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Abstract—In this paper, we present a non-deterministic strat-
egy for searching for optimal number of trees hyperparameter in
Random Forest (RF). Hyperparameter tuning in Machine Learn-
ing (ML) algorithms is essential. It optimizes predictability of an
ML algorithm and/or improves computer resources utilization.
However, hyperparameter tuning is a complex optimization task
and time consuming. We set up experiments with the goal of
maximizing predictability, minimizing number of trees and min-
imizing time of execution. Compared to the deterministic search
algorithm, the non-deterministic search algorithm recorded an
average percentage accuracy of approximately 98%, number
of trees percentage average improvement of 44.64%, average
time of execution mean improvement ratio of 213.25 and an
average improvement of 94% iterations. Moreover, evaluations
using Jackkife Estimation show stable and reliable results from
several experiment runs of the non-deterministic strategy. The
non-deterministic approach in searching hyperparameter shows
a significant accuracy and better computer resources (i.e cpu
and memory time) utilization. This approach can be adopted
widely in hyperparameter tuning, and in conserving utilization
of computer resources like green computing.

I. INTRODUCTION

ML performance tuning is aimed at improving the pre-
dictability of ML algorithms. Improving performance of a ML
systems can be done by configuring a set of hyperparameters.
Most ML algorithms have several hyperparameters to be
configured. Hyperparameters specify the interoperability of
the underlying model. ML algorithms hyperparameter tuning
is aimed at getting optimal values that can improve the
algorithm’s predictability considering minimum consumption
of computer system resources [6]. When adopting ML al-
gorithm to a specific dataset, hyperparameter tuning can be
cumbersome and time consuming [13].

Manual, grid search and bayesian optimization are methods
of hyperparameter optimization. Grid search is deterministic.
It does an exhaustive search. It uses a predefined parameter
space S = {0, 1, 2, ..., n}. The goal is to search an optimal
hyperparameter s in S that records an optimal accuracy. Grid
search consumes substantial amount time and is computation-
ally expensive. However, it gives accurate results [4]. Manual
search involves randomly selecting a value s in S. The value

s is configured in the algorithm, the experiment executed and
the accuracy observed. The process is repeated comparing the
accuracy. The hyperparameter that records the optimal accu-
racy is selected. Manual search is cumbersome and difficult
to reproduce results [1]. Bayesian optimization stochastically
and efficiently trades off exploration and exploitation of the
parameter space. It also explores historical information to
find the parameters that maximize functions to inform user
the configurations that best optimize predictability of the ML
algorithm [5].

This paper introduces a non-deterministic search algorithm.
The algorithm randomly selects 10% of elements in a param-
eter space. It then uses heuristics and termination conditions
to maximize accuracy (acc) and minimize time of execution
(t). This algorithm was applied and tested in selecting optimal
number of trees (θ) in random forest (RF). In this paper, Sec-
tion II covers related works, Section III discusses methodology
and Section IV concludes this paper.

II. RELATED WORKS

In the paper by Hazan et al. (2017), large scale machine
learning systems at times involves large number of parameters
that are fixed manually. This is time consuming and at times
inaccurate and difficult for a human expert. A hyper-parameter
optimization strategy is proposed inspired by analysis of
boolean function focusing on high-dimension datasets. The
algorithm is an iterative application of compressed sens-
ing techniques for orthogonal polynomials. The algorithm is
tested in deep neural networks. In terms of running time,
the algorithm records at least an order of magnitude faster
than Hyperband and Bayesian Optimization and outperform
Random Search 8x [Hazan et al., 2017]. Hazan et al. (2017)
guides this work as they develops an algorithm and tests it
in another algorithm; their algorithm establishes heuristics for
reducing the search space.

Experiments showed that accuracy increased when number
of trees in RF was doubled. However, there was a threshold
beyond which there was no significance gain in accuracy.
Therefore, increasing number of trees does not always mean



a better performance can be attained [15]. We note that,
there was no significant variable that used to measure use of
computing resources consumed when varying number of trees.

MapReduce was used to optimize regularization parameters
for boosted trees and random forests (RF). For RF[2], two
parameters were tuned: the number of trees in the model and
the number of features selected to split each node. Experiments
showed that performance was sensitive to the number of
trees but less sensitive to the number of features in each
split. Results showed that MapReduce could make parameter
optimization feasible on a massive scale. However, it created
possibilities for overfitting that could reduce accuracy and lead
to inferior learning parameters [6].

In the technical report by [3], they discuss manually setting
up, using and understanding RF. They note that RF grows trees
rapidly and setting up a large number of trees (e.g. 1000) is
okay. They further note that, if there are many variables, they
can grow more trees (of up-to 5000) Beiman, (2003). From
this work we can set up experiments with variable number of
trees and see their effects on computing resources.

ML algorithms often involve careful tuning of learning
parameters and model hyper-parameters. Parameter tuning is
often a "black art" that requires expert experience, rules of
thumb or sometimes brute-force search. To solve this problem,
the following techniques were used: a full Bayesian treatment
expected improvement, and algorithms (e.g ANN) for deal-
ing with variable time regimes and running experiments in
parallel. Results of this experiment surpassed a human expert
at selecting hyper-parameters on the competitive CIFAR-10
dataset; beating the state of the art by over 3%. SVM was
used as a case study algorithm [13].

A novel idea for approximate tree learning is seen in
sparsity-aware algorithm for sparse data and weighted quantile
sketch. The algorithm (XGBoost) proposes candidate splitting
points according to percentiles of feature distribution, then
maps the continuous features into buckets split, aggregates
the statistics and finds the best solution among proposals
based on the aggregated statistics. The algorithm also provides
an insights on cache access patterns, data compression and
sharing to build a scalable tree boosting system. The algorithm
has been widely used and recognized in machine learning and
data mining challenges e.g. Kaggle and KDDCup 2015. The
algorithm can be applied to machine learning systems and in
solving real-world scale problems using a minimal amount of
resources [4].

Optimizing parameters of an evolutionary algorithm values
is a challenging activity. CMA-ES tuning algorithms gave
better results in terms of utility, in evolution algorithms.
It is noted that using algorithms for tuning parameters of
evolutionary algorithms does pay off in terms of performance.
However, tuning algorithms gave better tuning parameter val-
ues than relying on intuitions and the usual parameter setting
conventions [14].

It is challenging to create a large dataset and improve train
ability of deep neural network models (DNNs). A selection
of supplemental training datasets was used in fine-tuning

a high-performing neural network model. Natural Language
Processing system ability is improved after being evaluated
by the Item Response Theory ability scores without negatively
affecting generalization due to overfitting [9].

Large scale machine learning systems at times involve large
number of parameters that are fixed manually. This is time
consuming and at times inaccurate and difficult for a human
expert. A hyper-parameter optimization strategy is proposed
inspired by analysis of boolean function focusing on high-
dimension datasets. The algorithm is an iterative application
of compressed sensing techniques for orthogonal polynomials.
The algorithm is tested in deep neural networks. In terms
of running time, the algorithm records at least an order of
magnitude faster than Hyperband and Bayesian Optimization
and outperform Random Search 8x. The algorithm requires
only uniform sampling of the hyperparameters and is easily
parallelizable [7].

In the department of Soil Survey in Kenya Agriculture and
Livestock Research Organization (KALRO) [10] and other soil
research organizations, land evaluation is done manually, is
stressful, takes a long time and is prone to human errors
[11][12]. Parallel RF experiment prototypes are set up in
[11] and further experiments in [12]. Parallel RF, Linear
Regression, Linear Discriminant Analysis, KNN, Gaussian
Naive Bayesian and Support Vector Machine are applied
in predicting land suitability for crop (sorghum) production,
given soil properties information. Parallel RF had a better
accuracy of 0.96 and time of execution of 1.7 sec [12].

Besides assertions regarding performance reliability of de-
fault parameters in RF, many RF experiments fit using these
values. An examination of parameter sensitivity of RF in
computational genomic was studied. Experiments were eval-
uated using Area Under Curve (AUC), Root Mean Square
Error (RMSE) and cross-fold validation. It was seen that RF
performance was strongly affected by number of trees, sample
size and number of random variables used at each split. It
was noted that tuned RF gave better results than when default
parameters/values are used. Effects of parameterization were
analyzed using selection methods and showed that tuning can
successfully improved prediction accuracy of non-parametric
ML algorithms [8].

III. METHODOLOGY

In this research, we considered 14 standardized datasets col-
lected from UCI Machine Learning website, namely: Balance
Scale (1), Breast Cancer Wisconsin - Original (2), Car Eval-
uation (3), Habermans Survival (4), Pen-Based Recognition
of Handwritten Digits (5), Website Phishing (6), Yeast (7),
Banknote Authentication (8), Contraceptive Method Choice
(9), Diabetic Retinopathy Debrecen (10), EEG Eye State (11),
Pima Indians Diabetes (12), Wine Quality - White (13) and
Wine Quality (14). In each dataset, we used simple random
sampling without replacement strategy to sample 10% of
elements in the search space. All experiments were run 10
times and results averaged. Number of trees (θ) was varied
accordingly as we measured accuracy (acc) and time of



execution (t). The computer had the following specifications:
Intel(R) Xeon(R) CPU W3505 @ 2.53GHz x 2.

A. Considering 2 to 4096 Number of Trees

We considered a finite set of sorted number of trees in
the parameter space. RF predictability was evaluated by acc
defined in equation 1 with n samples, where ŷi is the predicted
label and yi is the original label. The results of acc and t are
tabulated in Tables I and II respectively.

acc(y, ŷ) =
1

n

n−1∑
i=0

1(ŷi = yi) (1)

Table I shows a general trend of accuracy increasing steadily
with increase in number of trees, then flattens. RF classi-
fication employs bagging principles, where a committee of
trees each, cast a vote for the predicted class. However, RF
classifier introduces modifications in bagging where it builds
a large collection of de-correlated trees, and then averages
them. When the number of trees become huge, we see RF
accuracy varying insignificantly meaning the average accuracy
of de-correlated trees varying insignificantly. Average accuracy
varies because of the random nature of RF, for example,
randomly selecting features when building trees. We further
observed an interesting trend in the number of trees against
accuracy; increasing the number of trees does not significantly
contribute to a positive accuracy. The maximum accuracy
values are in bold, in Table I. Moreover, we see 13 out of
the 14 dataset’s maximum accuracy values found between 2
and 512 trees. Dataset 6 with 2048 number of trees recorded an
accuracy of 88.7% and 6.42 seconds. It’s second best accuracy
is 88.4% with 0.89 seconds observed at 256 number of trees.
In this case, we think 256 number of trees is better because
the change in accuracy rather insignificant (-0.3) while it runs
faster (approximately 7x faster). Generally, we observed better
results between 2 and 512, and we assume these results can
be extended to other datasets. We call the region between 2
and 512, the fertile region.

Table II shows a general trend of time of execution increas-
ing steadily with increase in number of trees. This tells us that
more number of trees demand more computing resources. We
also observed a relative significant change in time of execution,
the threshold values are in bold. Generally, after 64 number of
trees, we see a significant change in time difference. Increase
in number of trees increases time of execution. More number
of trees requires more computer resources to build and average
the de-correlated trees in RF.

Different datasets give different values of accuracy and time
of execution with the same number of trees. The selected
datasets have different complexity i.e dimensionality, number
of records and classes. This leads to a variation in accuracy and
time of execution. For us to have an optimal number of trees
hyperparameter in RF classifier, it is important we consider
maximizing accuracy and minimizing number of trees.

However, we see the 6th dataset maximum accuracy of
88.7% and time of execution of 6.42 seconds being out of the
fertile region i.e 2048 number of trees. As per our experiments,

this is a probability of 0.07 i.e 1 out of 14 datasets can exhibit
this. The second best accuracy of 87.9% is observed in the
fertile region i.e 128 number of trees with 0.5 seconds time of
execution. In such instances, we can compromise accuracy to
get a better time of execution, for this case, we compromise
0.8% accuracy to gain 5.92 seconds.

B. Considering 2 to 512 Number of Trees

In the fertile region, we observed lower time of execution
and maximum accuracy, therefore, we will have avoided
searching out regions (> 512) that show higher time of exe-
cution and significantly same or lower accuracy. We defined a
finite set of sorted number of trees from the parameter space θ.
We configured, trained and tested RF with the respective θ and
recorded acc and t. The results are show in Fig. 1 and 2. Fig.
1 is a box plot of accuracy for number of trees against datasets
across 14 datasets in the fertile region. Most datasets had a
low inter-quartile range, low difference between the low and
maximum points and more outliers below the lower whiskers.
Some box plots also recorded some outliers above the upper
whisker. A low difference in quartile ranges means there was
a low variation in accuracy from the median and 50% of the
accuracy records are within this region. However, the outliers
inform us that, some maximum accuracy values were very far
away from the median and some lowest accuracy values were
very far away from the median. The goal of any data scientist
is to have the maximum accuracy when configuring RF with
a specific number of trees. Nonetheless, we see variations in
accuracy on different datasets, i.e. different datasets record
different accuracy levels. This make the search problem more
difficult because we need to have a strategy that will be
dynamic to search the best accuracy in different datasets. This
research was interesting in finding number of trees (i.e. the
outliers in the upper whisker) that maximize accuracy.

Fig. 2 is a box plot of time of execution of number of trees
against datasets across 14 datasets in the fertile region. We see
the lower whisker having almost the same time of execution.
This means there are some number of trees that could give
almost the same minimum time of execution when configured
in RF. We also see the lower whiskers being shorter than the
upper whiskers. A shorter lower whisker means most lower
time of executions were closer to the median. This research
was interesting in these number of trees that minimize time of
execution.

From these analysis, we formulated deterministic, non-
deterministic and automatic configuration (having 8 number of
trees by default) algorithmic approaches in searching optimal
number of trees hyperparameter in the fertile region.

C. Deterministic Hyperparameter Search

Deterministic search algorithm is defined in equation 2. We
developed a deterministic hyperparameter search algorithm
from equation 2 as outlined in Algorithm 1. We considered
number of trees θ, time t and accuracy acc descriptions and
results from Section III-B. The deterministic hyperparameter
search algorithm’s goal is to maximize acc and minimize θ.



Table I: Accuracy (percentage) of RF with θ trees for 14 datasets (DS)

DS Number of Trees
2 4 8 16 32 64 128 256 512 1024 2048 4096

1 80.3 81.9 83.0 82.4 84.6 85.6 84.6 84.0 84.0 84.0 84.6 84.6
2 91.7 93.7 97.1 98.0 97.6 97.6 97.6 97.1 97.1 97.1 97.1 97.1
3 86.3 85.5 83.6 83.8 84.8 84.4 84.6 84.4 84.8 84.8 84.6 84.6
4 76.1 79.3 75.0 76.1 79.3 79.3 78.3 78.3 78.3 79.3 78.3 79.3
5 92.5 96.8 98.3 98.6 98.4 98.9 99.0 99.1 99.0 99.1 99.1 99.1
6 81.5 86.9 86.2 87.4 85.7 87.4 87.9 88.4 87.7 87.9 88.7 88.2
7 48.6 47.8 52.9 57.3 56.5 59.5 59.8 58.8 58.8 58.5 58.5 58.8
8 96.6 97.8 97.6 97.6 97.3 97.6 97.8 97.8 98.1 97.8 97.8 97.8
9 46.4 48.4 49.1 51.6 49.5 49.8 51.1 49.5 50.7 51.4 50.9 51.1
10 61.3 64.7 65.3 65.0 69.9 66.5 67.6 67.9 68.2 67.1 67.9 67.3
11 77.9 84.2 87.9 89.3 91.3 92.7 92.0 92.2 92.2 92.1 92.3 92.2
12 66.7 71.0 74.9 74.5 76.6 76.6 76.6 75.8 77.5 76.6 77.1 77.1
13 54.9 59.4 64.7 64.6 65.7 65.9 67.1 67.3 67.1 66.6 67.3 67.4
14 54.4 69.7 63.3 67.3 69.2 69.2 69.6 70.2 69.8 69.2 69.8 69.8

Table II: Time of execution (sec) of RF with θ trees for 14 datasets (DS)

DS Number of Trees
2 4 8 16 32 64 128 256 512 1024 2048 4096

1 0.21 0.21 0.22 0.23 0.25 0.30 0.51 0.90 1.60 3.29 6.49 12.45
2 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.59 3.09 5.98 12.35
3 0.21 0.21 0.22 0.23 0.25 0.30 0.50 1.00 1.80 3.39 6.79 13.57
4 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.80 1.60 3.30 5.99 12.06
5 0.21 0.21 0.22 0.23 0.26 0.41 0.60 1.10 2.20 4.01 8.23 15.87
6 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.89 1.89 3.46 6.42 13.14
7 0.21 0.21 0.22 0.23 0.26 0.30 0.50 1.00 1.88 3.71 7.13 14.06
8 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.69 3.17 6.64 12.76
9 0.21 0.21 0.22 0.23 0.25 0.30 0.50 1.00 1.89 3.47 6.95 13.70
10 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.79 3.47 6.93 14.41
11 0.21 0.21 0.22 0.33 0.46 0.71 1.20 2.40 4.70 9.18 18.27 36.62
12 0.21 0.21 0.22 0.24 0.25 0.30 0.50 0.79 1.68 3.46 6.43 12.64
13 0.21 0.21 0.22 0.23 0.25 0.51 0.70 1.40 2.69 5.28 10.45 21.20
14 0.21 0.21 0.22 0.23 0.25 0.40 0.60 1.10 2.09 3.76 7.33 14.96

We note that, ∃accmax ∈ acc that has θbest. The deterministic
search algorithm is exhaustive, i.e., it does a linear search and
returns accmax, with θbest and the time needed t. Experiment
results are tabulated in Tables III, IV and V.

θ∗best, acc
∗
best = argmax

θ∈T
Q̂ (θ, acc) (2)

Algorithm 1 The Deterministic Hyperparameter Search

1: procedure DETERMINISTICSEARCH(train, test)
2: ti ← CURRENTTIME()
3: T ← [θ1, θ2, θ3, . . . , θn]
4: accmax ← 0
5: for each θ in T do
6: rf ← RANDOMFOREST(θ, train)
7: accnew ← ACCURACY(rf, test)
8: if accnew > accmax then
9: (accmax, θbest)← (accnew, θ)

10: time_spent← CURRENTTIME()− ti
11: return (accmax, θbest, time_spent)

D. The Non-Deterministic Hyperparameter Search Algorithm
In this research, we were interested in maximizing accuracy

and minimizing number of trees. Tables 1 and 2 shows almost

the same accuracy but with different time of execution. Table
2 shows more NoTs require more ToE (i.e. memory and
cpu time). With this analogy, this research formulated a non-
deterministic search approach to converge close/to maximize
accuracy and minimize number of trees and save time of
execution. The algorith is outlined Algorithm 2, where θi =
random(∈ T ), ψ1 = 1 + lim

100 , and ψ2 = 1− lim
100 .

We considered θ, acc and t descriptions and results from
Section III-B. The goal of this algorithm was to maximize acc
and minimize t through randomization. In this algorithm we
assumption that, ∃accbest ∈ acc that has θbest. Note that the
function GENERATE( ) returns 26 elements which is approx-
imately 10% of elements in the parameter space. We iterate
through the random selected number of trees as we configure
RF. We considered percentage upper bound and lower bound
of the accbest. If accrand falls in the upper boundary, then
accbest ← accrand, θbest ← θrand and we break, with the
assumption that we do not anticipate further percentage ∆
accbest. If accrand falls in the lower boundary and θrand is
less than θbest, then accbest ← accrand, θbest ← θrand and we
also break, with the assumption that we have an insignificant
∆ accbest and we have a better tbest. Moreover, if accrand falls
above the upper boundary, then accbest ← accrand, θbest ←
θrand, and we continue looping with the assumption that



Fig. 1. Number of trees (many) against datasets of Accuracy in RF for 14 Datasets

Fig. 2. Number of trees (many) against datasets of Time of Execution in RF for 14 Datasets



we anticipate further percentage ∆ accbest. Lastly, we break
when iteration counts are 10% of the parameter space, with
the assumption that we have uniformly sampled the whole
parameter space. We set the percentage boundary as 1%
to increase the algorithm’s accuracy. Experiment results are
tabulated in Tables III, IV and V.

Algorithm 2 The Non Deterministic Hyperparameter Search

1: vals = []
2: procedure GENERATE()
3: while LEN(vals) ≤ 26 do
4: val = 2 + rand()%512
5: if val is not in vals then
6: add val in vals
7: return val
8: procedure NONDETERMINISTICSEARCH(train, test)
9: ti ← CURRENTTIME()

10: accrand, θrand, accbest, θbest, count← 0
11: T ← GENERATE( )
12: for each θrand in T do
13: rf ← RANDOMFOREST(θrand, train)
14: accrand ← ACCURACY(rf, test)
15: if count == 0 then
16: (accbest, θbest)← (accrand, θrand)

17: if ψ1.accbest > accrand > ψ2.accbest then
18: if accrand < accbest then
19: if θrand < θbest then
20: (accbest, θbest)← (accrand, θrand)
21: break
22: else
23: (accbest, θbest)← (accrand, θrand)
24: break
25: else if accrand > ψ1.accbest then
26: (accbest, θbest, count)← (accrand, θrand, 0)

27: count← count+ 1
28: if count >= 10 then break
29: time_spent← CURRENTTIME()− ti
30: return (accbest, θbest, time_spent)

E. Determinstic and Non-Deterministic Hyperparameter
Search Algorithms, and Auto-Configured RF

Table III contains results and analysis of minimum num-
ber of trees selected by deterministic and non-deterministic
hyperparameter search algorithms. We see a considerably
good percentage improvement of number of trees in the
non-deterministic search algorithm. At some instances, for
example, in datasets 8 and 13, the non-deterministic search
algorithm was able to perfectly converged to the minimum
number of trees with 26 and 2 iterations respectively. In
some datasets e.g dataset 1, the percentage number of trees
improvement was poor. Moreover, as observed in Table III,
50% of the datasets used less than 50% (i.e. less than 5%
of random values in the search space) of random values
while iterating, to converge close/to maximum accuracy and

minimum number of trees. With this observation, in some
cases, we can have an assumption that sometimes increasing
the search space would not have much scientific significance.
Generally, the percentage number of trees improvement was
44.6% and the average number of iterations used were 14.5.

Table IV has results and analysis of accuracy recorded from
running deterministic, non-deterministic and auto-configured
RF algorithms. The auto-configured RF had a mean percentage
difference -4.9 while the non-deterministic search algorithm
had a considerably better percentage change of -1.69. In non-
deterministic search algorithm, datasets 2, 8 and 13 recorded
a zero percentage change in accuracy. 50% of the datasets
recorded a percentage change of more than 1%.

Table V has results and analysis of time of execution of de-
terministic and non-deterministic search algorithms, and auto-
configured RF. The ratio of deterministic:non-deterministic al-
gorithms and deterministic: auto-configured RF are calculated.
Their averages are also calculated. Both auto-configured RF
and non-deterministic algorithm record a very high average
ratio of 6827 and 213 respectively.

As discussed in Section III-C, the deterministic search
algorithm is exhaustive and selects the minimum number of
trees that has the maximum accuracy. With these results, we
benchmark the non-deterministic search algorithm and auto-
configured RF. The non-deterministic search algorithm, as
discussed in Section III-D, uses the principle of randomization,
heuristics and terminating policies as outlined in Algorithm
2. With this strategy, the non-deterministic search algorithm
recorded ≈ 98% average accuracy, and could run at an average
of 212.79 faster, on an average of 14.5 iterations. Using
the strategy formulated in Algorithm 2, the non-deterministic
search algorithm recorded 100% accuracy at three instances
and recorded zero number of trees percentage improvement
on two instances. Moreover, in the non-deterministic search
algorithm, we recorded number of trees that are below the
number of trees threshold (64 trees), that showed a significant
change in time of execution, as discussed in Section III-A. This
means the formulated strategy worked quite well. Considering
dataset 2, we note that 0% percentage accuracy change, was
got with more number of trees (48 trees instead of 46 trees)
but at 34.76 times faster. These shows 100% accuracies got,
at more number trees but takes a shorter searching time.
This makes the strategy formulated in this research more
relevant. Despite the 1% boundary policy and breaking policies
strategies, 50% of the datasets recorded less than 1% change in
percentage accuracy. The other 50% scored fairly good results
too. Generally, a shorter time of execution means the process
will take a shorter time in memory and shorter cpu time, when
tuning RF. We see the non-deterministic search algorithm run
≈ 213 faster on average, achieving an average of ≈ 98%
accuracy, on an average of 5.6% iterations (i.e 14.5 of 256
iterations in the parameter space). This is an improvement in
iterations by 94.4%. Therefore, the non-deterministic search
algorithm can improve utilization of computing resources
while maintaining a significant accuracy.

Auto-configuring (having 8 number of trees by default) RF



Table III: Recorded minimum number of trees (θbest) and itera-
tions for deterministic and non-deterministic search algorithms
across 14 datasets (DS), and their mean (µ)

DS Deterministic Non-Deterministic
θbest θbest θ % improvement Iteration

1 26 32 -23.08 5
2 46 48 -4.35 26
3 116 46 60.34 26
4 70 18 74.29 26
5 48 16 66.67 26
6 216 26 87.96 26
7 118 34 71.19 3
8 44 44 0.00 26
9 48 42 12.50 2
10 18 10 44.44 4
11 196 50 74.49 26
12 164 10 93.90 2
13 46 46 0.00 2
14 150 50 66.67 3
µ 93.28 33.71 44.64 14.5

Table IV: Maximum accuracy (accbest) recorded across 14
datasets (DS), and their mean (µ)

DS Deterministic Auto-Configured Non-Deterministic
accmax accbest % ∆ accbest % ∆

1 0.862 0.819 -4.99 0.856 -0.70
2 0.976 0.971 -0.51 0.976 0.00
3 0.850 0.846 -0.47 0.846 -0.47
4 0.815 0.761 -6.63 0.804 -1.35
5 0.993 0.973 -2.01 0.990 -0.30
6 0.897 0.855 -4.68 0.887 -1.11
7 0.601 0.552 -8.15 0.593 -1.33
8 0.985 0.976 -0.91 0.985 0.00
9 0.538 0.480 -10.78 0.505 -6.13
10 0.711 0.627 -11.81 0.682 -4.08
11 0.925 0.890 -3.78 0.919 -0.65
12 0.797 0.740 -7.15 0.736 -7.65
13 0.681 0.636 -6.61 0.681 0.00
14 0.710 0.654 -7.89 0.679 -4.37
µ 0.76 0.72 -4.9 0.747 -1.7

Table V: Time of execution (sec) recorded across 14 datasets
(DS), and their mean (µ)

DS Deterministic Auto-Configured Non-Deterministic
i (sec) t (sec) Ratio t (sec) Ratio

1 224.11 0.03 7470 1.22 183.7
2 217.97 0.02 10899 6.27 34.8
3 239.22 0.03 7974 6.45 37.1
4 216.26 0.02 10813 6.43 33.7
6 282.42 0.07 4035 6.38 44.3
8 235.94 0.03 7865 6.25 37.7
9 249.68 0.04 6242 0.78 319.7
10 230.44 0.03 7681 6.34 36.3
11 246.37 0.03 8212 0.51 484.0
13 246.37 0.04 6159 0.94 263.2
14 622.88 0.29 2148 10.20 61.1
15 227.91 0.03 7597 0.46 497.6
16 360.73 0.11 3279 0.59 613.5
17 260.52 0.05 5210 0.77 338.8
µ 275.77 0.06 6827 3.83 213.25

showed good results. It recorded ≈ 94.5% average accuracy
change and very good time of execution ratio of 6827;
probably had fewer iterations.

Table VI: Jackknife Estimates for deterministic and non-
deterministic search algorithms across 14 datasets (DS), and
their mean (µ)

DS Bias-Corrected Confidence Interval
Jackknifed Estimate Deterministic Non-Deterministic

Determ- Non-Determ- Lower Upper Lower Upper
inistic inistic

1 0.86 0.85 0.86 0.87 0.85 0.85
2 0.98 0.98 0.98 0.98 0.98 0.98
3 0.85 0.85 0.85 0.85 0.85 0.85
4 0.82 0.79 0.82 0.82 0.79 0.8
5 0.99 0.99 0.99 0.99 0.99 0.99
6 0.89 0.88 0.89 0.89 0.88 0.89
7 0.61 0.59 0.6 0.61 0.59 0.59
8 0.99 0.99 0.99 0.99 0.98 0.99
9 0.53 0.52 0.53 0.53 0.51 0.52

10 0.71 0.69 0.71 0.71 0.69 0.69
11 0.93 0.91 0.93 0.93 0.91 0.92
12 0.8 0.77 0.79 0.8 0.77 0.78
13 0.68 0.67 0.68 0.68 0.66 0.67
14 0.71 0.69 0.71 0.71 0.68 0.69
µ 0.81 0.80 0.81 0.81 0.80 0.80

F. Evaluation using Jackknife Estimation

Jackknife is used to evaluate the quality of the prediction of
computational models. It uses resampling to calculate standard
deviation error and estimate bias of a sample statistic, as shown
in equations 3 and 4 [16]. We computed Jackknife across the
14 datasets and tabulated results as shown in Table VI. We
recorded a zero for bias and standard errors across all datasets.

V ar(θ) =
n− 1

n

n∑
i=1

(θ̄i − θ̄jack)2, θ̄jack =
1

n

n∑
i=1

(θ̄i) (3)

θ̄BiasCorrected = Nθ̄ − (N − 1)θ̄jack (4)

In Table VI we see different datasets record different values of
Bias-Corrected Jackknifed Estimates. We also observe stable
results are per the predictions in Table IV. Standard error is
used for null hypothesis testing and for computing confidence
intervals (upper and lower bounds). This explains why we
observe confidence intervals deviating insignificantly. We also
see the bias-corrected Jackknifed estimate deviating minimally
because the standard error were zero across all the records.
These results show that the non-deterministic search algorithm
predictions are stable and reliable.

IV. CONCLUSION

In this research, we formulated a non-deterministic strategy
in searching for the best hyperparameter in random forest
algorithm considering number of trees, accuracy and time
of searching hyper-parameter. The non-deterministic search
strategy recorded significantly good results in maximizing ac-
curacy, minimizing number of trees and minimizing searching
time. Evaluations using Jackknifed Estimation show that its
predictions are stable. Moreover, the non-deterministic search
strategy had a significant accuracy levels and better utilization
cpu processing and time in memory. This research can be
widely adopted in algorithms hyperparameter search and in
green computing to preserve computing resources.
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