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STABILITY OF THE LOGARITHMIC SOBOLEV INEQUALITY VIA THE

FÖLLMER PROCESS

RONEN ELDAN, JOSEPH LEHEC, AND YAIR SHENFELD

Abstract. We study the stability and instability of the Gaussian logarithmic Sobolev inequal-
ity, in terms of covariance, Wasserstein distance and Fisher information, addressing several open
questions in the literature. We first establish an improved logarithmic Sobolev inequality which
is at the same time scale invariant and dimension free. As a corollary, we show that if the co-
variance of the measure is bounded by the identity, one may obtain a sharp and dimension-free
stability bound in terms of the Fisher information matrix. We then investigate under what
conditions stability estimates control the covariance, and when such control is impossible. For
the class of measures whose covariance matrix is dominated by the identity, we obtain optimal
dimension-free stability bounds which show that the deficit in the logarithmic Sobolev inequal-
ity is minimized by Gaussian measures, under a fixed covariance constraint. On the other hand,
we construct examples showing that without the boundedness of the covariance, the inequality
is not stable. Finally, we study stability in terms of the Wasserstein distance, and show that
even for the class of measures with a bounded covariance matrix, it is hopeless to obtain a
dimension-free stability result. The counterexamples provided motivate us to put forth a new
notion of stability, in terms of proximity to mixtures of the Gaussian distribution. We prove new
estimates (some dimension-free) based on this notion. These estimates are strictly stronger than
some of the existing stability results in terms of the Wasserstein metric. Our proof techniques
rely heavily on stochastic methods.

1. Introduction

1.1. Overview. The logarithmic Sobolev inequality is one of the fundamental Gaussian func-
tional inequalities [20]. The inequality was proven independently in the information-theoretic
community by Stam [26] and in the mathematical-physics community by Gross [17]. The form
of the inequality which we consider in this paper states that for any nice enough probability
measure µ on Rn,

H(µ | γ) ≤ 1

2
I(µ | γ). (1)

Here γ is the standard Gaussian measure on Rn with density

γ(dx) = (2π)−
n
2 e−

|x|2
2 dx,

and H(µ | γ), I(µ | γ) are the relative entropy and relative Fisher information respectively:

H(µ | γ) =

∫
Rn

log

(
dµ

dγ

)
dµ

and

I(µ | γ) =

∫
Rn

∣∣∣∣∇ log

(
dµ

dγ

)∣∣∣∣2 dµ.
The inequality (1) is sharp as can be seen by taking µ to be any translation of γ, and in fact
these are the only equality cases as was proved in [6]. This characterization naturally leads to
the question of stability. That is, supposing that the deficit

δ(µ) :=
1

2
I(µ | γ)−H(µ | γ)
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is small, in what sense is µ close to a translate of γ? The study of stability questions for
Gaussian inequalities is an ongoing active area of research with many applications [15], [23].
The precise notion of stability is context-dependent, but a common thread is the desire to
make the stability estimates dimension-free. This is because the Gaussian measure itself is
inherently infinite-dimensional, so we expect functional inequalities about Gaussian measures in
Rn to extend to infinite dimensions. Indeed, the infinite-dimensional nature of the logarithmic
Sobolev inequality is crucial to its applications to quantum field theory, which was the original
motivation of Gross. For example, it was proven in a series of works [7], [23, 24], [12], [3] that
the Gaussian isoperimetric inequality (which implies the log-Sobolev inequality) enjoys such
dimension-free estimates. The logarithmic Sobolev inequality however, turns out to be much
more delicate. Up until now, the state of affairs was that if only minimal assumptions are
imposed on µ, then natural dimension-free stability estimates were almost completely absent
(but see [19] for such estimates in terms of Stein deficit).

1.2. Fisher information matrix and deficit. Our first observation is that the log-Sobolev
inequality can be self-improved in a dimension-free way. This observation then leads to natural
stability results, provided that cov(µ) � Idn. Let us formulate first the log-Sobolev inequality in
an alternative way. Define the entropy and Fisher information of µ with respect to the Lebesgue
measure by

H(µ | L) =

∫
Rn

log

(
dµ

dx

)
dµ,

and

I(µ | L) =

∫
Rn

∣∣∣∣∇ log

(
dµ

dx

)∣∣∣∣2 dµ.
The log-Sobolev inequality (1) then reads

H(µ | L)−H(γ | L) ≤ 1

2
(I(µ | L)− n) .

It is well known (see for instance the very end of [6]) that the above inequality can be improved
via scaling. Let X ∼ µ and let σ > 0. Computing the entropy and Fisher information of the
law of σX, and optimizing over σ, shows that

H(µ | L)−H(γ | L) ≤ n

2
log

(
I(µ | L)

n

)
. (2)

Inequality (2) is known as the dimensional logarithmic Sobolev inequality. Our first result shows
that this bound is sub-optimal, and that one should consider the individual eigenvalues of the
Fisher information matrix:

I(µ | L) :=

∫
Rn

(
∇ log

(
dµ

dx

))⊗2

dµ.

This matrix is of course related to the Fisher information via Tr[I(µ | L)] = I(µ | L).

Theorem 1. Let µ be a probability measure on Rn. Then

H(µ | L)−H(γ | L) ≤ 1

2
log det [I(µ | L)] . (3)

Theorem 1 improves upon (2) by the AM/GM inequality. Note also that (3) is at the same
time scale invariant and dimension-free: both sides of the inequality behave additively when
taking tensor products.

Remark 1. After the first version of this work was released, we realized that Theorem 1 had
already been proven by Dembo in [10]. Its application to the stability of the logarithmic Sobolev
inequality, see Corollary 2 below, appears to be new.
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Remark 2. A reverse form of Theorem 1 is known when the measure is log-concave. Observe
first the integration by parts identity

I(µ | L) = −
∫
Rn

∇2 log

(
dµ

dx

)
dµ.

The reverse form of Theorem 1 then asserts that if µ is log-concave and if log det is moved inside
the integral in the right-hand side of (3), then the inequality is reversed, see [1]. See also [5] for
a simpler proof based on the functional Santaló inequality.

Self-improvements of the form of (2) and (3) lead to stability results for the log-Sobolev
inequality, provided that the covariance of µ is bounded by the identity. Define the function
∆(t) := t − log(1 + t) for t > −1. It was observed in [4] that if Eµ[|x|2] ≤ n, then (2) implies
that

δ(µ) ≥ n

2
∆

(
I(µ | γ)

n

)
. (4)

From (4) one can deduce weaker but more amenable stability statements. For example,

δ(µ) ≥ c

n
W4

2(µ, γ) (5)

for some universal constant c, see [4] for the details. Here, W2(µ, γ) is the Wasserstein two-
distance between µ and γ. In general, the p-Wasserstein distance (p ≥ 1) for probability measures
µ, ν is defined as

Wp(µ, ν) := inf
X,Y

{
E[ |X − Y |p]1/p

}
, (6)

where the infimum is taken over all couplings (X,Y ) of (µ, ν). A problematic feature of both
bounds, (4) and (5), is that they are dimension-dependent: Letting formally n tend to +∞,
we see that the lower bound on the deficit tends to 0 in both cases (observe that ∆(ε) ∼ ε2/2
when ε tends to 0). Note also that the log-Sobolev deficit behaves additively when taking tensor
products, and that neither of the two lower bounds (4) and (5) does. In particular if µ is the
product of a 1-dimensional measure by a (n−1)-dimensional standard Gaussian, the lower bound
is of order 1/n in both cases, whereas the deficit is of order 1. On the other hand, we can deduce
from Theorem 1 the following dimension-free estimate.

Corollary 2. Let µ be a probability measure on Rn such that Eµ[x⊗2] � Idn, and let {βi}ni=1 be
the eigenvalues of its Gaussian Fisher information matrix I(µ | γ). Then

δ(µ) ≥ 1

2

n∑
i=1

∆(βi). (7)

Again, by concavity of the logarithm, (7) is a strict improvement on (4).
To see how Corollary 2 follows from Theorem 1, note that (3) can be rewritten as

δ(µ) ≥ 1

2

n∑
i=1

∆(αi − 1), (8)

where α1, . . . , αn are the eigenvalues of the Fisher information matrix of µ with respect to the
Lebesgue measure. Using the integration by parts identity

I(µ | L)− Idn = I(µ | γ) + Idn − Eµ[x⊗2]

we see that if Eµ[x⊗2] � Idn, then

I(µ | L)− Idn � I(µ | γ) � 0.

Since ∆ is increasing on [0,+∞), the inequality (7) thus follows from (8).
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Remark 3. Corollary 2 bears an interesting formal resemblance to the following result. Let T
be the Brenier map from µ to γ and let {κi(x)}ni=1 be the eigenvalues of the map DT (x)− Idn.
Then it can be shown [9] that

δ(µ) ≥
n∑
i=1

Eµ[∆(κi)].

For further appearances of the map ∆ as a cost function in transportation distance, see [4].

Let us note that although Theorem 1 (and thus Corollary 2) follow from a simple scaling
argument (see section 2), it is arguably the first natural dimension-free stability result that
has minimal assumptions on µ. To the best of our knowledge, the only known dimension-free
estimates of the form of Corollary 2 are the results of [15], which impose strong conditions of
the measure µ, namely that it satisfies a Poincaré inequality. Our emphasis on the eigenvalues
of the Fisher information matrix rather than their average (Fisher information) also seems to
be new.

1.3. Covariance and Gaussian mixtures. As we saw, in order to get stability estimates
for the deficit from the self-improvements of the log-Sobolev inequality, we need to assume
that Eµ[|x|2] ≤ n. The phenomenon that the size of cov(µ) serves as a watershed for stability
estimates has already been observed in the literature, but the precise connection has remained
unclear. Indeed, [19] raises the question regarding the relation between the distance of the
covariance of µ from the identity, and the possible lower bounds on the deficit. Our next result
completely settles this question.

Theorem 3. Let µ be a probability measure on Rn and let λ := {λi}ni=1 be the eigenvalues of
cov(µ). Then

δ(µ) ≥ 1

2

n∑
i=1

1{λi<1}(λ
−1
i − 1 + log λi). (9)

In particular, if cov(µ) � Idn, then

δ(µ) ≥ 1

2

n∑
i=1

(λ−1
i − 1 + log λi) = δ(γλ)

where γλ is a Gaussian measure on Rn having the same covariance matrix as µ.
On the other hand, this becomes completely wrong if we remove the hypothesis on the covari-

ance matrix, even in dimension 1: there exists a sequence (µk) of mixtures of Gaussian measures
on R such that var(µk)→∞ while δ(µk)→ 0.

The moral of Theorem 3 is, that if cov(µ) � Idn, then the deficit δ(µ) controls the distance
of cov(µ) to the identity. For example, a weaker bound which can be deduced from (9) using
1
x − 1 + log x ≥ 1

2(x− 1)2 for x ∈ (0, 1] is,

δ(µ) ≥ 1

4
‖cov(µ)− Idn‖2HS ,

where the norm on the right hand side is the Hilbert-Schmidt norm. On the other hand, if the
covariance of µ is not a priori bounded by the identity, then one can have an arbitrarily small
deficit with arbitrarily large variance.

Remark 4. Theorem 3 can also be phrased as a statement about minimizing the deficit subject
to a covariance constraint. For simplicity let us consider the one-dimensional situation. Fix a
scalar σ > 0. Of all distributions µ with variance σ, which one minimizes δ(µ)? Theorem 3
shows that the answer is dramatically different depending on whether or not σ is greater than
1. (If σ = 1 then obviously µ = γ minimizes δ(µ).) If σ < 1, then the minimizer is the Gaussian
measure with variance σ. On the other hand, if σ > 1, then by taking µ to be an appropriate
mixture of Gaussians, we can make δ(µ) smaller than the Gaussian with variance σ.

The Gaussian mixtures in Theorem 3 served as counterexamples to stability estimates in
terms of the distance of cov(µ) from the identity. In fact, such mixtures show the impossibility
of many other stability estimates:
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Theorem 4. For m ∈ Rn let γm,Id be the Gaussian measure centered at m with identity co-
variance matrix. There exists a sequence (µk) of probability measures on R, each of which is a
mixture of two Gaussian measures of variance 1, satisfying δ(µk)→ 0 and

lim
k→∞

inf
m∈R
{W1(µk, γm,Id)} = +∞.

Additionally, there exists a sequence of dimensions n(k) ↑ +∞ and a sequence (µk) of isotropic
(i.e. centered with identity as covariance) measures on Rn(k), satisfying δ(µk) = O(n(k)−1/3)→
0 and

inf
m∈Rn(k)

{W2(µk, γm,Id)} = Ω(n(k)1/6)→ +∞.

The first statement shows that the log-Sobolev inequality is unstable for W1, even in dimension
1. The second statement shows that even for isotropic measures, there is no dimension free
stability result for W2. Note however that our second counterexample does not work for W1;
as far as we know it could still be the case that δ(µ) ≥ cW1(µ, γ)2 for every isotropic µ on Rn.
(Recall that by Jensen’s inequality we have W1(µ, ν) ≤ W2(µ, ν).) Explicit counterexamples
to stability were discussed recently in the literature, see [18]. These examples however are
complicated and require a lot of tedious computations while ours are completely elementary.
We just observe that Gaussian mixtures have small log-Sobolev deficit, see Proposition 5 below.
Similar Gaussian mixture examples can be found in the context of stability of the entropy power
inequality, see [8] and references therein.

Proposition 5. Let p be a discrete measure on Rn and let S(p) = −
∑
p(x) log p(x) be its

Shannon entropy. Then

δ(p ∗ γ) ≤ S(p).

1.4. Decompositions into mixtures. If we take stock of the results in the preceding sections,
we see that while a result of the form

δ(µ) ≥ c

n
W4

2(µ, γ)

holds under the assumption that Eµ[|x|2] ≤ n, we cannot replace the right hand side by
c′√
n

W3
2(µ, γ), let alone c′′W2

2(µ, γ). (These bounds increase in strength since W2
2(µ, γ) ≤ 2n

under the assumption Eµ[|x|2] ≤ n.) As we saw, mixtures of Gaussians pose counterexamples
to such bounds. Our next result shows that in a certain sense, these counterexamples are the
only obstacles.

Theorem 6. Let µ be a probability measure on Rn. Then there exists a measure ν on Rn such
that

δ(µ) ≥ 1

15

W3
2(µ, ν ∗ γ)√

n
, (10)

and so that ν is a Dirac point mass whenever δ(µ) = 0.

In fact, that a small deficit implies that µ is close to being a mixture of Gaussians, is an
implication which comes out naturally from our stochastic proof technique as we will see below.
The relation between approximate equality in the log-Sobolev inequality and proximity to mix-
tures of product measures, appears in a recent work of Austin [2] in a more abstract setting of
product spaces. Given Theorem 6 and Proposition 5 we pose the following question.

Question 7. Given a probability measure µ on Rn, is it true that there exists a discrete proba-
bility measure p on Rn satisfying S(p) ≤ C δ(µ) and

W2
2(µ, p ∗ γ) ≤ C δ(µ),

where C is a universal constant?

Note that both sides of the inequality above behave additively when taking tensor products.
The inequality is thus completely dimension-free, which is our main motivation for it.
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Remark 5. While the Wasserstein distance is a bona fide distance between probability measures,
in the context of the log-Sobolev inequality it seems more natural to work with lower bounds
which are expressed in terms of relative entropy and relative Fisher information. Thus one may
wonder, whether it is possible to replace the lower bound on the deficit in Question 7 by the
relative entropy or Fisher information between µ and a mixture of Gaussians. We focus on the
Wasserstein two-distance distance since by the log-Sobolev and Talagrand’s inequalities such
results are weaker. Moreover, our decomposition results are easier to prove for the Wasserstein
distance.

As a step towards answering this question, we prove that an estimate similar in spirit does
indeed hold. We show that a random vector distributed like µ, can be written as the sum of
two random vectors which are orthogonal in expectation, one of which is close to a Gaussian in
a dimension-free way.

Theorem 8. Let µ be a probability measure on Rn and let X ∼ µ. There exists a decomposition

X
D
= Y +W with the property that E[〈Y,W 〉] = 0, such that

δ(µ) ≥ 1

2
W2

2(ν, γ)

where Y ∼ ν.

Theorem 8 can be seen as an improvement on (5). Indeed, assume that Eµ[|x|2] ≤ n. The
theorem implies that

W2(µ, γ) ≤W2(µ, ν) + W2(ν, γ) ≤ E[|W |2]1/2 +
√

2δ(µ).

Moreover, since E[〈Y,W 〉] = 0, we have

E[|W |2] = E[|X|2]− E[|Y |2] ≤ n− E[|Y |2].

If δ(µ) ≥ Cn, then (5) holds trivially, so we can assume additionally that δ(µ) = O(n). Then
by the theorem W2(ν, γ) = O(

√
n) and thus

E[|Y |2] ≥ n− C
√
nW2(ν, γ) ≥ n− C

√
2nδ(µ).

Putting everything together, we get

W2(µ, γ) ≤
√

2δ(µ) + C ′ n1/4δ(µ)1/4 ≤ C ′′ n1/4δ(µ)1/4,

which is (5).

1.5. Methods. We provide two sets of proofs for Theorems 1 and 3. The first set of proofs
proceeds by establishing Theorem 1 via a scaling argument, and then deduces the first part
of Theorem 3 from Theorem 1 via the Cramér-Rao bound. The second set of proofs uses a
stochastic process known as the Schrödinger bridge, or the Föllmer process, depending on the
context. This process is entropy-minimizing and is thus suitable for the logarithmic Sobolev
inequality. For example, it is used in [21] to give a simple proof of the log-Sobolev inequality
(see section 3), and in [13] to obtain a reversed form (see also [14]). We use this process to prove
Theorems 6 and 8 as well. Some of our arguments are essentially semigroup proofs (see [19]),
phrased in a stochastic language, which uses the semigroup of the Föllmer process rather than
the more common heat or Ornstein-Uhlenbeck semigroups. A key point in our proofs is that we
essentially compute two derivatives of the entropy rather than one. This gives us more precise
information about the log-Sobolev inequality. The stochastic formulation allows for relatively
simple computations. We go however an additional step beyond semigroup techniques, and also
analyze pathwise behavior of the Föllmer process. This analysis provides us with a natural way
of decomposing the measure µ (see the proofs of Theorem 6 and Theorem 8).

1.6. Organization of paper. In section 2 we give the first set of proofs of Theorems 1 and 3.
In section 3 we define the Föllmer process and analyze its properties. This analysis provides us
with ways of decomposing µ. Section 4 contains the second set of proofs of Theorems 1 and 3
via the Föllmer process, and section 5 contains the proofs of Theorems 6 and 8. Finally, the
counterexamples to stability (and the proof of Theorem 4) are discussed in section 6.
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2. self-improvements of the log-Sobolev inequality

In this section we show how Theorem 1 and the first part of Theorem 3 follow from scaling the
log-Sobolev inequality appropriately and the Cramér-Rao bound. Recall that the log-Sobolev
inequality can be rewritten

H(µ | L)−H(γ | L) ≤ 1

2
(I(µ | L)− n) . (11)

Let Σ be an n×n symmetric positive definite matrix and let µΣ be the law of ΣX where X ∼ µ.
Easy computations show that

H(µΣ | L) = H(µ | L)− log det Σ and I(µΣ | L) = Σ−1I(µ | L)Σ−1.

In particular

I(µΣ | L) = Tr
(
Σ−2I(µ | L)

)
.

Applying (11) to µΣ thus yields

H(µ | L)−H(γ | L) ≤ 1

2

(
Tr
(
Σ−2I(µ | L)

)
− n+ log det Σ2

)
.

The right-hand side of the inequality is minimal when Σ =
√
I(µ | L). This choice of Σ yields the

desired inequality (3). Note that the scaling proof of (2) amounts to considering only diagonal
matrices of the form Σ = σIdn for some scalar σ > 0.

The first part of Theorem 3 follows from Theorem 1 via the Cramér-Rao bound:

cov(µ)−1 � I(µ | L). (12)

Indeed, recall that {λi} and {αi} denote the eigenvalues of cov(µ) and I(µ | L), respectively.
Since the map x 7→ 1{x>1}(x− 1− log x) is increasing on [0,+∞), inequality (12) imply that

1

2

n∑
i=1

1{λi<1}(λ
−1
i − 1 + log λi) ≤

1

2

n∑
i=1

1{αi>1}(αi − 1− logαi)

≤ 1

2

n∑
i=1

(αi − 1− logαi).

By Theorem 1 this is upper bounded by the deficit δ(µ) and we obtain the first statement of
Theorem 3. The second part of the theorem follows from a straightforward computation which
shows that

δ(γλ) =
1

2

n∑
i=1

(
1

λi
− 1 + log λi

)
,

see section 6 below. The third part is also proved in section 6.



8 RONEN ELDAN, JOSEPH LEHEC, AND YAIR SHENFELD

3. The Föllmer Process

Given an absolutely continuous probability measure µ on Rn we consider a stochastic process
(Xt) which is as close as possible to being a Brownian motion while having law µ at time 1.
Namely X1 has law µ, and the conditional law of X given the endpoint X1 is a Brownian bridge.
Equivalently, the law of X has density ω 7→ f(ω1) with respect to the Wiener measure, where
f is the density of µ with respect to γ and ω is an element of the classical Wiener space. In
particular the process X minimizes the relative entropy with respect to the Wiener measure
among all processes having law µ at time 1. This process was first considered by Schrödinger
who was interested in the problem of minimizing the entropy with endpoint constraints, see [25]
and the survey [22] where a nice historical account on the Schrödinger problem is given as well
as the connection with optimal transportation.

It was first observed by Föllmer [16] that the process (Xt) solves the following stochastic
differential equation:

dXt = dBt +∇ logP1−tf(Xt) dt

where (Bt) is a standard Brownian motion, and (Pt) is the heat semigroup, defined by

Pth(x) = E[h(x+Bt)]

for every test function h. We call the process (Xt) the Föllmer process and the process (vt)
given by vt := ∇ logP1−tf(Xt), the Föllmer drift.

Below we recall some basic properties of this process, and we repeat the proof from [21] of
the log-Sobolev inequality based on the Föllmer process. We then prove more refined properties
of the bridge which are needed for our stability results. Roughly, the properties (i),(ii) below
correspond to the first derivative of entropy along the process while the further properties
(iii),(iv),(v) correspond to the second derivative. Finally we show how the Föllmer process leads
to natural decompositions of µ.

From now on we assume that the measure µ has finite Fisher information

I(µ | γ) =

∫
Rn

|∇ log f |2 dµ < +∞.

Proposition 9. The Föllmer drift (vt) has the following properties:

(i) The relative entropy of µ with respect to γ satisfies

H(µ | γ) =
1

2
E
[∫ 1

0
|vt|2 dt

]
. (13)

(ii) The Föllmer drift (vt) is a square integrable martingale.

The proof of this proposition can be found in [21]. As was noticed in [21], the log-Sobolev
inequality follows immediately from these properties once it is realized that

E[|v1|2] = I(µ | γ). (14)

Indeed, as (vt) is a martingale, (|vt|2) is a sub-martingale so

H(µ | γ) =
1

2
E
[∫ 1

0
|vt|2dt

]
≤ 1

2
E[|v1|2] =

1

2
I(µ | γ).

In particular we obtained the following expression for the deficit.

Proposition 10. Let µ be a probability measure on Rn with finite Fisher information and let
(vt) be the associated Föllmer drift. Then

δ(µ) =
1

2
E
[∫ 1

0
|v1 − vt|2dt

]
.

Proof. Since (vt) is a square integrable martingale we have E[〈v1, vt〉] = E[|vt|2] so

E
[
|v1|2 − |vt|2

]
= E

[
|v1 − vt|2

]
.

Combining this with (13) and (14) yields the result. �
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The above proof of the log-Sobolev inequality utilizes information about the first derivative
of the entropy, that is, the fact that the derivative |vt|2 is a sub-martingale. In order to obtain
stability estimates for the log-Sobolev inequality we need to look at the second derivative of the
entropy. This is the role of the next proposition. In what follows (Ft) is the natural filtration
of the process (Xt) and

cov(X1 | Ft) := E[X⊗2
1 | Ft]− E[X1 | Ft]⊗2

denotes the conditional covariance of X1 given Ft.

Proposition 11. Set Qt = ∇2P1−tf(Xt), then

(iii) vt =
∫ t

0 QsdBs for all t.
(iv) At least for t < 1 the following alternative expressions for Qt hold true

Qt =
cov(X1 | Ft)

(1− t)2
− Idn

1− t
(15)

= E[∇2 log f(X1) | Ft] + cov(v1 | Ft). (16)

(v) The process (Qt +
∫ t

0 Q
2
s ds) is a martingale.

Proof. The computation of dvt is a straightforward application of Itô’s formula.
For (iv) recall that P1−tf is the convolution of f with some Gaussian. Putting derivatives on
the Gaussian we get after some computations

∇2 logP1−tf = − Idn
1− t

+
1

(1− t)2

P1−t(f(x)x⊗2)

P1−tf
− 1

(1− t)2

(
P1−t(f(x)x)

P1−tf

)⊗2

.

On the other hand, for every test function u, the following change of measure formula holds true

E[u(X1) | Ft] =
P1−t(uf)(Xt)

P1−tf(Xt)
.

This follows from the explicit expression that we have for the law of (Xt). Plugging this into
the previous display yields (15). The proof of (16) is similar, only we put the derivatives on f
rather than the Gaussian when computing ∇2 logP1−tf .
To get (v) observe that by (16)

Qt = martingale− vt ⊗ vt.
Now since vt = QtdBt we have d(vt ⊗ vt) = d(martingale) +Q2

tdt. Hence the result. �

Note that since X1 = B1 +
∫ 1

0 vt dt and since the expectation of vt is constant over time, the
expectation of vt coincides with that of µ. In addition, it follows from (15) that

E[Qt] = Eµ[∇2 log f + (∇ log f)⊗2]− E[vt ⊗ vt]
for every t. Integrating by parts yields the following:

Proposition 12. For every time t we have E[vt] = Eµ[x] and

E[Qt] = Eµ[x⊗ x]− Idn − E[vt ⊗ vt]
= cov(µ)− Idn − cov(vt).

Other than facilitating an immediate proof of the log-Sobolev inequality, the Föllmer process
provides a canonical decomposition of the measure µ which we now describe. Recall that

E[h(X1) | Ft] =
P1−t(hf)(Xt)

P1−tf(Xt)
,

for every test function h. This allows to compute the density of the conditional law of X1 given
Ft. Namely, let µt be the conditional law of X1−Xt√

1−t given Ft. Then

µt(dx) =
f(
√

1− t x+Xt)

P1−tf(Xt)
γ(dx). (17)
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Lemma 13. We have

X1 =

∫ 1

0
cov(µt)dBt (18)

almost-surely, and

δ(µ) ≥
∫ 1

0
E [δ(µt)] dt. (19)

Proof. Again E[X1 | Ft] = P1−t(xf)(Xt)/P1−tf(Xt). So

dE[X1 | Ft] = ∇
(
P1−t(xf)

P1−tf

)
(Xt) dBt.

Arguing as in the proof of (iv) we get

∇
(
P1−t(xf)

P1−tf

)
(Xt) =

cov(X1 | Ft)
1− t

= cov(µt),

which proves (18). For the inequality (19), observe that by (17)

δ(µt) =
1− t

2
E[|∇ log f(X1)|2 | Ft]− E[log f(X1) | Ft] + logP1−tf(Xt).

Also, by Itô’s formula

d logP1−tf(Xt) = vt dBt +
1

2
|vt|2 dt.

Putting everything together we get

E [δ(µt)] =
1

2

∫ 1

t
E
[
|v1 − vs|2

]
ds.

Thus, by Proposition 10∫ 1

0
E [δ(µt)] dt =

1

2

∫ 1

0
sE[|v1 − vs|2] ds ≤ δ(µ). �

Remark 6. At this stage it maybe worth noticing that the measure-valued process (µt) coincides
with a simplified version of the stochastic localization process of the first named author [11].

4. Comparison theorems

In this section we prove Theorems 1 and 3 via the Föllmer process.

Proof of Theorem 1. Because the result is invariant by scaling we can assume without loss of
generality that cov(µ) is strictly smaller than the identity. Let m(t) = −E[Qt]. We know from
Proposition 12 that

m(t) = −cov(µ) + Idn + cov(vt). (20)

This shows in particular that m(t) is positive definite. Item (v) of Proposition 11 shows that
d
dtm(t) � m(t)2. Since m(t) is positive definite this amounts to d

dtm(t)−1 � −Idn. We use this
information to compare m(t) with m(1). We get

m(t) �
(
m(1)−1 + (1− t)Idn

)−1
. (21)

Let f̃ be the density of µ with respect to the Lebesgue measure and observe that

m(1) = −E[Q1] = −Eµ[∇2 log f ]

= −Eµ[∇2 log f̃ ]− Idn

= I(µ | L)− Idn.

Taking the trace in (21) and using Proposition 12 thus gives

−Eµ[|x|2] + n+ E[|vt|2] ≤
n∑
i=1

1

(αi − 1)−1 + 1− t
,
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where the αi are the eigenvalues of I(µ | L). Integrating between 0 and 1 and applying item (i)
of Proposition 9 yields

−Eµ[|x|2] + n+ 2H(µ | γ) ≤
n∑
i=1

log(αi).

Lastly, a straightforward computation shows that the left hand side equals 2H(µ | L)− 2H(γ |
L). �

Proof of Theorem 3. Consider the orthogonal decomposition cov(µ) =
∑n

i=1 λiu
⊗2
i where ui are

unit orthogonal vectors, and again let m(t) = −E[Qt]. Recall (20), which shows in particular
that m(0) = −cov(µ) + Idn. Fix i ∈ [n] such that λi < 1 and denote θ = ui. Note that

〈θ,m(0)θ〉 = 1− λi > 0.

Moreover, we have

d

dt

〈
θ,m(t)θ

〉
≥
〈
θ,m(t)2θ

〉
≥
〈
θ,m(t)θ

〉2
.

Since the function g(t) = 1
1/c−t solves the ordinary differential equation d

dtg(t) = g(t)2 with the

boundary condition g(0) = c, an application of Grônwall’s inequality gives

〈θ,m(t)θ〉 ≥ 1

〈θ,m(0)θ〉−1 − t
=

1

(1− λi)−1 − t
.

Summing up over all i such that λi < 1, we have

d

dt
E[|vt|2] = Tr

(
m(t)2

)
≥

n∑
i=1

1{λi<1}

((1− λi)−1 − t)2 .

Integrating this between t and 1, we obtain

E[|v1|2]− E[|vt|2] ≥
n∑
i=1

1{λi<1}

(
1

λi
− 1− 1

(1− λi)−1 − t

)
.

Now we integrate between 0 and 1 and we use Proposition 10. We get

δ(µ) ≥ 1

2

n∑
i=1

1{λi<1}

(
1

λi
− 1 + log λi

)
,

which is the desired inequality. �

5. Decompositions into mixtures

In this section we prove Theorems 6 and 8.

Proof of Theorem 6. The idea of the proof is to show that for any t, the transportation distance
between X1 and the sum of the independent random vectors E[X1 | Ft] + (B1 − Bt) can be
controlled by the deficit. Optimizing over t yields the theorem.
The map

t 7→ E
[
|v1|2 − |vt|2

]
is a non-increasing function since (|vt|2) is a sub-martingale. Hence by Proposition 10 and as
(vt) is a martingale,

δ(µ) =
1

2
E
[∫ 1

0
|v1 − vt|2dt

]
=

1

2

∫ 1

0
E
[
|v1| − |vt|2

]
dt ≥ t

2
E
[
|v1 − vt|2

]
(22)

for every t ∈ [0, 1]. Let Yt = E[X1 | Ft] +B1−Bt and note that since B1−Bt is independent of
Ft, the random vector Yt has law νt ∗ γ0,1−t where νt is the law of E[X1 | Ft]. Hence since X1

has law µ and

E[X1 | Ft] = Xt + (1− t)vt,
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we get by Jensen’s inequality that

W2
2(µ, νt ∗ γ0,1−t) ≤ E

[
|X1 − Yt|2

]
= E

[∣∣∣∣∫ 1

t
(vs − vt)ds

∣∣∣∣2
]
≤ (1− t)

∫ 1

t
E
[
|vs − vt|2

]
ds

≤ (1− t)2E[|v1 − vt|2] ≤ E[|v1 − vt|2].

Combining this with (22) yields

W2
2(µ, νt ∗ γ0,1−t) ≤

2

t
δ(µ).

This inequality gives the distance between µ and a mixture of Gaussians but with the wrong
covariance. To remedy that we must pay a dimensional price. By the triangle inequality for W2

and the fact that W2
2(γ0,1−t, γ0,1) ≤ (1−

√
1− t)2n ≤ t2n, we get

W2(µ, νt ∗ γ) ≤W2(µ, νt ∗ γ0,1−t) + W2(νt ∗ γ0,1−t, νt ∗ γ)

≤W2(µ, νt ∗ γ0,1−t) + W2(γ0,1−t, γ)

≤
√

2δ(µ)

t
+
√
nt.

If δ(µ) ≤ n, choosing t =
(
δ(µ)
n

) 1
3

in the previous display gives

W2(µ, νt ∗ γ) ≤ (
√

2 + 1)n
1
6 δ(µ)

1
3 ,

which in turn yields the desired inequality (10). If on the contrary δ(µ) ≥ n, inequality (10)
holds with ν = µ, simply because W2(µ, µ ∗ γ) =

√
n. If δ(µ) = 0 the argument shows that

µ = ν0 ∗ γ, where ν0 is the Dirac point mass at E[X1]. �

Proof of Theorem 8. The starting point of the proof is identity (18):

X1 =

∫ 1

0
cov(µt)dBt.

The idea is then to extract from this identity two processes (Yt), (Zt) close to each other in
transportation distance such that Z1 ∼ γ. We then write X1 = Y1 +W for some random vector
W and show that E[〈Y,W 〉] = 0. The requirement Z1 ∼ γ is enforced by ensuring that the
quadratic variation of (Zt) satisfies [Z]1 = Idn.

We start with some notation. Let M be an n×n symmetric matrix and let M =
∑n

i=1 κi ui⊗ui
be its eigenvalue decomposition. We then set M+ :=

∑n
i=1 max(κi, 0)ui ⊗ ui and similarly

max(M, Idn) =
∑n

i=1 max(κi, 1)ui ⊗ ui. Using Theorem 3 together with the fact that 1
x − 1 +

log(x) ≥ 1
2(x− 1)2 for all x ∈ (0, 1], we conclude that for every measure ν, one has

δ(ν) ≥ 1

2
Tr
[
(Idn − cov(ν))2

+

]
.

Using this bound and inequality (19) we get,

δ(µ) ≥ 1

2
E
[∫ 1

0
Tr
[
(Idn − cov(µt))

2
+

]
dt

]
. (23)

Next we will write the right-hand side above as roughly the difference in transportation distance
between the random vectors Y1 and Z1 mentioned above.

For convenience, define At := cov(µt). We now define a random process (Ct) taking values in
the set of symmetric matrices as follows. Set C0 = 0 and

dCt = max(A2
t , Idn) dt, t ∈ [0, τ1)

where τ1 is the first time the largest eigenvalue of Ct hits the value 1. Notice that tIdn � Ct on
[0, τ1), so τ1 ≤ 1. If Cτ1 6= Idn, which implies that τ1 < 1, we let O1 be the orthogonal projection
onto the range of Cτ1 − Idn, and set

dCt = O1 max(A2
t , Idn)O1 dt, t ∈ [τ1, τ2)
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where τ2 is the first time the largest eigenvalue of O1CtO1 hits the value 1. If Cτ2 6= Idn we
let O2 be the projection onto the range of Cτ2 − Idn and proceed similarly, and so on, until the
first time τk such that Cτk = Idn. On [τk, 1] we let dCt = 0 and thus Ct = Idn. To sum up, the
matrix Ct satisfies 0 � Ct � Idn for all t ∈ [0, 1], C1 = Idn and

dCt = Lt max(A2
t , Idn)Lt dt,

where Lt is the orthogonal projection onto the range of Ct − Idn.
Next, consider the processes (Yt), (Zt) defined by

Y0 = Z0 = 0, dYt = LtAtdBt, dZt = Lt max (At, Idn) dBt.

and note that

[Z]t =

∫ t

0
Ls max

(
A2
s, Idn

)
Lsds = Ct.

This implies that [Z]1 = Idn almost surely so Z1 ∼ γ. On the other hand, we have by (23) and
Itô’s isometry,

E[|Y1 − Z1|2] = E
[∫ 1

0
Tr
[
Lt (max (At, Idn)−At)2 Lt

]
dt

]
≤ E

[∫ 1

0
Tr
[
(max (At, Idn)−At)2

]
dt

]
= E

[∫ 1

0
Tr
[(

(Idn −At)+

)2]
dt

]
≤ 2δ(µ).

Letting ν be the law of Y1, we thus get W2
2(ν, γ) ≤ 2δ(µ). Now define the random vector

W :=
∫ 1

0 (At − LtAt) dBt so by (18), X1 = Y1 +W . It remains to show that E[〈Y,W 〉] = 0. This
is again a consequence of Itô’s isometry:

E[〈Y,W 〉] = E
[∫ 1

0
Tr
(
LtAt (At − LtAt)T

)
dt

]
= E

[∫ 1

0
Tr
(
LtA

2
t − LtA2

tLt
)
dt

]
= 0

since Lt = L2
t . This completes the proof. �

6. Counterexamples to stability

In this section we provide simple counterexamples to the stability of the logarithmic Sobolev
inequality with respect to the Wasserstein distance, thus proving Theorem 4 as well as the third
part of Theorem 3. The standard Gaussian on R is denoted by γ and for a ∈ R, s ≥ 0 we let
γa,s be the Gaussian centered at a with variance s. Our counterexamples are nothing more than
Gaussian mixtures. For such measures, the following two lemmas provide a lower bound on the
Wasserstein p-distance to translated Gaussians, and an upper bound on the log-Sobolev deficit.
The combination of these two lemmas will prove Theorems 4 and 3. We start with the upper
bound on the log-Sobolev deficit.

Lemma 14. Let a, b ∈ R, and σ, t ∈ [0, 1]. Then

δ ((1− t)γa,σ + tγb,σ) ≤ 1

4

(
σ−1 − 1

)2 − (1− t) log(1− t)− t log t.

Proof. Let ϕ(t) = t log t+ (1− t) log(1− t) and µ, ν be probability measures on R. The lemma
follows immediately by combining the estimates

δ ((1− t)µ+ tν) ≤ (1− t)δ (µ) + tδ (ν)− ϕ(t) (24)

and

δ(γ0,σ) ≤ 1

4

(
σ−1 − 1

)2
. (25)
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(when σ ≤ 1) and using the fact that δ is invariant under translations.
The validity of (24) follows immediately from the combination of the convexity estimates

I ((1− t)µ+ tν | γ) ≤ (1− t)I(µ | γ) + tI(ν | γ)

and

H ((1− t)µ+ tν | γ) ≥ (1− t)H(µ | γ) + tH(ν | γ) + ϕ(t).

The convexity of the Fisher information is a well-known fact, it is a direct consequence of the
convexity of the map (x, y) 7→ y2/x on (0,∞)×R. For the second inequality, let f and g be the
respective densities of µ and ν with respect to γ and use the fact that the logarithm is increasing
to write

((1− t)f + tg) log ((1− t)f + tg) ≥ (1− t)f log ((1− t)f) + tg log(tg).

Integrating with respect to γ yields the result.
For the estimate (25), a direct computation shows that H(γ0,σ | γ) = 1

2 (σ − 1− log σ) and

I(γ0,σ | γ) = (σ − 1)2/σ, so that

δ(γ0,σ) =
1

2

(
σ−1 − 1 + log(σ)

)
.

We conclude using x− 1− log x ≤ (x− 1)2/2 for x ≥ 1. �

Proof of Proposition 5. When σ = 1, Lemma 14 can be rewritten δ(p ∗ γ) ≤ S(p) for any
probability measure p in R which is a combination of two Dirac point masses. The argument
can easily be generalized to any discrete probability measure p, and to any dimension, proving
Proposition 5. �

Proof of the third part of Theorem 1. Note that

var((1− t)γa,1 + tγb,1) = 1 + t(1− t)(b− a)2.

Set µk =
(
1− 1

k

)
γ0,1 + 1

kγk2,1. Then var(µk) → ∞. On the other hand δ(µk) → 0 by Lemma
14. �

Next we move on to the lower bound on the Wasserstein distance.

Lemma 15. Let a, b ∈ R, σ ∈ (0, 1], t ∈ [0, 1] and let µ = (1− t)γa,σ + tγb,σ. Suppose that

min(t, 1− t) ≥ 2 exp

(
−(b− a)2

32

)
. (26)

Then, for every p ≥ 1

inf
m∈R

{
Wp

p(µ, γm,1)
}
≥ min(t, 1− t) |b− a|

p

4p+1
.

Proof. Let m ∈ R and suppose without loss of generality that |a − m| ≤ |b − m| and that

b > a. Define z = m+
√

2 log
(

2
t

)
and note that the assumption (26) together with the fact that

b −m ≥ 1
2 |b − a| implies that b − z ≥ 1

4 |b − a|. Now, by a standard Gaussian tail estimate we

have γm,1
(
[z,∞)

)
≤ t

4 . On the other hand

µ([b,∞)) ≥ tγb,σ2([b,∞)) =
t

2
.

Therefore, in order to transport γm,1 to µ, at least t/4 unit of mass to the left of z should move
to the right of b. As a result

Wp
p(µ, γm,1) ≥ t

4
(b− z)p ≥ t

4

(
|b− a|

4

)p
,

which yields the result. �
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Proof of Theorem 4. For the first part of the theorem we shall work in dimension 1 but the
result extends to any dimension by taking the tensor product of the one dimensional example
by a standard Gaussian. Consider the sequence of measures (µk) given by

µk =

(
1− 1

k

)
γ0,1 +

1

k
γk2,1.

Lemmas 14 and 15 imply that δ(µk)→ 0 and infm∈R {W1(µk, γm,1)} → ∞.
For the second part of the theorem, define µk = (1− t)γa,σ + tγb,σ with

t = k−3/2, a = −k−1, b = −1− t
t

a, σ = 1− t(1− t)(b− a)2.

It is straightforward to check that µk is isotropic. Since (b−a)2 = a2/t2 = k, the hypothesis (26)
is satisfied for large enough k and Lemma 15 gives

inf
m

{
W2

2(µk, γm,1)
}
≥ t(b− a)2

64
=

1

64
√
k
.

On the other hand, we have σ = 1− k−1/2 + o(k−1/2) so that Lemma 14 gives

δ(µk) ≤
1

k
+ o

(
1

k

)
.

Set n(k) =
⌊
k3/4

⌋
. Since both the deficit and W2

2 behave additively when taking tensor products
we have

inf
m∈Rn(k)

{
W2

2

(
µ
⊗n(k)
k , γm,Idn(k)

)}
= Ω(k1/4) = Ω(n(k)1/3)

and δ
(
µ
⊗n(k)
k

)
= O(k−1/4) = O(n(k)−1/3). �
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