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ABSTRACT 

This paper proposes a dynamic behavioral model for 

temperature variations of systems on chips (SoC) in 

embedded systems. We use identification techniques 

(ARMAX modeling) to construct a data-driven online 

temperature model that estimates the temperature 

according to the CPU and GPU frequencies, the used 

RAM and the power consumed by the chip. Furthermore, 

we used two the Recursive Least Squares (RLS) to 

estimate the parameters of the ARMAX model. This 

method allows us to update the parameters of the model 

online in case of a change in the system or its 

characteristics. Finally, we validate the temperature 

model and compare between booth estimation methods. 

 

Keywords: Identification, Embedded systems, Control 

 

1. INTRODUCTION 

Since their introduction in 1971, microprocessors have 

evolved from simple calculators to the center of all 

technological innovations (Faggin, Hoff, Mazor, and 

Shima, 1996). The ubiquity of microprocessor-based 

systems has pushed for the study of their behavior and 

reliability, notably when used in safety-critical and 

sensitive systems. Thus, the modeling and diagnosis of 

the microprocessor-based systems is, now, an ongoing 

scientific and engineering endeavor. 

These systems are evermore evolving and increasing in 

complexity both on the microarchitectural and process 

levels, giving rise to new challenges with every new 

generation. This paper is a part of a project that explores 

yet another evolution enabled by these systems; the 

development of avionic cockpits operated by 

touchscreens (Figure 1). The embedded SoC used in such 

a critical system is required to be failproof, which require 

them to be studied from all physical and software aspects. 

In this particular work, we focus on the thermal behavior 

of the SoC behind the touchscreen. 

Of the many aspects of modeling systems-on-chips 

(SoC), the temperature is one of the few that links the 

software, mechatronic and physical characteristics. 

Hence, many of the recent work studying it were studied 

on the thermal effects on system radiality (Löfwenmark 

and Nadjm-Tehrani, 2018), its management for a better 

reliability (Niu and Zhu, 2017, Zhou et al., 2018)  or 

better scheduling and power management (Li, Yu, and 

Song, 2018). Our work, however, is oriented towards the 

real-time surveillance of the chip (Djedidi, Djeziri, and 

M’Sirdi, 2018). It concentrates on the monitoring of the 

chip to detect the presence of any anomalies of abnormal 

behavior. 

 

 
Figure 1: A prototype of the cockpit of the future by 

Thales Avionics (Thales, 2017). 

 

In the next section, we further detail the goal of our and 

put into the context of our previous works. In section 3, 

we discuss the thermal modeling of CPU-GPU, then we 

present and apply identification-based modeling to 

model the thermal devious of the SoC in section 4. 

Finally, the results and concluding remarks are presented 

in sections 5 and 6. 

2. THE STUDIED SYSTEM 

The objective of this work is the mechatronic modeling 

of the CPU-GPU SoC in embedded systems to predict 

their behavior. This behavior prediction can then be used 

for monitoring and diagnosis. This work is also a 

continuation of the works by Djedidi et al. (2017) and 

Djedidi, Djeziri, and M’Sirdi (2018), where the authors 

worked on the modeling and monitoring of systems 

designed for safety-critical environments. In the first 

study, Djedidi et al. (2017) developed an incremental 

interconnected modeling approach, to estimate key 

variables that determine the operating state of the system 

(Frequencies and voltages of the CPU, and GPU, 

Memory Occupation Rate (MOR), Chip Temperature 

and power consumption). Figure 2 shows a generalized 

diagram of the established model for mobile CPU-GPU 

SoC with 𝑛 CPU cores. 
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Figure 2: Synoptic diagram of the incremental 

interconnected model for a CPU-GPU SoC (Djedidi et 

al., 2017). 

 

The developed model was then used to monitor the state 

the SoC and for the online detection of several types of 

faults such as software bugs and environmental faults 

(Djedidi et al., 2018).  

This work focuses on temperature modeling and 

estimation. It aims to build a model that can be used to 

predict the temperature values of the SoC according to 

the current workload. The model is also to be integrated 

in the interconnected modelling framework as the 

thermal model (Figure 2). Finally, it is also intended to 

be used for the diagnosis of the chip in the future. 

The case study we used to validate, and test model is a 

safety-critical certified development board ( 

Figure 3). The board runs on Linux and is Android 

capable. It has a one core ARM Cortex-A9 processor and 

is equipped with 1 Gb of RAM (Freescale 

Semiconductor Inc, 2012b). 

 

 
Figure 3: View of the test installation with the 

development board in the middle connected to the 

monitoring PC. 

 

3. THERMAL MODELING 

To model the thermal behavior of an embedded system, 

the first step is to follow the heat flow.  

 

 
Figure 4: Simplified cross section of a typical SoC with 

a die containing the CPU, GPU and RAM, installed on a 

PCB. 

 

Figure 4 shows, how in the SoC, heat is generated by the 

circuitry containing the processor cores and the RAM. It 

is then transferred through conduction in two directions 

to the silicon case (top), the underfill and the C4 bumps 

(bottom). The latter two would then conduct the heat to 

the substrate which itself would conduct it to the printed 

circuit board (PCB). Finally, the heat is dissipated by the 

case and the PCB to the air through convection and 

radiation. In these circuits, heat transfer occurs mostly 

from one layer to another (vertically, in the diagram).  

 

 
Figure 5: Equivalent thermal resistance circuit of a 

typical integrated circuit of an SoC. 

 

Figure 5 shows the equivalent thermal resistance circuit 

(Freescale Semiconductor Inc, 2012a, Wang, Sun, and 

Pan, 2017). The thermal resistance circuit can be used to 

build a model that describes the evolution of the 

temperature from one layer to another. The heat (𝑄) can 

be written as: 

 

𝑄 = 𝑄𝐽/𝑆𝑖 + 𝑄𝐽/𝑈 + 𝑄𝐽/𝐶4 + 𝑄𝑆𝑖/𝐴𝑖𝑟 + 𝑄𝐶4/𝑆𝑢

+ 𝑄𝑈/𝑆𝑢 + 𝑄𝑆𝑢/𝑃𝐶𝐵 + 𝑄𝑃𝐶𝐵/𝐴𝑖𝑟  
(1) 

 

Where 𝑄 is equal, in each layer, to the temperature 

difference divided by the thermal resistance of the said 

layer (Wang et al., 2017). For instance, the heat transfer 

between the junction and the silicon encasing is equal to: 

 

QJ/Si =
Tj − TSi

𝑅𝑆𝑖

   (2) 

 

Where 𝑅𝑆𝑖 is the thermal resistance of the silicon. Its 

value can be determined either by studying the material 

property (area and thermal conductivity), or empirically 

through identification. 

Models built using this method are crucial for the thermal 

management of the SoC. They enable engineers and 

system builders to correctly design the optimal cooling 

method (heatsink, fan, vapor chambers…). However, 

they also require a deep knowledge of the system and an 

estimation of the energy drawn by the SoC and 

transformed into heat which increases the complexity of 

the modeling process. It also does not allow for the 

prediction of the temperature of the SoC according to 

operating conditions (workload and frequency), nor the 

change of its value with time and degradation.  

Identified models, on the other hand rely mostly on a 

combination of human expertise and observations to 

choose which inputs correlate best with the output. In this 

work, we use an auto-regressive model with exogenous 

input to predict the temperature of the SoC. 



4. IDENTIFICATION-BASED MODELING 

ARMAX models are polynomial models used to estimate 

or predict the output depending on its previous values 

alongside those of the input vector (Landau and 

Gianluca, 2006). Our choice settled on a polynomial 

model—precisely an ARMAX one—because they are 

dynamic and also fast enough to be used to generate 

online estimation at frequencies up to 50 Hz. 

Furthermore, since these models are dynamic, they can 

also be used to accurately simulate the behavior of the 

system offline and predict the operating temperature of 

the SoC. 

A discrete ARMAX process can be described by the 

difference equation (Landau and Gianluca, 2006): 

 

𝑦(𝑘) = 𝑎1𝑦(𝑘 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑘𝑛)   

+ 𝑏1,1𝑢1(𝑘 − 𝜏) + ⋯ 

+ 𝑏𝑚,𝑛𝑏
𝑢𝑚(𝑘 − 𝜏 − 𝑛𝑏)       

+ 𝑒(𝑡) + 𝑐1𝑒(𝑡 − 1) + ⋯
+  𝑐𝑛𝑐

𝑒(𝑡 − 𝑛𝑐) 

(3) 

 

where 𝑦(𝑘) represents the output, 𝑢(𝑘) the input vector 

with 𝑚 width, and 𝑒(𝑡) the error value. The parameters 

[𝑎1, … , 𝑎𝑛𝑎
] are the regression parameters, 

[𝑏1,1, … , 𝑏𝑚,𝑛𝑏
] are the input parameters, and [𝑐1, … , 𝑐𝑛𝑐

] 

are the moving average parameters. Finally, 𝑛𝑎, 𝑛𝑏 and 

𝑛𝑐 are the orders of the model, and 𝜏 is the input delay.  

In our case study, the output to be estimated is the 

temperature 𝑇 of the SoC, and the inputs are the 

frequencies of the cores and the memory occupation rate 

(MOR). These inputs are the variables that correlate the 

most with the temperature (Mercati, Paterna, Bartolini, 

Benini, and Rosing, 2017, Niu and Zhu, 2017, Zhou et 

al., 2018). 

+ 

 

 𝜀𝑘 =  𝑦𝑘    −  �̂�𝑘 (4) 

 

�̂�(𝑘) is the predicted output. We rewrite equation (3) as 

a discrete linear model: 

 

𝐴(𝑞−1)𝑦(𝑘) = 𝐵(𝑞−1)𝑢(𝑘 − 𝜏) + 𝐶(𝑞−1)𝑒(𝑘) (5) 

 

with 𝑞−1 being the delay operator, and 𝐴(𝑞−1) = 1 +

 ∑ 𝑎𝑖
𝑛𝑎
𝑖=1 𝑞−𝑖, 𝐵(𝑞−1) = 1 + ∑ 𝑏𝑗,𝑖

𝑛𝑏
𝑖=1 𝑞−𝑖, and 𝐶 = 1 +

 ∑ 𝑐𝑗,𝑖
𝑛𝑐
𝑖=1 𝑞−𝑖. Thus, predicted output at the sample 𝑘 

becomes: 

 

�̂�(𝑘) =
𝐵(𝑞−1)

𝐴(𝑞−1)
 𝑢(𝑘 − 𝜏) +

𝐶(𝑞−1)

𝐴(𝑞−1)
𝑒(𝑘) (6) 

 

Based upon this, we construct an adaptive predictor. This 

latter follows the model  described in equation (6): 

�̂�𝑘 = �̂�𝜑𝑘−1 (7) 

 

with �̂�𝑘 being the vector of the temperature value, 

𝜑𝑘−1 = [𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛𝑎), 𝑢1(𝑘 −
𝜏), … , 𝑢𝑚(𝑘 − 𝜏 − 𝑛𝑏), 𝜀(𝑘 − 1), … , 𝜀(𝑘 − 𝑛𝑐)] being a 

vector composed of the output feedback, the inputs, and 

the prediction error, and �̂� = [−𝑎1, … , 𝑐𝑛𝑐
] being the 

vector the parameters vector.  

The listing presented in Algorithm 1 is a pseudo-code 

describing how the parameters of the ARMAX model 

will be calculated with each iteration for a whole test 

vector 𝑦(𝑘) (Landau, M’Sirdi, and M’Saad, 1986).  

 

Algorithm 1: Pseudo-code for the recursive Least square 

algorithm. 

1:  Begin 

2:  Define orders: 𝑛𝑎, 𝑛𝑏, 𝑛𝑐 

3:  Define the input delay: 𝜏 

4:  // Initialization of 𝜑𝑘−1 

5:  Initialize 𝜑𝑦𝑘−1
 

6:  Initialize 𝜑𝑢𝑘−𝜏
 

7:  Initialize 𝜑𝜀𝑘−1
 

8:  𝜑𝑘−1 ← [𝜑𝑦𝑘−1
, 𝜑𝑢𝑘−𝜏

, 𝜑𝜀𝑘−1
 ]  

9:  𝜃𝑘−1 ← zeros(𝜑𝑦𝑘−1
.length, 1)     

10:  // Initialization of an empty vector  

11:  𝐹 ← 100 × eye(𝜑𝑦𝑘−1
.length) 

12:  𝑦(𝑘) ←Read(Output) 

13:  While 𝑦(𝑘) ≠ null do 

14:  �̂�(𝑘) ← 𝜃𝑘−1𝜑𝑘−1  

15:  𝜀(𝑘) =  𝑦(𝑘)   −  �̂�(𝑘)  

16:  // Recalculation of the parameters vector  

17:  𝐺 ← 𝐹 ∙ 𝜑𝑘−1  

18:  norm ← 1 + 𝜑𝑘−1 ∙ 𝐺  

19:  𝐹 ← 𝐹 −
𝐺∙𝐺𝑇

norm
  

20:  𝜃𝑘−1 ← 𝜃𝑘−1 + 𝐺 ∙ 𝜀(𝑘)  

21:  // Updating𝜑𝑘−1  

22:  𝜑𝑦𝑘−1
.addFirst(−𝑦(𝑘))  

23:  𝜑𝑦𝑘−1
.poll(𝑛𝑎 + 1) 

24:  𝜑𝑢𝑘−𝜏
.addFirst(Read(Input(1:m)))  

25:  𝜑𝑢𝑘−𝜏
.poll(𝑛𝑏 + 1: 𝑛𝑏 + 1 + 𝑚) 

26:  𝜑𝜀𝑘−1
.addFirst(𝜀(𝑘))  

27:  𝜑𝜀𝑘−1
.poll(𝑛𝑐 + 1) 

28:  𝜑𝑘−1 ← [𝜑𝑦𝑘−1
, 𝜑𝑢𝑘−𝜏

, 𝜑𝜀𝑘−1
 ]  

29:  \\ Reading the next output 

30:  𝑦(𝑘) ←Read(Output) 

31:  End 

 

5. RESULTS AND DISCUSSION 

The results presented in this section are established 

during controlled experiments. The experiment starts 

when the data acquisition starts. It begins with two 

standards benchmarks: AnTuTu (AnTuTu, 2019) and 

3DMark (Futuremark Oy, 2019), then goes on to playing 

and interacting with a Sudoku game, followed by 4 

minutes of web browsing, HD video playback, and 4 

minutes of standby time.  

During this scenario, data is gathered and sent to the 

monitoring PC where the ARMAXRLS model is trained at 

the same time with a predefined set of orders. Once the 

best set of orders is found, multiple trials are again 

launched with a different number of training samples 

each time. Once the training is finished, the accuracy of 

the model is then validated online.  

Finally, to compare the methodologies, a similar 

ARMAX model is trained offline with the traditional 



least squares method (ARMAXLS) using the same data as 

the equivalent ARMAXRLS. The model is then validated, 

again, with same data used to validate the equivalent 

ARMAXRLS model. 

The results presented for the accuracy of the model are 

the results obtained from validation trials and sets 

containing about 11 × 104 samples (about 3000 s).  

5.1. Order selection 

The first set of trials was launched with different sets of 

orders. The best set is chosen according to two criteria; 

the Mean Absolute Percentage Error (MAPE) and the 

average time required to generate estimations by the 

model. 

While higher estimation accuracy is a virtue, models with 

higher orders may require longer times to generate 

estimations which can lead to missing the changes of 

variables values. The time required to generate 

estimation is also heavily affected by OS scheduling and 

interruptions on both the device and the monitoring PC. 

Thus, the optimal model needs to satisfy both accuracy 

and speed of estimation constraints. 

 

Table 1: Evolution of the accuracy and the time needed 

to generated estimation of the ARMAXRLS model 

according to its orders. 

Orders of the 

model MAPE (%) 

Average 

Sampling 

Time (s) 𝑛𝑎 𝑛𝑏 𝑛𝑐 

2 2 2 11.1853 18 ×10-3 

3 3 3 7.9672 18 ×10-3 

4 4 4 1.3757 ~30 ×10-3 

4 4 2 0.8377 ~25 ×10-3 

5 5 2 0.7215 ~65 ×10-3 

6 6 2 1.3667 ~135 ×10-3 

 

Table 1 displays the MAPE and the average sampling 

time for several sets of model orders [𝑛𝑎, 𝑛𝑏 , 𝑛𝑐]. The 

data in the tables show that the accuracy of the model 

increases with the increase of the orders up until [4,4,4], 

where a lower order for the moving average actually 

results in an increase in accuracy. Furthermore, Table 1 

also show how the average sampling time increases with 

the order of the model, until it even starts affecting the 

accuracy of the model due to the longer wait time for 

estimations. Hence, from these experimental data, the 

best model orders according to both the accuracy and 

sampling time are [4,4,2]. 
5.2. Number of samples 

In theory, the ideal training set would contain data 

representing all possible information about the system. 

However, in practice, the information in the training set 

is limited by the sample number and information 

contained in that sample. Table 2 shows how the 

accuracy of the model increases with the number of 

samples. However, it also shows that this increase in the 

accuracy is not absolute, and the accuracy might decrease 

even with increase number of samples. This is also 

shown in the comparisons shown in Figure 6 and Figure 

7. Hence, the solution to obtain the best model (In this 

case, 𝑛 = 3000) is to by comparison of the Mean 

Squared Error (MSE) as shown in Algorithm 2.  

 

Algorithm 2: Pseudo-code the selection of the best 

model. 

1:  Begin 

2:  𝑀𝑆𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1
2

𝑛
  

3:  // 𝑛 is the number of samples 

4:  If (𝑀𝑆𝐸𝐶𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑀𝑆𝐸𝑏𝑒𝑠𝑡) then 

5:            𝑀𝑆𝐸𝑏𝑒𝑠𝑡 ← 𝑀𝑆𝐸𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

6:            𝑀𝑜𝑑𝑒𝑙𝑏𝑒𝑠𝑡 ← 𝑀𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

7:  End 

 

Table 2: The influence of the number of samples on the 

accuracy of the model. 

Number of samples MAE (°C) MAPE (%) 

500 64.34 169.1200 

1000 57.77 151.7027 

1500 52.46 137.6220 

2000 0.92 2.3688 

2500 0.64 1.5077 

3000 0.34 0.8377 

3500 0.65 1.5100 

4000 0.57 1.5005 

 

 
Figure 6: Estimations generated by multiple ARMAXRLS 

models with different sample numbers in their training 

sets against system measurements. 

 

 
Figure 7: Estimation error (after model convergence) of 

the ARMAXRLS according to the number of samples (𝑛) 

used in training. 



5.3. Comparison with ARMAXLS 

Most of the ARMAX models are trained using least-

squares method. Using the same data with which the 

ARMAXRLS model was trained, a new ARMAXLS was 

also trained with [4,4,2] as a set of orders. The model was 

then tested and validated using the same test data used to 

validate ARMAXRLS one. Table 3 show a comparison of 

the MAE of the ARMAXRLS and ARMAXLS  models. 

While the ARMAXLS shows a slight advantage in its 

offline validation results, online estimation—our case 

use— demonstrates an advantage for the ARMAXRLS. A 

further comparison of the estimations and estimation 

errors are shown in Figure 8 and Figure 9. 

 

Table 3: The MAE and MAPE validation results for the 

ARMAXRLS and ARMAXLS models. 

Model 
Number of 

samples 

MAE 

(°C) 

MAPE 

(%) 

ARMAXRLS 3000 0.34 0.8377 

ARMAXLS (Offline) 4000 0.27 0.6324 

ARMAXLS (Online) 4000 0.56 1.3757 

 

 
Figure 8: Estimations generated by the ARMAXRLS and 

the ARMAXLS models against system measurements. 

 

 
Figure 9: Estimation error (after model convergence) of 

the ARMAXRLS and the ARMAXLS models. 

 

All the results mentioned above clearly validate the 

ARMAXRLS. However, the high accuracy of the model 

(being 99.1623%), along with its speed of estimations are 

not the only advantages of this model. One last advantage 

is the capacity to retrain the model at will without 

stopping the monitoring process this can prove useful 

when a change in operating condition or a drop in the 

accuracy occur. 

6. CONCLUSION 

In this paper, we have built and validated ARMAX 

model to predict the temperature of embedded SoCs 

according to the workload and operating conditions. The 

model is trained using RLS method which offer two clear 

advantages over the traditional LS method. These 

advantages are a better online accuracy, and the capacity 

of training and retraining the model online without 

having to stop the monitoring process. 

The model offers high accuracy with a mean absolute 

error of only 0.34°C, and also satisfy the required 

sampling time. 

Having validated the model with satisfactory results, it 

will now integrated in the interconnected incremental 

framework we previously developed (Djedidi et al., 

2018, 2017). In future works, we will be studying the 

effects of the temperature on the reliability of the system, 

and plan on using the ARMAXRLS model in the diagnosis 

of the state of health of the SoC. 
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