
HAL Id: hal-02311475
https://hal-amu.archives-ouvertes.fr/hal-02311475v2

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Estimation of the Thermal Behavior of
CPU-GPU SoCs for Prediction and Diagnosis

Oussama Djedidi, Nacer K M’Sirdi, Aziz Naamane

To cite this version:
Oussama Djedidi, Nacer K M’Sirdi, Aziz Naamane. Adaptive Estimation of the Thermal Behavior
of CPU-GPU SoCs for Prediction and Diagnosis. IMAACA 2019 – Proceedings of the International
Conference on Integrated Modeling and Analysis in Applied Control and Automation, 2019, Sep 2019,
Lisbon, Portugal. pp.93-98. �hal-02311475v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/231928135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal-amu.archives-ouvertes.fr/hal-02311475v2
https://hal.archives-ouvertes.fr

ADAPTIVE ESTIMATION OF THE THERMAL BEHAVIOR OF CPU-GPU SOCS FOR

PREDICTION AND DIAGNOSIS

Oussama Djedidi(a), Nacer K. M’Sirdi(b), Aziz Naamane(c)

(a),(b),(c) Aix Marseille University, Université de Toulon, CNRS, LIS UMR 7020, SASV, Marseille, France

(a)oussama.djedidi@lis-lab.fr, (b)nacer.msirdi@lis-lab.fr, (c)aziz.naamane@lis-lab.fr

ABSTRACT

This paper proposes a dynamic behavioral model for

temperature variations of systems on chips (SoC) in

embedded systems. We use identification techniques

(ARMAX modeling) to construct a data-driven online

temperature model that estimates the temperature

according to the CPU and GPU frequencies, the used

RAM and the power consumed by the chip. Furthermore,

we used two the Recursive Least Squares (RLS) to

estimate the parameters of the ARMAX model. This

method allows us to update the parameters of the model

online in case of a change in the system or its

characteristics. Finally, we validate the temperature

model and compare between booth estimation methods.

Keywords: Identification, Embedded systems, Control

1. INTRODUCTION

Since their introduction in 1971, microprocessors have

evolved from simple calculators to the center of all

technological innovations (Faggin, Hoff, Mazor, and

Shima, 1996). The ubiquity of microprocessor-based

systems has pushed for the study of their behavior and

reliability, notably when used in safety-critical and

sensitive systems. Thus, the modeling and diagnosis of

the microprocessor-based systems is, now, an ongoing

scientific and engineering endeavor.

These systems are evermore evolving and increasing in

complexity both on the microarchitectural and process

levels, giving rise to new challenges with every new

generation. This paper is a part of a project that explores

yet another evolution enabled by these systems; the

development of avionic cockpits operated by

touchscreens (Figure 1). The embedded SoC used in such

a critical system is required to be failproof, which require

them to be studied from all physical and software aspects.

In this particular work, we focus on the thermal behavior

of the SoC behind the touchscreen.

Of the many aspects of modeling systems-on-chips

(SoC), the temperature is one of the few that links the

software, mechatronic and physical characteristics.

Hence, many of the recent work studying it were studied

on the thermal effects on system radiality (Löfwenmark

and Nadjm-Tehrani, 2018), its management for a better

reliability (Niu and Zhu, 2017, Zhou et al., 2018) or

better scheduling and power management (Li, Yu, and

Song, 2018). Our work, however, is oriented towards the

real-time surveillance of the chip (Djedidi, Djeziri, and

M’Sirdi, 2018). It concentrates on the monitoring of the

chip to detect the presence of any anomalies of abnormal

behavior.

Figure 1: A prototype of the cockpit of the future by

Thales Avionics (Thales, 2017).

In the next section, we further detail the goal of our and

put into the context of our previous works. In section 3,

we discuss the thermal modeling of CPU-GPU, then we

present and apply identification-based modeling to

model the thermal devious of the SoC in section 4.

Finally, the results and concluding remarks are presented

in sections 5 and 6.

2. THE STUDIED SYSTEM

The objective of this work is the mechatronic modeling

of the CPU-GPU SoC in embedded systems to predict

their behavior. This behavior prediction can then be used

for monitoring and diagnosis. This work is also a

continuation of the works by Djedidi et al. (2017) and

Djedidi, Djeziri, and M’Sirdi (2018), where the authors

worked on the modeling and monitoring of systems

designed for safety-critical environments. In the first

study, Djedidi et al. (2017) developed an incremental

interconnected modeling approach, to estimate key

variables that determine the operating state of the system

(Frequencies and voltages of the CPU, and GPU,

Memory Occupation Rate (MOR), Chip Temperature

and power consumption). Figure 2 shows a generalized

diagram of the established model for mobile CPU-GPU

SoC with 𝑛 CPU cores.

mailto:oussama.djedidi@lis-lab.fr
mailto:mail@uni.edu
mailto:aziz.naamane

Figure 2: Synoptic diagram of the incremental

interconnected model for a CPU-GPU SoC (Djedidi et

al., 2017).

The developed model was then used to monitor the state

the SoC and for the online detection of several types of

faults such as software bugs and environmental faults

(Djedidi et al., 2018).

This work focuses on temperature modeling and

estimation. It aims to build a model that can be used to

predict the temperature values of the SoC according to

the current workload. The model is also to be integrated

in the interconnected modelling framework as the

thermal model (Figure 2). Finally, it is also intended to

be used for the diagnosis of the chip in the future.

The case study we used to validate, and test model is a

safety-critical certified development board (

Figure 3). The board runs on Linux and is Android

capable. It has a one core ARM Cortex-A9 processor and

is equipped with 1 Gb of RAM (Freescale

Semiconductor Inc, 2012b).

Figure 3: View of the test installation with the

development board in the middle connected to the

monitoring PC.

3. THERMAL MODELING

To model the thermal behavior of an embedded system,

the first step is to follow the heat flow.

Figure 4: Simplified cross section of a typical SoC with

a die containing the CPU, GPU and RAM, installed on a

PCB.

Figure 4 shows, how in the SoC, heat is generated by the

circuitry containing the processor cores and the RAM. It

is then transferred through conduction in two directions

to the silicon case (top), the underfill and the C4 bumps

(bottom). The latter two would then conduct the heat to

the substrate which itself would conduct it to the printed

circuit board (PCB). Finally, the heat is dissipated by the

case and the PCB to the air through convection and

radiation. In these circuits, heat transfer occurs mostly

from one layer to another (vertically, in the diagram).

Figure 5: Equivalent thermal resistance circuit of a

typical integrated circuit of an SoC.

Figure 5 shows the equivalent thermal resistance circuit

(Freescale Semiconductor Inc, 2012a, Wang, Sun, and

Pan, 2017). The thermal resistance circuit can be used to

build a model that describes the evolution of the

temperature from one layer to another. The heat (𝑄) can

be written as:

𝑄 = 𝑄𝐽/𝑆𝑖 + 𝑄𝐽/𝑈 + 𝑄𝐽/𝐶4 + 𝑄𝑆𝑖/𝐴𝑖𝑟 + 𝑄𝐶4/𝑆𝑢

+ 𝑄𝑈/𝑆𝑢 + 𝑄𝑆𝑢/𝑃𝐶𝐵 + 𝑄𝑃𝐶𝐵/𝐴𝑖𝑟
(1)

Where 𝑄 is equal, in each layer, to the temperature

difference divided by the thermal resistance of the said

layer (Wang et al., 2017). For instance, the heat transfer

between the junction and the silicon encasing is equal to:

QJ/Si =
Tj − TSi

𝑅𝑆𝑖

 (2)

Where 𝑅𝑆𝑖 is the thermal resistance of the silicon. Its

value can be determined either by studying the material

property (area and thermal conductivity), or empirically

through identification.

Models built using this method are crucial for the thermal

management of the SoC. They enable engineers and

system builders to correctly design the optimal cooling

method (heatsink, fan, vapor chambers…). However,

they also require a deep knowledge of the system and an

estimation of the energy drawn by the SoC and

transformed into heat which increases the complexity of

the modeling process. It also does not allow for the

prediction of the temperature of the SoC according to

operating conditions (workload and frequency), nor the

change of its value with time and degradation.

Identified models, on the other hand rely mostly on a

combination of human expertise and observations to

choose which inputs correlate best with the output. In this

work, we use an auto-regressive model with exogenous

input to predict the temperature of the SoC.

4. IDENTIFICATION-BASED MODELING

ARMAX models are polynomial models used to estimate

or predict the output depending on its previous values

alongside those of the input vector (Landau and

Gianluca, 2006). Our choice settled on a polynomial

model—precisely an ARMAX one—because they are

dynamic and also fast enough to be used to generate

online estimation at frequencies up to 50 Hz.

Furthermore, since these models are dynamic, they can

also be used to accurately simulate the behavior of the

system offline and predict the operating temperature of

the SoC.

A discrete ARMAX process can be described by the

difference equation (Landau and Gianluca, 2006):

𝑦(𝑘) = 𝑎1𝑦(𝑘 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑘𝑛)

+ 𝑏1,1𝑢1(𝑘 − 𝜏) + ⋯

+ 𝑏𝑚,𝑛𝑏
𝑢𝑚(𝑘 − 𝜏 − 𝑛𝑏)

+ 𝑒(𝑡) + 𝑐1𝑒(𝑡 − 1) + ⋯
+ 𝑐𝑛𝑐

𝑒(𝑡 − 𝑛𝑐)

(3)

where 𝑦(𝑘) represents the output, 𝑢(𝑘) the input vector

with 𝑚 width, and 𝑒(𝑡) the error value. The parameters

[𝑎1, … , 𝑎𝑛𝑎
] are the regression parameters,

[𝑏1,1, … , 𝑏𝑚,𝑛𝑏
] are the input parameters, and [𝑐1, … , 𝑐𝑛𝑐

]

are the moving average parameters. Finally, 𝑛𝑎, 𝑛𝑏 and

𝑛𝑐 are the orders of the model, and 𝜏 is the input delay.

In our case study, the output to be estimated is the

temperature 𝑇 of the SoC, and the inputs are the

frequencies of the cores and the memory occupation rate

(MOR). These inputs are the variables that correlate the

most with the temperature (Mercati, Paterna, Bartolini,

Benini, and Rosing, 2017, Niu and Zhu, 2017, Zhou et

al., 2018).

+

 𝜀𝑘 =  𝑦𝑘    −  �̂�𝑘 (4)

�̂�(𝑘) is the predicted output. We rewrite equation (3) as

a discrete linear model:

𝐴(𝑞−1)𝑦(𝑘) = 𝐵(𝑞−1)𝑢(𝑘 − 𝜏) + 𝐶(𝑞−1)𝑒(𝑘) (5)

with 𝑞−1 being the delay operator, and 𝐴(𝑞−1) = 1 +

 ∑ 𝑎𝑖
𝑛𝑎
𝑖=1 𝑞−𝑖, 𝐵(𝑞−1) = 1 + ∑ 𝑏𝑗,𝑖

𝑛𝑏
𝑖=1 𝑞−𝑖, and 𝐶 = 1 +

 ∑ 𝑐𝑗,𝑖
𝑛𝑐
𝑖=1 𝑞−𝑖. Thus, predicted output at the sample 𝑘

becomes:

�̂�(𝑘) =
𝐵(𝑞−1)

𝐴(𝑞−1)
 𝑢(𝑘 − 𝜏) +

𝐶(𝑞−1)

𝐴(𝑞−1)
𝑒(𝑘) (6)

Based upon this, we construct an adaptive predictor. This

latter follows the model described in equation (6):

�̂�𝑘 = �̂�𝜑𝑘−1 (7)

with �̂�𝑘 being the vector of the temperature value,

𝜑𝑘−1 = [𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛𝑎), 𝑢1(𝑘 −
𝜏), … , 𝑢𝑚(𝑘 − 𝜏 − 𝑛𝑏), 𝜀(𝑘 − 1), … , 𝜀(𝑘 − 𝑛𝑐)] being a

vector composed of the output feedback, the inputs, and

the prediction error, and �̂� = [−𝑎1, … , 𝑐𝑛𝑐
] being the

vector the parameters vector.

The listing presented in Algorithm 1 is a pseudo-code

describing how the parameters of the ARMAX model

will be calculated with each iteration for a whole test

vector 𝑦(𝑘) (Landau, M’Sirdi, and M’Saad, 1986).

Algorithm 1: Pseudo-code for the recursive Least square

algorithm.

1: Begin

2: Define orders: 𝑛𝑎, 𝑛𝑏, 𝑛𝑐

3: Define the input delay: 𝜏

4: // Initialization of 𝜑𝑘−1

5: Initialize 𝜑𝑦𝑘−1

6: Initialize 𝜑𝑢𝑘−𝜏

7: Initialize 𝜑𝜀𝑘−1

8: 𝜑𝑘−1 ← [𝜑𝑦𝑘−1
, 𝜑𝑢𝑘−𝜏

, 𝜑𝜀𝑘−1
]

9: 𝜃𝑘−1 ← zeros(𝜑𝑦𝑘−1
.length, 1)

10: // Initialization of an empty vector

11: 𝐹 ← 100 × eye(𝜑𝑦𝑘−1
.length)

12: 𝑦(𝑘) ←Read(Output)

13: While 𝑦(𝑘) ≠ null do

14: �̂�(𝑘) ← 𝜃𝑘−1𝜑𝑘−1

15: 𝜀(𝑘) =  𝑦(𝑘)   −  �̂�(𝑘)

16: // Recalculation of the parameters vector

17: 𝐺 ← 𝐹 ∙ 𝜑𝑘−1

18: norm ← 1 + 𝜑𝑘−1 ∙ 𝐺

19: 𝐹 ← 𝐹 −
𝐺∙𝐺𝑇

norm

20: 𝜃𝑘−1 ← 𝜃𝑘−1 + 𝐺 ∙ 𝜀(𝑘)

21: // Updating𝜑𝑘−1

22: 𝜑𝑦𝑘−1
.addFirst(−𝑦(𝑘))

23: 𝜑𝑦𝑘−1
.poll(𝑛𝑎 + 1)

24: 𝜑𝑢𝑘−𝜏
.addFirst(Read(Input(1:m)))

25: 𝜑𝑢𝑘−𝜏
.poll(𝑛𝑏 + 1: 𝑛𝑏 + 1 + 𝑚)

26: 𝜑𝜀𝑘−1
.addFirst(𝜀(𝑘))

27: 𝜑𝜀𝑘−1
.poll(𝑛𝑐 + 1)

28: 𝜑𝑘−1 ← [𝜑𝑦𝑘−1
, 𝜑𝑢𝑘−𝜏

, 𝜑𝜀𝑘−1
]

29: \\ Reading the next output

30: 𝑦(𝑘) ←Read(Output)

31: End

5. RESULTS AND DISCUSSION

The results presented in this section are established

during controlled experiments. The experiment starts

when the data acquisition starts. It begins with two

standards benchmarks: AnTuTu (AnTuTu, 2019) and

3DMark (Futuremark Oy, 2019), then goes on to playing

and interacting with a Sudoku game, followed by 4

minutes of web browsing, HD video playback, and 4

minutes of standby time.

During this scenario, data is gathered and sent to the

monitoring PC where the ARMAXRLS model is trained at

the same time with a predefined set of orders. Once the

best set of orders is found, multiple trials are again

launched with a different number of training samples

each time. Once the training is finished, the accuracy of

the model is then validated online.

Finally, to compare the methodologies, a similar

ARMAX model is trained offline with the traditional

least squares method (ARMAXLS) using the same data as

the equivalent ARMAXRLS. The model is then validated,

again, with same data used to validate the equivalent

ARMAXRLS model.

The results presented for the accuracy of the model are

the results obtained from validation trials and sets

containing about 11 × 104 samples (about 3000 s).

5.1. Order selection

The first set of trials was launched with different sets of

orders. The best set is chosen according to two criteria;

the Mean Absolute Percentage Error (MAPE) and the

average time required to generate estimations by the

model.

While higher estimation accuracy is a virtue, models with

higher orders may require longer times to generate

estimations which can lead to missing the changes of

variables values. The time required to generate

estimation is also heavily affected by OS scheduling and

interruptions on both the device and the monitoring PC.

Thus, the optimal model needs to satisfy both accuracy

and speed of estimation constraints.

Table 1: Evolution of the accuracy and the time needed

to generated estimation of the ARMAXRLS model

according to its orders.

Orders of the

model MAPE (%)

Average

Sampling

Time (s) 𝑛𝑎 𝑛𝑏 𝑛𝑐

2 2 2 11.1853 18 ×10-3

3 3 3 7.9672 18 ×10-3

4 4 4 1.3757 ~30 ×10-3

4 4 2 0.8377 ~25 ×10-3

5 5 2 0.7215 ~65 ×10-3

6 6 2 1.3667 ~135 ×10-3

Table 1 displays the MAPE and the average sampling

time for several sets of model orders [𝑛𝑎, 𝑛𝑏 , 𝑛𝑐]. The

data in the tables show that the accuracy of the model

increases with the increase of the orders up until [4,4,4],

where a lower order for the moving average actually

results in an increase in accuracy. Furthermore, Table 1

also show how the average sampling time increases with

the order of the model, until it even starts affecting the

accuracy of the model due to the longer wait time for

estimations. Hence, from these experimental data, the

best model orders according to both the accuracy and

sampling time are [4,4,2].
5.2. Number of samples

In theory, the ideal training set would contain data

representing all possible information about the system.

However, in practice, the information in the training set

is limited by the sample number and information

contained in that sample. Table 2 shows how the

accuracy of the model increases with the number of

samples. However, it also shows that this increase in the

accuracy is not absolute, and the accuracy might decrease

even with increase number of samples. This is also

shown in the comparisons shown in Figure 6 and Figure

7. Hence, the solution to obtain the best model (In this

case, 𝑛 = 3000) is to by comparison of the Mean

Squared Error (MSE) as shown in Algorithm 2.

Algorithm 2: Pseudo-code the selection of the best

model.

1: Begin

2: 𝑀𝑆𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1
2

𝑛

3: // 𝑛 is the number of samples

4: If (𝑀𝑆𝐸𝐶𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑀𝑆𝐸𝑏𝑒𝑠𝑡) then

5: 𝑀𝑆𝐸𝑏𝑒𝑠𝑡 ← 𝑀𝑆𝐸𝐶𝑢𝑟𝑟𝑒𝑛𝑡

6: 𝑀𝑜𝑑𝑒𝑙𝑏𝑒𝑠𝑡 ← 𝑀𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡

7: End

Table 2: The influence of the number of samples on the

accuracy of the model.

Number of samples MAE (°C) MAPE (%)

500 64.34 169.1200

1000 57.77 151.7027

1500 52.46 137.6220

2000 0.92 2.3688

2500 0.64 1.5077

3000 0.34 0.8377

3500 0.65 1.5100

4000 0.57 1.5005

Figure 6: Estimations generated by multiple ARMAXRLS

models with different sample numbers in their training

sets against system measurements.

Figure 7: Estimation error (after model convergence) of

the ARMAXRLS according to the number of samples (𝑛)

used in training.

5.3. Comparison with ARMAXLS

Most of the ARMAX models are trained using least-

squares method. Using the same data with which the

ARMAXRLS model was trained, a new ARMAXLS was

also trained with [4,4,2] as a set of orders. The model was

then tested and validated using the same test data used to

validate ARMAXRLS one. Table 3 show a comparison of

the MAE of the ARMAXRLS and ARMAXLS models.

While the ARMAXLS shows a slight advantage in its

offline validation results, online estimation—our case

use— demonstrates an advantage for the ARMAXRLS. A

further comparison of the estimations and estimation

errors are shown in Figure 8 and Figure 9.

Table 3: The MAE and MAPE validation results for the

ARMAXRLS and ARMAXLS models.

Model
Number of

samples

MAE

(°C)

MAPE

(%)

ARMAXRLS 3000 0.34 0.8377

ARMAXLS (Offline) 4000 0.27 0.6324

ARMAXLS (Online) 4000 0.56 1.3757

Figure 8: Estimations generated by the ARMAXRLS and

the ARMAXLS models against system measurements.

Figure 9: Estimation error (after model convergence) of

the ARMAXRLS and the ARMAXLS models.

All the results mentioned above clearly validate the

ARMAXRLS. However, the high accuracy of the model

(being 99.1623%), along with its speed of estimations are

not the only advantages of this model. One last advantage

is the capacity to retrain the model at will without

stopping the monitoring process this can prove useful

when a change in operating condition or a drop in the

accuracy occur.

6. CONCLUSION

In this paper, we have built and validated ARMAX

model to predict the temperature of embedded SoCs

according to the workload and operating conditions. The

model is trained using RLS method which offer two clear

advantages over the traditional LS method. These

advantages are a better online accuracy, and the capacity

of training and retraining the model online without

having to stop the monitoring process.

The model offers high accuracy with a mean absolute

error of only 0.34°C, and also satisfy the required

sampling time.

Having validated the model with satisfactory results, it

will now integrated in the interconnected incremental

framework we previously developed (Djedidi et al.,

2018, 2017). In future works, we will be studying the

effects of the temperature on the reliability of the system,

and plan on using the ARMAXRLS model in the diagnosis

of the state of health of the SoC.

REFERENCES

AnTuTu. , 2019. AnTuTu Benchmark - Android Apps on

Google Play Retrieved from

https://play.google.com/store/apps/details?id=com

.antutu.ABenchMark.

Djedidi, O., Djeziri, M. A., and M’Sirdi, N. K. , 2018.

Data-Driven Approach for Feature Drift Detection

in Embedded Electronic Devices. IFAC-

PapersOnLine, 51(24), 1024–1029.

Djedidi, O., Djeziri, M. A., M’Sirdi, N. K., and

Naamane, A. , 2017. Modular Modelling of an

Embedded Mobile CPU-GPU Chip for Feature

Estimation. In Proceedings of the 14th

International Conference on Informatics in

Control, Automation and Robotics (Vol. 1, pp.

338–345). Mardrid, Spain: SciTePress.

Faggin, F., Hoff, M. E., Mazor, S., and Shima, M. , 1996.

History of the 4004. IEEE Micro, 16(6), 10–20.

Freescale Semiconductor Inc. , 2012a. i.MX 6 Series

Thermal Management Guidelines.

Freescale Semiconductor Inc. , 2012b. i.MX 6SoloX

Automotive and Infotainment Applications

Processors - Data Sheet. Freescale Semiconductor.

 Benchmark - Android Apps on Google Play Retrieved

from

https://play.google.com/store/apps/details?id=com

.futuremark.dmandroid.application.

Landau, I. D., and Gianluca, Z. (Eds.). , 2006. System

Identification: The Bases BT - Digital Control

Systems: Design, Identification and

Implementation (pp. 201–245). London: Springer

London.

Landau, I. D., M’Sirdi, N., and M’Saad, M. , 1986.

Techniques de modélisation récursive pour

l’analyse spectrale paramétrique adaptative. Revue

de Traitement Du Signal, 3, 183–204.

Li, T., Yu, G., and Song, J. , 2018. Minimizing energy by

thermal-aware task assignment and speed scaling

in heterogeneous MPSoC systems. Journal of

Systems Architecture, 89, 118–130.

Löfwenmark, A., and Nadjm-Tehrani, S. , 2018. Fault

and timing analysis in critical multi-core systems:

A survey with an avionics perspective. Journal of

Systems Architecture, 87, 1–11.

Mercati, P., Paterna, F., Bartolini, A., Benini, L., and

Rosing, T. Š. , 2017. WARM: Workload-Aware

Reliability Management in Linux/Android. IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 36(9), 1557–

1570.

Niu, L., and Zhu, D. , 2017. Reliability-aware scheduling

for reducing system-wide energy consumption for

weakly hard real-time systems. Journal of Systems

Architecture, 78, 30–54.

Thales. , 2017. What is new on Avionics 2020? | Thales

Aerospace BlogThales Aerospace Blog Retrieved

from http://onboard.thalesgroup.com/new-

avionics-2020/.

Wang, K. J., Sun, H. C., and Pan, Z. L. , 2017. An

analytical thermal model for Three-Dimensional

integrated Circuits with integrated micro-channel

cooling. Thermal Science, 21(4), 1601–1606.

Zhou, J., Yan, J., Cao, K., Tan, Y., Wei, T., Chen, M., …

Hu, S. , 2018. Thermal-aware correlated two-level

scheduling of real-time tasks with reduced

processor energy on heterogeneous MPSoCs.

Journal of Systems Architecture, 82, 1–11.

