
Singular polynomials for the rational
Cherednik algebra for G(r, 1, 2)

Armin Gusenbauer

Instituto de Matemática y F́ısica
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Abstract

In this thesis we study the rational Cherednik algebra attached to the complex

reflection group G(r, 1, 2). Each irreducible representation Sλ of G(r, 1, 2) corre-

sponds to a standard module ∆(λ) for the rational Cherednik algebra. We give

necessary and sufficient conditions for the existence of morphisms between two

of these modules and explicit formulas for them when they exist.
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Chapter 1

Introduction

The rational Cherednik algebra H is an algebra attached to a complex reflection group W ,

depending on a set of parameters indexed by the conjugacy classes of reflection in W . The

algebra H possesses a triangular decomposition allowing the construction of induced modules

called standard modules. The category generated by these modules, category O, has been

the object of intense study during the last fifteen years. Part of the structure of the category

O is encoded by the homomorphisms between standard modules and the classification and

construction of these homomorphisms seems to be a difficult problem.

The first work on this problem is due to Dunkl [3], [2], who solved it for W = Sn the

symmetric group and codomain the standard module parabolically induced from the trivial

representation. Subsequently Griffeth [6] solved it for W = G(r, 1, n), but with a certain

genericity condition in the parameters. We will specialize to W = G(r, 1, 2) and solve the

problem without any restriction on the parameters.

The parameters’ space forW = G(r, 1, 2) is r-dimensional with coordinates c0, d0, d1, ..., dr−1

subject to the requirement

d0 + d1 + d2 + ...+ dr−1 = 0. (1.0.1)

The irreducible representations of G(r, 1, n) are indexed by r-partitions of n. For n = 2 there

are three kinds of irreducible representations: we will write

λi =
(
∅, ..., , ..., ∅

)
,

where the nonempty diagram is in the ith position (0 ≤ i ≤ r − 1)

λi =

(
∅, ..., , ..., ∅

)
,

where again i denotes the position of the nonempty diagram, and finally

λi,j =
(
∅, ..., , ..., , ..., ∅

)
,
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where the nonempty diagrams are in positions i and j. Our main theorem gives necessary

and sufficient conditions for the existence of morphisms between the corresponding standard

modules.

Theorem 1.0.1. The necessary and sufficient conditions for the existence of a morphism

between standard modules for G(r, 1, 2) are given by the followings tables:

∆(λi) ∆(λj) ∆(λi) ∆(λj) ∆(λi,j) ∆(λj,k)

∆(λi) · dj − di c0 = −k
2

dj − di
c0 = −k

2

dj − di − c0r
dj − di

dk − dj − c0r

∆(λi) c0 = k
2

dj − di
c0 = k

2

· dj − di dj − di + c0r
dj − di

dk − dj + c0r

∆(λi) ∆(λi) ∆(λk) ∆(λk) ∆(λi,j) ∆(λi,k) ∆(λk,s)

∆(λi,j) di − dj + c0r di − dj − c0r
dk − di

dk − dj + c0r
dk − di

dk − dj − c0r
· dk − dj

dk − di
ds − dj

or
ds − di
dk − dj

The columns represent the domain, the rows represent the codomain and the entries

represent conditions on the parameters. When more than one condition appears it means

that both must hold. When a dot appears it means there is no condition. The condition

di − dj means that di − dj ∈ Z≥0 and di − dj = i − j mod r. The condition di − dj ± c0r

means di − dj ± c0r ∈ Z≥0, di − dj ± c0r = i− j mod r. The conditions c0 = ±k
2

says also

that k is a positive odd integer.

For the necessary conditions we start by using Theorem 5.1 of [10]. For the sufficient

conditions we construct the morphisms explicitly. This amounts to finding elements of the

codomain that are annihilated by the Dunkl operators. In other words, we are looking for a

generalized version of singular polynomials.

We know that the dimension of the homomorphism space between two standard modules

is always at most two. The next theorem gives sufficient conditions for the dimension to be

equal to two.

Theorem 1.0.2. If we have the conditions

• di − dk + c0r = i− k +m1r > 0

• di − dk − c0r = i− k +m2r > 0

• dj − di + c0r = j − i+m3r > 0
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• dj − di − c0r = j − i+m4r > 0

where mi is a integer for i = 1, 2, 3, 4, then we have

Dim(Hom(∆(λi,k),∆(λi,j))) = 2.

We suspect that these sufficient conditions are also necessary conditions for having a two

dimensional space of morphisms of any standard module.

We now summarize the contents of this thesis. Chapter 2 comprises the background

and known results. In Section 2.1 we state and prove the Poincaré-Birkhoff-Witt (PBW)

theorem. This is fundamental for describing the rational Cherednik algebra and constructing

the standard modules. The theorem itself is not new, though we state it in slightly more

general terms than usual. The first result of this type was announced in [1], and it was

subsequently proved in [5] and [12]. Our proof follows [9], which is an adaptation of the

proof of the presentation theorem for Kac-Moody algebras given in [11]. In Section 2.2 we

construct the rational Cherednik algebra and the standard modules for any finite complex

reflection group W . Here we have followed [7]. In Section 2.3 we define the group G(r, 1, n),

and in Section 2.4 we study its irreducible representations via the Jucys-Murphy elements

[8]. In Section 2.5 we describe the rational Cherednik algebra for W = G(r, 1, n), using

[6], and in Section 2.6 we work with the rational Cherednik algebra when W = G(r, 1, 2).

Subsection 2.6.1 is fundamental to our computations, because it describes the standard

modules in our case and the action of the rational Cherednik algebra on them. In chapter 3

we prove our results. Firstly, in Section 3.1 we define and describe the singular polynomials

in each standard module. Secondly, in Section 3.2 we give the relations between the singular

polynomials and the morphisms between two standard modules. Thirdly, in Section 3.3

we give the necessary conditions for the existence of a morphism (this is a result of [10]).

Fourthly, in Section 3.4 we analyze the conditions from Section 3.3 and for each of these

conditions we construct a morphism using our singular polynomials. This completes the

proof of our main theorem. Fifthly, in Section 3.5 we discuss the dimension of the space of

homomorphisms between standard modules and give sufficient conditions to have dimension

2. Finally in Section 3.6 we give some examples.
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Chapter 2

Background

2.1 PBW theorem

In this section we prove the PBW (Poincaré-Birkoff-Witt) theorem for a class of algebras

containing the rational Cherednik algebras. Let V be a finite dimensional vector space over

a field K, and W ⊆ GL(V ) be a finite subgroup. Let TV be the tensor algebra for V

(TV = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )...), and let KW be the group algebra for W (the

elements for this group algebra are in the form
∑
g∈W

αgḡ for g ∈ W and αg ∈ K, where we

use ḡ to emphasize that we are working in KW ) with base ḡ for g ∈ W and multiplication

given by v̄w̄ = vw for v, w ∈ W . Now let TV oW be the vector space TV ⊗K KW made

into an algebra with the product defined by

(f ⊗ v̄)(g ⊗ w̄) = (f(v · g)⊗ vw).

We will omit the tensor symbol when it does not cause confusion. We need to fix a collection

of skew-symmetric forms indexed by the elements g of W ,

〈·, ·〉g : V × V → K.

The Drinfeld Hecke algebra H is the algebra

TV oW

quotiented by the relations

xy − yx =
∑
g∈W

〈x, y〉gḡ for x, y ∈ V.

We say that the PBW property holds for H, if given any basis x1, x2, x3, ..., xn of V , the

collection {xi1xi2xi3 ...xip ḡ / 1 ≤ i1 ≤ i2 ≤ i3 ≤ ... ≤ ip ≤ n , g ∈ W} will be a basis for H.
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Theorem 2.1.1. The PBW property holds for H, if and only if the next two conditions

hold:

(a) 〈vx, vy〉vwv−1 = 〈x, y〉w for all x, y ∈ V and v, w ∈ W .

(b) 〈x, y〉w(wz− z) + 〈y, z〉w(wx− x) + 〈z, x〉w(wy− y) = 0 for all x, y, z ∈ V and w ∈ W .

Proof. First we assume that the PBW property holds forH. We have the following equalities∑
w∈W

〈vx, vy〉ww̄ = [vx, vy] = v̄[x, y]v−1 =
∑
w∈W

〈x, y〉wvwv−1

The first equality are only the relations in H. For the second one, note that v̄x = (vx)v̄,

therefore vx = v̄xv−1. Considering this we have [vx, vy] = [v̄xv−1, v̄yv−1] = v̄xv−1v̄yv−1 −
v̄yv−1v̄xv−1 = v̄xyv−1 − v̄yxv−1 = v̄[x, y]v−1. Finally the third equality is using the relations

in H again. Now, if we compare the two sums we have we can see that both are in KW

and indexed by w ∈ W . This means we can compare coefficients and we have the first part

of the theorem. Now, to prove the second part we use the Jacobi identity. Let x, y, z ∈ V ,

then we have that

0 = [[x, y], z]+[[y, z], x]+[[z, x], y] =

[∑
w∈W

〈x, y〉ww̄, z

]
+

[∑
w∈W

〈y, z〉ww̄, x

]
+

[∑
w∈W

〈z, x〉ww̄, y

]

=
∑
w∈W

〈x, y〉w[w̄, z] +
∑
w∈W

〈y, z〉w[w̄, x] +
∑
w∈W

〈z, x〉w[w̄, y]

and [w̄, x] = w̄x− xw̄ = (wx)w̄ − xw̄ = (wx− w)w̄. So the last part is∑
w∈W

〈x, y〉w(wz − z)w̄ +
∑
w∈W

〈y, z〉w(wx− x)w̄ +
∑
w∈W

〈z, x〉w(wy − y)w̄

=
∑
w∈W

(〈x, y〉w(wz − z) + 〈y, z〉w(wx− x) + 〈z, x〉w(wy − y))w̄

and by the same argument as before, the w̄ are a base, which implies that the coefficients

must be 0 in this case and this proves the second part.

Now, we assume that the two conditions hold. With the relations given in H we can

see that, if x1, x2, x3, ..., xn is a base of V , then the set {xi1 , xi2 , xi3 , ..., xipw̄| 1 ≤ i1 ≤ i2 ≤
i3 ≤ ... ≤ ip ≤ n , w ∈ W} generates H, so we only need to confimr that this set is linearly

independent. For this, we write M for the vector space generated by {xi1 , xi2 , xi3 , ..., xipw̄|
1 ≤ i1 ≤ i2 ≤ i3 ≤ ... ≤ ip ≤ n , w ∈ W} and we define the operators lx and lv over M with

x ∈ V and v ∈ W in the following inductive way:

lx · w̄ = xw̄ , lv · w̄ = vw (2.1.1)
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and for p ≥ 1

lxi · xi1 ...xipw̄ =


xixi1 ...xipw̄ if i ≤ i1

lxi1 · lxi · xi2 ...xip +
∑
v∈W

〈xi, xi1〉vlv · xi2 ...xipw̄ if i > i1
(2.1.2)

and

lv · xi1xi2 ...xipw̄ = lvxi1 · lv · xi2xi3 ...xipw̄. (2.1.3)

One of the facts that we use is that the operators lw with w ∈ W do not increase the

degree and that the operators lx with x ∈ V increase the degree by one. Now we want

to prove by induction the following equations: for u, v, w ∈ W , x, y ∈ V , p ∈ Z≥0, and

1 ≤ i1 ≤ i2 ≤ ... ≤ ip ≤ n.

lu · lv · xi1 ...xipw̄ = luv · xi1 ...xipw̄, lv · lx · xi1 ..xipw̄ = lvx · lv · xi1 ...xipw̄ (2.1.4)

lx · ly · xi1 ...xipw̄ = ly · lx · xi1 ...xipw̄ +
∑
v∈W

〈x, y〉vlv · xi1 ...xipw̄. (2.1.5)

For linearity in (2.1.5) is sufficient to prove it for lxi and lxj with n ≥ i > j ≥ 1 in replacement

of lx and ly. The base case is:

lu · lv · w̄ = lu · vw = uvw = luv · w̄, lv · lx · w̄ = lv · xw̄ = lvx · lv · w̄ (2.1.6)

and assuming that n ≥ i > j ≥ 1

lxi · lxj · w̄ = lxi · xjw̄ = lxj · lxi · w̄ +
∑
v∈W

〈xi, xj〉vlv · w̄. (2.1.7)

Assuming p ≥ 1 and that (2.1.4) and (2.1.5) hold for q < p, we prove that they also hold for

p. We have:

lu · lv · xi1 ...xipw̄ = lu · lvxi1 · lv · xi2 ...xipw̄ = luvxi1 · lu · lv · xi2 ...xipw̄ = luvxi1 · luv · xi1 ...xipw̄

= luv · lxi1 · xi2 ...xipw̄ = luv · xi1 ...xipw̄

In the first equality we apply the operator lv to xi1 ...xipw̄. In the second equality we use

(2.1.4) saying that lu·lvx1 = luvx1 ·lu, because xi2 ...xipw̄ has degree p−1 < p and the operator lv

does not increase degree. In the third equality we use (2.1.4) saying that lu · lv = luv, because

xi2 ...xipw̄ has degree p − 1 < p. In the fourth equality we use again (2.1.4) saying that

luv · lx1 = luvx1 · luv, because xi2 ...xipw̄ is of degree p − 1 < p. Finally, in the last equality

we use the definition of the operator lx1 applied in xi2 ...xipw̄. This proves the first relation
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in (2.1.4). For the second relation we work with induction over i too. We first assume that

i ≤ i1 and we have

lv · lxi · xi1 ...xipw̄ = lv · xixi1 ...xipw̄ = lvxi · lv · xi1 ...xipw̄. (2.1.8)

Where in the first equality we use the definition of lxi and in the second equality we use the

definition of lv. And now, if i > i1 we have:

lv · lxi · xi1 ...xipw̄ = lv ·

(
lxi1 · lxi · xi2 ...xipw̄ +

∑
u∈W

〈xi, xi1〉ulu · xi2 ...xipw̄

)
= lv · lxi1 · (lxi · xi2 ...xipw̄) +

∑
u∈W

〈xi, xi1〉ulv · lu · xi2 ...xipw̄

= lvxi1 · lv · (lxi · xi2 ...xipw̄) +
∑
u∈W

〈xi, xi1〉ulvu · xi2 ...xipw̄

= lvxi1 · (lv · lx1 · xi2 ...xipw̄) +
∑
u∈W

〈xi, xi1〉ulvuv−1 · lv · xi2 ...xipw̄

= lvxi1 · lvxi · lv · xi2 ...xipw̄ +
∑
u∈W

〈xi, xi1〉ulvuv−1 · lv · xi2 ...xipw̄

= lvxi1 · lvxi · lv · xi2 ...xipw̄ +
∑
u∈W

〈vxi, vxi1〉vuv−1lvuv−1 · lv · xi2 ...xipw̄

= lvxi1 · lvxi · lv · xi2 ...xipw̄ +
∑
u∈W

〈vxi, vxi1〉ulu · lv · xi2 ...xipw̄

= lvxi · lvxi1 · lv · xi2 ...xipw̄ = lvxi · lv · xi1 ...xipw̄.

In the first equality we use the definition of lxi · xi1 ...xipw̄ when i > i1. In the second

equality we delete the parenthesis. In the third equality we use the fact that lxi · xi2 ...xipw̄
has only factors that involve xi, xi2 , ..., xip (maybe this requires a most deeper analysis, but

it is not hard to see it, if we take a look how the operator lx acts) and, because i1 < a for

a ∈ {i, i2, ..., ip} we can use the case we proved before in (2.1.8) and we get lv · lxi1 = lvxi1 · lv.
In addition in the sum we use induction considering that lv · lu = lvu, because xi2 ...xipw̄ has

degree p− 1 < p. In the fourth equality we use associativity and in the sum we use the fact

that lvu = lvuv−1v = lvuv−1 · lv. All this because the degree of xi2 ...xipw̄. In the fifth equality

we use that lv · lxi = lvxi · lv for the degree of xi2 ...xipw̄. In the sixth equality we use property

(a) of our hypothesis and in the seven equality we just reordered the subindex. In the eight

equality we use (2.1.5) ,because lv does not increase degree of xi2 ...xipw̄ and finally in the

last equality we use the definition of lv · xi1 ...xipw̄. Now we can see that we have proved the

second equality of (2.1.4). Now we need to prove (2.1.5). First assume that n ≥ i > j ≥ 1

and we work using induction over j. Suppose that j ≤ i1 and compute.

lxi · lxj · xi1 ...xipw̄ = lxi · xjxi1 ...xipw̄ = lxj · lxi · xi1 ...xipw̄ +
∑
v∈W

〈xi, xj〉vlv · xi1 ...xipw̄.
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Where the first equality is the definition of the operator lxj when j ≤ i1 and in the second

equality we use the definition of lxi when i > j. Now if j > i1 we have:

(lxi · lxj − lxj · lxi) · xi1 ...xipw̄

= lxi ·

(
lxi1 · lxj · xi2 ...xipw̄ +

∑
v∈W

〈xj, xi1〉vlv · xi2 ...xipw̄

)

−lxj ·

(
lxi1 · lxi · xi2 ...xipw̄ +

∑
v∈W

〈xi, xi1〉vlv · xi2 ...xipw̄

)
= lxi · lxi1 · lxj · xi2 ...xipw̄ +

∑
v∈W

〈xj, xi1〉vlxi · lv · xi2 ...xipw̄

−lxj · lxi1 · lxi · xi2 ...xipw̄ −
∑
v∈W

〈xi, xi1〉vlxj · lv · xi2 ...xipw̄

= lxi1 · lxi · lxj · xi2 ...xipw̄ +
∑
v∈W

〈xi, xi1〉vlv · lxj · xi2 ...xipw̄ +
∑
v∈W

〈xj, xi1〉vlxi · lv · xi2 ...xipw̄

−lxi1 · lxj · lxi · xi2 ...xipw̄ −
∑
v∈W

〈xj, xi1〉vlv · lxi · xi2 ...xipw̄ −
∑
v∈W

〈xi, xi1〉vlxj · lv · xi2 ...xipw̄

= lxi1 · (lxi · lxj − lxj · lxi) · xi2 ...xipw̄ +
∑
v∈W

〈xi, xi1〉v(lvxj − lxj) · lv · xi2 ...xipw̄

+
∑
v∈W

〈xi1 , xj〉v(lvxi − lxi) · lv · xi2 ...xipw̄

= lxi1 ·
∑
v∈W

〈xi, xj〉vlv · xi2 ...xipw̄ +
∑
v∈W

〈xi, xi1〉v(lvxj − lxj) · lv · xi2 ...xipw̄

+
∑
v∈W

〈xi1 , xj〉v(lvxi − lxi) · lv · xi2 ...xipw̄

=
∑
v∈W

(〈xi, xj〉vlxi1 + 〈xi, xi1〉v(lvxj − lxj) + 〈xi1 , xj〉v(lvxi − lxi)) · lv · xi2 ...xipw̄

=
∑
v∈W

〈xi, xj〉vlvxi1 · lv · xi2 ...xipw̄ =
∑
v∈W

〈xi, xj〉vlv · xi1xi2 ...xipw̄.

In the first equality we expand and use the definition of the operators lxi and lxj . In the

second equality we delete parenthesis and in the third equality we use induction hypothesis

over the operators lxi · lxi1 and lxj · lxi1 . In the fourth equality we regroup the terms and in

the fifth equality we use induction over lxi · lxj − lxj · lxi . In the sixth equality we regroup

the terms again and in the seventh equality we use part (b) of our hypothesis. Finally, in

the last equality we use induction.

Now we have established that the operator lx and lv satisfy the relations 2.1.4 and 2.1.5

for H. It follows that M is an H-module with action for x by the operator lx and action for

v̄ by lv. Now we can suppose there is a relation in H of the form∑
v∈W1≤i1≤...≤ip≤n

ai1...ip,vxi1 ...xip v̄ = 0
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with ai1...ip,v ∈ K. Applying both sides of this relation to the element 1 = 1 ∈ M implies

that all the coefficients ai1...ip,v are zero and the proof is complete.

Corollary 2.1.2. The PBW theorem holds for H if

(i) 〈vx, vy〉vwv−1 = 〈x, y〉w for all x, y ∈ V and v, w ∈ W.

(ii) 〈·, ·〉w = 0 unless w = 1 or codim(fix(w)) = 2, and if codim(fix(w)) = 2 then

fix(w) ⊆ Rad(〈·, ·〉w).

Furthermore, if the characteristic of K is 0, and the PBW theorem holds for H, then the

conditions (i) and (ii) hold.

Proof. We will use the fact that the radical of a skew symmetric form has even codimension.

Note that condition (i) is the same as condition (a) of Theorem 2.1.1. Now we assume that

condition (i) and (ii) hold and prove that condition (b) of Theorem 2.1.1 holds. If w = 1 or

〈·, ·〉w = 0, the condition (b) holds trivially. Thus we may assume that codim(fix(w)) = 2

and Rad(〈·, ·〉w) = fix(w). If x, y ∈ V are linearly dependent modulo fix(w) then 〈x, y〉w =

0. Thus if x, y, z ∈ V and not two of them are linearly independent modulo fix(w) the

identity (b) holds. Assume that x and y are linearly independent modulo fix(w), so that

〈x, y〉w 6= 0. For any z ∈ V , there are a, b ∈ C with

z = ax+ by modulo Rad(〈·, ·〉w)

whence

a =
〈z, y〉w
〈x, y〉w

and b =
〈z, x〉w
〈y, x〉w

.

By substituting these values for a and b into z = ax + by modulo Rad(〈·, ·〉w) and applying

(w − 1) to both sides, we obtain condition (b) of Theorem 2.1.1. Now assume that charac-

teristic of K is 0 and both (a) and (b) of Theorem 2.1.1 hold. Since the characteristic of K

is 0 and W is a finite group, for any w ∈ W the vector space V is the direct sum of fix(w)

and (1− w)V . If wx = x, then

〈x, (1− w)y〉w = 〈x, y〉w − 〈x,wy〉w = 〈x, y〉w − 〈w−1x, y〉w = 〈x, y〉w − 〈x, y〉w = 0

where we have used (a) in the second equality. Thus the space fix(w) and (1 − w)V are

orthogonal with respect to 〈·, ·〉w. Now, if x, y ∈ fix(w) then by (b)

〈x, y〉w(wz − z) = 0 for all z ∈ V.

Thus fix(w) ⊆ Rad(〈·, ·〉w). Suppose 〈·, ·〉w 6= 0 and fix x, y ∈ V with 〈x, y〉w = 1. Then by

(b)
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wz − z = 〈y, z〉w(x− wx) + 〈z, x〉w(y − wy) for all z ∈ V

so that the dimension of (1 − w)V is at most two. Hence the codimension of fix(w) is at

most two. But since fix(w) ⊆ Rad(〈·, ·〉w) we see that 〈·, ·〉w = 0, if the codimension of

fix(w) = 1 and (ii) follows.

2.2 The rational Cherednik algebra

In this section we give the definition of the rational Cherednik algebra and apply the PBW

theorem to it. First we set K to be a field, h a finite dimensional vector space over K,

W ⊆ GL(h) a finite complex reflection group and KW the group algebra. We denote by T

the set of reflections in W , which means T = {s ∈ W |codim(fix(s)) = 1}. For each s ∈ T ,

let cs ∈ K such that cs = cwsw−1 , for w ∈ W and we also fix a parameter κ ∈ K. Let h∗ be

the dual space of h, hence we can define:

〈·, ·〉 : h∗ ⊗K h→ K
〈x, y〉 x(y)

Now let V = h∗ ⊕ h so W can act over V by w(x+ y) = wx+wy for w ∈ W , x ∈ h∗, y ∈ h.

Now we define 〈·, ·〉w = 0 if w 6∈ T ∪{1}. Let 〈·, ·〉1 be the skew symmetric form defined over

V , determined by 〈x, y〉1 = −κ〈x, y〉, if x ∈ h∗ and y ∈ h and by 〈a, b〉1 = 0, if a, b ∈ h∗ or

a, b ∈ h.

Now for each s ∈ T , we fix an αs ∈ h∗ and α∨s ∈ h such that:

sx = x− 〈x, α∨s 〉αs and s−1y = y − 〈αs, y〉α∨s for x ∈ h∗, y ∈ h

and let 〈·, ·〉s be the skew symmetric form on V determined by:

〈x, y〉s = cs〈αs, y〉〈x, α∨S〉 for x ∈ h∗, y ∈ h and 〈a, b〉s = 0 if a, b ∈ h∗ or a, b ∈ h

Let H be the Drinfeld-Hecke algebra corresponding to W ⊆ GL(V ) and the defined

collection of skew symmetric forms. Then

H ' TV ⊗KW/I

where I is the ideal generated by the relations,

yx = xy + κ〈x, y〉 −
∑
s∈T

cs〈αs, y〉〈x, α∨s 〉s for x ∈ h∗, y ∈ h (2.2.1)

and
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ab = ba for a, b ∈ h∗ or a, b ∈ h .

Corollary 2.2.1. As a vector space,

H ' S(h∗)⊗K S(h)⊗K KW (2.2.2)

Proof. We must verify that the collection of forms 〈·, ·〉w defined above satisfies the conditions

(i) and (ii) of Corollary (2.1.2). Condition (ii) is satisfied by definition of 〈·, ·〉w. For

condition (i) we observe that

x− 〈x, α∨wsw−1〉αwsw−1 = wsw−1x = x− 〈x,wα∨s 〉wαs

so that

〈αwsw−1 , y〉〈x, α∨wsw−1〉 = 〈wαs, y〉〈x,wα∨s 〉

and hence

〈wx,wy〉wsw−1 = cwsw−1〈αwsw−1 , wy〉〈wx, α∨wsw−1〉 = cs〈αs, y〉〈x, α∨s 〉 = 〈x, y〉s for

w ∈ W, s ∈ T, x ∈ h, and y ∈ h∗

This show that the forms 〈·, ·〉w satisfy condition (i).

The next proposition is a fundamental computation. It expresses some commutators in

H as linear combinations of derivatives and divided differences of elements of S(h∗) and S(h).

For y ∈ h, we write ∂y for the derivation of S(h∗) determined by

∂y(x) = 〈x, y〉 for x ∈ h∗ (2.2.3)

and we define a derivation ∂x of S(h) analogously.

Proposition 2.2.2. Let y ∈ h and f ∈ S(h∗). Then

yf − fy = κ∂yf −
∑
s∈T

cs〈αs, y〉
f − sf
αs

s. (2.2.4)

Similarly, for x ∈ h∗ and g ∈ S(h), we have

gx− xg = κ∂xg −
∑
s∈T

cs〈x, α∨s 〉s
g − s−1g

α∨s
. (2.2.5)

Proof. Observe that if f = x ∈ S(h∗), the first formula to be proven is

yx− xy = κ〈x, y〉 −
∑
s∈T

cs〈αs, y〉
x− sx
αs

s
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and the right hand side may be rewritten as

κ〈x, y〉 −
∑
s∈T

cs〈αs, y〉〈x, α∨s 〉s.

So that the formula to be proved is one of the defining relations for H. We proceed by

induction over the degree of f . Assume we have proved the result for h ∈ Sd(h∗) and all

d ≤ m. For f, g ∈ S≤m(h∗), and y ∈ h, we have

[y, fg] = [y, f ]g + f [y, g]

=

(
κ∂yf −

∑
s∈T

cs〈αs, y〉
f − sf
αs

s

)
g + f

(
κ∂yg −

∑
s∈T

cs〈αs, y〉
g − sg
αs

s

)
= κ (∂y(f)g − f∂y(g))−

∑
s∈T

cs〈αs, y〉
(
f − sf
αs

sg + f
g − sg
αs

)
s

= κ∂y(fg)−
∑
s∈T

cs〈αs, y〉
fg − s(fg)

αs
s

by using the inductive hypothesis in the second equality and the Leibniz rule for ∂y and a

skew Leibniz rule for the divided differences in the fourth equality. This proves the first

commutator formula and the proof of the second one is exactly analogous.

2.2.1 Standard modules

In this subsection we construct the standard modules (also called Verma modules) for H.

Assume that we have fixed a reflection group W ∈ GL(h) and parameters κ and cs such that

cwsw−1 = cs for all s ∈ T and w ∈ W . Let H the corresponding rational Cherednik algebra.

Let V a KW -module and define a S(h)⊗K KW action on V by

f · v = f(0)v and w · v = wv for w ∈ W, f ∈ S(h). (2.2.6)

The standard module corresponding to V is

∆(V ) = IndH
S(h)⊗KKWV. (2.2.7)

Since H is a free S(h) ⊗K KW -module the additive functor V 7→ ∆(V ) is exact. The

PBW theorem shows that as vector space

∆(V ) ' S(h)⊗K V. (2.2.8)

In particular when V = 1 is the trivial KW -module we obtain from Proposition (2.2.2)

∆(1) ' S(h∗) with y · f = κ∂yf −
∑
s∈T

cs〈αs, y〉
f − sf
αs

(2.2.9)
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for y ∈ h and f ∈ S(h∗). These are the famous Dunkl operators and is a fact from PBW

theorem that they commute, but it is possible to prove the commutativity independently [3].

It is a consequence of the definition of the standard module ∆(V ) that for any H-module M

the map

HomH(∆(V ),M)
∼−→ HomKW (V, Sing(M))

defined by

φ 7→ φ|V

is a bijection, where Sing(M) = {m ∈M |y ·m = 0 ∀y ∈ h}.

2.3 The group G(r, 1, n)

Let r and n be positive integers, and put

ζ = e
2πi
r .

The group G(r, 1, n) consist of all monomial matrices of size n by n, such that each entry is

a r-root of the unity, which means that if A ∈ G(r, 1, n):

(a) Each row, and each column have exactly one non-zero entry.

(b) The non-zero entries are powers of ζ.

Thus the G(r, 1, n) group is a finite subgroup of GLm(C) with exactly rnn! elements. If we

fix a positive integer p, such that p divide r, we can form the group G(r, p, n) consisting in

all those matrices from G(r, 1, n), such that the product of all the non-zero entries is a r
p
-root

of 1. The group G(r, p, n) is a normal subgroup of G(r, 1, n) and the quotient group is cyclic

of order p. For example
i 0 0 0
0 0 i 0
0 −1 0 0
0 0 0 −i

 ∈ G(4, 1, 4) and


1 0 0 0
0 0 0 i
0 −1 0 0
0 0 −i 0

 ∈ G(4, 2, 4).

Many families of well-know groups occurs in the family G(r, p, n). For example:

(a) The group G(1, 1, n) is the group of permutation matrices of size n by n. As an abstract

group is isomorphic to Sn.

(b) The group G(2, 1, n) is the group of all signed permutation matrices, also known as the

Weyl group of type Bn.
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(c) The group G(2, 2, n) is the Weyl group of Dn.

(d) The group G(r, r, 2) is the dihedral group of order 2r.

Now, let

ζi = diag(1, ..., ζ, ..., 1)

be the diagonal matrix with ζ in the ith position, and let

sij = (ij)

be the transposition matrix with 1 in the ij and ji position, 1 along the diagonal except for

the ii and jj position, and zero in other positions. Finally, let:

si = si,i+1

the simple transposition swapping i and i+ 1. As an example, in G(r, 1, 3)

ζ2 =

 1 0 0
0 ζ 0
0 0 1

 s13 =

 0 0 1
0 1 0
1 0 0

 s2 =

 1 0 0
0 0 1
0 1 0

 .

It is straightforward to verify that each element of G(r, 1, n) may be written uniquely in

the form

ζλw where w ∈ G(1, 1, n), λ ∈ (Z/rZ)n

and

ζλ = ζλ11 ζλ22 ...ζλnn .

The multiplication is determined by the rule

(ζλv)(ζµw) = ζλ+v·µvw,

where G(1, 1, n) = Sn acts on (Z/rZ)n by permuting the coordinates. Therefore as an

abstract group G(r, 1, n) is isomorphic to the semidirect product

G(r, 1, n) ' (Z/rZ)n o Sn.

When working with the group algebra CG(r, 1, n) instead of the group, we will use the

symbol w̄ as replacement of w ∈ G(r, 1, n). Thus

CG(r, 1, n) = C-spann{w̄/w ∈ G(r, 1, n)} with multiplication v̄w̄ = vw.
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2.4 Irreducible representations for G(r, 1, n)

If we consider the symmetric group Sn, we have the notion of cycle-type. The cycle-type

of a permutation is defined as the unordered list of the sizes of the cycles in the cycle

decomposition of σ. For instance, consider the permutation with cycle decomposition

(1, 2, 3)(2, 4)(6)(7, 8),

this permutation has cycle-type (3, 2, 1, 2). Since this is an unordered list, this can also be

written as (1, 2, 2, 3) or (1, 2, 3, 2). Note that the sum of all the cycle sizes must equal to n.

Thus, the cycle-type of a permutation is an unordered integer partition of the size of the set.

Our aim in the next subsection is to generalize this idea to the group G(r, 1, n).

2.4.1 Conjugacy classes in G(r, 1, n)

Let ζλw ∈ G(r, 1, n). It cycle type is a sequence (λ0, λ1, ..., λr−1) of partitions defined in

the following way: write w = c1 · · · cq as a product of disjoint cycles c1, ..., cq with lengths

summing to n, and for each 1 ≤ j ≤ q let ηj be the product of those ζλi ’s such that i is

moved by cj. Then

ηj = ζmj for some integer 0 ≤ mj ≤ r − 1.

Then for 0 ≤ k ≤ r− 1 the partition λk has a part of size equal to the length of the cycle cj

for each 1 ≤ j ≤ q with mj = k.

There is also a notation of cyclic decomposition. Using the preceding notation, let wj be

the product of those ζλii ’s such that i is moved by cj, and put

dj = wjcj.

Then the set d1, ..., dq is pairwise commutative and we have

ζλw = d1d2 · · · dq.

Two elements ζλv and ζλw of G(r, 1, n) are conjugate precisely when they have the same cycle

type. Thus the conjugacy classes of G(r, 1, n) are naturally indexed by the set of sequences

λ = (λ0, λ1, ..., λr−1) of r partitions with total number of boxes equal to n.

In matrix form and up to rearranging rows and columns and ignoring the fixed space,
0 ζk1 0 · · · 0
0 0 ζk2 · · · 0
...

...
...

...
...

0 0 0 · · · ζkl−1

ζklj 0 0 · · · 0

 .
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So that the characteristic polynomial of the cycle dj of length lj acting on Clj is

X lj − ζk1+k2+...+kl = X l − ηj,

with ηj = ζmj as defined above. It follows that the eigenvalues of dj acting on Clj are

e2πimj/rlje2πik/lj for 0 ≤ k ≤ lj − 1,

and hence that the eigenvalues of

ζλw = d1 · · · dq

acting on Cn are

e2πimj/rlje2πik/lj for 1 ≤ j ≤ q and 0 ≤ k ≤ lj − 1.

This is a special case of the formula of Stembridge.

2.4.2 Jucys-Murphy elements and the representation of G(r, 1, n)

Let

ψi =
∑

1 ≤ j < k ≤ i
0 ≤ l ≤ r − 1

ζ lksjkζ
−l
k and φi =

∑
1 ≤ j < i

0 ≤ l < r − 1

ζ lisijζ
−l
i

so that

φi = ψi − ψi−1 for 1 ≤ i ≤ n.

Observe that ψi ∈ Z(CG(r, 1, i)) is central since it is a class sum. Therefore ψ1, ψ2, ..., ψn

are pairwise commutative and it follows that φ1, ..., φn are also pairwise commutative. The

elements φ1, ..., φn are the Jucys-Murphy elements for the group G(r, 1, n). The following

proposition records the relations these elements satisfy with a set of generators of G(r, 1, n).

Proposition 2.4.1. The Jucys-Murphy elements satisfy the following relations with a set

of generators of G(r, 1, n).

(a) φiζj = ζjφi for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

(b) φisi = siφi+1 − πi for 1 ≤ 1 ≤ n− 1, where πi =
∑

0≤l≤r−1

ζ liζ
−l
i+1.

(c) φisj = sjφi for j 6= i− 1, i.
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Proof. If 1 ≤ i < j then ski commutes with ζj for all 1 ≤ k < i and it follows that ζj

commutes with φi. We have

ζiφiζ
−1
i =

∑
1 ≤ j < i

0 ≤ l ≤ r − 1

ζ l+1
i sijζ

−(l+1)
i = φi

and finally since φi = ψi − ψi−1 is the difference of two elements that commute with G(i −
1, 1, r) it follows that φi commutes with ζj for 1 ≤ j < i. This proves (a).

For (b), calculate

φisi =
∑

1 ≤ j < i
0 ≤ l ≤ r − 1

ζ lisijζ
−l
i = si

∑
1 ≤ j < i

0 ≤ l ≤ r − 1

ζ li+1si+1,jζ
−l
i+1

= si

(
φi+1 −

∑
0≤l≤r−1

ζ li+1siζ
−l
i+1

)
= siφi+1 −

∑
0≤l≤r−1

ζ liζ
−l
i+1.

For (c), observe that if j < i− 1, then since φi = ψi − ψi−1 and sj ∈ G(r, 1, i− 1), sj and φi

commute. If j ≥ i+ 1, then sj commutes with all the terms in the sum defining φi.

Let u be the subalgebra of CW generated by φ1, ..., φn and ζ1, ..., ζn. Let α : u→ C be a

C-algebra homomorphism and let V be a u-module. The α-weight space of V is

Vα = {v ∈ V |x · v = α(x)v for all x ∈ u}.

A weight of u on V is a C-algebra homomorphism α : u→ C such that Vα 6= 0. We may

identify a C-algebra homomorphism α : u→ C with the list

(α(φ1), ..., α(φn), α(ζ1), ..., α(ζn)).

Given a u-eigenvector v ∈ V , we write

wt(v) = (a1, ..., an, ζ
b1 , ..., ζbn) if φi · v = aiv and ζi · v = ζbiv for 1 ≤ i ≤ n.

For a CW -module V , we define

wt(V ) = {wt(v)|v is a u-eigenvector in V }.

Lemma 2.4.2. We have that

(a) The algebra u acts semisimply on each CW -module V .

(b) Let V be a CW - module and let v ∈ V be a u-weight vector of weight

wt(v) = (a1, ..., an, ζ
b1 , ..., ζbn)

Then
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(ai, ζ
bi) 6= (ai+1, ζ

bi+1) for 1 ≤ i ≤ n− 1.

Proof. For (a), observe that u is a commutative algebra of operators, and let φi is self adjoint

and ζi is unitary with respect to any W -invariant positive definite Hermitian form on V .

For (b), suppose that (ai, ζ
bi) = (ai+1, ζ

bi+1). Computing using Proposition (2.4.1) part (b)

φisi · v = (siφi+1 − π1) · v = (siai+1 − r)v = aisiv − rv

and hence

(φi − ai)si · v = −rv 6= 0 while (φi − ai)2si · v = −(φi − ai) · rv = 0,

so that si · v is a generalized eigenvector, which is not an eigenvector for φi, contradicting

part (a).

The intertwining operator σi is defined on a CW -module V by the formula

σ · v = si · v +
1

ai − ai+1

πi · v if v ∈ V and wt(v) = (a1, ..., an, ζ
b1 , ..., ζbn). (2.4.1)

The definition makes sense by lemma 2.4.2.

Proposition 2.4.3. Let V be a CW -module and let v ∈ V with wt(v) = (a1, ..., an, ζ
b1 , ..., ζbn).

(a) wt(σi ·v) = si ·wt(v), where Sn acts on the set of 2n-tuples by simultaneously permuting

the first n and second n coordinates.

(b) σ2
i · v =

(ai − ai+1 − πi)(ai − ai+1 + πi)

(ai − ai+1)2
· v

(c) σiσi+1σi · v = σi+1σiσi+1 · v

Proof. All parts of the proposition are straightforward calculations, although part (c) is

lengthy.

Now we want to give a combinatorial description of the set of possible weights for CW -

modules. Now we introduce the necessary definitions to do this. A r-partition of n is a

sequence λ = (λ0, ..., λr−1) of partitions such that the sum of all the boxes of all the partitions

is n. A standard r-tableau T on λ is a filling of the boxes of the partitions λ0, ..., λr−1 with

the integer 1, ..., n is such way that the entries within each partition λi are increasing in the

rows and the columns. For example

λ =

 , , ∅
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is a 3-partition of 12. And a standard 3-tableau on λ could be 1 5
8

,

2 3 7
4 6 11
9 10
12

, ∅

 or

 1 2
3

,

4 5 6
7 8 9
10 11
12

, ∅

 . (2.4.2)

We also define the content of a box b ∈ λi by j − k, if b is in the k row and in the j column

from λi. We write it ct(b) = content of b. Let T (i) for the box b of λ in which i appears,

and define the function β over the set of all boxes of λ in the following way:

β(b) = i if b ∈ λi.

The content vector of a tableau T on λ is the sequence ct(T ) = (a1, ..., an, ζ
b1 , ..., ζbn) where

ζ = e2πi/r, ai = r · ct(T (i)) and bi = β(T (i)). For instance, if we consider the first 3-tableau

of our last example we get that the content vector is

ct(T ) = (0, 0, 3,−3, 3, 0, 6,−3,−6,−3, 3,−9, ζ0, ζ1, ζ1, ζ1, ζ0, ζ1, ζ1, ζ0, ζ1, ζ1, ζ1, ζ1).

Theorem 2.4.4. Each CW -module V has a basis consisting of simultaneous eigenvectors

for u. If v ∈ V is non-zero and wt(v) = (ai, ..., an, ζ
b1 , ..., ζbn) ∈ wt(V ) then

(a) For each 1 ≤ i ≤ n either ai = 0 or there is some 1 ≤ j < i such that

ζbj = ζbi and aj = ai ± r

(b) If 1 ≤ i < j ≤ n and (ai, ζ
bi) = (aj, ζ

bj) then there are i < k < l < j with

ζbk = ζbl = ζbi and {ai + r, ai − r} = {ak, al}.

(c) If a 2n-tuple (a1, ..., an, ζ
b1 , ..., ζbn),where ζ = e2πi/r, bi ∈ Z, and a1, ..., an ∈ C, satisfies

(a) and (b), then there is a r-partition λ and a tableau T on λ with

ct(T ) = (a1, ..., an, ζ
b1 , ..., ζbn)

(d) If V is an irreducible CW -module, then there is a r-partition λ of n such that

wt(V ) = {ct(T )|T is a tableau on λ}

and the u-eigenspaces on V are one-dimensional.
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Proof. First observe that a1 = 0 since φ1 = 0. Now, if ai 6= 0, then by using parts (a) and (b)

of proposition (2.4.3) we concludes that either ζbj = ζbi and aj = ai ± r for some 1 ≤ j < i,

or one may apply a sequence of intertwiners to v to obtain an eigenvector with a1 = 0. This

proves (a).

For (b), first we prove that we cannot have (ai, ζ
bi) = (ai+2, ζ

bi+2). Otherwise, by using

Lemma 2.4.2 part (b) and Proposition (2.4.3) parts (a) and (b) we have

σ1 · v, ζbi+1 = ζbi and ai+1 = ai ± r. (2.4.3)

Suppose for instance that ai+1 = ai + r. Then

0 = si · v +
r

ai − ai+1

v = si · v − v, (2.4.4)

whence

si · v = v and similarly si+1 · v = −v. (2.4.5)

Therefore

−v = s̄isi+1s̄i · v = si+1s̄isi+1 · v = v, (2.4.6)

and this is a contradiction. The case ai+1 = ai − r is similar. Thus (ai, ζ
bi) 6= (ai+2, ζ

bi+2).

Thus, if 1 ≤ i < j ≤ n and (ai, ζ
bi) = (aj, ζ

bj) we have j − 1 ≥ 3. Assume that (b) is false

and choose a counterexample with j− i minimal. Then by Proposition 2.4.3 and minimality

of j − i we have

ai+1 = ai ± r = aj−1 and ζbi+1 = ζbi = ζbj−1 . (2.4.7)

Again by minimality of j − 1 and the fact that i + 1 6= j − 1 proved above, there is some k

with i+ 1 < k < j − 1 with

ak = ai and ζbk = ζbi , (2.4.8)

contradicting minimality of j − 1. For (c) we work on induction on n. The base case n = 1

is using part (a). For the inductive step one may assume given a tableau T ′ on a r-partition

µ with ct(T ′) = (a1, ..., an−1, ζ
b1 , ..., ζbn−1). One attempts to build a new tableau by placing

a box labeled n on the end of the anth diagonal of the partition µbn . Using (a) and (b) one

checks that this indeed gives a tableau T with ct(T ) = (a1, ..., an, ζ
b1 , ..., ζbn).

Finally we come to (d). Consider the vector subspace

U = C-span{σi1σi2 · · ·σiq · v} ⊆ V (2.4.9)

spanned by all the words in the intertwiners applied to v. Since each element in this set is

a u weight vector, U is stable under ζi for 1 ≤ i ≤ n. On the other hand, if v′ ∈ U and

1 ≤ i ≤ n then σi · v′ ∈ U and hence

si · v′ = σi · v′ −
1

a′i − a′i+1

πi · v′ ∈ U. (2.4.10)
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Where a′i, a
′
i+1 ∈ C are the weights of φi and φi+1 on v′. Thus is a CW -submodule of V

whence U = V by irreducibility.

Suppose that wt(v) = (a1, ..., an, ζ
b1 , ..., ζbn) is a weight of V , T is the tableau with ct(T ) =

(a1, ..., an, ζ
b1 , ..., ζbn), and that si · T is not a tableau. On the one hand, one checks that

si · wt(v) is not the content vector of a tableau and it follows from the previous parts of

the theorem that σi · v = 0. Therefore since U = V the weights of V must all come from

tableaux on one partition λ. On the other hand, one checks that if T and T ′ are two tableau

on λ, then there is a sequence si1 , ..., siq of transpositions such that T ′ = si1 ...si1 ·T and with

each sj...siq ·T a tableau on λ. It follows that the content vector of all tableau on λ actually

occur as weights of V.

For the assertion about the dimension of the weight space one observes that if the weight of

σi1 ...σiq · v is the same as the weight of v, then si1 ...siq · T = T , where T is the tableau with

ct(T ) = wt(v). Thus si1 ...siq = 1 in Sn. Now since the σi‘s satisfy the braid relations and

their squares are multiplication by a constant on each weight space, we get that

σi1 · · · σiq · v = cv for some c ∈ C. (2.4.11)

(Here we use the fact that (Sn, {s1, ..., sn−1}) is a Coxeter System). This shows that all

weight spaces are one-dimensional and completes the proof of the theorem.

Now we wish to normalize the GZ basis in a particular way. Let T0 be the row-reading

tableau on the r-partition λ. T0 is obtained by inserting the numbers 1, 2, ..., n into λ from

the left to the right and from the bottom to the top and working from λ0 towards λr−1. Thus

for the 3-partition

λ =

(
, ,

)
we have

T0 =

(
1 2 3
4

, 5 6
7

, 8
9

)
.

A sequence si1 , ..., siq of simple transpositions is admissible for a tableau T , if for each

1 ≤ j ≤ q we have that sij ...siq · T is a tableau. The length l(T ) of a tableau on λ is the

smallest number q such that is an admissible sequence si1 ...siq for the row reading tableau

T0 with

si1 ...siq · T0 = T. (2.4.12)

If sj1 , ..., sjq is another such sequence, then one checks that

si1 ...siq = sj1 ...sjq in Sn. (2.4.13)
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We fix a GZ vector vT0 with

wt(vT0) = ct(T0) (2.4.14)

and define the standard GZ basis of Sλ by

vT = σi1 · · ·σiq · T0 (2.4.15)

for any minimal length admissible sequence si1 ...siq for T0 with

si1 ...siq · T0 = T. (2.4.16)

It follows from Proposition 2.4.3 and theorem 2.4.4 that for the standard GZ basis vT ,

σi · vT =


0 if si · T is not a tableau
vsi · T if ζbi 6= ζbi+1 or si · T is a tableau with l(si · T ) > l(T )(

1−
(

r
ai+1−ai

)2
)

if ζbi = ζbi+1 and si · T is a tableau with l(si · T ) < l(T )

These formulas become somewhat simpler, if one renormalizes the standard GZ basis.

Let 〈·, ·〉 be a W -invariant positive definite Hermitian form and define the normalized GZ

basis wT by

wT =
vT

〈vT , vT 〉1/2
for all tableaux T on λ. (2.4.17)

For a tableau T such that si · T is a tableau with l(si · T ) > l(T ) one obtains

〈vsi·T , vsi·T 〉 = 〈σi · vT , σi · vT 〉 = 〈vT , σ2
i · vT 〉

=

 〈vT , vT 〉 if ζbi 6= ζbi+1(
1−

(
r

ai+1−ai

)2
)
〈vT , vT 〉 if ζbi = ζbi+1

.

Thus for a tableau T such that si · T is a tableau with l(si · T ) > l(T )

σi · wT =
vsi · T
〈vT , vT 〉1/2

=


wsi if ζbi 6= ζbi+1(

1−
(

r
ai+1−ai

)2
)1/2

wsi·T if ζbi = ζbi+1
.

It follows from this formula and Proposition (2.4.3) that

σi · wT =


0 if si · T is not a tableau
wsi·T if ζbi 6= ζbi+1(

1−
(

r
ai+1−ai

)2
)1/2

wsi·T if ζbi = ζbi+1

. (2.4.18)

Corollary 2.4.5. The irreducible CW -modules may be parametrized by r-partitions λ =

(λ0, ..., λr−1) of n in such way that, if Sλ is the irreducible CW - module corresponding to the

r-partition λ then Sλ has a basis vT indexed by tableaux T on λ with the following properties:
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(a) Let ct(T ) = (a1, ..., an, ζ
b1 , ..., ζbn) be the content vector of T . Then vT is a u-weight

vector of weight ct(T ).

(b) The G(r, 1, n)-action on Sλ is determined by the formulas

ζi · vT = ζbivT

and

si·vT =


vsiT if ζbi 6= ζbi+1

±vT if siT is not a tableau, ai+1 = ai ± r(
1−

(
r

ai+1−ai

)2
) 1

2

vsiT + r
ai+1−aivT if siT is a tableau with ζbi = ζbi+1

Proof. Let vT be the normalized GZ basis defined by (2.4.17). Hence the corollary follows

from Theorem (2.4.4), equation (2.4.18), the definition of σi, and the fact that

σi · vT = 0 if si · T is not a tableau.

2.5 Rational Cherednik algebra for G(r, 1, n)

We remember some notations. Let

ζ = e1πi/r and ζi = diag(1, ..., ζ, ..., 1) for 1 ≤ i ≤ n. (2.5.1)

Let

si = si,i+1 where sij = (ij) for 1 ≤ i < j ≤ n (2.5.2)

is the transposition interchanging i and j. There are r conjugacy classes of reflection in

G(r, 1, n):

(a) The reflection of order two:

ζ lisijζ
−l
i for 1 ≤ i < j ≤ n 0 ≤ l ≤ r − 1 (2.5.3)

(b) The remaining r − 1 classes, consisting in diagonal matrices

ζ li for 1 ≤ i ≤ n 0 ≤ l ≤ r − 1 (2.5.4)

where ζ li and ζkj are conjugate if and only if k = l.
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Let

yi = (0, ..., 1, ..., 0)t and xi = (0, ..., 1, ..., 0) (2.5.5)

so that y1, ..., yn is the standard basis of h = Cn and x1, ..., xn is the dual basis in h∗. If

αs = ζ−l−1xi α∨s = (ζ l+1 − ζ)yi for s = ζ li (2.5.6)

and

αs = xi − ζ lxj α∨s = yi − ζ−lyj for s = ζ lisijζ
−l
i (2.5.7)

then

sx = x− 〈x, α∨s 〉αs and s−1(y) = y − 〈αs, y〉α∨s (2.5.8)

for s ∈ T , x ∈ h∗, and y ∈ h. We relabeled the parameters defining H by letting

c0 = cs1 and ci = cζi1 for 1 ≤ i ≤ r − 1. (2.5.9)

Proposition 2.5.1. The rational Cherednik algebra for W = G(r, 1, n) with parameters

κ, c0, c1, ..., cr−1 is the algebra generated by C[x1, ..., xn], C[y1, ..., yn] and w for w ∈ W with

relations

w̄v̄ = wv, w̄x = (wx)w̄ and w̄y = (wy)w̄

for w, v ∈ W , x ∈ C[x1, ..., xn], and y ∈ C[y1, ..., yn],

yixj = xjyi + c0

r−1∑
l=0

ζ−lζ lisijζ
−j
i (2.5.10)

for 1 ≤ i 6= j ≤ n, and

yixi = xiyi + κ−
r−1∑
l=1

cl(1− ζ−l)ζ li − c0

∑
j 6=i

r−1∑
l=0

ζ lisijζ
−j
i (2.5.11)

for 1 ≤ i ≤ n.

Proof. This is just a matter of rewriting the equation (2.2.1) using our G(r, 1, n) notation.

For 1 ≤ i < j ≤ n,

yixj = xjxi + κ〈xj, yi〉

−co
∑

1≤k<m≤n

r−1∑
l=0

〈xk − ζ lxm, yi〉〈xj, yk − ζ−lym〉ζ lkskmζ
−l
k

−
n∑
k=1

r−1∑
l=1

cl〈ζ−l−1xk, yi〉〈xj, (ζ l+1 − ζ)yk〉ζ lk

= xjyi + κ · 0− c0

r−1∑
l=0

(−ζ−l)ζ lisijζ−li − 0 = xjyi + c0

r−1∑
l=0

ζ−lζ lisijζ
−l
i .

24



The calculation for 1 ≤ j < i ≤ n is similar. For i = j,

yixi = xixi + κ〈xi, yi〉

−co
∑

1≤k<m≤n

r−1∑
l=0

〈xk − ζ lxm, yi〉〈xi, yk − ζ−lym〉ζ lkskmζ
−l
k

−
n∑
k=1

r−1∑
l=1

cl〈ζ−l−1xk, yi〉〈xi, (ζ l+1 − ζ)yk〉ζ lk

= xiyi + κ− c0

∑
1≤i<m≤n

r−1∑
l=0

ζ lisimζ
−l
i − c0

∑
1≤k<i≤n

r−1∑
l=0

ζ lksikζ
−l
k −

r−1∑
l=1

cl(1− ζ−l)ζ li

.

Now we give an equivalent description of our rational Cherednik algebra, changing the

parameters by κ, c0, d1, ..., dr−1, and defining di for all i ∈ Z by the equations

d0 + d1 + ...+ dr−1 = 0 and di = dj if i = j mod r. (2.5.12)

Proposition 2.5.2. The rational Cherednik algebra for W = G(r, 1, n) with parameters

κ, c0, d1, ..., dr−1 is the algebra generated by C[x1, ..., xn], C[y1, ..., yn] and w for w ∈ W with

relations

w̄v̄ = wv w̄x = (wx)w̄ and w̄y = (wy)w̄

for w, v ∈ W , x ∈ C[x1, ..., xn] and y ∈ C[y1, ..., yn],

yixj = xjyi + c0

r−1∑
l=0

ζ−lζ lisijζ
−j
i (2.5.13)

for 1 ≤ i 6= j ≤ n, and

yixi = xiyi + κ−
r−1∑
l=1

(dj − dj−1)eij − c0

∑
j 6=i

r−1∑
l=0

ζ lisijζ
−j
i (2.5.14)

for 1 ≤ i ≤ n. Where eij ∈ CW is the idempotent

eij =
1

r

r−1∑
l=0

ζ−ljζ li . (2.5.15)

Proof. If cl is the parameter attached to the class containing ζ l1, then the formula

cl =
1

r

r−1∑
j=0

ζ−ljdj

for l = 1, 2, ..., r − 1 , relates these parameters to the new ones.

25



For µ = (a1, ..., an) ∈ Z let be xµ = xa11 x
a2
2 ...x

an
n .

Proposition 2.5.3. Let µ ∈ Z and 1 ≤ i ≤ n. Then

yix
µ = xµyi + κµix

µ−ei − c0

∑
j 6=i

r−1∑
l=0

xµ − ζ lisijζ−li xµ

xi − ζ lxj
ζ lisijζ

−l −
r−1∑
l=0

djx
µ−ei(ei,j − ei,j+µi)

where ei has 1 in the ith position and 0‘s elsewhere.

Proof. The proof of this is replace our data in proposition (2.2.2).

We describe the standard modules for the rational Cherednik algebra of type G(r, 1, n).

Recall from Corollary (2.4.5) that the irreducible CW -modules Sλ are parametrized by r-

partition λ of n. Define the standard module ∆(λ) to be the induced module

∆(λ) = IndH
CW⊗C[y1,...,yn]S

λ (2.5.16)

and define the C[y1, ..., yn] action on Sλ by

yi · v = 0 for 1 ≤ i ≤ n and v ∈ Sλ. (2.5.17)

By the PBW theorem for H we have an isomorphism of C-vector spaces

∆(λ) ' C[x1, ..., xn]⊗C S
λ. (2.5.18)

2.6 Rational Cherednik algebra for G(r, 1, 2)

W = G(r, 1, 2) is the group of 2×2 monomial matrices, where each entry is a r-root of unity.

For now we assume that κ = 1. By the PBW theorem we have that as vector spaces

H ' C[x1, x2]⊗C CW ⊗C C[y1, y2]. (2.6.1)

The following proposition give us the relations in H.

Proposition 2.6.1. The relations between y1 and y2 with an element of the form xn1x
m
2 are

given by:

(a)

y1x
n
1x

m
2 = xn1x

m
2 y1 + xn−1

1 xm2

(
n−

r−1∑
j=0

dj
r

r−1∑
l=0

ζ−lj(1− ζ−ln)

(
ζ l 0
0 1

))

−c0

r−1∑
l=0

xn1x
m
2 −

(
0 ζ l

ζ−l 0

)
· xn1xm2

x1 − ζ lx2

(
0 ζ l

ζ−l 0

) .
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(b)

y2x
n
1x

m
2 = xn1x

m
2 y2 + xn1x

m−1
2

(
m−

r−1∑
j=0

dj
r

r−1∑
l=0

ζ−lj(1− ζ−lm)

(
1 0
0 ζ l

))

−c0

r−1∑
l=0

xn1x
m
2 −

(
0 ζ−l

ζ l 0

)
· xn1xm2

x2 − ζ lx1

(
0 ζ−l

ζ l 0

) .

Proof. The proof follows from replacing our data in proposition (2.5.3). Here µ = (n,m) so

xµy1 = xn1x
m
2 y1. Observe that

ζ l1s12ζ
−l
1 =

(
ζ l 0
0 1

)
s12

(
ζ−l 0
0 1

)
=

(
ζ l 0
0 1

)(
0 1
ζ−l 0

)
=

(
0 ζ l

ζ−l 0

)
.

Hence we have

−c0

r−1∑
l=0

xn1x
m
2 − ζ l1s12ζ

−l
1 · xn1xm2

x1 − ζ lx2

ζ l1s12ζ
−l
1 = −c0

r−1∑
l=0

xn1x
m
2 −

(
0 ζ l

ζ−l 0

)
· xn1xm2

x1 − ζ lx2

(
0 ζ l

ζ−l 0

)
.

We need to prove that

r−1∑
j=0

dj (e1,j − e1,j+n) =
r−1∑
j=0

dj
r

r−1∑
l=0

ζ−lj(1− ζ−ln)

(
ζ l 0
0 1

)
.

Using the definition of ei,j we have

e1,j =
1

r

r−1∑
l=0

ζ−ljζ l1 and e1,j+n =
1

r

r−1∑
l=0

ζ−l(j+n)ζ l1

and we get

r−1∑
j=0

dj (e1,j − e1,j+n) =
r−1∑
j=0

dj
r

r−1∑
l=0

(
ζ−lj − ζ−l(j+n)

)
ζ l1 =

r−1∑
j=0

dj
r

r−1∑
l=0

ζ−lj(1− ζ−ln)

(
ζ l 0
0 1

)
.

This proves the relation for y1. For y2 the proof follows in the same way.

We want to describe the action of H in the standard modules. We have three kinds of

r-partition of two, they are:

(a) λi =
(
∅, ..., , ..., ∅

)
.

(b) λi =

(
∅, ..., , ..., ∅

)
.

(c) λi,j =
(
∅, ..., , ..., , ..., ∅

)
.
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Where the boxes are in position i and j. The irreducible representations Sλi and Sλ
i

are

one dimensional with basis vT . The irreducible representation Sλi,j is two dimensional with

basis vT1 and vT2 . The action of W on the irreducible representations Sλ is described in the

following table

λi λi(
1 0
0 ζ

)
· vT = ζ ivT

(
1 0
0 ζ

)
· vT = ζ ivT(

ζ 0
0 1

)
· vT = ζ ivT

(
ζ 0
0 1

)
· vT = ζ ivT(

0 1
1 0

)
· vT = vT

(
0 1
1 0

)
· vT = −vT

λi,j(
1 0
0 ζ

)
· vT1 = ζjvT1

(
1 0
0 ζ

)
· vT2 = ζ ivT2(

ζ 0
0 1

)
· vT1 = ζ ivT1

(
ζ 0
0 1

)
· vT2 = ζjvT2(

0 1
1 0

)
· vT1 = vT2

(
0 1
1 0

)
· vT2 = vT1

For our later computations we are particular interested in three elements of G(r, 1, 2):(
ζ l 0
0 1

)
,

(
1 0
0 ζ l

)
,

(
0 ζ l

ζ−l 0

)
for 0 ≤ l ≤ r − 1 .

We want to compute the action of these elements in each of the three cases of Sλ. We have

that (
0 ζ l

ζ−l 0

)
=

(
0 1
1 0

)
·
(
ζ−l 0
0 1

)
·
(

1 0
0 ζ l

)
The actions of these elements in Sλ are given in the following table:

λi λi(
1 0
0 ζ l

)
· vT = ζ livT

(
1 0
0 ζ l

)
· vT = ζ livT(

ζ l 0
0 1

)
· vT = ζ livT

(
ζ l 0
0 1

)
· vT = ζ livT(

0 ζ l

ζ−l 0

)
· vT = vT

(
0 ζ l

ζ−l 0

)
· vT = −vT

λi,j(
1 0
0 ζ l

)
· vT1 = ζ ljvT1

(
1 0
0 ζ l

)
· vT2 = ζ livT2(

ζ l 0
0 1

)
· vT1 = ζ livT1

(
ζ l 0
0 1

)
· vT2 = ζ ljvT2(

0 ζ l

ζ−l 0

)
· vT1 = ζ l(j−i)vT2

(
0 ζ l

ζ−l 0

)
· vT2 = ζ l(i−j)vT1
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2.6.1 The action in ∆(λ)

The elements of ∆(λ) are sums of elements of the form xn1x
m
2 ⊗ vT . Our interest is to focus

on how H acts in elements of this form. The elements of C[x1, x2] act by multiplication and

the group elements act in the obvious way. Our main interest is to focus on how y1 and y2

act on the element xn1x
m
2 ⊗ vT . There are three cases:

2.6.1.1 Case 1: λ = λi.

Proposition 2.6.2. The action of y1 and y2 in a generic xn1x
m
2 ⊗ vT is given by:

(a) y1 · xn1xm2 ⊗ vT =

(n− di + di−n − c0r)x
n−1
1 xm2 − c0r

[n−m−1
r ]∑

k=1

xn−kr−1
1 xm+kr

2

⊗ vT if n > m

(n− di + di−n)xn−1
1 xm2 + c0r

[m−nr ]∑
k=1

xn+kr−1
1 xm−kr2

⊗ vT if n ≤ m

(b) y2 · xn1xm2 ⊗ vT =

(m− di + di−m)xn1x
m−1
2 + c0r

[n−mr ]∑
k=1

xn−kr1 xm+kr−1
2

⊗ vT if n ≥ m

(m− di + di−m − c0r)x
n
1x

m−1
2 − c0r

[m−n−1
r ]∑

k=1

xn+kr
1 xm−kr−1

2

⊗ vT if n < m

The brackets over the sum ([∗]) mean the entire part.

Proof. We prove the action of y1. Note that y1 · (xn1xm2 ⊗ vT ) = y1x
n
1x

m
2 ⊗ vT and we use the

commutating rules of Proposition (2.6.1). xn1x
m
2 y1⊗vT is zero, because y1 acts as zero in Sλ.

For now we omit the tensor ⊗vT at the end of each equality.

y1x
n
1x

m
2 = xn−1

1 xm2

(
n−

r−1∑
j=0

dj
r

r−1∑
l=0

ζ−lj(1− ζ−ln)ζ il

)
− c0

r−1∑
l=0

xn1x
m
2 −

(
0 ζ l

ζ−l 0

)
· xn1xm2

x1 − ζ lx2

= xn−1
1 xm2

(
n−

r−1∑
j=0

dj
r

r−1∑
l=0

ζ l(i−j) − ζ l(i−j−n)

)
− c0

r−1∑
l=0

xn1x
m
2 − ζ l(n−m)xm1 x

n
2

x1 − ζ lx2

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

xn1x
m
2 − ζ l(n−m)xm1 x

n
2

x1 − ζ lx2

.
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In the first equality we made the group elements act in Sλi using the action rules. In the

second equality we use

(
0 ζ l

ζ−l 0

)
· xn1xm2 = ζ l(n−m)xm1 x

n
2 . For the third equality we have

that
r−1∑
l=0

ζkl = r ,if k ≡ 0 mod r and it is zero in other cases. This implies that the non-zero

terms appear exactly when j ≡ i mod r or j ≡ i− n mod r.

We separate in two cases, when n > m and when n ≤ m.

(a) n > m

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

xm1 x
m
2 (xn−m1 − ζ l(n−m)xn−m2 )

x1 − ζ lx2

(Factor xm1 x
m
2 )

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

xm1 x
m
2 (xn−m1 − (ζ lx2)n−m)

x1 − ζ lx2

(Rewriting)

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

xm1 x
m
2

n−m−1∑
k=0

xn−m−1−k
1 ζ lkxk2 (?)

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

n−m−1∑
k=0

ζ lkxn−1−k
1 xm+k

2 (Rewriting)

= xn−1
1 xm2 (n− di + di−n)− c0

n−m−1∑
k=0

xn−1−k
1 xm+k

2

r−1∑
l=0

ζ lk (Rewriting)

= xn−1
1 xm2 (n− di + di−n)− c0r

[n−m−1
r ]∑

k=0

xn−1−kr
1 xm+kr

2 (??)

= xn−1
1 xm2 (n− di + di−n − c0r)− c0r

[n−m−1
r ]∑

k=1

xn−kr−1
1 xm+kr

2 (Rewriting)

In (?) we use the factorization (an−bn) = (a−b)(an−1 +an−2b+an−3b2 + ...abn−2 +bn−1)

attached to our case. In (??) we consider the values of k for which the last sum is not

zero (when k ≡ 0 mod r). The number of such k depends on the difference n − m.

There are exactly
[
n−m−1

r

]
+ 1 of such k in the sum. We have counted these k on the

sum and we have rewritten it in terms of a new k.

(b) n ≤ m
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= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

xn1x
n
2 (xm−n2 − ζ l(n−m)xm−n1 )

x1 − ζ lx2

(Factor xn1x
n
2 )

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

−xn1xn2 (xm−n2 − (ζ−lx1)m−n)

ζ l(x2 − ζ−lx1)
(Rewriting)

= xn−1
1 xm2 (n− di + di−n)− c0

r−1∑
l=0

−xn1xn2ζ−l
m−n−1∑
k=0

xm−n−1−k
2 xk1ζ

−lk (?)

= xn−1
1 xm2 (n− di + di−n) + c0

r−1∑
l=0

m−n−1∑
k=0

ζ−l(k+1)xn+k
1 xm−1−k

2 (Rewriting)

= xn−1
1 xm2 (n− di + di−n) + c0

m−n−1∑
k=0

xn+k
1 xm−1−k

2

r−1∑
l=0

ζ−l(k+1) (Rewriting)

= xn−1
1 xm2 (n− di + di−n) + c0r

[m−n
r

]∑
k=1

xn+kr−1
1 xm−kr2 (??)

This proves the action of y1. For the action of y2 we use the relation of (2.6.1) applied

to our case:

y2x
n
1x

m
2 = xn1x

m−1
2

(
m−

r−1∑
j=0

dj
r

r−1∑
l=0

ζ−lj(1− ζ−lm)ζ il

)
− c0

r−1∑
l=0

xn1x
m
2 −

(
0 ζ−l

ζ l 0

)
· xn1xm2

x2 − ζ lx1

= xn1x
m−1
2

(
m−

r−1∑
j=0

dj
r

r−1∑
l=0

ζ l(i−j) − ζ l(i−j−m)

)
− c0

r−1∑
l=0

xn1x
m
2 − ζ l(m−n)xm1 x

n
2

x2 − ζ lx1

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

xn1x
m
2 − ζ l(m−n)xm1 x

n
2

x2 − ζ lx1

.

In this case the arguments are essentially the same as before. We separate in two cases,

when n ≥ m and when n < m.

(a) n ≥ m
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= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

xm1 x
m
2 (xn−m1 − ζ l(m−n)xn−m2 )

x2 − ζ lx1

(factor xm1 x
m
2 )

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

xm1 x
m
2 (xn−m1 − (ζ−lx2)n−m)

−ζ l(x1 − ζ−lx2)
(Rewriting)

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

−ζ−lxm1 xm2
n−m−1∑
k=0

xn−m−1−k
1 ζ−lkxk2 (?)

= xn1x
m−1
2 (m− di + di−m) + c0

r−1∑
l=0

n−m−1∑
k=0

xn−1−k
1 ζ−l(k+1)xm+k

2 (Rewriting)

= xn1x
m−1
2 (m− di + di−m) + c0

n−m−1∑
k=0

xn−1−k
1 xm+k

2

r−1∑
l=0

ζ−l(k+1) (Rewriting)

= xn1x
m−1
2 (m− di + di−m) + c0r

[n−m
r

]∑
k=1

xn−kr1 xm+kr−1
2 (??)

(b) n < m

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

xn1x
n
2 (xm−n2 − ζ l(m−n)xm−n1 )

x2 − ζ lx1

(Factor xn1x
n
2 )

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

xn1x
n
2 (xm−n2 − (ζ lx1)m−n)

x2 − ζ lx1

(Rewriting)

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

xn1x
n
2

m−n−1∑
k=0

xm−n−1−k
2 xk1ζ

lk (?)

= xn1x
m−1
2 (m− di + di−m)− c0

r−1∑
l=0

m−n−1∑
k=0

xk+n
1 xm−1−k

2 ζ lk (Rewriting)

= xn1x
m−1
2 (m− di + di−m)− c0

m−n−1∑
k=0

xk+n
1 xm−1−k

2

r−1∑
l=0

ζ lk (Rewriting)

= xn1x
m−1
2 (m− di + di−m)− c0r

[m−n−1
r

]∑
k=0

xkr+n1 xm−kr−1
2 (??)

= xn1x
m−1
2 (m− di + di−m − c0r)− c0r

[m−n−1
r

]∑
k=1

xkr+n1 xm−kr−1
2 (Rewriting)

With this we finished the proof of the action of y1 and y2 when λ = λi.

2.6.1.2 Case 2: λ = λi.

Proposition 2.6.3. The action of y1 and y2 in a generic xn1x
m
2 ⊗ vT is given by:
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(a) y1 · xn1xm2 ⊗ vT =

(n− di + di−n + c0r)x
n−1
1 xm2 + c0r

[n−m−1
r ]∑

k=1

xn−kr−1
1 xm+kr

2

⊗ vT if n > m

(n− di + di−n)xn−1
1 xm2 − c0r

[m−nr ]∑
k=1

xn+kr−1
1 xm−kr2

⊗ vT if n ≤ m

(b) y2 · xn1xm2 ⊗ vT =

(m− di + di−m)xn1x
m−1
2 − c0r

[n−mr ]∑
k=1

xn−kr1 xm+kr−1
2

⊗ vT if n ≥ m

(m− di + di−m + c0r)x
n
1x

m−1
2 + c0r

[m−n−1
r ]∑

k=1

xn+kr
1 xm−kr−1

2

⊗ vT if n < m

The brackets over the sum ([∗]) mean the entire part.

Proof. In λi the group element

(
0 ζ l

ζ−l 0

)
acts by −vT in Sλ instead of vT . If we change

c0 into −c0 the proof follows in the same way.

2.6.1.3 Case 3: λ = λi,j.

In our third case we have two generators of Sλ called vT1 and vT2 .

Proposition 2.6.4. When λ =
(
∅, ..., , ..., , ...,∅

)
and the boxes are in position i and

j, the action of y1 and y2 in a generic xn1x
m
2 ⊗ vT1 or a generic xn1x

m
2 ⊗ vT2 is given by:

(a) y1 · xn1xm2 ⊗ vT1 =



(n− di + di−n)xn−1
1 xm2 ⊗ vT1 − rc0

[n−m−1+j−i
r ]∑

k=1

xn−kr+j−i−1
1 xm+rk−j+i

2 ⊗ vT2 if n > m

(n− di + di−n)xn−1
1 xm2 ⊗ vT1 + rc0

[m−n−j+ir ]∑
k=0

xn+kr+j−i−1
1 xm−rk−j+i2 ⊗ vT2 if n < m

(n− di + di−n)xn−1
1 xn2 ⊗ vT1 if n = m
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(b) y1 · xn1xm2 ⊗ vT2 =

(n− dj + dj−n)xn−1
1 xm2 ⊗ vT2 − rc0

[n−m−1−j+i
r ]∑

k=0

xn−kr−j+i−1
1 xm+rk+j−i

2 ⊗ vT1 if n > m

(n− dj + dj−n)xn−1
1 xm2 ⊗ vT2 + rc0

[m−n+j−ir ]∑
k=1

xn+kr−j+i−1
1 xm−rk+j−i

2 ⊗ vT1 if n < m

(n− dj + dj−n)xn−1
1 xn2 ⊗ vT2 if n = m

(c) y2 · xn1xm2 ⊗ vT1 =

(m− dj + dj−m)xn1x
m−1
2 ⊗ vT1 + rc0

[n−m−i+jr ]∑
k=1

xn−kr−i+j1 xm+rk+i−j−1
2 ⊗ vT2 if n > m

(m− dj + dj−m)xn1x
m−1
2 ⊗ vT1 − rc0

[m−n+i−j−1
r ]∑

k=0

xn+kr−i+j
1 xm−rk+i−j−1

2 ⊗ vT2 if n < m

(n− dj + dj−n)xn−1
1 xn2 ⊗ vT1 if n = m

(d) y2 · xn1xm2 ⊗ vT2 =

(m− di + di−m)xn1x
m−1
2 ⊗ vT2 + rc0

[n−m+i−j
r ]∑

k=0

xn−kr+i−j1 xm+rk−i+j−1
2 ⊗ vT1 if n > m

(m− di + di−m)xn1x
m−1
2 ⊗ vT2 − rc0

[m−n+j−i−1
r ]∑

k=1

xn+kr+i−j
1 xm−rk−i+j−1

2 ⊗ vT1 if n < m

(n− di + di−n)xn−1
1 xn2 ⊗ vT2 if n = m

The brackets over the sum ([∗]) mean the entire part.

Proof. We prove the relation y1 ·xn1xm2 ⊗ vT1 . In this case, if we use the action in Sλ we have

that

y1 · xn1xm2 ⊗ vT1

= xn−1
1 xm2

(
n−

r−1∑
s=0

ds
r

r−1∑
l=0

ζ−ls(1− ζ−ln)ζ il

)
⊗ vT1 − c0

r−1∑
l=0

xn1x
m
2 − ζ(n−m)lxm1 x

n
2

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

= xn−1
1 xm2

(
n−

r−1∑
s=0

ds
r

r−1∑
l=0

ζ(i−s)l − ζ(i−s−n)l

)
⊗ vT1 − c0

r−1∑
l=0

xn1x
m
2 − ζ(n−m)lxm1 x

n
2

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xn1x
m
2 − ζ(n−m)lxm1 x

n
2

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

.

We have 3 cases.
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(a) (n > m)

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xn1x
m
2 − ζ(n−m)lxm1 x

n
2

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xm1 x
m
2 (xn−m1 − (ζ lx2)n−m)

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xm1 x
m
2

n−m−1∑
k=0

xn−m−1−k
1 ζ lkxk2ζ

(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

n−m−1∑
k=0

xn−1−k
1 xm+k

2 ζ(k+j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

n−m−1∑
k=0

xn−1−k
1 xm+k

2

r−1∑
l=0

ζ(k+j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − rc0

[n−m−1+j−i
r ]∑

k=1

xn−1−kr−i+j
1 xm+kr+i−j

2 ⊗ vT2

(b) (n < m)

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xn1x
m
2 − ζ(n−m)lxm1 x

n
2

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xn1x
n
2 (xm−n2 − (ζ−lx1)m−n)

−ζ l(x2 − ζ−lx1)
ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 + c0

r−1∑
l=0

xn1x
n
2

m−n−1∑
k=0

ζ−lxk1ζ
−lkxm−n−1−k

2 ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 + c0

r−1∑
l=0

m−n−1∑
k=0

xn+k
1 xm−k−1

2 ζ(j−i−k−1)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 + c0

m−n−1∑
k=0

xn+k
1 xm−k−1

2

r−1∑
l=0

ζ(j−i−k−1)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 + rc0

[m−n−j+ir ]∑
k=0

xn+kr+j−i−1
1 xm−kr−j+i2 ⊗ vT2

(c) (n = m)

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1 − c0

r−1∑
l=0

xn1x
m
2 − ζ(n−m)lxm1 x

n
2

x1 − ζ lx2

ζ(j−i)l ⊗ vT2

= (n− di + di−n)xn−1
1 xm2 ⊗ vT1

We now need to prove the relation y1·xn1xm2 ⊗vT2 . Interchanging the roles i↔ j and vT1 ↔ vT2

the relations are the same as before and we can repeat the same proof (interchanging i↔ j

and vT1 ↔ vT2 in each step of the proof). For the case y2 ·xn1xm2 ⊗vT1 we interchange x1 ↔ x2

and i↔ j (note that with this change the case n > m now is the case n < m). With these
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interchanges the proof follows in the same way as before. For y2 · xn1xm2 ⊗ vT2 we interchange

i↔ j, x1 ↔ x2 and n↔ m. With these interchanges the same proof works. (They are little

differences in the starting point of the sums. In some cases it is one and in others cases it

is zero. This is because we assumed that i < j and this implies that i − j < 0 and that

j − i > 0. This makes the difference in the step where we use the entire part).
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Chapter 3

Morphisms between standard modules

3.1 Singular polynomials

In this section we want to describe some polynomials that we call ”singular polynomials”.

This polynomials are annihilated by the action of y1 and y2. They are fundamental to

describe the morphisms between two standard modules. We consider the three cases of

standard modules.

3.1.1 Case 1: λ = λi.

Proposition 3.1.1. The following are singular polynomials in ∆(λi):

(a) (xr1 − xr2)k ⊗ vt when c0 = k
2

for positive odd k.

(b) xn1x
n
2 ⊗ vt when n− di + di−n = 0.

(c) For kr < n < (k + 1)r , αl =

(
k

l

)
and βl =

c0(c0 − 1)...(c0 − l)
(c0 − k)(c0 − (k − 1))...(c0 − (k − l))

p(x1, x2) = xn1 +

[ k2 ]∑
l=0

αlβlx
n−(k−l)r
1 x

(k−l)r
2 +

[ k−1
2 ]∑
l=1

αlβl−1x
n−lr
1 xlr2

when n−di+di−n− c0r = 0 (if c0 = m is an integer that indeterminates some βl, then

the polynomial is (c0 −m)p(x1, x2)).

Proof. We prove that these three polynomials are annihilated by y1 and y2. We start with

case (b), then case (a) and we finish with case (c).

Case b). Using the formulas and the fact that n− di + di−n = 0 we have that:

y1 · xn1xn2 = (n− di + di−n)xn−1
1 xn2 = 0

y2 · xn1xn2 = (n− di + di−n)xn1x
n−1
2 = 0
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Case a) As we now (xr1 − xr2)k =
k∑
l=0

(
k

l

)
(−1)lx

r(k−l)
1 xrl2

=

(
k

0

)
xkr1 −

(
k

1

)
x

(k−1)r
1 xr2 +

(
k

2

)
x

(k−2)r
1 x2r

2 − . . .+
(

k

k − 1

)
xr1x

(k−1)r
2 −

(
k

k

)
xkr2 .

We apply y1 to this element. For this we will construct its matrix respecting to the monomial

bases. We will record this in a form of a table. We construct a table with k + 1 rows and k

columns. Each row is indexed by (k − i)r for i = 0, 1, ..., k, and each column is indexed by

(k − i)r − 1 for i = 0, 1, ..., k − 1. If k = 7 we have the following table:

k = 7 7r − 1 6r − 1 5r − 1 4r − 1 3r − 1 2r − 1 r − 1

7r

6r

5r

4r

3r

2r

1r

0r

We fill in the first k+1
2

rows of the table in the following way: The first row has kr
2

in the first

position and −kr
2

in the other positions. The second row has 0 in the first and last positions,
(k−2)r

2
in the second position and −kr

2
in the other positions. The third row has 0 in the

positions 1, 2, k − 1 and k, (k−4)r
2

in the third and −kr
2

positions. We continue in the same

way. The k+1
2

row has r
2

in the center position and 0 in the other positions. If we fill in our

example we obtain:
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k = 7 7r − 1 6r − 1 5r − 1 4r − 1 3r − 1 2r − 1 r − 1

7r 7r
2

−7r
2

−7r
2

−7r
2

−7r
2

−7r
2

−7r
2

6r 0 5r
2

−7r
2

−7r
2

−7r
2

−7r
2

0

5r 0 0 3r
2

−7r
2

−7r
2

0 0

4r 0 0 0 r
2

0 0 0

3r

2r

r

0

Now we fill in the last k+1
2

rows. For this we start with the last row putting kr
2

in each

position. The k row has 0 in the first position, r in the last position and kr
2

in the other

positions. The k − 1 row has 0 in positions 1, 2 and k, 2r in position k − 1 and kr
2

in the

other positions. The k − 2 row has 0 in positions 1, 2, 3, k, k − 1. In position k − 2 we have

3r and kr
2

in the other positions. We continue in the same way. At the end, the row k+1
2

+ 1

has kr
2

in the center position, k−1
2
r next to the center position (at the right) and 0 in other

positions. If we fill in our example we have:

k = 7 7r − 1 6r − 1 5r − 1 4r − 1 3r − 1 2r − 1 r − 1

7r 7r
2

−7r
2

−7r
2

−7r
2

−7r
2

−7r
2

−7r
2

6r 0 5r
2

−7r
2

−7r
2

−7r
2

−7r
2

0

5r 0 0 3r
2

−7r
2

−7r
2

0 0

4r 0 0 0 r
2

0 0 0

3r 0 0 0 7r
2

3r 0 0

2r 0 0 7r
2

7r
2

7r
2

2r 0

r 0 7r
2

7r
2

7r
2

7r
2

7r
2

r

0 7r
2

7r
2

7r
2

7r
2

7r
2

7r
2

7r
2

These tables correspond to the matrices of y1 acting in the monomials of the form

x
(k−i)r
1 xir2 for i = 0, 1, ..., k. The index of the rows of the table represents the exponent

of x1 in the monomial of degree kr. The kr represents the monomial xkr1 . (k−1)r represents

x
(k−1)r
1 xr2 and so on. The index of the columns represents the exponent of x1 in the monomial

of degree kr− 1. The kr− 1 represents xkr−1
1 . (k− 1)r− 1 represents x

(k−1)r−1
1 xr2 and so on.
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The entries of the table are the coefficients of the action of y1 in the monomials indexed by

the rows. If we want to interpret our k = 7 table we have that:

y1 ·x7r
1 =

7r

2
x7r−1

1 −7r

2
x6r−1

1 xr2−
7r

2
x5r−1

1 x2r
2 −

7r

2
x4r−1

1 x3r
2 −

7r

2
x3r−1

1 x4r
2 −

7r

2
x2r−1

1 x5r
2 −

7r

2
xr−1

1 x6r
2

y1 · x6r
1 x

r
2 =

5r

2
x6r−1

1 xr2−
7r

2
x5r−1

1 x2r
2 −

7r

2
x4r−1

1 x3r
2 −

7r

2
x3r−1

1 x4r
2 −

7r

2
x2r−1

1 x5r
2

y1 · x5r
1 x

2r
2 =

3r

2
x5r−1

1 x2r
2 −

7r

2
x4r−1

1 x3r
2 −

7r

2
x3r−1

1 x4r
2

y1 · x4r
1 x

3r
2 =

r

2
x4r−1

1 x3r
2

y1 · x3r
1 x

4r
2 =

7r

2
x4r−1

1 x3r
2 + 3rx3r−1

1 x4r
2

y1 · x2r
1 x

5r
2 =

7r

2
x5r−1

1 x2r
2 +

7r

2
x4r−1

1 x3r
2 +

7r

2
x3r−1

1 x4r
2 + 2rx2r−1

1 x5r
2

y1 · xr1x6r
2 =

7r

2
x6r−1

1 xr2 +
7r

2
x5r−1

1 x2r
2 +

7r

2
x4r−1

1 x3r
2 +−7r

2
x3r−1

1 x4r
2 +

7r

2
x2r−1

1 x5r
2 + rxr−1

1 x6r
2

y1·x7r
2 =

7r

2
x7r−1

1 +
7r

2
x6r−1

1 xr2+
7r

2
x5r−1

1 x2r
2 +

7r

2
x4r−1

1 x3r
2 +

7r

2
x3r−1

1 x4r
2 +

7r

2
x2r−1

1 x5r
2 +

7r

2
xr−1

1 x6r
2

The purpose of this table is the following: If we want the action of y1 on (xr1 − xr2)k

we need the action on each of the monomials that appear in the expansion. These are the

monomials that index our rows. If we multiply each row by the corresponding factor of the

expansion of (xr1 − xr2)k we get a new table that we use to prove that y1 · (xr1 − xr2)k = 0. In

our example we get the table:

k = 7 7r − 1 6r − 1 5r − 1 4r − 1 3r − 1 2r − 1 r − 1

7r 7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

)
6r 0 −5r

2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
0

5r 0 0 3r
2

(
k
2

) −7r
2

(
k
2

) −7r
2

(
k
2

)
0 0

4r 0 0 0 − r
2

(
k
3

)
0 0 0

3r 0 0 0 7r
2

(
k
3

)
3r
(
k
3

)
0 0

2r 0 0 −7r
2

(
k
2

)
−7r

2

(
k
2

)
−7r

2

(
k
2

)
−2r

(
k
2

)
0

r 0 7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
r
(
k
1

)
0 −7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
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If we want to prove that y1 · (xr1−xr2)k = 0 we need to prove that the coefficients on each

column add up zero. We prove this column by column. We reorder the columns of the table

for a better visualization. First we put the first column, then we put the last column, then

the second column, then the k − 1 column and so on. In our example we get the following

table:

k = 7 7r − 1 r − 1 6r − 1 2r − 1 5r − 1 3r − 1 4r − 1

7r 7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

) −7r
2

(
k
0

)
6r 0 0 −5r

2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
5r 0 0 0 0 3r

2

(
k
2

) −7r
2

(
k
2

) −7r
2

(
k
2

)
4r 0 0 0 0 0 0 − r

2

(
k
3

)
3r 0 0 0 0 0 3r

(
k
3

)
7r
2

(
k
3

)
2r 0 0 0 −2r

(
k
2

)
−7r

2

(
k
2

)
−7r

2

(
k
2

)
−7r

2

(
k
2

)
r 0 r

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
7r
2

(
k
1

)
0 −7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
−7r

2

(
k
0

)
The first column adds up zero. In this new table the sums of the nth column and (n+1)th

column for even n, are equal. The reason is that in the n-column we have (−1)
n
2

+1nr

2

(
k
n
2

)
and in the (n+ 1)-column we have (−1)

n
2

(k − n)r

2

(
k
n
2

)
and (−1)

n
2

+1kr

2

(
k
n
2

)
. If we sum up

the coefficients of the (n+ 1)-column we have

(−1)
n
2
−nr

2

(
k
n
2

)
= (−1)

n
2

+1nr

2

(
k
n
2

)
.

It follows that we only need to prove that the sum of the coefficients of the even columns is

0. The sum of the even columns is equal to

n−1∑
s=0

(−1)s+1

(
k

s

)
kr + (−1)n−1

(
k

n

)
nr.

In this case n ∈ N and the sum corresponds to the 2n column. We prove by induction over

n that:
n−1∑
s=0

(−1)s+1

(
k

s

)
kr + (−1)n−1

(
k

n

)
nr = 0.
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For n = 1 we have −kr + kr = 0. Now for n+ 1 we have:

n∑
s=0

(−1)s+1

(
k

s

)
kr + (−1)n

(
k

n+ 1

)
(n+ 1)r

=
n−1∑
s=0

(−1)s+1

(
k

s

)
kr + (−1)n+1

(
k

n

)
kr + (−1)n

(
k

n+ 1

)
(n+ 1)r

=
���

���
���

�n−1∑
s=0

(−1)s+1

(
k

s

)
kr +

��
���

���
�

(−1)n−1

(
k

n

)
nr − (−1)n−1

(
k

n

)
nr

+(−1)n+1

(
k

n

)
kr + (−1)n

(
k

n+ 1

)
(n+ 1)r

= (−1)n
(
k

n

)
nr + (−1)n+1

(
k

n

)
kr + (−1)n

(
k

n+ 1

)
(n+ 1)r

= (−1)n
(
k

n

)
nr + (−1)n+1

(
k

n

)
kr + (−1)n

(
k

n

)
(k − n)r

= 0.

We have used the induction hypothesis in the second equality.

We have proven that the sum of the elements in each column is zero. This means that

y1 ·(xr1−xr2)k = 0. Now we need to do the same for y2. For y2 the tables are exactly the same,

but now the interpretation of the index of rows and columns correspond to the exponent of

x2 in the corresponding monomials. We can conclude that (xr1 − xr2)k is annihilated by y1

and y2. We have finished the case a).

Case c) We construct tables in a similar way than case a). First we assume that k is

odd. We construct a table with k + 1 rows and k + 1 columns. The rows are indexed by(
n, n− r, n− 2r, n− 3r, ..., n− k − 1

2
r, n− k + 1

2
r, ..., n− kr

)
and the columns are indexed by

(n− r − 1, n− 2r − 1, ..., n− kr − 1).

As an example we construct the table for k = 5.

k = 5 n− r − 1 n− 2r − 1 n− 3r − 1 n− 4r − 1 n− 5r − 1

n

n− r

n− 2r

n− 3r

n− 4r

n− 5r
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The first row is filled in by −c0r in each entry. The second row is filled in by −r in the first

entry, 0 in the last entry and −c0r in the other entries. The third row is filled in by 0 in the

first and in the two last entries, −2r in the second entry and −c0r in the other entries. We

continue until the row indexed by n− k−1
2
r is filled in by −c0r in the center position, −k−1

2
r

at the left side of the center and 0 in the other positions. In our example we can fill in the

first 3 rows and we have:

k = 5 n− r − 1 n− 2r − 1 n− 3r − 1 n− 4r − 1 n− 5r − 1

n −c0r −c0r −c0r −c0r −c0r

n− r −r −c0r −c0r −c0r 0

n− 2r 0 −2r −c0r 0 0

n− 3r

n− 4r

n− 5r

We need to fill our last rows. First our last row, which is filled in by (c0 − k)r in the

last position and c0r in the other positions. The second from the bottom to the top is filled

in by 0 in the first and in the last position, (c0 − (k − 1))r in the second from right to left

and c0r in the other positions. We continue until the row indexed by n− k+1
2
r is filled in by(

c0 − k+1
2

)
r in the center position and 0 in the other positions. In our example we get:

k = 5 n− r − 1 n− 2r − 1 n− 3r − 1 n− 4r − 1 n− 5r − 1

n −c0r −c0r −c0r −c0r −c0r

n− r −r −c0r −c0r −c0r 0

n− 2r 0 −2r −c0r 0 0

n− 3r 0 0 (c0 − 3)r 0 0

n− 4r 0 c0r c0r (c0 − 4)r 0

n− 5r c0r c0r c0r c0r (c0 − 5)r

We interpret this tables in the same way as in case a). The numbers indexing the rows are

precisely the exponents of the x1 in the monomials of p(x1, x2). We need to consider in our

table the coefficients of each monomial of p(x1, x2). For this we multiply the last row by

α0β0. The next row, from the bottom to the top, we multiplied it by α1β1. We continue

until the n − k+1
2
r row, which is multiplied by αn−1

2
βn−1

2
. The first row stays equal. From

the second row to the
(
n− k−1

r

)
row we multiply each entry by α1β0, α2β1,..., α k−1

2
β k−3

2
. In

our example we have the table:
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k = 5 n− r − 1 n− 2r − 1 n− 3r − 1 n− 4r − 1 n− 5r − 1

n −c0r −c0r −c0r −c0r −c0r

n− r −rα1β0 −c0rα1β0 −c0rα1β0 −c0rα1β0 0

n− 2r 0 −2rα2β1 −c0rα2β1 0 0

n− 3r 0 0 (c0 − 3)rα2β2 0 0

n− 4r 0 c0rα1β1 c0rα1β1 (c0 − 4)rα1β1 0

n− 5r c0rα0β0 c0rα0β0 c0rα0β0 c0rα0β0 (c0 − 5)rα0β0

We need to prove that in this table the columns add up 0. First we reordered the columns

to have a better visualization. We start with the last column then the first column and we

continue so on. We delete the r in each entry because it appears in each factor. In our

example we have:

k = 5 n− 5r − 1 n− r − 1 n− 4r − 1 n− 2r − 1 n− 3r − 1

n −c0 −c0 −c0 −c0 −c0

n− r 0 −α1β0 −c0α1β0 −c0α1β0 −c0α1β0

n− 2r 0 0 0 −2α2β1 −c0α2β1

n− 3r 0 0 0 0 (c0 − 3)α2β2

n− 4r 0 0 (c0 − 4)α1β1 c0α1β1 c0α1β1

n− 5r (c0 − 5)α0β0 c0α0β0 c0α0β0 c0α0β0 c0α0β0

First we prove that, if the i column adds up zero, then the k − i + 1 column will add up

zero. For this, these two columns involved only differ in the factors of the middle. In the i

column we have (c0− (k− l))αlβl and in the i+ 1 column we have −(l+ 1)αl+1βl and c0αlβl.

We only need to prove that

(c0 − (k − l))αlβl = c0αlβl − (l + 1)αl+1βl.

This is true, if

(k − l)αl = (l + 1)αl+1,

which is true, if we use the definition of αl. Now we prove that the odd columns add up 0.

Note that the sum of coefficient of the odd columns is:

−c0 −
n∑
l=1

c0αlβl−1 +
n∑
l=1

c0αl−1βl−1 + (c0 − (k − n))αnβn
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(here n correspond to the 2n + 1 column). Rewriting this, we need to prove that for n =

0, 1, 2, ...

−c0

(
1 +

n∑
l=1

(αl − αl−1)βl−1

)
+ (c0 − (k − n))αnβn = 0.

We proceed by induction. For n = 0 we have −c0 + (c0 − k)α0β0 and using the definition of

α0 and β0 we get

−c0 + (c0 − k)
c0

c0 − k
= 0.

Now assuming it works for n we need to prove that

−c0

(
1 +

n+1∑
l=1

(αl − αl−1)βl−1

)
+ (c0 − (k − (n+ 1)))αn+1βn+1 = 0.

We have:

−c0

(
1 +

n+1∑
l=1

(αl − αl−1)βl−1

)
+ (c0 − (k − (n+ 1)))αn+1βn+1

= −c0

(
1 +

n∑
l=1

(αl − αl−1)βl−1 + (αn+1 − αn)βn

)
+ (c0 − (k − (n+ 1)))αn+1βn+1

=

���
���

���
���

���
�

−c0

(
1 +

n∑
l=1

(αl − αl−1)βl−1

)
+
((((

((((
((

(c0 − (k − n))αnβn

−(c0 − (k − n))αnβn − c0(αn+1 − αn)βn + (c0 − (k − (n+ 1)))αn+1βn+1

= −c0αnβn + (k − n)αnβn − c0

(
k − n
n+ 1

αn − αn
)
βn + (c0 − k + n+ 1)

k − n
n+ 1

αn
c0 − n− 1

c0 − k + n+ 1
βn

= −c0αnβn + (k − n)αnβn − c0

(
k − n
n+ 1

αn − αn
)
βn

+
k − n
n+ 1

αn(c0 − n− 1)βn

=

(
−c0 + k − n− c0

k − n
n+ 1

+ c0 +
(k − n)(c0 − n− 1)

n+ 1

)
αnβn

=
(k − n)(n+ 1)− c0(k − n) + (k − n)(c0 − n− 1)

n+ 1
αnβn

= 0.
We have used the induction hypothesis and considered

αn+1 =
k − n
n+ 1

αn and βn+1 =
c0 − n− 1

c0 − k + n+ 1
βn.

We have finished the case when k is odd. Now we assume that k is even. This case is almost

the same. Now our starter table is filled in by −c0r in the first row. The second row is filled

in by −r in the first position, 0 in the last position and −c0r in the other positions. The

third row is filled in by 0 in the first and the two last positions, −2r in the second position

and −c0r in the other positions. We continue until the k
2

+ 1 row, which is filled in by −k
2
r

in the k
2

position and 0 in the other positions. The remaining rows are filled in the same
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way as before. The row indexed by n−
(
k
2

+ 1
)
r has c0r and

(
c0 −

(
k

2
+ 1

))
r in the two

center positions. We can see the table for k = 6.

k = 6 n− r − 1 n− 2r − 1 n− 3r − 1 n− 4r − 1 n− 5r − 1 n− 6r − 1

n −c0r −c0r −c0r −c0r −c0r −c0r

n− r −r −c0r −c0r −c0r −c0r 0

n− 2r 0 −2r −c0r −c0r 0 0

n− 3r 0 0 −3r 0 0 0

n− 4r 0 0 c0r (c0 − 4)r 0 0

n− 5r 0 c0r c0r c0r (c0 − 5)r 0

n− 6r c0r c0r c0r c0r c0r (c0 − 6)r

We need to add the coefficient of p(x1, x2) to our table. The first row stays the same. Starting

by the second row, until the row indexed by n−
(
k
2
− 1
)
r, we multiply each entry by α1β0

, α2β1 , ... , α k
2
−1β k

2
. The other rows are multiplied by α0β0, α1β1, α2β2,...,α k

2
β k

2
from the

bottom to the top. In our example we have:

k = 6 n− r − 1 n− 2r − 1 n− 3r − 1 n− 4r − 1 n− 5r − 1 n− 6r − 1

n −c0r −c0r −c0r −c0r −c0r −c0r

n− r −rα1β0 −c0rα1β0 −c0rα1β0 −c0rα1β0 −c0rα1β0 0

n− 2r 0 −2rα2β1 −c0rα2β1 −c0rα2β1 0 0

n− 3r 0 0 −3rα3β3 0 0 0

n− 4r 0 0 c0rα2β2 (c0 − 4)rα2β2 0 0

n− 5r 0 c0rα1β1 c0α1β1 c0rα1β1 (c0 − 5)rα1β1 0

n− 6r c0rα0β0 c0rα0β0 c0rα0β0 c0rα0β0 c0rα0β0 (c0 − 6)rα0β0

Reordering the table to have a better visualization and deleting r in each factor, we get the

following table:
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k = 6 n− 6r − 1 n− r − 1 n− 5r − 1 n− 2r − 1 n− 4r − 1 n− 3r − 1

n −c0 −c0 −c0 −c0 −c0 −c0

n− r 0 −α1β0 −c0α1β0 −c0α1β0 −c0α1β0 −c0α1β0

n− 2r 0 0 0 −2α2β1 −c0α2β1 −c0α2β1

n− 3r 0 0 0 0 0 −3α3β3

n− 4r 0 0 0 0 (c0 − 4)α2β2 c0α2β2

n− 5r 0 0 (c0 − 5)α1β1 c0α1β1 c0α1β1 c0α1β1

n− 6r (c0 − 6)α0β0 c0α0β0 c0α0β0 c0α0β0 c0α0β0 c0α0β0

To finish the proof we need to prove that the columns of the last table add up 0. This table

has the same structure as the table for the odd value of k so the same proof works in this

case.

In addition, if c0 = m and c0 −m indeterminate some βl then the polynomial that we

are looking for is (c0−m)p(x1, x2). This new polynomial works, because the factor (c0−m)

appears almost in degree one in the denominator of some coefficients. Now we need to prove

that y2 also annihilates the polynomial, but as in the case a) the system involved is the

same.

Example 3.1.2. Suppose that we have the following data:

• r = 4

• d0 = −10

• d1 = 1

• d2 = 0

• d3 = 9

• c0 =
1

2

Then you have that

13− d1 + d1−13 − c0r = 13− 1− 10− 2 = 0.

This is a condition of case c) when λ = λ1. k = 3 because

3 · 4 < 13 ≤ 4 · 4.

The corresponding polynomial is

p(x1, x2) = x13
1 + a0b0x1x

12
2 + a1b1x

5
1x

8
2 + a1b0x

9
1x

4
2.
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We calculate now a0, a1, b0, b1.

a0 =

(
3

0

)
= 1 b0 =

c0

c0 − 3
= −1

5

a1 =

(
3

1

)
= 3 b1 =

c0(c0 − 1)

(c0 − 3)(c0 − 2)
= − 1

15

This implies that the polynomial is:

p(x1, x2) = x13
1 −

1

5
x1x

12
2 −

1

5
x5

1x
8
2 −

3

5
x9

1x
4
2.

This polynomial is annihilated by y1 and y2 in ∆(λ1). We can find more conditions and

therefore more polynomials. In these values of the parameters the other singular polynomials

are:
x4

1 − x4
2 annihilated in ∆(λi) for all i = 0, 1, 2, 3

x10
1 x

10
2 annihilated in ∆(λ2)

x11
1 x

11
2 annihilated in ∆(λ1)

x19
1 x

19
2 annihilated in ∆(λ3)

x9
1x

9
2 annihilated in ∆(λ3)

x10
1 − 1

3
x2

1x
8
2 − 2

3
x6

1x
4
2 annihilated in ∆(λ3)

x3
1 annihilated in ∆(λ1)

x1 annihilated in ∆(λ2)

3.1.2 Case 2: λ = λi.

Proposition 3.1.3. The following are singular polynomials in ∆(λi):

(a) (xr1 − xr2)k ⊗ vt when c0 = −k
2

for positive odd k.

(b) xn1x
n
2 ⊗ vt when n− di + di−n = 0

(c) For kr < n < (k + 1)r , αl =

(
k

l

)
and βl =

c0(c0 + 1)...(c0 + l)

(c0 + k)(c0 + (k − 1))...(c0 + (k − l))

p(x1, x2) = xn1 +

[ k2 ]∑
l=0

αlβlx
n−(k−l)r
1 x

(k−l)r
2 +

[ k−1
2 ]∑
l=1

αlβl−1x
n−lr
1 xlr2

when n − di + di−n + c0r = 0 (if c0 = −m is an integer that indeterminates some βl,

then the polynomial is (c0 +m)p(x1, x2)).
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Proof. The proof in this case is similar as in the λi case. We only need to change c0 into

−c0.

Example 3.1.4. Suppose that we have the following data:

• r = 4

• d0 = 2

• d1 = −2

• d2 = 0

• d3 = 0

• c0 = −3

We have the condition

14− d3 + d3−14 + 4 · (−3) = 14− 0− 2− 12 = 0.

This is a condition of case c) in ∆(λ3). k = 3 because

3 · 4 < 14 ≤ 4 · 4.

The polynomial is (in first instance):

p(x1, x2) = x14
1 + a0b0x

2
1x

12
2 + a1b1x

6
1x

8
2 + a1b0x

10
1 x

4
2.

We calculate a0, a1, b0, b1.

a0 =

(
3

0

)
= 1 b0 =

c0

c0 + 3

a1 =

(
3

1

)
= 3 b1 =

c0(c0 + 1)

(c0 + 3)(c0 + 2)

In this case the denominator is zero for c0 = −3. We multiply the polynomial by (c0 + 3)

and we get:

p(x1, x2) = c0x
2
1x

12
2 + 3

c0(c0 + 1)

c0 + 2
x6

1x
8
2 + 3c0x

10
1 x

4
2.

We can simplify by c0 to have the polynomial:

p(x1, x2) = x2
1x

12
2 + 6x6

1x
8
2 + 3x10

1 x
4
2.

This polynomial is annihilated in ∆(λ3). The other singular polynomials are:

x2
1x

2
2 annihilated in ∆(λ0)

x2
1x

2
2 annihilated in ∆(λ3)

x10
1 + 3x2

1x
8
2 + 6x6

1x
4
2 annihilated in ∆(λ1) and ∆(λ2)

x2
1x

12
2 + 6x6

1x
8
2 + 3x10

1 x
4
2 annihilated in ∆(λ0)
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3.1.3 Case 3: λ = λi,j.

Proposition 3.1.5. The following are singular polynomials in ∆(λi,j) for i < j:

(a) p(x1, x2) =

(
xn1 +

k−1∑
l=1

blx
n−lr
1 xlr2

)
⊗ vT1 +

k∑
l=1

alx
n−lr+j−i
1 xlr−j+i2 ⊗ vT2

Where kr < n+ j − i < (k + 1)r, n− di + di−n = 0 , st = j − i− dj + di − tr, st 6= 0

and al, bl satisfy the system:

1) s1a1 = c0r

2) slal = sk−l+1ak−l+1 for 1 ≤ l <
[
k+1

2

]
3) lbl = (k − l)bk−l for 1 ≤ l <

[
k+1

2

]
4) al = c0r

sl

(
l−1∑
j=1

k − 2j

j
bk−j + 1

)

5) bl = c0
l

(
l−1∑
j=0

(
(k − 2j − 1)r

sk−j

)
aj+1

)

(if st = 0 for some t, then the polynomial is st · p(x1, x2)).

(b) p(x1, x2) =

(
xn2 +

k−1∑
l=1

blx
lr
1 x

n−lr
2

)
⊗ vT1 +

k−1∑
l=0

al+1x
lr+j−i
1 xn−lr−j+i2 ⊗ vT2

Where (k − 1)r < n + i − j < kr, n − dj + dj−n = 0 , st = i − j − di + dj − (t − 1)r

and al, bl satisfy the same system as before. (if st = 0 for some t, then the polynomial

is st · p(x1, x2)).

(c) p(x1, x2) = (xn1 ⊗ vT1 − xn2 ⊗ vT2) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT1 − xrl1 xn−rl2 ⊗ vT2

)
Where n = i− j + (k+ 1)r , n = di− dj + rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 − 1)...(c0 − (l − 1))k(k − 1)...(k − (l − 1)

(c0 − k)(c0 − (k − 1))...(c0 − (k − (l − 1))

2) ak−l =
1

l!

c0(c0 − 1)(c0 − 2)...(c0 − l)k(k − 1)...(k − (l − 1))

(c0 − k)(c0 − (k − 1))...(c0 − (k − l))

3) ak =
c0

c0 − k

If k is an even number we compute a k
2

considering the definition of al instead the

definition of ak−l. If c0 is an integer m such that the denominator of some al is zero,

then the polynomial is (c0 −m) · p(x1, x2).
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(d) p(x1, x2) = (xn1 ⊗ vT1 + xn2 ⊗ vT2) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT1 + xrl1 x

n−rl
2 ⊗ vT2

)
Where n = i− j + (k+ 1)r , n = di− dj − rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 + 1)...(c0 + (l − 1))k(k − 1)...(k − (l − 1)

(c0 + k)(c0 + (k − 1))...(c0 + (k − (l − 1))

2) ak−l =
1

l!

c0(c0 + 1)(c0 + 2)...(c0 + l)k(k − 1)...(k − (l − 1))

(c0 + k)(c0 + (k − 1))...(c0 + (k − l))

3) ak =
c0

c0 + k

If k is an even number we compute a k
2

considering the definition of al instead the

definition of ak−l. If c0 is an integer m such that the denominator of some al is zero,

then the polynomial is (c0 +m) · p(x1, x2).

(e) p(x1, x2) = (xn1 ⊗ vT2 − xn2 ⊗ vT1) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT2 − xrl1 xn−rl2 ⊗ vT1

)
Where n = j − i+ kr , n = dj − di + rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 − 1)...(c0 − (l − 1))k(k − 1)...(k − (l − 1)

(c0 − k)(c0 − (k − 1))...(c0 − (k − (l − 1))

2) ak−l =
1

l!

c0(c0 − 1)(c0 − 2)...(c0 − l)k(k − 1)...(k − (l − 1))

(c0 − k)(c0 − (k − 1))...(c0 − (k − l))

3) ak =
c0

c0 − k
If k is an even number we compute a k

2
considering the definition of al instead the

definition of ak−l. If c0 is an integer m such that the denominator of some al is zero,

then the polynomial is (c0 −m) · p(x1, x2).

(f) p(x1, x2) = (xn1 ⊗ vT2 + xn2 ⊗ vT1) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT2 + xrl1 x

n−rl
2 ⊗ vT1

)
Where n = j − i+ kr , n = dj − di − rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 + 1)...(c0 + (l − 1))k(k − 1)...(k − (l − 1)

(c0 + k)(c0 + (k − 1))...(c0 + (k − (l − 1))

2) ak−l =
1

l!

c0(c0 + 1)(c0 + 2)...(c0 + l)k(k − 1)...(k − (l − 1))

(c0 + k)(c0 + (k − 1))...(c0 + (k − l))

3) ak =
c0

c0 + k

If k is an even number we compute a k
2

considering the definition of al instead the

definition of ak−l. If c0 is an integer m such that the denominator of some al is zero,

then the polynomial is (c0 +m) · p(x1, x2).
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Proof. Case a) We construct a table in a similar way as before. The table that we construct

has 2k rows and 2k−1 columns. As an example we construct a table when k = 4 and k = 5.

Define N = n+ j − i− 1.

k = 4 n− 1− r n− 1− 2r n− 1− 3r N − r N − 2r N − 3r N − 4r

n 0 0 0 −c0r −c0r −c0r −c0r
n− r −r 0 0 0 −c0r −c0r 0
n− 2r 0 −2r 0 0 0 0 0
n− 3r 0 0 −3r 0 c0r c0r 0

n+ j − i− r −c0r −c0r −c0r s1 0 0 0
n+ j − i− 2r 0 −c0r 0 0 s2 0 0
n+ j − i− 3r 0 c0r 0 0 0 s3 0
n+ j − i− 4r c0r c0r c0r 0 0 0 s4

k = 5 n− 1− r n− 1− 2r n− 1− 3r n− 1− 4r N − r N − 2r N − 3r N − 4r N − 5r

n 0 0 0 0 −c0r −c0r −c0r −c0r −c0r
n− r −r 0 0 0 0 −c0r −c0r −c0r 0
n− 2r 0 −2r 0 0 0 0 −c0r 0 0
n− 3r 0 0 −3r 0 0 0 c0r 0 0
n− 4r 0 0 0 −4r 0 c0r c0r c0r 0

n+ j − i− r −c0r −c0r −c0r −c0r s1 0 0 0 0
n+ j − i− 2r 0 −c0r −c0r 0 0 s2 0 0 0
n+ j − i− 3r 0 0 0 0 0 0 s3 0 0
n+ j − i− 4r 0 c0r c0r 0 0 0 0 s4 0
n+ j − i− 5r c0r c0r c0r c0r 0 0 0 0 s5

In these tables the color gray means tensor vT1 and the color white means tensor vT2 . It is

simple to fill in these tables, independent of the value of k. We do not describe this filling in

general, because these examples are illustrative. We multiply each row by the corresponding

factor to get the following tables:

k = 4 n− 1− r n− 1− 2r n− 1− 3r N − r N − 2r N − 3r N − 4r

n 0 0 0 −c0r −c0r −c0r −c0r
n− r −rb1 0 0 0 −c0rb1 −c0rb1 0
n− 2r 0 −2rb2 0 0 0 0 0
n− 3r 0 0 −3rb3 0 c0rb3 c0rb3 0

n+ j − i− r −c0ra1 −c0ra1 −c0ra1 s1a1 0 0 0
n+ j − i− 2r 0 −c0ra2 0 0 s2a2 0 0
n+ j − i− 3r 0 c0ra3 0 0 0 s3a3 0
n+ j − i− 4r c0ra4 c0ra4 c0ra4 0 0 0 s4a4
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k = 5 n− 1− r n− 1− 2r n− 1− 3r n− 1− 4r N − r N − 2r N − 3r N − 4r N − 5r

n 0 0 0 0 −c0r −c0r −c0r −c0r −c0r
n− r −rb1 0 0 0 0 −c0rb1 −c0rb1 −c0rb1 0
n− 2r 0 −2rb2 0 0 0 0 −c0rb2 0 0
n− 3r 0 0 −3rb3 0 0 0 c0rb3 0 0
n− 4r 0 0 0 −4rb4 0 c0rb4 c0rb4 c0rb4 0

n+ j − i− r −c0ra1 −c0ra1 −c0ra1 −c0ra1 s1a1 0 0 0 0
n+ j − i− 2r 0 −c0ra2 −c0ra2 0 0 s2a2 0 0 0
n+ j − i− 3r 0 0 0 0 0 0 s3a3 0 0
n+ j − i− 4r 0 c0ra4 c0ra4 0 0 0 0 s4a4 0
n+ j − i− 5r c0ra5 c0ra5 c0ra5 c0ra5 0 0 0 0 s5a5

The first column of the white part says that

a1s1 = c0r,

which is the first part of the system. Now if we look only at the white part we can see that

the l column and the k − l + 1 column have the same first k entries. In the other entries

we have alsl in the l column and ak−l+1sk−l+1 in the k − l + 1 column. This implies that

alsl = ak−l+1sk−l+1, which is the second part of the system. If we look at the gray part we

can see that the last k − 1 entries are the same in the l column and in the k − l column.

We can also see that the first k − 1 entries of these columns are −lrbl in the l column and

−(k− l)rbk−l in the k− l column. This implies that lbl = (k− l)bk−l ,which is the third part

of the system. For the fourth part of the system we have to look at the white part of the

table. We have:

alsl = c0r +
l−1∑
j=1

c0rbj − c0rbk−j.

If we combine this with lbl = (k − l)bk−l, we get

alsl = c0r +
l−1∑
j=1

c0r
k − j
j

bk−j − c0rbk−j = c0r
l−1∑
j=1

k − 2j

j
bk−j + 1,

which is the fourth part of the system. For the fifth part of the system we have to look at

the gray part of the table to get

lrbl =
l−1∑
j=0

−c0raj+1 + c0rak−j

and we use alsl = ak−l+1sk−l+1 to get

lrbl =
l−1∑
j=0

−c0r
sk−j
sj+1

ak−j + c0rak−j = c0r

l−1∑
j=0

sk−j − sj+1

sk−j
ak−j.

Finally we have sk−s − sj+1 = (k − 2j − 1)r and this completes the last part of the system.

The table for y2 is almost the same. In our cases the corresponding tables are:
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k = 4 n− 1− r n− 1− 2r n− 1− 3r N − r N − 2r N − 3r N − 4r

n 0 0 0 c0r c0r c0r c0r
n− r rb1 0 0 0 c0rb1 c0rb1 0
n− 2r 0 2rb2 0 0 0 0 0
n− 3r 0 0 3rb3 0 −c0rb3 −c0rb3 0

n+ j − i− r c0ra1 c0ra1 c0ra1 −s1a1 0 0 0
n+ j − i− 2r 0 c0ra2 0 0 −s2a2 0 0
n+ j − i− 3r 0 −c0ra3 0 0 0 −s3a3 0
n+ j − i− 4r −c0ra4 −c0ra4 −c0ra4 0 0 0 −s4a4

k = 5 n− 1− r n− 1− 2r n− 1− 3r n− 1− 4r N − r N − 2r N − 3r N − 4r N − 5r

n 0 0 0 0 c0r c0r c0r c0r c0r
n− r rb1 0 0 0 0 c0rb1 c0rb1 c0rb1 0
n− 2r 0 2rb2 0 0 0 0 c0rb2 0 0
n− 3r 0 0 3rb3 0 0 0 −c0rb3 0 0
n− 4r 0 0 0 4rb4 0 −c0rb4 −c0rb4 −c0rb4 0

n+ j − i− r c0ra1 c0ra1 c0ra1 c0ra1 −s1a1 0 0 0 0
n+ j − i− 2r 0 c0ra2 c0ra2 0 0 −s2a2 0 0 0
n+ j − i− 3r 0 0 0 0 0 0 −s3a3 0 0
n+ j − i− 4r 0 −c0ra4 −c0ra4 0 0 0 0 −s4a4 0
n+ j − i− 5r −c0ra5 −c0ra5 −c0ra5 c0ra5 0 0 0 0 −s5a5

These tables correspond to the same system as before.

Case b) If we define N = j − i− 1, the table for y1 and k = 5 is

k = 5 r − 1 2r − 1 3r − 1 4r − 1 N N + r N + 2r N + 3r N + 4r

0 0 0 0 0 c0r c0r c0r c0r c0r
r rb1 0 0 0 0 c0rb1 c0rb1 c0rb1 0
2r 0 2rb2 0 0 0 0 c0rb2 0 0
3r 0 0 3rb3 0 0 0 −c0rb3 0 0
4r 0 0 0 4rb4 0 −c0rb4 −c0rb4 −c0rb4 0

j − i c0ra1 c0ra1 c0ra1 c0ra1 −s1a1 0 0 0 0
j − i+ r 0 c0ra2 c0ra2 0 0 −s2a2 0 0 0
j − i+ 2r 0 0 0 0 0 0 −s3a3 0 0
j − i+ 3r 0 −c0ra4 −c0ra4 0 0 0 0 −s4a4 0
j − i+ 4r −c0ra5 −c0ra5 −c0ra5 c0ra5 0 0 0 0 −s5a5

This table is the same table of y2 in case a). For y2 the same system is involved.

Case c) If we take n = i− j + 5r, we have that k = 4. The table in this case is:
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k = 4 n− 1 n− 1− r n− 1− 2r n− 1− 3r n− 1− 4r r − 1 2r − 1 3r − 1 4r − 1

n c0r 0 0 0 0 −c0r −c0r −c0r −c0r
n− r 0 c0r − r 0 0 0 0 −c0r −c0r 0
n− 2r 0 0 c0r − 2r 0 0 0 0 0 0
n− 3r 0 0 0 c0r − 3r 0 0 c0r c0r 0
n− 4r 0 0 0 0 c0r − 4r c0r c0r c0r c0r

0 c0r c0r c0r c0r c0r 0 0 0 0
r 0 c0r c0r c0r 0 r 0 0 0
2r 0 0 c0r 0 0 0 2r 0 0
3r 0 0 −c0r 0 0 0 0 3r 0
4r 0 −c0r −c0r −c0r 0 0 0 0 4r

It is simple to fill in such a table with a general value of k. The coefficients of the monomials

are al. This coefficients are attached to a row of the first gray part and for the white part

the coefficient is −al. (The first row has coefficient 1 and the first row of the white part has

coefficient −1). We get the following table:

k = 4 n− 1 n− 1− r n− 1− 2r n− 1− 3r n− 1− 4r r − 1 2r − 1 3r − 1 4r − 1

n c0r 0 0 0 0 −c0r −c0r −c0r −c0r
n− r 0 a1(c0r − r) 0 0 0 0 −a1c0r −a1c0r 0
n− 2r 0 0 a2(c0r − 2r) 0 0 0 0 0 0
n− 3r 0 0 0 a3(c0r − 3r) 0 0 a3c0r a3c0r 0
n− 4r 0 0 0 0 a4(c0r − 4r) a4c0r a4c0r a4c0r a4c0r

0 −c0r −c0r −c0r −c0r −c0r 0 0 0 0
r 0 −a1c0r −a1c0r −a1c0r 0 −a1r 0 0 0
2r 0 0 −a2c0r 0 0 0 −a22r 0 0
3r 0 0 a3c0r 0 0 0 0 −a33r 0
4r 0 a4c0r a4c0r a4c0r 0 0 0 0 −a44r

We need to prove that the sum of the coefficients of each column is zero. The first column is

clearly 0. The sums of the other columns of the gray part are exactly the same sums of the

the columns of the white part. This implies that we need to prove that the white columns

add up zero. We want to prove this for a generic table, so we proceed by induction. First

see that the last column says that

−c0r + akc0r − akkr = 0

and this implies that

ak =
c0

c0 − k
.

We need to prove that the formula for al works for l = 1. If we look at the first column of

the white part we have that

−c0r + akc0r − a1r = 0.
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Using the definition of ak we have that

−c0r +
c0

c0 − k
c0r − a1r = 0

and this implies that

a1 =
c0k

c0 − k
.

We look at the penultimate column. This column says that

−c0r − a1c0r + ak−1c0r + akc0r − ak−1(k − 1)r = 0

and if we replace ak and a1 we get

−c0r − c0r
c0k

c0 − k
+ ak−1c0r +

c0

c0 − k
c0r − ak−1(k − 1)r = 0.

This says that

ak−1 =
c0(c0 − 1)k

(c0 − k)(c0 − (k − 1))
.

We assume now that the formulas work for n. The corresponding sum to compute an+1 is

−c0r −
n∑
j=1

c0raj +
n∑
j=0

c0rak−j − an+1(n+ 1)r = 0,

which implies that

an+1(n+ 1)r = −c0r −
n∑
j=1

c0raj +
n∑
j=0

c0rak−j

= −c0r

(
1 +

n∑
j=1

(aj − ak−j)− ak

)

= −c0r

(
1− c0

c0 − k
+

n∑
j=1

aj
2j − k

c0 − (k − j)

)
.

If we prove that

−c0

n∑
j=1

aj
2j − k

c0 − (k − j)
= an+1(n+ 1) + c0 −

c2
0

c0 − k

we have proven the formula. For this we proceed by induction again. If n = 1 we have

−c0a1
2− k

c0 − (k − 1)
= 2a2 + c0 −

c2
0

c0 − k

and this is true by replacing
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a1 =
c0k

c0 − 1
and a2 =

1

2

c0(c0 − 1)k(k − 1)

(c0 − k)(c0 − (k − 1))
.

We assume now that

−c0

n∑
j=1

aj
2j − k

c0 − (k − j)
= an+1(n+ 1) + c0 −

c2
0

c0 − k

is true and we need to prove that

−c0

n+1∑
j=1

aj
2j − k

c0 − (k − j)
= an+2(n+ 2) + c0 −

c2
0

c0 − k

is also true. Now

−c0

n+1∑
j=1

aj
2j − k

c0 − (k − j)
= −c0

n∑
j=1

aj
2j − k

c0 − (k − j)
− c0an+1

2(n+ 1)− k
c0 − (k − (n+ 1))

and using our induction hypothesis we get

−c0

n+1∑
j=1

aj
2j − k

c0 − (k − j)
= an+1(n+ 1) + c0 −

c2
0

c0 − k
− c0an+1

2(n+ 1)− k
c0 − (k − (n+ 1))

.

This last equation is true, because

an+1(n+ 1)− c0an+1
2(n+ 1)− k

c0 − (k − (n+ 1))
= an+1

(c0 − (n+ 1))(k − (n+ 1))

c0 − (k − (n+ 1)
= (n+ 2)an+2

(the last equality is by the definition of an+1 comparing with an+2) and the proof is complete.

Case d) This case is similar to case c). The corresponding table for k = 4 is:

k = 4 n− 1 n− 1− r n− 1− 2r n− 1− 3r n− 1− 4r r − 1 2r − 1 3r − 1 4r − 1

n −c0r 0 0 0 0 −c0r −c0r −c0r −c0r
n− r 0 −a1(c0r + r) 0 0 0 0 −a1c0r −a1c0r 0
n− 2r 0 0 −a2(c0r + 2r) 0 0 0 0 0 0
n− 3r 0 0 0 −a3(c0r + 3r) 0 0 a3c0r a3c0r 0
n− 4r 0 0 0 0 −a4(c0r + 4r) a4c0r a4c0r a4c0r a4c0r

0 c0r c0r c0r c0r c0r 0 0 0 0
r 0 a1c0r a1c0r a1c0r 0 a1r 0 0 0
2r 0 0 a2c0r 0 0 0 a22r 0 0
3r 0 0 −a3c0r 0 0 0 0 a33r 0
4r 0 −a4c0r −a4c0r −a4c0r 0 0 0 0 a44r

If in the last table of case c) we change c0 by −c0, we get exactly the system of case d).

(The white columns can be multiplied by −1 to get exactly the same system). This implies

that if we interchange c0 by −c0 in the formulas the solutions are the same of case c) . This
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proves case d).

Case e) In this case we have the same tables as in case c) (interchanging the colors).

Case f) The tables in this case are the same as in case d) (interchanging the colors).

Example 3.1.6. Suppose that we have the following data:

• r = 4

• d0 = 13

• d1 = −13

• d2 = 0

• d3 = 0

• c0 = −3

In this case we have 8 conditions that hold. We need to find 8 singular polynomials. We

compute these polynomials:

1) n = 13 for λ0,1.

In this case we have that

13− d0 + d0−13 = 13− 13− 0 = 0

and

12 < 13 + 1− 0 < 16

thus k = 3. This condition corresponds to case a). The polynomial annihilated is:

p(x1, x2) =
(
x13

1 + b1x
9
1x

4
2 + b2x

5
1x

8
2

)
⊗ vT1 + (a1x

10
1 x

3
2 + a2x

6
1x

7
2 + a3x

2
1x

11
2 )⊗ vT2 .

We compute the coefficients. In this case

s1 = 23, s2 = 19, s3 = 15.

The relation s1a1 = c0r implies that

a1 = −12

23
.

Now we can use the second part of the system (which says that s1a1 = s3a3) in order to

compute

a3 = −4

5
.

We can compute b1 using the last part of the system. This says that b1 = c0

(
2r
s3

)
a1 and

this implies that

b1 =
96

115
.
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Using the third part of the system we have that b1 = 2b2. This implies that

b2 =
48

115
.

We finish computing a2.

a2 =
c0r

s2

(b2 + 1) = −1956

2185

We have computed all the coefficients and the polynomial is:

p(x1, x2) =

(
x13

1 +
96

115
x9

1x
4
2 +

48

115
x5

1x
8
2

)
⊗ vT1 −

(
12

23
x10

1 x
3
2 +

1956

2185
x6

1x
7
2 +

4

5
x2

1x
11
2

)
⊗ vT2 .

2) n = 13 for λ0,2.

In this case we have that

13− d0 + d0−13 = 13− 13− 0 = 0

and

12 < 13 + 2− 0 < 16

thus k = 3. Using the same process as before we get that the singular polynomial is:

p(x1, x2) =

(
x13

1 +
96

11
x4

1x
9
2 +

48

11
x8

1x
5
2

)
⊗ vT2 −

(
12

11
x2

1x
11
2 +

708

77
x6

1x
7
2 + 4x10

1 x
3
2

)
⊗ vT1 .

3) n = 13 for λ0,2.

In this case we also have the condition

13− d2 + d2−13 = 13− 0− 13 = 0

which correspond to case b). We have

8 < 13 + 0− 2 < 12

thus k = 3. The singular polynomial is:

p(x1, x2) =
(
x13

2 + b1x
9
1x

4
2 + b2x

5
1x

8
2

)
⊗ vT1 + (a1x

10
1 x

3
2 + a2x

6
1x

7
2 + a3x

2
1x

11
2 )⊗ vT2 .

Solving the system with

s1 = −15, s2 = −19, s3 = −23

we have that the polynomial is:

p(x1, x2) =

(
x13

2 +
96

115
x9

1x
4
2 +

48

115
x5

1x
8
2

)
⊗ vT1 +

(
4

5
x10

1 x
3
2 +

1956

2185
x6

1x
7
2 +

12

23
x2

1x
11
2

)
⊗ vT2 .
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4) n = 13 for λ2,3.

In this case we have that

13− d0 + d0−13 = 13− 13− 0 = 0

and

12 < 13 + 3− 2 < 16

thus k = 3. Using the same process as before we get that the singular polynomial is:

p(x1, x2) =

(
x13

1 +
96

11
x4

1x
9
2 +

48

11
x8

1x
5
2

)
⊗ vT2 +

(
4x2

1x
11
2 +

708

77
x6

1x
7
2 +

12

11
x10

1 x
3
2

)
⊗ vT1 .

5) n = 25 for λ0,3.

In this case we have that

d0 − d3 − c0r = 13− 0 + 12 = 25

and

25 = 0− 3 + (6 + 1) · 4.

This corresponds to case d) and k = 6. The singular polynomial is:

p(x1, x2) = (x25
1 ⊗ vT1 + x25

2 ⊗ vT2) + a1 (x21
1 x

4
2 ⊗ vT1 + x4

1x
21
2 ⊗ vT2)

+a2 (x17
1 x

8
2 ⊗ vT1 + x8

1x
17
2 ⊗ vT2) + a3 (x13

1 x
12
2 ⊗ vT1 + x12

1 x
13
2 ⊗ vT2)

+a4 (x9
1x

16
2 ⊗ vT1 + x6

1x
9
2 ⊗ vT2) + a5 (x5

1x
20
2 ⊗ vT1 + x20

1 x
5
2 ⊗ vT2)

+a6 (x1x
24
2 ⊗ vT1 + x24

1 x2 ⊗ vT2) .

We find the 6 coefficients involved:

a1 =
c0

c0 + k
= −1

a2 =
1

2!

c0(c0 + 1)k(k − 1)

(c0 + k)(c0 + (k − 1))
= 15

a3 =
1

3!

c0(c0 + 1)(c0 + 2)k(k − 1)(k − 2)

(c0 + k)(c0 + (k − 1))(c0 + (k − 2))
= −20

a4 =
1

2!

c0(c0 + 1)(c0 + 2)k(k − 1)

(c0 + k)(c0 + (k − 1)(c0 + (k − 2)))
= −15

a5 =
c0(c0 + 1)k

(c0 + k)(c0 + (k − 1))
= 6

a6 =
c0

c0 + k
= −1

and the singular polynomial is:

p(x1, x2) = (x25
1 ⊗ vT1 + x25

2 ⊗ vT2)− 6(x21
1 x

4
2 ⊗ vT1 + x4

1x
21
2 ⊗ vT2)

+15(x17
1 x

8
2 ⊗ vT1 + x8

1x
17
2 ⊗ vT2)− 20(x13

1 x
12
2 ⊗ vT1 + x12

1 x
13
2 ⊗ vT2)

−15(x9
1x

16
2 ⊗ vT1 + x6

1x
9
2 ⊗ vT2) + 6(x5

1x
20
2 ⊗ vT1 + x20

1 x
5
2 ⊗ vT2)

−(x1x
24
2 ⊗ vT1 + x24

1 x2 ⊗ vT2)

.
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6) n = 25 for λ1,2.

In this case we have that

d2 − d1 − c0r = 0 + 13 + 12 = 25

and

25 = 2− 1 + 6 · 4.

This corresponds to case f) and k = 6. The singular polynomial is:

p(x1, x2) = (x25
1 ⊗ vT2 + x25

2 ⊗ vT1)− 6(x21
1 x

4
2 ⊗ vT2 + x4

1x
21
2 ⊗ vT1)

+15(x17
1 x

8
2 ⊗ vT2 + x8

1x
17
2 ⊗ vT1)− 20(x13

1 x
12
2 ⊗ vT2 + x12

1 x
13
2 ⊗ vT1)

−15(x9
1x

16
2 ⊗ vT2 + x6

1x
9
2 ⊗ vT1) + 6(x5

1x
20
2 ⊗ vT2 + x20

1 x
5
2 ⊗ vT1)

−(x1x
24
2 ⊗ vT2 + x24

1 x2 ⊗ vT1)

.

7) n = 1 for λ0,3.

In this case we have that

d0 − d3 + c0r = 1

and

1 = 0− 3 + (0 + 1) · 4.

This corresponds to case c) and k = 0. The singular polynomial is:

p(x1, x2) = x1 ⊗ vT1 − x2 ⊗ vT2

8) n = 1 for λ1,2.

In this case we have that

d2 − d1 + c0r = 1

and

1 = 2− 1 + 0 · 4.

This corresponds to case e) and k = 0. The singular polynomial is:

p(x1, x2) = x1 ⊗ vT2 − x2 ⊗ vT1 .

3.2 Singular polynomials and morphisms

In this section we make explicit the relation described in Subsection 2.2.1 between singular

polynomials and morphisms. Suppose we have a morphism of H-modules φ that goes from

one standard module to another.

φ : ∆(λ)→ ∆(λ8)

61



We assume first that λ and λ8 are of type λi or λj in any possible combination. Observe first

that the morphism structure depends only on the image of 1⊗ vT , because is an H-module

homomorphism and if we have p(x1, x2)⊗ vT ∈ ∆(λ), then

φ(p(x1, x2)⊗ vT ) = p(x1, x2)φ(1⊗ vT ).

We want to establish that, if φ(1 ⊗ vT ) = q(x1, x2) ⊗ vT , then q(x1, x2) ⊗ vT is annihilated

by y1 and y2 in ∆(λ8). First we have that y1 ⊗ vT = 0 thus φ(y1 ⊗ vT ) = 0, but

φ(y1 ⊗ vT ) = y1φ(1⊗ vT ) = y1(q(x1, x2 ⊗ vT )) = 0.

The same works, if we change y1 by y2. We have proven that q(x1, x2)⊗ vT is annihilated by

y1 and y2 in ∆(λ8). By now we have established that any morphism between two standard

modules of type λi or λj is given by a singular polynomial. Now suppose that

φ : ∆(λ)→ ∆(λi,j)

where λ is λk or λk. We use the same arguments as before, with the only difference that now

φ(1⊗ vT ) = q1(x1, x2)⊗ vT1 + q2(x1, x2)⊗ vT2 .

We have that q1(x1, x2) ⊗ vT1 + q2(x1, x2) ⊗ vT2 is a singular polynomial. Our next case is

when

φ : ∆(λi,j)→ ∆(λ)

where λ is λk or λk. In this case we claim that the morphism depends only on the image of

1⊗ vT1 , because we have

φ(1⊗ vT2) = φ

((
0 1
1 0

)
· 1⊗ vT1

)
=

(
0 1
1 0

)
φ(1⊗ vT1)

and the image of 1⊗vT2 is determined by the image of 1⊗vT1 . Finally, the image of a generic

element is given by

φ(p1(x1, x2)⊗ vT1 + p2(x1, x2)⊗ vT2) = p1(x1, x2)φ(1⊗ vT1) + p2x1, x2φ(1⊗ vT2)

and by the same arguments of the last cases we can say that the image of 1⊗vT1 is necessary

a singular polynomial. In the last case, when

φ : ∆(λi,j)→ ∆(λk,l),

the arguments are the same. We can conclude that any morphism of two standard modules is

given by a singular polynomial. Now the converse is not true. We cannot create a morphism
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just by taking a random singular polynomial of the codomain. For example if we take the

data of example 3.1.2 we can see that x9
1x

9
2 ⊗ vT is a singular polynomial in ∆(λ2). If we

want to construct a morphism

φ : ∆(λ1)→ ∆(λ2)

where φ(1⊗ vT ) = x9
1x

9
2 ⊗ vT we can see that

φ

((
ζ 0
0 1

)
⊗ vT

)
= φ(ζ ⊗ vT ) = ζφ(1⊗ vT ) = ζx9

1x
9
2 ⊗ vT

and(
ζ 0
0 1

)
φ(1⊗vT ) =

(
ζ 0
0 1

)
x9

1x
9
2⊗vT = ζx9

1x
9
2

(
ζ 0
0 1

)
⊗vT = ζx9

1x
9
2ζ

2⊗vT = x9
1x

9
2⊗vT .

In the last equalities we have used the action of the group elements. We can see that in this

case

φ

((
ζ 0
0 1

)
⊗ vT

)
6=
(
ζ 0
0 1

)
φ(1⊗ vT )

and this means that it is not a H-module morphism. If we change the domain of φ, that is

φ : ∆(λ0)→ ∆(λ2),

we have a morphism between H-modules.

3.3 Necessary conditions for the existence of morphisms

We recall some definitions from Section 2.4.2. If we have a r-partition λ = (λ0, λ1, ..., λr−1),

define the content of a box b ∈ λi by j − k, if b is in the k row and in the j column from λi.

We write it ct(b) = content of b. If T is a standard Young tableau associated to λ , let T (i)

for the box b of λ, in which i appears. Define the function β over the set of all boxes of λ in

the following way:

β(b) = i if b ∈ λi.

We also define the charged content c(b) of a box b of λ by the equation

c(b) = ct(b)rc0 + dβ(b). (3.3.1)

Now we enunciate theorem 5.1 of [10] (in [10] T−1(i) means T (i) using our notation).

Theorem 3.3.1. If there is a non-zero morphism ∆(λ)→ ∆(µ) , then there are T ∈ SY T (λ)

and U ∈ SY T (µ) with

c(U(i))− c(T (i)) ∈ Z≥0 and c(U(i))− c(T (i)) = β(U(i))− β(T (i)) mod r .
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This theorem allows us to find necessary conditions for the existence of morphisms be-

tween standard modules. If we apply this theorem to our case we get:

Corollary 3.3.2. The necessary conditions for the existence of a morphism between two

standard modules for G(r, 1, 2) are given by the following tables:

∆(λi) ∆(λj) ∆(λi) ∆(λj) ∆(λi,j) ∆(λj,k)

∆(λi) · dj − di c0 = −k
2

dj − di
c0 = −k

2

dj − di − c0r
dj − di

dk − dj − c0r

∆(λi) c0 = k
2

dj − di
c0 = k

2

· dj − di dj − di + c0r
dj − di

dk − dj + c0r

∆(λi) ∆(λi) ∆(λk) ∆(λk) ∆(λi,j) ∆(λi,k) ∆(λk,s)

∆(λi,j) di − dj + c0r di − dj − c0r
dk − di

dk − dj + c0r
dk − di

dk − dj + c0r
· dk − dj

dk − di
ds − dj

or
ds − di
dk − dj

Columns represent the domain, rows represent the codomain and the entries represent

conditions on the parameters. When more than one condition appears this means that both

must hold. The condition di − dj means that di − dj ∈ Z≥0 and di − dj = i− j mod r. The

condition di−dj±c0r means di−dj±c0r ∈ Z≥0, di−dj±c0r = i−j mod r. The conditions

c0 = ±k
2

says that k is a positive odd integer.

Proof. Almost all the conditions are given by applying Theorem 3.3.1. In the cases of

λi → λj and λi → λj the theorem gives us that c0 = −k
2

and c0 = k
2

respectively, without

the condition that k is odd. By applying Theorem 1.2 of [10] with GS = G(1, 1, 2) we obtain

a non-zero morphism from ∆c0(sign)→ ∆c0(triv) and this implies that c0 = k
2

for odd k.

We prove in the next section that for each of these conditions we can construct an explicit

morphism. This implies that the conditions are necessary and sufficient for the existence of

morphisms between standard modules.

3.4 Sufficient conditions for the existence of morphisms

We analyze each of the conditions of the last table. For this, we give a resume of all the

singular polynomials described before.

Remark 3.4.1. The singular polynomials are:

1) For λi.
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(a) (xr1 − xr2)k ⊗ vt when c0 = k
2

for odd k.

(b) xn1x
n
2 ⊗ vt when n− di + di−n = 0

(c) For kr < n < (k + 1)r , αl =
(
k
l

)
and βl = c0(c0−1)...(c0−l)

(c0−k)(c0−(k−1))...(c0−(k−l))

p(x1, x2) = xn1 +

[ k2 ]∑
l=0

αlβlx
n−(k−l)r
1 x

(k−l)r
2 +

[ k−1
2 ]∑
l=1

αlβl−1x
n−lr
1 xlr2

when n − di + di−n − c0r = 0 (if c0 = m is an integer that indeterminates some βl,

then the polynomial is (c0 −m)p(x1, x2)).

2) For λi.

(a) (xr1 − xr2)k ⊗ vt when c0 = −k
2

for positive odd k.

(b) xn1x
n
2 ⊗ vt when n− di + di−n = 0

(c) For kr < n < (k + 1)r , αl =
(
k
l

)
and βl = c0(c0+1)...(c0+l)

(c0+k)(c0+(k−1))...(c0+(k−l))

p(x1, x2) = xn1 +

[ k2 ]∑
l=0

αlβlx
n−(k−l)r
1 x

(k−l)r
2 +

[ k−1
2 ]∑
l=1

αlβl−1x
n−lr
1 xlr2

when n− di + di−n + c0r = 0 (if c0 = −m is an integer that indeterminates some βl,

then the polynomial is (c0 +m)p(x1, x2)).

3) For λi,j.

(a) p(x1, x2) =

(
xn1 +

k−1∑
l=1

blx
n−lr
1 xlr2

)
⊗ vT1 +

k∑
l=1

alx
n−lr+j−i
1 xlr−j+i2 ⊗ vT2

Where kr < n+ j − i < (k+ 1)r, n− di + di−n = 0 , st = j − i− dj + di− tr, st 6= 0

and al, bl satisfy the system:

1) s1a1 = c0r

2) slal = sk−l+1ak−l+1 for 1 ≤ l <
[
k+1

2

]
3) lbl = (k − l)bk−l for 1 ≤ l <

[
k+1

2

]
4) al = c0r

sl

(
l−1∑
j=1

k − 2j

j
bk−j + 1

)

5) bl = c0
l

(
l−1∑
j=0

(
(k − 2j − 1)r

sk−j

)
aj+1

)
(if st = 0 for some t, then the polynomial is st · p(x1, x2)).
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(b) p(x1, x2) =

(
xn2 +

k−1∑
l=1

blx
lr
1 x

n−lr
2

)
⊗ vT1 +

k−1∑
l=0

al+1x
lr+j−i
1 xn−lr−j+i2 ⊗ vT2

Where (k−1)r < n+ i− j < kr, n−dj +dj−n = 0 , st = i− j−di+dj− (t−1)r and

al, bl satisfy the same system as before (if st = 0 for some t, then the polynomial is

st · p(x1, x2)).

(c) p(x1, x2) = (xn1 ⊗ vT1 − xn2 ⊗ vT2) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT1 − xrl1 xn−rl2 ⊗ vT2

)
Where n = i− j + (k + 1)r , n = di − dj + rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 − 1)...(c0 − (l − 1))k(k − 1)...(k − (l − 1)

(c0 − k)(c0 − (k − 1))...(c0 − (k − (l − 1))

2) ak−l =
1

l!

c0(c0 − 1)(c0 − 2)...(c0 − l)k(k − 1)...(k − (l − 1))

(c0 − k)(c0 − (k − 1))...(c0 − (k − l))
3) ak =

c0

c0 − k

(d) p(x1, x2) = (xn1 ⊗ vT1 + xn2 ⊗ vT2) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT1 + xrl1 x

n−rl
2 ⊗ vT2

)
Where n = i− j + (k + 1)r , n = di − dj − rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 + 1)...(c0 + (l − 1))k(k − 1)...(k − (l − 1)

(c0 + k)(c0 + (k − 1))...(c0 + (k − (l − 1))

2) ak−l =
1

l!

c0(c0 + 1)(c0 + 2)...(c0 + l)k(k − 1)...(k − (l − 1))

(c0 + k)(c0 + (k − 1))...(c0 + (k − l))
3) ak =

c0

c0 + k

(e) p(x1, x2) = (xn1 ⊗ vT2 − xn2 ⊗ vT1) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT2 − xrl1 xn−rl2 ⊗ vT1

)
Where n = j − i+ kr , n = dj − di + rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 − 1)...(c0 − (l − 1))k(k − 1)...(k − (l − 1)

(c0 − k)(c0 − (k − 1))...(c0 − (k − (l − 1))

2) ak−l =
1

l!

c0(c0 − 1)(c0 − 2)...(c0 − l)k(k − 1)...(k − (l − 1))

(c0 − k)(c0 − (k − 1))...(c0 − (k − l))
3) ak =

c0

c0 − k

(f) p(x1, x2) = (xn1 ⊗ vT2 + xn2 ⊗ vT1) +
k∑
l=1

al
(
xn−rl1 xrl2 ⊗ vT2 + xrl1 x

n−rl
2 ⊗ vT1

)
Where n = j − i+ kr , n = dj − di − rc0 and al are defined for 1 ≤ l ≤

[
k+1

2

]
by:

1) al = 1
l!

c0(c0 + 1)...(c0 + (l − 1))k(k − 1)...(k − (l − 1)

(c0 + k)(c0 + (k − 1))...(c0 + (k − (l − 1))
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2) ak−l =
1

l!

c0(c0 + 1)(c0 + 2)...(c0 + l)k(k − 1)...(k − (l − 1))

(c0 + k)(c0 + (k − 1))...(c0 + (k − l))
3) ak =

c0

c0 + k

For now we refer to the singular polynomials with the corresponding enumeration given

before (1.b or 3.c and so on).

Theorem 3.4.2. The necessary and sufficient conditions for the existence of morphisms

between the standard modules are the same of corollary 3.3.2.

Proof. To prove that these conditions are sufficient we construct an explicit homomorphism

using our singular polynomials described before. We start by the cases when we only have

one condition.

1) ∆(λi)→ ∆(λj).

In this case the condition is dj − di. If we use n = dj − di we have the condition of the

1.b). In this case the morphism is given by sending 1⊗ vT → xn1x
n
2 ⊗ vT .

2) ∆(λi)→ ∆(λi).

In this case the condition is c0 = −k
2

and we have the condition of the case 2.a). In this

case the morphism is given by sending 1⊗ vT → (xr1 − xr2)k ⊗ vT .

3) ∆(λi)→ ∆(λi,j).

We have the condition dj − di − c0r. Now we have two options:

(a) i < j. In this case we use n = dj−di−c0r and we have the condition of the case 3.f).

In this case the morphism is given by sending 1⊗ vT → p(x1, x2), where p(x1, x2) is

the singular polynomial of the case 3.f).

(b) i > j. In this case we use n = dj−di−c0r and we have the condition of the case 3.d).

In this case the morphism is given by sending 1⊗ vT → p(x1, x2), where p(x1, x2) is

the singular polynomial of the case 3.d).

4) ∆(λi)→ ∆(λi).

In this case the condition is c0 = k
2

and we have the condition of the case 1.a). In this

case the morphism is given by sending 1⊗ vT → (xr1 − xr2)k ⊗ vT .

5) ∆(λi)→ ∆(λj).

In this case the condition is dj − di. If we use n = dj − di we have the condition of the

case 2.b). In this case the morphism is given by sending 1⊗ vT → xn1x
n
2 ⊗ vT .
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6) ∆(λi)→ ∆(λi,j).

We have the condition dj − di + c0r. Now we have two options:

(a) i < j. In this case we use n = dj−di+c0r and we have the condition of the case 3.c).

In this case the morphism is given by sending 1⊗ vT → p(x1, x2), where p(x1, x2) is

the singular polynomial of the case 3.c).

(b) i > j. In this case we use n = dj−di−c0r and we have the condition of the case 3.e).

In this case the morphism is given by sending 1⊗ vT → p(x1, x2), where p(x1, x2) is

the singular polynomial of the case 3.e).

7) ∆(λi,j)→ ∆(λi).

In this case the condition is di−dj +c0r. If we use n = di−dj +c0r we have the condition

of the case 1.c). Now we have two options:

(a) i < j. In this case the morphism is given by sending 1⊗ vT2 → p(x1, x2)⊗ vT , where

p(x1, x2) is the singular polynomial of the case 1.c).

(b) i > j. In this case the morphism is given by sending 1⊗ vT1 → p(x1, x2)⊗ vT , where

p(x1, x2) is the singular polynomial of the case 1.c).

8) ∆(λi,j)→ ∆(λi).

In this case the condition is di−dj−c0r. If we use n = di−dj−c0r we have the condition

of the case 2.c). Now we have two options:

(a) i < j. In this case the morphism is given by sending 1⊗ vT2 → p(x1, x2)⊗ vT , where

p(x1, x2) is the singular polynomial of the case 2.c).

(b) i > j. In this case the morphism is given by sending 1⊗ vT1 → p(x1, x2)⊗ vT , where

p(x1, x2) is the singular polynomial of the case 2.c).

9) ∆(λi,j)→ ∆(λi,k).

In this case the condition is dk − dj. Now we have four options:

(a) i < j and i < k. In this case we use n = dk − dj and we have the condition of the

case 3.b). In this case the morphism is given by sending 1⊗ vT1 → p(x1, x2), where

p(x1, x2) is the singular polynomial of the case 3.b).

(b) i < j and i > k. In this case we use n = dk − dj and we have the condition of the

case 3.a). In this case the morphism is given by sending 1⊗ vT2 → p(x1, x2), where

p(x1, x2) is the singular polynomial of the case 3.a).
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(c) i > j and i < k. In this case we use n = dk − dj and we have the condition of the

case 3.b). In this case the morphism is given by sending 1⊗ vT2 → p(x1, x2), where

p(x1, x2) is the singular polynomial of the case 3.b).

(d) i > j and i > k. In this case we use n = dk − dj and we have the condition of the

case 3.a). In this case the morphism is given by sending 1⊗ vT1 → p(x1, x2), where

p(x1, x2) is the singular polynomial of the case 3.a).

We need to prove the cases when we have two conditions. There are 7 cases with two

conditions:

(a) ∆(λi)→ ∆(λj) or ∆(λi)→ ∆(λj).

For ∆(λi) → ∆(λj) we have the conditions dj − di and c0 = −k
2
. The condition

c0 = −k
2

allows the construction of the morphism ∆(λi)→ ∆(λi). The condition dj−di
allows the construction of the morphism ∆(λi) → ∆(λj). The composition of these

two morphisms is a morphism from ∆(λi) to ∆(λj). This is a non-zero composition,

because it is of the form 1 ⊗ vT  pq ⊗ vT , where p and q are non-zero polynomials.

For ∆(λi)→ ∆(λj) we use the same arguments as before attached to this case.

(b) ∆(λi)→ ∆(λj,k) and ∆(λi)→ ∆(λj,k).

For ∆(λi)→ ∆(λj,k) we have the conditions dj−di and dk−dj−c0r. The condition dj−
di allows the construction of the morphism ∆(λi)→ ∆(λj). The condition dk−dj−c0r

allows the construction of the morphism ∆(λj) → ∆(λj,k). The composition of these

two morphisms is a morphism from ∆(λi) to ∆(λj,k). This is a non-zero composition,

because it is of the form 1 ⊗ vT  pq ⊗ vT1 + pr ⊗ vT2 , where p, q, r are non-zero

polynomials. For ∆(λi) → ∆(λj,k) we use the same arguments as before attached to

this case.

(c) ∆(λi,j)→ ∆(λk) and ∆(λi,j)→ ∆(λk).

For ∆(λi,j)→ ∆(λk) we have the conditions dk − di and dk − di + c0r. The condition

dk − di allows the construction of the morphism ∆(λi,j) → ∆(λj,k). The condition

dk−di+c0r allows the construction of the morphism ∆(λj,k)→ ∆(λk). The composition

of these two morphisms is a morphism from ∆(λi,j) to ∆(λk). This composition is of

the form 1⊗ vT1  (pr+ qr′)⊗ vT , where r′ corresponds only to interchange x1 and x2

in r. Looking at the coefficients of the polynomials involved we can see that (pr+ qr′)

is a non-zero polynomial . For ∆(λi,j)→ ∆(λk) we use the same arguments as before

attached to this case.
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(d) ∆(λi,j)→ ∆(λk,s).

For this case we have the conditions dk − di and ds − dj (or ds − di and dk − dj).

The condition dk − di allows the construction of the morphism ∆(λi,j) → ∆(λk,j).

The condition ds − dj allows the construction of the morphisms ∆(λk,j) → ∆(λk,s).

The composition of these two morphisms is a morphism from ∆(λi,j) to ∆(λk,s). This

composition is of the form 1⊗ vT1  (pr+ qr′)⊗ vT1 + (ps+ qs′)⊗ vT2 , where r′ and s′

correspond only to interchange x1 and x2 in r and s. Looking at the coefficients of the

polynomials involved we can see that (pr+ qr′) or (ps+ qs′) is a non-zero polynomial.

For the condition ds − di and dk − dj we can do the same as before.

3.5 Dimension

In this section we prove that, if we have the conditions

• di − dk ± c0r

• dj − di ± c0r

,where c0 is a non-zero integer, then we have that

Dim(HomH(∆(λi,k),∆(λi,j))) = 2.

We have that these four conditions allow the construction of morphisms between some stan-

dard modules. In particular we have that

1 di − dk + c0r ∆(λi,k)→ ∆(λi)
2 di − dk − c0r ∆(λi,k)→ ∆(λi)
3 dj − di + c0r ∆(λi)→ ∆(λi,j)
4 dj − di − c0r ∆(λi)→ ∆(λi,j)

We can see that we have two ways to go from ∆(λi,k) to ∆(λi,j). We prove that these two

ways are linearly independent. For this we see the leading terms of each of these morphisms.

In order to compute the leading terms of the singular polynomials involved, we need to

consider that, if c0 is an integer it could change the leading terms. Suppose that c0 > 0. The

leading term can be calculated using the singular polynomials:

• xdj−di+c0r−l
′r

1 xl
′r

2 for case 1.

• xdj−di−c0r1 for case 2.

• xlr1 x
di−dk+c0r−lr
2 ⊗ vT1 − x

di−dk+c0r−lr
1 xlr2 ⊗ vT2 for case 3.
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• xdi−dk−c0r2 ⊗ vT1 + xdi−dk−c0r1 ⊗ vT2 for case 4.

In these polynomials l and l′ are integers. The composition of the morphisms follows by

multiplying the polynomials. The leading terms of the compositions are:

• For the composition 4 ◦ 1

(x
dj−di+c0r−l′r
1 xl

′r
2 )(xdi−dk−c0r2 ⊗ vT1 + xdi−dk−c0r1 ⊗ vT2) =

x
dj−di+c0r−l′r
1 xdi−dk−c0r+l

′r
2 ⊗ vT1 + x

dj−dk−l′r
1 xl

′r
2 ⊗ vT2

• For the composition 3 ◦ 2

(x
dj−di−c0r
1 )(xlr1 x

di−dk+c0r−lr
2 ⊗ vT1 − x

di−dk+c0r−lr
1 xlr2 ⊗ vT2) =

x
dj−di−c0r+lr
1 xdi−dk+c0r−lr

2 ⊗ vT1 − x
dj−dk−lr
1 xlr2 ⊗ vT2 .

If we compare these two terms we can see that they are linearly independent. In conclusion

we have two linearly independent ways to go from ∆(λi,k) to ∆(λi,j). This implies that the

dimension of the space of homomorphism is 2.

3.6 Example

In this section we give an explicit example.

Example 3.6.1. For this example we work with r = 3. Suppose that 10−d0 +d2 = 0. This

condition is of the form d0 − d2 and allows the construction of some morphisms.

d0 − d2

∆(λ2) → ∆(λ0)
∆(λ2) → ∆(λ0)
∆(λ1,2) → ∆(λ0,1)

We add the condition 5 − d0 + d1 = 0, which is of the form d0 − d1. With these two

conditions we can form a new one by subtracting the second condition from the first one.

This new condition is 5 − d1 + d2 = 0 and is from the form d1 − d2. We have now a bigger

table, where the red color corresponds to the new condition imposed.

d0 − d2

∆(λ2) → ∆(λ0)
∆(λ2) → ∆(λ0)
∆(λ1,2) → ∆(λ0,1)

d0 − d1

d1 − d2

∆(λ2) → ∆(λ1)
∆(λ1) → ∆(λ0)
∆(λ2) → ∆(λ1)
∆(λ1) → ∆(λ0)
∆(λ1,2) → ∆(λ0,2)
∆(λ0,2) → ∆(λ0,1)
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Now we impose the condition c0 = 1. We have 6 new conditions

13− d0 + d2 − c0r = 0 (d0 − d2 + c0r)
7− d0 + d2 + c0r = 0 (d0 − d2 − c0r)
8− d0 + d1 − c0r = 0 (d0 − d1 + c0r)
2− d0 + d1 + c0r = 0 (d0 − d1 − c0r)
8− d1 + d2 − c0r = 0 (d1 − d2 + c0r)
2− d1 + d2 + c0r = 0 (d1 − d2 − c0r)

and this allows us the construction of 12 new morphisms.

d0 − d2

∆(λ2) → ∆(λ0) 1
∆(λ2) → ∆(λ0) 2
∆(λ1,2) → ∆(λ0,1) 3

d0 − d1

d1 − d2

∆(λ2) → ∆(λ1) 4
∆(λ1) → ∆(λ0) 5
∆(λ2) → ∆(λ1) 6
∆(λ1) → ∆(λ0) 7
∆(λ1,2) → ∆(λ0,2) 8
∆(λ0,2) → ∆(λ0,1) 9

c0 = 1
d0 − d2 + c0r
d0 − d2 − c0r
d0 − d1 + c0r
d0 − d1 − c0r
d1 − d2 + c0r
d1 − d2 − c0r

∆(λ0,1) → ∆(λ0) 10
∆(λ2) → ∆(λ1,2) 11
∆(λ0,1) → ∆(λ0) 12
∆(λ2) → ∆(λ1,2) 13
∆(λ2) → ∆(λ0,2) 14
∆(λ1,2) → ∆(λ1) 15
∆(λ1,2) → ∆(λ1) 16
∆(λ1) → ∆(λ0,1) 17
∆(λ1) → ∆(λ0,1) 18
∆(λ0,2) → ∆(λ0) 19
∆(λ0,2) → ∆(λ0) 20
∆(λ2) → ∆(λ0,2) 21

In this last table we have enumerated the morphisms and we obtain the following diagram
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λ0 λ1 λ2

λ0 λ1 λ2

λ0,1 λ0,2 λ1,2

1

2

3

45

67

89

10
11

12 13

14

1516
17

18

21

19

20

We describe each of the 21 morphisms using our singular polynomials. All the computations

are using our three imposed conditions. If we delete one of the conditions the polynomials

could change.
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1 x10
1 x

10
2

2 x10
1 x

10
2

3 x5
1x

5
2 ⊗ vT1

4 x5
1x

5
2

5 x5
1x

5
2

6 x5
1x

5
2

7 x5
1x

5
2

8 (x5
1 + 1

6
x2

1x
3
2)⊗ vT1 + (1

3
x4

1x2 + 1
2
x1x

4
2)⊗ vT2

9 (x5
2 + 1

6
x3

1x
2
2)⊗ vT1 − (1

2
x1x

4
2 + 1

3
x4

1x2)⊗ vT2
10 x8

1 − x2
1x

6
2 − 2x5

1x
3
2

11 x2
1 ⊗ vT1 + x2

2 ⊗ vT2
12 x2

1

13 (x8
1 − 3x5

1x
3
2 − x2

1x
6
2)⊗ vT1 − (x8

2 − 3x3
1x

5
2 − x6

1x
2
2)⊗ vT2

14 (x7
1 + 2

3
x4

1x
3
2 + 1

3
x1x

6
2)⊗ vT1 − (x7

2 + 2
3
x3

1x
4
2 + 1

3
x6

1x2)⊗ vT2
15 x8

1 − x2
1x

6
2 − 2x5

1x
3
2

16 x2
1

17 (x8
1 − 2x5

1x
3
2 − x2

1x
6
2)⊗ vT1 − (x8

2 − 2x3
1x

5
2 − x6

1x
2
2)⊗ vT2

18 x2
1 ⊗ vT1 + x2

2 ⊗ vT2
19 x13

1 − 1
3
x1x

12
2 − 4

3
x10

1 x
3
2

20 x7
1 + 1

5
x1x

6
2 − 2

5
x4

1x
3
2

21 (x13
1 − 1

3
x1x

12
2 − 4

3
x10

1 x
3
2)⊗ vT1 − (x13

2 − 1
3
x12

1 x2 − 4
3
x3

1x
10
2 )⊗ vT2

There are many morphisms that can be constructed by using other morphisms. If we

delete from the diagram all the morphisms that come from other morphisms, we will get the

following diagram
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λ0

λ1

λ2

λ0

λ1

λ2

λ0,1

λ0,2

λ1,2

For the three morphisms from ∆(λ1,2) to ∆(λ0,1), only two of them are linearly indepen-

dent and we have that Dim(HomH(∆(λ1,2),∆(λ0,1))) = 2. See also that this last diagram

is self-dual and graded and it raises the question, if there is a structural condition for this

phenomenon.

75



Appendix A

Case c0 = 0

Until now we have always assumed that c0 6= 0. The reason is that in this case is all very

simple. In this case we have that the action of H on the standard modules is given by:

(a) For λ = λi.

y1 · xn1xm2 ⊗ vT = (n− di + di−n)xn−1
1 xm2 ⊗ vT

y2 · xn1xm2 ⊗ vT = (m− di + di−m)xn1x
m−1
2 ⊗ vT

(b) For λ = λi.

y1 · xn1xm2 ⊗ vT = (n− di + di−n)xn−1
1 xm2 ⊗ vT

y2 · xn1xm2 ⊗ vT = (m− di + di−m)xn1x
m−1
2 ⊗ vT

(c) For λ = λi,j.

y1 · xn1xm2 ⊗ vT1 = (n− di + di−n)xn−1
1 xm2 ⊗ vT1

y1 · xn1xm2 ⊗ vT2 = (n− dj + dj−n)xn−1
1 xm2 ⊗ vT2

y2 · xn1xm2 ⊗ vT1 = (m− dj + dj−m)xn1x
m−1
2 ⊗ vT1

y2 · xn1xm2 ⊗ vT2 = (m− di + di−m)xn1x
m−1
2 ⊗ vT2

We can see that for λi and λi is the same. If we want to have some monomial of the

form xn1 canceled by y1 and y2, then we have the condition n − di + di−n = 0. These are

the singular polynomials in these two cases. For λi,j, if we want to have a polynomial of the

form xn1x
m
2 ⊗ vT1 , the conditions are n− di + di−n and m− dj + dj−m. These are our singular

polynomial in this case.

Now if we use the Theorem 3.3.1 in this case we have the following table:
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∆(λi) ∆(λj) ∆(λi) ∆(λj) ∆(λi,j) ∆(λj,k)

∆(λi) ∅ dj − di ∅ dj − di dj − di
dj − di
dk − di

∆(λi) ∅ dj − di ∅ dj − di dj − di
dj − di
dk − di

∆(λi) ∆(λi) ∆(λk) ∆(λk) ∆(λi,j) ∆(λi,k) ∆(λk,s)

∆(λi,j) di − dj di − dj
dk − di
dk − dj

dk − di
dk − dj

∅ dk − dj

dk − di
ds − dj

or
ds − di
dk − dj

We can see that these conditions are necessary and sufficient. The reason is that for each

condition of the form di− dj we can take n = di− dj and construct the morphism using the

singular polynomial for this case.
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