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ABSTRACT: The structural chemistry of gold in arsenian pyrite (FeS2) and arsenopyrite (FeAsS) is 

as yet unknown, despite the economic importance of this element and its potential recovery from low-

grade ores and mine tailings. The systematic co-occurrence of Au and As poses a challenge for 

measuring the Au L3-edge X-ray absorption spectra because the Au Lα emission line is partly (pyrite) 

to totally (arsenopyrite) obscured by the intense As Kα line. Utilizing a newly developed high 

luminosity multi-crystal analyzer, in combination with the capabilities of a synchrotron-based 

microprobe, the Au Lα and As Kα lines were separated and the Au L3-edge XANES and EXAFS 

spectra of chemically-bound Au in arsenian pyrite and arsenopyrite from gold deposits measured for 

the first time. High energy-resolution XANES (HR-XANES) shows that gold has a formal oxidation 

state of 1+ in the two sulfides, but a distinct bonding environment. In arsenian pyrite with a point 

Au/As atomic ratio of 0.14 (0.37 wt ratio) and lacking geochemical correlation between the 

concentrations of Au and As, Au occupies the Fe site and is bonded to six S atoms at 2.41 Å, as 
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determined by HR-EXAFS. In contrast, in arsenopyrite with a point Au/As atomic ratio of 7.1×10-3 

(0.02 wt ratio) and exhibiting a Au-As correlation, octahedrally coordinated Au is bonded only to As 

atoms at 2.52 Å. The results reveal the atomic-scale structure of gold and its intricate geochemical 

association with arsenic in auriferous Fe sulfides. This work demonstrates that high energy-resolution 

X-ray absorption spectroscopy on synchrotron X-ray microprobes can illuminate the structural 

chemistry of trace elements in chemically complex Earth and planetary materials. 

 

INTRODUCTION 

Arsenian pyrite, and to a lesser extent arsenopyrite, are the main auriferous minerals in refractory 

gold ores. They have been described in numerous orogenic and Carlin-type gold deposits, in which 

gold is usually referred to as “invisible” gold.1-9 Remarkably high concentrations of Au, up to 0.9 

wt%, in both pyrite7 and arsenopyrite4, 10 have been reported. Gold is present in two forms in pyrite 

and arsenopyrite, as micro- to nano-sized inclusions of metallic Au nanoparticles (Au0) and 

incorporated in the crystal structure.5, 6, 9-24 

Arsenic is considered as essential for incorporation of invisible gold, the concentrations of the 

two elements being generally correlated positively in pyrite2, 7, 10, 17, 25, 26 and arsenopyrite.10, 27 

However, weak or lack of correlation has been also observed in both pyrite5, 7, 8, 10, 18, 28 and 

arsenopyrite.28 Covariation of Au and As is considered to be limited by the solubility of Au in the 

two sulfides. Reich et al.7 defined the empirical atomic solubility limit of Au in arsenian pyrite formed 

at temperatures between 150 and 250 °C as [Au]at. = 0.02 × [As]at. + 4 x 10-5, on the basis of several 

hundreds secondary-ion mass spectrometry (SIMS) analyses and electron probe microanalyses 

(EPMA) of arsenian pyrite from Carlin-type and epithermal deposits. The maximum Au/As atomic 

ratio of 0.02 corresponds to 0.5 wt% Au at 10 wt% As and to 500 µg/g Au (ppm) at 1 wt% As. High 

Au concentrations above the solubility-limit represent elemental Au occurring as nanonuggets. This 

relationship suggests that the maximum amounts of chemically-bound Au is a crystal chemical 

property of the solid independent of the geochemical condition of pyrite formation. The same authors 

estimated the maximum concentration of Au in stoichiometric arsenopyrite to be 2 wt%. 

Metallic gold nanoparticles have been imaged by HAADF-STEM,6 and detected by SIMS and 

LA-ICP-MS depth-profiling of Au concentration.2, 7, 29 Gold nanoparticles in the ablated material 

produce spikes across the Au concentration profile which looks like a saw-tooth pattern. However, 

two uniform SIMS profiles and one smooth LA-ICP-MS profile have been observed in the 

compositional field of nanoparticulate Au. The SIMS analyses were performed on two As-rich pyrite 
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from a Carlin-type deposit (Goldstrike, Nevada), one containing 0.52 wt% Au and 11.97 wt% As 

([Au]at./[As]at. = 0.017) and another containing 375 µg/g Au and 0.2 wt% As ([Au]at./[As]at. = 0.11),8 

and the LA-ICP-MS analysis was performed on an As-depleted pyrite from the Huangtuliang gold 

deposit containing 157 µg/g Au and 2.8 µg/g As.29 In these pyrite specimens, Au occurs, at least 

partly, in the crystal structure. Thus, As is not essential for Au to be bound chemically in the FeS2 

framework. The non-arsenian Au species present in low As pyrite may very well occur and coexist 

with an As-bound species in As-rich pyrite. A mixture of As-bound and As-unbound Au species 

perhaps is the explanation to the absence or poor correlation between the Au and As contents observed 

in the [Au]at./[As]at.<0.02 compositional field of some arsenian pyrite.5, 28 Answer to this question and 

to the diversity of geochemical observations, some apparently contradictory, lies in structural studies 

on the oxidation state and bonding environment of Au in pyrite. 

The most accepted formal oxidation state for Au in arsenian pyrite is 1+,5 as determined by 

XANES in natural arsenian pyrite5 and HR-XANES in synthetic As-free pyrite.30, 31 An oxidation 

state of 3+ was suggested in arsenian pyrite based on charge balance consideration using microprobe 

data,18, 25 and also 1- was proposed using X-ray photoelectron spectroscopy (XPS) analysis.32 The 

substitution mechanism proposed for each oxidation state is: (1) Au1+ for Fe substitution,5, 33 (2)  

incorporation of (poly)sulfide clusters composed of S-Au1+-S linear units,31 (3) Au3+ for Fe2+ 

substitution coupled with an As1- for S2- substitution,25 (4) coupled substitution of Au3+ and Cu+ for 

two Fe2+,18 and (5) Au1- for S1- substitution.32 In some studies, the hypothetical Au1+ for Fe 

substitution is backed up by a negative correlation between the concentrations of Au and Fe.7, 34 In 

other studies, this correlation was not discerned for unclear reasons.10, 33 The steric compatibility of 

Au1+ at the Fe2+ site is also not totally resolved. Au1+ has an ionic radius of 1.37 Å and low-spin Fe2+ 

of 0.61 Å.35 On the basis of this metrical parameter, Au1+ is unlikely to enter the Fe site unless the 

site is highly distorted locally.2, 4, 33 However, the Fe-S and Au-S bonds have a covalent character,16 

and the covalent radii of Au and low-spin Fe differ by only 1.36 - 1.32 = 0.04 Å. Incorporation of 

Au1+ at the Fe site has been demonstrated for synthetic As-free pyrite using HR-EXAFS 

spectroscopy.30 The Au-S bond length was 0.14 Å longer than the Fe-S bond length, which 

corresponds to an expansion of 0.14 Å / 2.26 Å36 = 6%. 

Three possible oxidation states also were suggested for Au in arsenopyrite: 1+ using XANES,16, 

30 3+ based on charge balance,37 and 1- using XPS.32 The two last assignments are from earlier studies 

and have been discussed critically by Cabri et al.16 To date it is established that Au is formally 

monovalent and probably substitutional since it correlates inversely with Fe.10, 27, 28 
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Despite extensive study, the key question of the atomic-scale structure of chemically-bound Au 

and its relationship with the broad Au-As geochemical correlation remains. Progress has lagged 

because of the difficulty of measuring Au L3-edge EXAFS spectra in an Fe-rich matrix and the 

proximity of the Au Lα and As Kα emission lines in fluorescence-yield EXAFS measurement. Here, 

quality HR-XANES and HR-EXAFS spectra were obtained using a newly developed wavelength-

dispersive X-ray spectrometer equipped with five high-luminosity crystals of 0.5 m bending radius.38 

Micro HR-XANES and HR-EXAFS spectra of a pyrite and an arsenopyrite grain were measured on 

two selected points-of-interest from microfluorescence maps (HR-SXRF). The pyrite spot contained 

0.48 wt% Au and 1.31 wt% As ([Au]at./[As]at. = 0.14) and the arsenopyrite spot 0.84 wt% Au and 

44.6 wt% As ([Au]at./[As]at. = 7.1×10-3). The two ores had been characterized previously by 

conventional electron microscopy, SIMS, and 197Au Mössbauer spectroscopy.1, 10, 11, 39, 40 

 

MATERIALS AND METHODS 

The pyrite is from a refractory gold ore collected on a sandy mine tailing in Colombia, South America. 

The ore is composed dominantly of pyrite (90%) and minor quartz, and has no arsenopyrite. The 

arsenopyrite comes from the Villeranges deposit located along the Marche Combrailles shear zones 

in the northwest of the French Massif Central. The ore is hosted by Visean volcano-sedimentary tuffs 

which were intensely fractured 300-315 Ma ago favoring hydrothermal circulation along the shear 

zones. Gold-rich arsenopyrite occurs in quartz and ankerite veinlets and also as isolated crystals in 

the tuffs. Ore fluids were aqueous, with low salinity and a temperature between 160 and 200 °C. The 

host rocks were totally transformed in quartz-illite, indicating that the syn-ore fluids had a low pH 

with a fO2 between the hematite- magnetite and Ni-NiO redox buffers.11 

A polished section of each ore was analyzed by EPMA and chemical mapping, and afterward by 

synchrotron-based X-ray micro-fluorescence (HR-SXRF) to relocate the regions of interest for micro 

Au L3-edge HR-XANES and HR-EXAFS analysis (Figures S1 and S2). Laterally resolved 

measurements were performed on the microprobe endstation of beamline BM23 at the European 

Synchrotron Radiation Facility (ESRF, Grenoble). The flux incident on the sample (I0) was 4.5 x 109 

photons/sec in a spot size of  4x4 μm2. Bulk HR-XANES of a fine powder from the arsenopyrite ore 

and reference spectra were measured on beamline ID26 of the ESRF. The flux incident on the sample 

(I0) was 1013 photons/sec in a spot size of 0.08 (V) x 0.7 (H) mm2. The BM23 and ID26 data were 

intercalibrated on the same energy scale taking the maximum of the first derivative of a thin Au foil 

at 11919.0 eV. Additional methodological information is provided in the Supporting Information (SI). 



5 

 

Au L3-edge XANES spectra were calculated ab initio with the finite difference method (FDM) as 

implemented in FDMNES.41 The code calculates the final state potential in real space from a cluster 

of atoms. The form of the potential is not approximated, in contrast to the alternative muffin-tin 

approach,42, 43 thus providing a better description of scattering phenomena. FDM-FDMNES 

calculation also provides the partial density of states (DOS) of the X-ray absorbing atom (i.e., Au) 

resolved over the (l, m) quantum numbers. 

A photograph of the 0.5 meter X-ray emission spectrometer installed on BM23 is shown in Figure 

1a. Its capability is illustrated in Figures 1b and 1c with the micro X-ray fluorescence spectra of the 

Au spots for pyrite and arsenopyrite analyzed by HR-XANES/EXAFS. At [Au]at/[As]at = 0.14 

(arsenian pyrite), the Au Lα fluorescence line (9713 eV) is extremely weak in total florescence-yield 

(TFY) hampering the collection of useful X-ray absorption data. At [Au]at/[As]at = 7.1×10-3 

(arsenopyrite), the Au Lα fluorescence line is totally shadowed by the low energy tail of the As Kα 

fluorescence line (10543 eV). Gold is invisible in TFY detection mode. The parasitic As Kα line is 

eliminated (pyrite) or drastically attenuated (arsenopyrite) like other unwanted lines at high energy-

resolution using a crystal multi-analyzer. The spectrometer was set to the fixed energy of the Au Lα1 

line and the fluorescence spectra were recorded with a silicon-drift (SDD) detector. In this mode, the 

Au Lα1 fluorescence is Bragg reflected by the spectrometer crystals whereas fluorescence lines at all 

other energies reach the detector via weak scattering events. In addition, the close proximity of the 

As K-edge to the Au L3-edge makes it difficult to measure high quality Au spectra in fluorescence-

yield mode (Figure 1d). The As background in the Au spectrum is eliminated with analyzer crystals, 

allowing measurement of nearly pure Au Lα1 fluorescence. Figure 1d also illustrates how the spectral 

features in the absorption edge are better resolved by tuning the Bragg angle of the spectrometer to 

the Au Lα1 line. The physical origin of this sharpening effect has been described previously.44  

 

RESULTS AND DISCUSSION 

Concentration and distribution of Au. Au is distributed irregularly in growth zones of the 

pyrite and arsenopyrite grains (Figures 2a and 2b). A total of 38 EPMA analyses were performed on 

pyrite and 26 on arsenopyrite (Tables S1 and S2). The chemical formulae, calculated to the 

nonstoichiometric compositions (Fe,Au,Cu,□)S2-xAsx for pyrite and (Fe,Au,Cu,□)As1-xS1+x for 

arsenopyrite where □ is a cation vacancy, are (Fe,Cu,Au)S2-xAsx with  0.00 ≤ x ≤ 0.03 for pyrite and 

(Fe,Cu,Au)As1-xS1+x with 0.01 ≤ x ≤ 0.10 for arsenopyrite (Tables S3 and S4). All cationic sites are 

occupied, there are no octahedral vacancies (Figures 3a and 3b).  
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In pyrite, the Au and As concentration ranges are 0.004 wt% ≤ Au ≤ 0.48 wt% and 0.15 wt% ≤ 

As ≤ 1.9 wt%. There is no correlation between the Au and As contents (Figure 3c), in agreement with 

previous analyses of the Colombian ore.10 Twenty six analyses plot above the solubility limit 

representing nanoparticulate Au0 according to Reich et al.7. The arsenopyrite grain contains two 

compositional populations of Au: a low-Au population located in depleted growth zones containing 

0.057-0.21 wt% Au, and a high-Au population containing 0.62-0.88 wt% Au (Figures 3b and 3d). 

The maximum concentration is below the 2% limit inferred by Reich and coworkers.7 The Au-rich 

regions are richer in As (r = 0.78, p = 2.6 10-6), which suggests that Au is bonded predominantly to 

As over S in the structure of arsenopyrite. In contrast, the absence of Au-As correlation in the pyrite 

grain suggests a Au-S bonding. No gold particles were discerned in either grain, although metallic 

gold occurs in the Colombia ore.10 Therefore, all gold appears to be chemically-bound in the two 

sulfides on a micron size scale. 

 

Oxidation state of Au. Micro HR-XANES spectra of pyrite and arsenopyrite collected from the 

Au-rich spots shown in Figures 4a and 4b are plotted in Figure 5a along with reference spectra. A 

bulk HR-XANES spectrum of arsenopyrite also was recorded in order to verify that the point 

measurement truly represents all of what is found in the entire sample and to dismiss the presence of 

gold nanonuggets (data not shown). The data are consistent with those reported in Trigub et al.30 on 

synthetic auriferous sulfides. The sulfide spectra are shifted to higher energy relative to the two 

Au(III) references AuCl3 and Au2O3, which shows that Au is nominally monovalent in pyrite and 

arsenopyrite (Figure 5a). The energy position of the white lines are 11921.3 eV for pyrite, 11921.9 

eV for arsenopyrite, and 11922.2 eV for Au2S, compared to 11920.2 eV and 11920.3 eV for Au2O3 

and AuCl3. The 0.6 eV difference in energy between pyrite and arsenopyrite is interpreted as an 

electronegativity effect of the donor ligands. We showed previously with a FDM-FDMNES 

calculation that the XANES spectrum of Au1+ shifts to lower energy when Au is bonded to Cl 

(electronegativity = 3.16) relative to S (electronegativity = 2.58) (Figure 8 of Ref.45). With an 

electronegativity of 2.18, As is predicted to shift the Au-XANES spectrum up in energy, which we 

verified with a FDM-FDMNES calculation.  

Replacing the 6 S ligands with 6 As in the coordination sphere of Au in pyrite shifts the edge 

maximum rightward by about 1 eV (Figure 5b). The same ligand effect is observed for arsenopyrite 

between the AuS6 and Au(S3As3) coordinations (ΔE = 0.3 eV), and between the Au(S3As3) and AuAs6 

coordinations (ΔE = 1 eV). The sensitivity of XANES to the nature of the Au1+ ligand can be 
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understood in terms of the energetics of the empty density of states (DOS) for Au and its donor 

ligands. The Au L3 X-ray absorption edge corresponds to the dipole-allowed 2p3/2 → 6s5d transition 

of Au, which in σ-bonding with polarizing ligands has the electronic configuration [Xe]4f
146s1-x5d10- 

y and its 6s1-x5d10- y valence orbitals hybridized with the S 3sp and As 4sp orbitals.45 Figure 6 shows 

the d-DOS of Au together with the p-DOS of S and As. The s orbitals are not shown because the 

amplitude of the 2p3/2 → 6s1-x transition is much smaller than the amplitude of the 2p3/2 → 5d1- y 

transition. As expected from dipole selection rules, it is seen that all absorption features in the 

calculated spectra correlate with the intensity of the Au d-DOS. The profiles of the Au d-DOS and 

S/As p-DOS overlap as a result of the σ-bonding, and move to higher energy when 6 S ligands are 

replaced with 6 As ligands in both pyrite and arsenopyrite. Therefore, the experimental edge shift 

between the pyrite and arsenopyrite spectra (Figure 5a) suggests a Au-S bonding in pyrite and a Au-

As bonding in arsenopyrite. Also, the high experimental amplitude of the Au edge suggests that Au 

is octahedrally coordinated because the strength of the 2p3/2 → 5d1-y transition is proportional to the 

density of holes in the 5d orbitals (y value), which itself increases with the number of ligands due to 

orbital hybridization. This effect is seen in Figure 5a with the Au2S reference, in which Au is 

coordinated linearly to two S atoms. The edge amplitude of Au2S is considerably reduced with regard 

to that of the two Fe sulfides. We conclude that Au substitutes for Fe in pyrite and arsenopyrite. The 

linear S-Au-S coordination described recently in synthetic pyrite using the Au2S reference31 is an 

incompatible model for the two natural gold sulfides studied here. 

 

Local structure of Au. The micro HR-EXAFS spectra of pyrite and arsenopyrite collected from 

Au-rich spots are clearly distinct between k = 3 and 9 Å-1 (Figure 7a). The shift of the two χ(k) 

frequencies is manifested in the radial distribution function obtained by Fourier transformation as a 

shift to higher distance and a higher amplitude of the first peak for arsenopyrite and also the absence 

of second peak at R + R = 3.2 Å (Figure 7b). A difference of local structure around the Au atoms is 

expected since FeS2 and FeAsS do not have the same crystallographic structure (Figure 8). The first 

peak corresponds to the contribution from the coordination shell, and the difference in amplitude and 

peak position suggest a bonding to lighter and smaller S atoms in pyrite and to heavier and larger As 

atoms in arsenopyrite. The second and third atomic shells around Au are better distinguished by 

Fourier filtering their contribution to the total EXAFS signal in the 2.8 Å < R + R < 4.0 Å interval 

(Fig. 7c). The pyrite wave has a beating node at k = 10 Å-1, suggesting that two atomic shells should 
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suffice to fit the data. The arsenopyrite wave has a different envelope, no beat pattern, and is damped, 

likely due to greater structural disorder. 

The spectrum of pyrite was fit with 5.7 ± 0.7 S atoms at 2.41 Å, 7.6 ± 1.4 S at 3.50 Å and 11.9 ± 

3.7 Fe atoms at 3.85 Å (Figure 9a, Table 1). The data could not be fit with a second shell of As atoms. 

This does not preclude some As atoms from being present at around 3.50 Å. The Au-S bond length 

is 0.15 Å longer than the Fe-S bond length of pyrite, whereas the second and third nearest shell 

distances around Au are similar to those around Fe in pyrite (Table 1). Thus, the structural relaxation 

appears limited to the first atomic shell. Ab initio modeling of the Au-pyrite structure using 

CRYSTAL1446 shows that insertion of the larger Au atom is accommodated locally by a modification 

of the interpolyhedral angles between the corner linked octahedra (i.e., compliance effect) (Table 1 

and SI). A similar observation was reported for the incorporation of trace elements in calcite, in which 

the compliance of the Ca site to substitutional impurities was attributed to the corner sharing topology 

of the carbonate structure.47 The lack of As around Au at the atomic scale provides an explanation 

for the absence of Au-As correlation at the macroscopic scale (Figure 3a).  

The first shell around Au in arsenopyrite was fit with 5.6 ± 0.3 As atoms at 2.52 Å, to be 

compared with the crystallographic values of 3 S at 2.23 Å and 3 As at 2.37-2.41 Å around Fe (Table 

1). The expansion of the Au-As distance (0.11-0.15 Å) is close in value to that observed in pyrite 

(0.15 Å) and to those predicted by DFT (0.10-0.08 Å, Table 1). The AuAs6 coordination revealed by 

EXAFS is consistent with the Au-As correlation observed by EPMA (Figure 3d), and with the shift 

to higher energy of the XANES spectrum (Figure 5a). Analysis of the second and third shell is less 

conclusive. The data can be fit equally well with 4.3 ± 0.3 S at 3.73 Å and 3.7 ± 0.3 As at 3.94 Å 

(model 1), and 8 S at 3.77 Å and 4 Fe at 4.00 Å (model 2) (Figures 9b and 9c). Model 1 has the same 

number of S and As atoms as stoichiometric FeAsS (CN(S) + CN(As) = 8, Table 1). Under this 

scheme, three As atoms are added to the structure per Au and the chemical environment of the metal 

site beyond the AuAs6 octahedron is conserved. The new chemical formula can be written (Fe1-

xAux)As1+3xS1-3x. Model 2 has no As in the second shell. This model has for ideal formula (Fe1-

xAux)AsS. Under this scheme, the AuAs6 coordination is obtained by displacing three As from the 

second shell to the first shell. Only model 1 appears compatible with the positive correlation between 

Au and As. The limit of the number of free parameters in the fits, as calculated by the Nyquist formula 

N = (2ΔRΔk)/π, was not exceeded in any of the cases indicating that the EXAFS parameters are 

robust. Nine parameters were adjusted at most (Table 1), for a number of degrees of freedom in the 

refinements of N = [(2 x (13.3 – 3.7 Å-1) x (4.0 – 1.5 Å)]/π = 15.3. Simulation involving Au-Au pairs 
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in the third shell of pyrite to test a clustering of Au resulted in 50% increase of the fit residual (Figure 

S3a, Table S5). EXAFS data are also incompatible with the inclusion of AuS2 clusters and 

isomorphous aurostibite-like clusters (AuSb2) (Figures S3b and S3c). 

According to model 1, the plot of [As] against [Au] should have a slope of 3 since three As atoms 

are added to the structure per Au. The [Au] against [As] plot of Figure 3d has a slope of 0.082, 

corresponding to an [As]/[Au] ratio of 1/0.08 = 12 instead of 3. Au-As correlations have even lower 

slopes in previous studies, from 0.05 down to 0.01-0.02.10, 16 It follows that one Au atom is 

incorporated in the arsenopyrite structure for at least twelve As atoms. If all As for S substitutions 

occur around the Au site, the AuAs12 cluster will be 5.4 Å in size. This arrangement is 

crystallographically possible since the mineral FeAs2, named löllingite, is isostructural with FeAsS.48 

The AuAs12 cluster with an FeAs2-type structure would be inclosed in the FeAsS framework. 

Although structurally feasible, the occurrence of intergrown AuAsn clusters in arsenopyrite is negated 

by EXAFS because Au has an FeAsS-type short-range order beyond the first atomic shell. According 

to Fleet and coworkers4 Au is removed from ore fluids by chemisorption at As-rich, Fe-deficient 

surface sites in the Fe-As-S system and incorporated in the solid phase as a metastable solid solution. 

The AuAs6 coordination may result from the chemisorption of gold-arsenide complex on As-exposed, 

Fe-deficient growth surface sites of arsenopyrite, and the AuS6 coordination from the chemisorption 

of AuHS0 and Au(HS)2
- complex31, 49-55 on S, Fe-deficient growth surface sites of arsenian pyrite. If 

this interpretation is correct, then the anomalous As content of auriferous sulfide ores and the As-Au 

correlation may reside, among other factors, in the high arsenic content of the mineralizing fluids and 

the chemical affinity of Au for As in arsenian sulfide fluids. The AuAs6 coordination perhaps is a 

relic of the Au-As complex that existed in aqueous hydrothermal solutions. When the hydrothermal 

fluids are depleted in As, then Au forms a AuS6 surface complex at the surface of pyrite, later buried 

in As-depleted zones of the mineral structure. Conditions under which two different zones of 

arsenopyrite were formed were different in terms of sulfur and arsenic fugacity, and perhaps also 

temperature.  

 

CONCLUSION 

The coupled substitution of Au and As at the octahedral Fe(As,S)6 site of arsenopyrite is the most 

important new insight from this study. A strong correlation between the concentrations of Au and As 

is probably a geochemical signature for a AuAs6 coordination at the atomic-scale. In reverse, absence 

of Au-As correlation in pyrite is probably a signature for a AuS6 coordination. A weak geochemical 
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correlation of Au and As may indicate the existence of AuAs5S and AuAs4S2 coordinations or the 

coexistence of the AuAs6 and AuS6 coordinations in the analyzed sample. The pyrite grain analyzed 

here is not representative of all arsenian pyrite described in the literature. A Au-As geochemical 

association often is observed, but these arsenian pyrite are more arduous to study by X-ray absorption 

spectroscopy because they are much richer in As. The study of pyrite and arsenopyrite grains from 

other sources and differing in Au-As correlation will no doubt shed more light on the chemical forms 

of "invisible" gold in sulfide deposits.  
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FIGURE CAPTIONS 

 

Figure 1. (a) Photograph of the 0.5 emission spectrometer used to collect the HR-SXRF data and to 

measure the Au L3-edge HR-XANES and HR-EXAFS spectra on the BM23 microprobe of the ESRF. 

(b,c) SXRF spectra of pyrite and arsenopyrite measured in total fluorescence-yield (TFY) and high 

energy-resolution modes. Incident energy, 11930 eV; collection time, 300 s. (d) Fluorescence-yield 

XANES and HR-XANES of arsenopyrite.  

 

Figure 2. EPMA maps of the distribution of Au and As in arsenian pyrite (a) and arsenopyrite (b). 

The arsenopyrite grain is compositionally zoned. The color-scale bar indicates the intensity of the Au 

Lα line. White crosses indicate the location of the spots relocated by HR-SXRF (Figure 4) and 

measured by micro HR-XANES and HR-EXAFS. Map dimensions: pyrite = 100 x 55 µm2, 

arsenopyrite = 350 x 130 µm2. Pixel size: 1 x 1 µm2. 

 

Figure 3. Compositions of arsenian pyrite and arsenopyrite from EPMA analyses (Tables S1 and S2) 

calculated to the formula (Fe,Au,Cu,□)S2-xAsx for pyrite and to (Fe,Au,Cu,□)As1-xS1+x for 

arsenopyrite, where □ is a cation vacancy. (a,b) Au atomic content x 100 (%) against the total number 

of cations in the unit formula. (c,d) Au content (%) against As content (%) in the unit formula of 

pyrite and arsenopyrite. Note the absence of Au-As correlation and high [Au]at/[As]at ratio in arsenian 
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pyrite, which lies above the solubility limit for gold in As1--pyrite defined by Reich and coworkers.7 

Points measured by XANES and EXAFS are in pink. The pyrite point has 0.48 wt% Au and the 

arsenopyrite point 0.84 wt% Au. Points colored in blue were measured in Au-rich growth zones.  

 

Figure 4. HR-SXRF maps of the distribution of Au in arsenian pyrite (a) and arsenopyrite (b) from 

the Au-rich regions identified by EPMA (Figure 2). Map dimension for pyrite: 290 x 150 µm2, pixel 

size: 5 x 5 µm2. Map dimension for arsenopyrite: 400 x 120 µm2, pixel size: 4 x 4 µm2. 

 

Figure 5. (a) Au L3-edge HR-XANES spectra of pyrite, arsenopyrite, and reference compounds 

(Au2O3, AuCl3, Au2S, Au). (b) Theoretical XANES spectra calculated with FDM-FDMNES41, 43 for 

Au coordinated to 6S and 6As in pyrite, and to 6S, 3S and 3As, and 6As in arsenopyrite after the DFT 

models shown in Figure 6a and the Au-ligand distances given in Table 1. The energy positions of the 

calculated spectra, expressed in terms of the photoelectron energy (0 eV is the Fermi level, Figure 6), 

were shifted by the ionization energy (∼11919 eV) to match approximately those of the experimental 

spectra, expressed in photon energy. 

 

Figure 6. (a) Polyhedral structure of the Au-pyrite and Au-arsenopyrite clusters used to calculate 

XANES and l-projected density of states (DOS). Pyrite has a cubic structure consisting of corner-

sharing FeS6 octahedra.36 Arsenopyrite has a monoclinic structure consisting of single chains of edge-

sharing Fe(As3S3) octahedra cross-linked by sharing corners.56 The octahedron of the absorbing Au 

atom is yellow. Calculated XANES spectrum, 5d-DOS of the absorbing Au atom, and valence p-DOS 

of the S atoms for the AuS6-pyrite model (b), As atoms for the AuAs6-pyrite model (c), S and As 

atoms for the Au(S3As3)-arsenopyrite model (d), and As atoms for the AuAs6-arsenopyrite model (e). 

Plot (e) shows that the 4p orbital occupation for As (or 3p for S) varies with the Au-As distance (i.e., 

bond polarity), whereas the orbital energy is essentially independent on the bond length.  

 

Figure 7. (a,b) Au L3-edge micro HR-EXAFS spectra and Fourier transform magnitude of pyrite and 

arsenopyrite measured on the Au-rich spots imaged on Figures 2 and 4. The peak positions are not 

corrected for phase shift, and consequently are shifted by ΔR ~ -0.3 to -0.4 Å relative to structural R 

distances. (c) Inverse Fourier transform of the second peaks (R+ΔR window = 2.8 – 4.0 Å). 

 



16 

 

Figure 8. Polyhedral linkage of the FeS6 octahedra in pyrite (a), and Fe(As3S3) octahedra in Au-free 

arsenopyrite (b). The FeS6 octahedra are linked together by S2 dimers and the Fe(As3S3) octahedra 

by SAs dimers. Yellow: S; dark red: As. 

 

Figure 9. Au L3-edge micro HR-EXAFS spectra and Fourier transform magnitudes of pyrite (a) and 

arsenopyrite (b,c) with fits.  
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Table 1. Crystallographic structure of pyrite and arsenopyrite, DFT 

models of Au-pyrite and Au-arsenopyrite, and EXAFS parameters 

Mineral and structure Bond CNa Rb, Å σc, Å 

Pyrite Fe-S 6 2.26 - 
Crystal structure Fe-S 6 3.45 - 
 Fe-S 2 3.61 - 
 Fe-Fe 12 3.83 - 
     
Au-substituted pyrite Au-S 6 2.47 - 
DFT model Au-S 6 3.46 - 
 Au-S 2 3.65 - 
 Au-Fe 12 3.89 - 
     
Arsenian pyrite Au-S 5.7 2.41 0.049 
EXAFS structure Au-S 7.6 3.50 0.068e 

E0=7.0 eV; Resd=9.2 Au-Fe 11.9 3.85 0.068e 

     
Arsenopyrite Fe-S 3 2.23 - 
Crystal structure Fe-As 3 2.37-2.41 - 
 Fe-Fe 1 2.73 - 
 Fe-S 4 3.68-3.76 - 
 Fe-As 4 3.69-3.80 - 
 Fe-Fe 1 3.74 - 
 Fe-Fe 6 3.94-4.10 - 
     
Au-substituted  Au-S 3 2.43-2.46 - 
arsenopyrite Au-As 3 2.47-2.49 - 
DFT model Au-Fe 1 3.14 - 
 Au-S 4 3.62-3.83 - 
 Au-As 4 3.78-3.95 - 
 Au-Fe 1 3.48 - 
 Au-Fe 6 3.97-4.10 - 
     
Arsenopyrite Au-As 5.6 2.52 0.055 
EXAFS model-fit 1 Au-S 4.3f 3.73 0.033e 

E0=7.5 eV; Res=4.7 Au-As 3.7f 3.94 0.033e 

     
Arsenopyrite Au-As 5.6 2.52 0.055 
EXAFS model-fit 2 Au-S 8g 3.77 0.069e 

E0=7.7 eV; Res=4.8 Au-Fe 4g 4.00 0.069e 
aCoordination number; bInteratomic distance; cDebye-Waller factor;  dRes 

= [Σ{|exp – fit|}/Σ{|exp|}] x 100; eParameters constrained identical; fSum 

fixed to eight. gFixed value. Typical errors are R = 0.02 Å and CN = 20%. 
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