish a link between the thermal comfort range 

and heat stress threshold for each of those acclimatisation levels. 

5 CONCLUSIONS AND PERSPECTIVES  

The objective of this study was to determine whether natural ventilation could be a sustainable solution to protect 

occupants from heat-related health risks during heatwaves in the context of adaptation to climate change. The 

efficiency of this passive system to refresh dwellings depends strongly on the local climate, building characteristics 

and occupant behaviour. Because of their high variability, a generic answer regarding the ability of the system to 

avoid heat related health risks cannot be given. A method using standards dedicated to professional building design 
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was considered relevant and was developed, and it only pertains to healthy people at sedentary activity levels and 

without any special requirements. 

This method was tested using an example to determine whether it is functional. Thus, the cooling potential of the 

ventilative cooling calculated for this example cannot be extended to other situations. Nevertheless, these 

preliminary results are promising because the indoor environment in the tested example is safe if the windows are 

widely opened at the relevant times.  

However, some tools are missing or need to be improved to achieve a sufficiently effective method before use by 

professionals. A method to select future climate data with an appropriate confidence range and occurrence 

probability must be developed. At the design stage, the thermal and air flow models should be selected according 

the balance between their accuracy and the availability of their input data. A more objective approach than this 

method would be to provide a confidence range for each calculated index. A sensitivity study, which was limited 

here to windows opening conditions, could also be performed. In this paper, no specific tool is recommended. Our 

choice was driven by the wish to be accessible and recognizable to building designers and provide results in 

accordance with ASHRAE 140 standard [26]. 

At the intersection of PMV/PPD comfort and WBGT risk indicators, the design of an effective solution can 

theoretically be balanced. However, a gap is observed between the legitimate domain of ISO 7730 [19], which is 

used for PPD calculation, and the WBGT thresholds that were proposed in ISO 7243 [20]. This gap can be 

explained by the discrepancies between the standard experimental conditions used to quantify the indices. Thus, 

further investigation is required to identify the threshold values between thermal comfort and heat-related health 

risks. Investigations could be enlarged to more vulnerable people and those with different metabolisms. The 

acclimatisation level of people has to be known to enhance the continuum. The distribution of the population 

proposed by Hanna [54] could be used. 

Moreover, two key issues are suggested because of their strong impact on the potential of ventilation to protect 

people during heatwaves: the selection of both the occupant scenarios and the hot periods. 

In this study, the potential to cool the building was assessed using the optimal scenario. The choice of scenarios 

should be discussed with stakeholders to consider realistic occupant behaviours to the extent possible. Building 

designers and owners should be involved in this choice because they provide advice to occupants to adapt their 

behaviours during heatwaves. 

In this study, climate data were selected at the heatwave alert level according to the HHWWS. Midler climate 

conditions should be tested to determine the ability of naturally ventilated dwellings to protect people from thermal 

Text published in Energy and Buildings, 183, January 2019, p. 408-417 [https://doi.org/10.1016/j.enbuild.2018.10.033]

18



stress. Indeed, according to the dynamic thermal response of the dwelling, the indoor environmental conditions 

could be unsafe under mild weather conditions, typically at a HHWWS warning level or seasonal vigilance. 
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