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Abstract

In this thesis we study the rational Cherednik algebra attached to the complex
reflection group G(r,1,2). Each irreducible representation S* of G(r,1,2) corre-
sponds to a standard module A()) for the rational Cherednik algebra. We give
necessary and sufficient conditions for the existence of morphisms between two

of these modules and explicit formulas for them when they exist.
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Chapter 1

Introduction

The rational Cherednik algebra H is an algebra attached to a complex reflection group W,
depending on a set of parameters indexed by the conjugacy classes of reflection in W. The
algebra H possesses a triangular decomposition allowing the construction of induced modules
called standard modules. The category generated by these modules, category O, has been
the object of intense study during the last fifteen years. Part of the structure of the category
O is encoded by the homomorphisms between standard modules and the classification and
construction of these homomorphisms seems to be a difficult problem.

The first work on this problem is due to Dunkl [3], [2], who solved it for W = S, the
symmetric group and codomain the standard module parabolically induced from the trivial
representation. Subsequently Griffeth [6] solved it for W = G(r,1,n), but with a certain
genericity condition in the parameters. We will specialize to W = G(r,1,2) and solve the
problem without any restriction on the parameters.

The parameters’ space for W = G(r, 1, 2) is r-dimensional with coordinates ¢y, dg, dy, ..., d,_1
subject to the requirement

do+dy +dy + ... +dr—1 = 0. (1.0.1)

The irreducible representations of G(r, 1, n) are indexed by r-partitions of n. For n = 2 there

are three kinds of irreducible representations: we will write

A = (@Dj@)

where the nonempty diagram is in the ith position (0 <i <r —1)

No— (@H@)

where again ¢ denotes the position of the nonempty diagram, and finally
Aij = (@, s @) ,
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where the nonempty diagrams are in positions ¢ and j. Our main theorem gives necessary
and sufficient conditions for the existence of morphisms between the corresponding standard

modules.

Theorem 1.0.1. The necessary and sufficient conditions for the existence of a morphism

between standard modules for G(r,1,2) are given by the followings tables:

| LA [ AW | AN) [ AVY) | Ay | Ay |
A(N) : dj —d; |co=—" C‘jﬂ‘:—f’é dj—di—cor |, ff d; fﬁ'COT
AN || co=* ig :dg‘ . di—di | d—ditar| fjd; iicor
| I A [ A [ AW [ AN AR [AQw) | Alwks) |
dy, — d;
A(Niy) | di—dj +cor | di — dj — cor di = d; di = d; di — d, : o_rdj

dp — dj + cor dy — d; — cor d, — d;

dy — d;

The columns represent the domain, the rows represent the codomain and the entries
represent conditions on the parameters. When more than one condition appears it means
that both must hold. When a dot appears it means there is no condition. The condition
d; — dj means that d; — d; € Z>¢ and d; —d; = 1 —j mod r. The condition d; — d; & cor
means d; — d; £ cor € Lo, di — dj = cor =1 —j mod r. The conditions cy = i% says also

that k is a positive odd integer.

For the necessary conditions we start by using Theorem 5.1 of [10]. For the sufficient
conditions we construct the morphisms explicitly. This amounts to finding elements of the
codomain that are annihilated by the Dunkl operators. In other words, we are looking for a
generalized version of singular polynomials.

We know that the dimension of the homomorphism space between two standard modules
is always at most two. The next theorem gives sufficient conditions for the dimension to be

equal to two.

Theorem 1.0.2. If we have the conditions
e d,—dp+cor=1—k+mur>0
e d,—d,—cor=1—k+mgr >0

o dj—di+cor=7—1i+mgr >0



[ dj—di—corzj—i+m47“>0
where m; 1s a integer for v =1,2,3,4, then we have
Dim(Hom(A(Xig), A(Niy))) = 2.

We suspect that these sufficient conditions are also necessary conditions for having a two
dimensional space of morphisms of any standard module.

We now summarize the contents of this thesis. Chapter 2 comprises the background
and known results. In Section 2.1 we state and prove the Poincaré-Birkhoff-Witt (PBW)
theorem. This is fundamental for describing the rational Cherednik algebra and constructing
the standard modules. The theorem itself is not new, though we state it in slightly more
general terms than usual. The first result of this type was announced in [1], and it was
subsequently proved in [5] and [12]. Our proof follows [9], which is an adaptation of the
proof of the presentation theorem for Kac-Moody algebras given in [11]. In Section 2.2 we
construct the rational Cherednik algebra and the standard modules for any finite complex
reflection group W. Here we have followed [7]. In Section 2.3 we define the group G(r,1,n),
and in Section 2.4 we study its irreducible representations via the Jucys-Murphy elements
[8]. In Section 2.5 we describe the rational Cherednik algebra for W = G(r,1,n), using
6], and in Section 2.6 we work with the rational Cherednik algebra when W = G(r, 1,2).
Subsection 2.6.1 is fundamental to our computations, because it describes the standard
modules in our case and the action of the rational Cherednik algebra on them. In chapter 3
we prove our results. Firstly, in Section 3.1 we define and describe the singular polynomials
in each standard module. Secondly, in Section 3.2 we give the relations between the singular
polynomials and the morphisms between two standard modules. Thirdly, in Section 3.3
we give the necessary conditions for the existence of a morphism (this is a result of [10]).
Fourthly, in Section 3.4 we analyze the conditions from Section 3.3 and for each of these
conditions we construct a morphism using our singular polynomials. This completes the
proof of our main theorem. Fifthly, in Section 3.5 we discuss the dimension of the space of
homomorphisms between standard modules and give sufficient conditions to have dimension

2. Finally in Section 3.6 we give some examples.



Chapter 2

Background

2.1 PBW theorem

In this section we prove the PBW (Poincaré-Birkoff-Witt) theorem for a class of algebras
containing the rational Cherednik algebras. Let V' be a finite dimensional vector space over
a field K, and W C GL(V) be a finite subgroup. Let TV be the tensor algebra for V'
(ITV=KaeVae(VaV)s(VeVeV)..), and let KW be the group algebra for W (the

elements for this group algebra are in the form Z ayg for g € W and o, € K, where we
geWwW
use g to emphasize that we are working in K'W') with base g for ¢ € W and multiplication

given by vw = vw for v,w € W. Now let TV x W be the vector space TV @k KW made
into an algebra with the product defined by

(f@u)(gew)=(f(v-g9)®ow),

We will omit the tensor symbol when it does not cause confusion. We need to fix a collection

of skew-symmetric forms indexed by the elements g of W,
<~,-)g:V><V—>K.
The Drinfeld Hecke algebra H is the algebra
TV x W

quotiented by the relations

vy—yr=>» (z,y),§ for z,yeV.
geW

We say that the PBW property holds for H, if given any basis x1,z9, x3,...,x, of V the
collection {x;, @, xiy...05,5 / 1 <y <idp <idg < ... < i <n, g € W} will be a basis for H.
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Theorem 2.1.1. The PBW property holds for H, if and only if the next two conditions
hold:

(a) (vz,vy), pe-r = (T, Y), foralz,y eV andv,w e W.
(b) (z,y),(wz—2)+(y,2), (we—2z)+ (z,2), (wy—y) =0 forallz,y,z €V and w € W.

Proof. First we assume that the PBW property holds for H. We have the following equalities

Z (v, vy), 0 = [vr,vy| = O]z, ylv " = Z (x,y), ,vwv!

weW weWw

The first equality are only the relations in H. For the second one, note that vz = (vz)v,

therefore vz = vzv-'. Considering this we have [vx,vy| = [pxv—", vyv—'] = vrv—"oyv' —

vyv—oxv—t = vxyv—' — vyxv—" = o[z, yJv-". Finally the third equality is using the relations
in H again. Now, if we compare the two sums we have we can see that both are in KW
and indexed by w € W. This means we can compare coefficients and we have the first part
of the theorem. Now, to prove the second part we use the Jacobi identity. Let z,y,2z € V,

then we have that

0= [[z,y), 2]+[y, 2], al+{[z, 2], ) = | D (@)@, 2|+ | D (w,2),0,2 [+ ) <Z>$>ww,y]
= (zy) 02+ D (W) wa]+ > (za),[m,y]

and [w,z] = wr — 2w = (wzr)w — 2w = (wr — w)w. So the last part is

Z (z,y),(wz — 2)w + Z (v, 2),,(we — z)w + Z (z,2),(wy —y)w

weWw weW weW

= > ((2,y), (w2 = 2) + (y,2),, (we — @) + (z,2),,(wy — y))@

and by the same argument as before, the w are a base, which implies that the coefficients
must be 0 in this case and this proves the second part.

Now, we assume that the two conditions hold. With the relations given in H we can
see that, if &1, 22,23, ..., 2, is a base of V, then the set {z;,, i, Tiy, ..., 2, 0| 1 <4y <dy <
i3 < ...<i,<n,we W} generates H, so we only need to confimr that this set is linearly
independent. For this, we write M for the vector space generated by {w;,, zi,, %i,, ..., 2, 0|
1<i; <ip<izg<..<i,<n,wéeW} and we define the operators [, and [, over M with
x € V and v € W in the following inductive way:

l,-w=zxw, l, w="70 (2.1.1)

5



and for p > 1

ZEiZEil...l'ipU_} if ¢ S il
lxi : [L’il...l'ip’w = . . (212)
Loy, + Loy * Tigeo iy, + E (T4, 4, )oly - iy if 1> 0
veW
and
lv . xilxiQ...xiPu_J = lvﬂvil . lv . $i2$i3...£€ipw. (213)

One of the facts that we use is that the operators [, with w € W do not increase the
degree and that the operators [, with z € V increase the degree by one. Now we want
to prove by induction the following equations: for w,v,w € W, z,y € V, p € Z>, and
1<iy <iy<..<i,<n.

lu . lv . ZE“ZL‘pr = lufu : Iil..‘ZL'ipw, lv . l;v : xil..xipw = lvac . lv . xil...xipw (214)
lo - by 2y 0 = 1y - 1y - 2,0 + Z (@, ) lv - Ty .0, 0. (2.1.5)
veW

For linearity in (2.1.5) is sufficient to prove it for [,, and l, withn > > j > 1 in replacement

of I, and [,. The base case is:

Ly ly - W=1,- 00 =100 = lyy - W, ly lp-w0=1-20=1ly 1, w (2.1.6)
and assuming that n >7>j5 > 1

Loy Loy 0 =Ly 20 =Ly, Ly -0+ Y (wg,25), Ly - 0. (2.1.7)
veW
Assuming p > 1 and that (2.1.4) and (2.1.5) hold for ¢ < p, we prove that they also hold for
p. We have:

Ly by~ gz, 0 = 1y - lwi1 Ay Ty

W = lu'vil?il : lu : lv * Lig--- T W = lU'UiBil . luv : xil...xipw

P P

=l - lwi1 C Ty T W = Ly + Tyy o T3, 0

In the first equality we apply the operator [, to x;,...z;,w. In the second equality we use
(2.1.4) saying that l,-lys, = lyva, -lu, because x;,...x; w has degree p—1 < p and the operator [,
does not increase degree. In the third equality we use (2.1.4) saying that [, - [, = l,,, because
Tj,...7;,w has degree p — 1 < p. In the fourth equality we use again (2.1.4) saying that
luv * Loy = luve, * luw, because x;,...z;,w is of degree p — 1 < p. Finally, in the last equality

we use the definition of the operator [, applied in z;,...z;,w. This proves the first relation



in (2.1.4). For the second relation we work with induction over i too. We first assume that

1 < i; and we have
lv . l:cz . Iil...l’ipw = lv . Iz‘l'il...l’ipu_} = lvzi . l’u . ZL’il....Z‘l'pU_). (218)

Where in the first equality we use the definition of /,, and in the second equality we use the

definition of [,. And now, if ¢ > i; we have:

lv . lxz . CL’Z‘l...ZL’Z’pw = lv . (lle . lxz . C(]Z‘Q...l'ipw + E <ZL'Z', $11>ulu : IiZ...l’Z‘pU_J)

ueW
= l@ . lflfil . (l:pl . $i2...l’ipg,) —+ E <£L’i, xi1>ulv . lu . IiQ....TZ'pU_)
ueW
= lvxil : lv . (l:t, . xiQ...a:ipu_)) -+ E <CCZ‘, xi1>ulvu : $i2...l’ipu_}
ueW
= lw”il . (lv . lxl . ZL‘Z'Q...[Eip’lI)) -+ E <£E7;, xh)ulvuv*l . lv . {L’iz...l'ip’w
ueW
= lUﬂCil : lv:vi : lv : £L‘i2...l'z‘p’lﬂ + E <JZZ‘, xi1>ulvuv*1 . lv . ZEZ‘2...ZL‘Z'p1D
ueW
= loay, * loa; by * Tipeo 0 + g (V5,024 ) po—1louw—1 * by = Tig. 5, W
ueW
= luay, oy + Lo * Tiy T3, W0 + E (V5,025 ) L - by - Tiy 5,0
ueW

= lyg, - lwi1 Ay Ty W = Ly - Ly Ty,

In the first equality we use the definition of I, - z;,...z;,w when i > 7;. In the second
equality we delete the parenthesis. In the third equality we use the fact that [, - z4,...7;, W
has only factors that involve x;, x;,, ..., x;, (maybe this requires a most deeper analysis, but
it is not hard to see it, if we take a look how the operator [, acts) and, because i; < a for
a € {i,ia,...,i,} We can use the case we proved before in (2.1.8) and we get I, - Iz, = lya, Lo
In addition in the sum we use induction considering that [, - [, = ., because w;,...x;,w has
degree p — 1 < p. In the fourth equality we use associativity and in the sum we use the fact
that [,y = lyus—10 = lyuo—1 - [o- All this because the degree of x;,...7;, . In the fifth equality
we use that [, - [, = [y, - I, for the degree of x;,...7;,%. In the sixth equality we use property
(a) of our hypothesis and in the seven equality we just reordered the subindex. In the eight
equality we use (2.1.5) ,because [, does not increase degree of x;,...x; w and finally in the
last equality we use the definition of [, - x;,...7;,%. Now we can see that we have proved the
second equality of (2.1.4). Now we need to prove (2.1.5). First assume that n > i > j5 > 1

and we work using induction over j. Suppose that j <17; and compute.

lag + lay Ty T3, 0 = g+ X4 T 0 = Uy, Ly - Ty T, 0 + E (x;, xj>vlv Ty, W
veEW



Where the first equality is the definition of the operator I, when j < i; and in the second

equality we use the definition of [, when ¢ > j. Now if j > 4; we have:

= lasl : lIil . la:j . $i2...$ipw -+ E <[L’j, xi1>vlv . xig...xipw>

veW
_lxj . (litzl : l:cl . ZEZ‘2...ZL‘Z'p1D + E <ZL‘Z‘, mi1>vlv . inQ...[EZ‘pw)
veW
= lxl : lmil : lx]. : (L’wl’zplf} + E <Ij, xi1>vl$i : lv : (L’IQIZPZTJ
veW
—lmj . lxil : lxl . L"L'h...l'ip’U_J — E <l’z’, xi1>’ulxj . lv . iCiQ....%'ipU_}
veW
= lajil . lxl : lacj : xiQ...iL'ip?IJ + E <.CEZ‘, xh)vlv : l:r:j . .’ﬂiQ....CEiP’LT) + E <£L’j, 33'1'1>le1. : lv . xiz...xipu?
veW veEW
_l$i1 . le : lacl . ZL‘ZQIzp’LD — E <{L‘j, xi1>vlv . lazl . l‘i2...$iplz} — E <377;, Ii1>vlajj : lv : ZL’Z‘Q...J?iPQIJ
veW veW
= ly,, - (lay Loy = Loy L) -~ @iy 0 + g (i, 25 o (loa; — o) - Lo - Tiy... 3,0
veW
+ E (xil,xﬁv(lwi — lxl) . lv . xh...xipu_)
veW
= lﬂ?il . E <£L’i, xj>vlv . xiQ...xipu_) -+ E (xl-,xi1>v(le — lx]) : lv . .leiz...l’ipU_J
veW veW
+ E (@i, T5)0 (lowy — lay) - Ly - Ty 05,0
veW
= E (@4, xj>7)ll'i1 + (i, mi1>U(lU3’»’j - lxj) +(@iys Ti)o(loa, — 1)) L - Ty T, W
veW
= E <$i, Ij>’ulvmi1 . lv . JIZ'Q...IZ':D’(E = E <Ii,ZL’j>vlv . $ill‘i2...l’ipu_).
veW veW

In the first equality we expand and use the definition of the operators [, and [,;. In the
second equality we delete parenthesis and in the third equality we use induction hypothesis
over the operators l, - I, and ly; - l;; . In the fourth equality we regroup the terms and in
the fifth equality we use induction over Iy, - I, — l5; - lo,. In the sixth equality we regroup
the terms again and in the seventh equality we use part (b) of our hypothesis. Finally, in
the last equality we use induction.

Now we have established that the operator [, and [, satisfy the relations 2.1.4 and 2.1.5
for H. It follows that M is an H-module with action for x by the operator [, and action for

v by l,. Now we can suppose there is a relation in H of the form

E ail_._inIil...fL'ipT) = O

VEW1<i1 <..<ip<n



with a;,.i,, € K. Applying both sides of this relation to the element 1 = 1 € M implies
that all the coefficients a;,. i, are zero and the proof is complete.
O

Corollary 2.1.2. The PBW theorem holds for H if
(1) (0, VY)Y -1 = (T, Y)y for all x,y € V and v,w € W.

(i7) (-, )w = 0 unless w = 1 or codim(fix(w)) = 2, and if codim(fizx(w)) = 2 then
fix(w) C Rad((-, )w).

Furthermore, if the characteristic of K s 0, and the PBW theorem holds for H, then the
conditions (i) and (ii) hold.

Proof. We will use the fact that the radical of a skew symmetric form has even codimension.
Note that condition (i) is the same as condition (a) of Theorem 2.1.1. Now we assume that
condition (i) and (ii) hold and prove that condition (b) of Theorem 2.1.1 holds. If w =1 or
(-,)w = 0, the condition (b) holds trivially. Thus we may assume that codim(fiz(w)) = 2
and Rad((-,")y) = fiz(w). If z,y € V are linearly dependent modulo fix(w) then (x,y), =
0. Thus if z,y,z € V and not two of them are linearly independent modulo fiz(w) the
identity (b) holds. Assume that x and y are linearly independent modulo fiz(w), so that
(x,y)w # 0. For any z € V| there are a,b € C with

z = ax + by modulo Rad({(-, )y)

whence

(2 Y and b= (2, x>w.

(T, Y)w (Y, 2)w

By substituting these values for a and b into z = az + by modulo Rad((-,),,) and applying

(w — 1) to both sides, we obtain condition (b) of Theorem 2.1.1. Now assume that charac-
teristic of K is 0 and both (a) and (b) of Theorem 2.1.1 hold. Since the characteristic of K
is 0 and W is a finite group, for any w € W the vector space V is the direct sum of fiz(w)
and (1 —w)V. If we = z, then

(x,(1 = w)y)w = (@, 9w — (@& WY = (&, Y0 — (W2, Y)w = (@, Y)w — (T, Y)w =0

where we have used (a) in the second equality. Thus the space fiz(w) and (1 — w)V are
orthogonal with respect to (-, -),,. Now, if z,y € fiz(w) then by (b)
(x,y)w(wz —2z) =0 for all z € V.

Thus fiz(w) C Rad({-,")y). Suppose (-, ), # 0 and fix x,y € V with (x,y),, = 1. Then by
(b)



wz —z =y, 2)w(x —wz) + (z,2),(y —wy) for all z € V

so that the dimension of (1 — w)V is at most two. Hence the codimension of fix(w) is at
most two. But since fiz(w) C Rad((-,-),) we see that (-,-),, = 0, if the codimension of
fixz(w) =1 and (iz) follows.

[

2.2 The rational Cherednik algebra

In this section we give the definition of the rational Cherednik algebra and apply the PBW
theorem to it. First we set K to be a field, § a finite dimensional vector space over K,
W C GL(h) a finite complex reflection group and KW the group algebra. We denote by T
the set of reflections in W, which means 7' = {s € W|codim(fix(s)) = 1}. For each s € T,
let ¢, € K such that ¢, = cpep-1, for w € W and we also fix a parameter kK € K. Let h* be
the dual space of b, hence we can define:

()b @rkh— K

(z,y) ~ x(y)

Now let V' =bh* @ b so W can act over V by w(x +y) = wx + wy for w € W, z € h*, y € b.
Now we define (-, -),, = 0if w ¢ TU{1}. Let (-,-); be the skew symmetric form defined over
V', determined by (x,y); = —k(x,y), if x € h* and y € h and by (a,b); = 0, if a,b € h* or
a,beb.

Now for each s € T, we fix an a € b* and o € b such that:
st =1 — (v,0))as and sy =y — (a5 y)a) for zehyED

and let (-, -)s be the skew symmetric form on V' determined by:

(,y)s = cslas,y)(z,ag) for webyeb and {a,b); =0 if abebh” or abebh

Let H be the Drinfeld-Hecke algebra corresponding to W C GL(V) and the defined

collection of skew symmetric forms. Then
H~TV @ KW/I

where [ is the ideal generated by the relations,

yr =y + wlz,y) — Y cslas,y)(w,al)s for zebhyeh (2.2.1)

seT

and
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ab="ba for a,beb* or a,beb.
Corollary 2.2.1. As a vector space,
H~ SH*) @k S(h) @x KW (2.2.2)

Proof. We must verify that the collection of forms (-, -),, defined above satisfies the conditions
(7) and (ii) of Corollary (2.1.2). Condition (i7) is satisfied by definition of (-,-),,. For

condition (i) we observe that

T — (2, Q) 1 ) Q1 = WSW ' = 7 — (T, war! Yway,
so that
(Qwsw—1, Y) (T, alsw_1> = (was, y)(z, wa};)
and hence

<wx> wy>wsw—1 = Cwsw—1<aw5w—17 wy> <U).T, 0{1\1/)3’[1)_1> = Cs <a57 y> <.I', CtZ) = <$7 y>5 for
weW,seT,xebh, and y € h*

This show that the forms (-, -),, satisfy condition (i).
[

The next proposition is a fundamental computation. It expresses some commutators in
H as linear combinations of derivatives and divided differences of elements of S(h*) and S(h).

For y € b, we write 0, for the derivation of S(h*) determined by
Oy(x) = (x,y) for =z ebh* (2.2.3)
and we define a derivation 0, of S(h) analogously.

Proposition 2.2.2. Let y € h and f € S(b*). Then

f—sf_
yf — fy=rO,f — Z cs{as, ) 5. (2.2.4)
seT Qs
Similarly, for x € h* and g € S(h), we have
~1
_g—3s
9T — 19 = KOpg — ch(x, a;/>sga—vg. (2.2.5)

seT

Proof. Observe that if f =z € S(h*), the first formula to be proven is

T — ST_
S

yr —zy = Kk(x,y) — ch<as, Y)

[0
seT s
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and the right hand side may be rewritten as

/ﬁl(:lf, y) - Z Cs<asa y> <£If, O‘;/>§'
seT
So that the formula to be proved is one of the defining relations for H. We proceed by
induction over the degree of f. Assume we have proved the result for h € S¢(h*) and all

d <m. For f,g € SS™(h*), and y € b, we have
v, fal =1y, flg + fly, 9]

- (wyf =S eufan )L - o/ s) g+ f (mayg =Y o) = 893)

seT seT
=@~ 12,00~ L et (15 L sg 4 12720 ) s
seT s s
= w0,(fg) — 3 erfaan, L

«
seT s

by using the inductive hypothesis in the second equality and the Leibniz rule for 9, and a
skew Leibniz rule for the divided differences in the fourth equality. This proves the first

commutator formula and the proof of the second one is exactly analogous.
O

2.2.1 Standard modules

In this subsection we construct the standard modules (also called Verma modules) for H.
Assume that we have fixed a reflection group W € GL(h) and parameters k and ¢, such that
Cwsw-1 = Cg for all s € T and w € W. Let H the corresponding rational Cherednik algebra.
Let V' a KW-module and define a S(h) @ x KW action on V' by

fro=f0p and w-v=wv for weW,feSHh). (2.2.6)
The standard module corresponding to V' is
A(V) = Indg e, xw V- (2.2.7)

Since H is a free S(h) ®x KW-module the additive functor V' +— A(V) is exact. The

PBW theorem shows that as vector space
A(V) ~ S(h) @k V. (2.2.8)

In particular when V' =1 is the trivial KWW-module we obtain from Proposition (2.2.2)

f—sf

A

A(1l) ~ S(h*) with y-f=r0,f— ch(as,y)

seT

(2.2.9)
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for y € h and f € S(h*). These are the famous Dunkl operators and is a fact from PBW
theorem that they commute, but it is possible to prove the commutativity independently [3].
It is a consequence of the definition of the standard module A(V') that for any H-module M

the map
Homg(A(V), M) = Homw (V, Sing(M))

defined by
¢ = olv

is a bijection, where Sing(M) ={m € M|ly-m =0 Yy € h}.

2.3 The group G(r,1,n)

Let r and n be positive integers, and put
C=er.
The group G(r,1,n) consist of all monomial matrices of size n by n, such that each entry is

a r-root of the unity, which means that if A € G(r,1,n):
(a) Each row, and each column have exactly one non-zero entry.
(b) The non-zero entries are powers of .

Thus the G(r,1,n) group is a finite subgroup of GL,,(C) with exactly r"n! elements. If we
fix a positive integer p, such that p divide r, we can form the group G(r,p,n) consisting in
all those matrices from G(r, 1,n), such that the product of all the non-zero entries is a %—Toot
of 1. The group G(r,p,n) is a normal subgroup of G(r,1,n) and the quotient group is cyclic

of order p. For example

¢ 0 0 0 1 0 0 0
0 0 ¢ 0 0 0 0 =
0 -1 0 o |€ G(4,1,4) and 0 -1 0 o |F€ G(4,2,4).
0 0 0 — 0 0 — 0

Many families of well-know groups occurs in the family G(r, p,n). For example:

(a) The group G(1,1,n) is the group of permutation matrices of size n by n. As an abstract

group is isomorphic to .S,,.

(b) The group G(2,1,n) is the group of all signed permutation matrices, also known as the

Weyl group of type B,.

13



(c) The group G(2,2,n) is the Weyl group of D,,.
(d) The group G(r,r,2) is the dihedral group of order 2r.

Now, let
¢ =diag(1,...,¢, ..., 1)

be the diagonal matrix with ¢ in the ¢th position, and let
Sij = (ij)

be the transposition matrix with 1 in the 75 and j7 position, 1 along the diagonal except for

the 72 and jj position, and zero in other positions. Finally, let:
Si = Sig+1

the simple transposition swapping i and ¢ + 1. As an example, in G(r,1,3)

1 00 0 01 1 00
C2 - 0 C 0 S13 — 010 SS9 = 0 0 1
0 0 1 1 00 010

It is straightforward to verify that each element of G(r,1,n) may be written uniquely in
the form
Cw  where  w € G(1,1,n),\ € (Z/rZ)"

and
C/\ =M 2>\2<7/1\n
The multiplication is determined by the rule

(CPo)(¢Mw) = ¢ o,

where G(1,1,n) = S, acts on (Z/rZ)" by permuting the coordinates. Therefore as an

abstract group G(r,1,n) is isomorphic to the semidirect product
G(r,1,n) ~ (Z/rZ)" x S,,.

When working with the group algebra CG(r, 1,n) instead of the group, we will use the

symbol @ as replacement of w € G(r,1,n). Thus

CG(r,1,n) = C-spann{w/w € G(r,1,n)} with multiplication vw = vw.

14



2.4 Irreducible representations for G(r,1,n)

If we consider the symmetric group S,,, we have the notion of cycle-type. The cycle-type
of a permutation is defined as the unordered list of the sizes of the cycles in the cycle

decomposition of o. For instance, consider the permutation with cycle decomposition
(1,2,3)(2,4)(6)(7,8),

this permutation has cycle-type (3,2, 1,2). Since this is an unordered list, this can also be
written as (1,2,2,3) or (1,2,3,2). Note that the sum of all the cycle sizes must equal to n.
Thus, the cycle-type of a permutation is an unordered integer partition of the size of the set.

Our aim in the next subsection is to generalize this idea to the group G(r,1,n).

2.4.1 Conjugacy classes in G(r,1,n)

Let (*w € G(r,1,n). It cycle type is a sequence (A%, AL ..., \"1) of partitions defined in
the following way: write w = ¢; - - - ¢, as a product of disjoint cycles ¢y, ..., ¢, with lengths
summing to n, and for each 1 < j < ¢ let n; be the product of those ¢*’s such that i is
moved by ¢;. Then

n; = ¢ for some integer 0 < m; <r — 1.

Then for 0 < k < r — 1 the partition A\* has a part of size equal to the length of the cycle ¢;
for each 1 < j < ¢ with m; = k.
There is also a notation of cyclic decomposition. Using the preceding notation, let w; be

the product of those C{\”s such that ¢ is moved by c¢;, and put
d; = wjc;.
Then the set dy, ..., d, is pairwise commutative and we have
Cw =didy - - - d,.

Two elements ¢ and ¢} of G(r,1,n) are conjugate precisely when they have the same cycle
type. Thus the conjugacy classes of G(r,1,n) are naturally indexed by the set of sequences
A= (A2 AL ., A1) of r partitions with total number of boxes equal to n.

In matrix form and up to rearranging rows and columns and ignoring the fixed space,

0 ¢ 0 -~ 0

0 0 <k2 e 0

0 0 0 - (hm
o0 0 -0

15



So that the characteristic polynomial of the cycle d; of length I; acting on C% is
Xl — Ck1+k2+...+kz - x! _ n;
with n; = (™ as defined above. It follows that the eigenvalues of d; acting on C% are
627Timj/7'l]'e2ﬂ'ik/lj for O S k S l] _ 1’

and hence that the eigenvalues of

Cw=d---d,
acting on C" are
e27rimj/rlje27rik/l]- for 1 S] <q and 0 < k < lj —1.

This is a special case of the formula of Stembridge.

2.4.2 Jucys-Murphy elements and the representation of G(r,1,n)

Let
" "
vi= > CspG oand ¢i= > (s
1<j<k<i 1<j<i
0<i<r-—1 0<li<r—1
so that

¢; =Y — i for 1 <7 <n.

Observe that 1; € Z(CG(r,1,17)) is central since it is a class sum. Therefore 11, s, ..., 1,
are pairwise commutative and it follows that ¢, ..., ¢, are also pairwise commutative. The
elements ¢, ..., ¢, are the Jucys-Murphy elements for the group G(r,1,n). The following

proposition records the relations these elements satisfy with a set of generators of G(r, 1,n).

Proposition 2.4.1. The Jucys-Murphy elements satisfy the following relations with a set
of generators of G(r,1,n).

(a) gbi?j:@qbiforlgign and 1 < j <n.

(b) ¢i5i =S —m for L<1<n—1, wherem = » ¢

0<i<r—1

(c) ¢i5; =3¢ for j #i—1,i.
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Proof. If 1 < ¢ < j then s commutes with (_] for all 1 < k < ¢ and it follows that C_j
commutes with ¢;. We have
GoiG = Z CfHSijC;(lH) = i

1<j<i
0<i<r—1

and finally since ¢; = 1); — 1;_ is the difference of two elements that commute with G(i —
1,1,7) it follows that ¢; commutes with (; for 1 < j < 4. This proves (a).
For (b), calculate

— e - —1
¢isi = Z Cfsij(i = 5 Z Cil+13i+1,j(i+1

1<j<i 1<j<i
0<1<r—1 0<1<r—1
— = o l Nl = Si1 — 1=l
=5 | Pis1 Ci+1sz<i+1 = SiQi+1 Cz‘Cz‘Jrl'
0<i<r—1 0<i<r—1

For (c), observe that if j < i — 1, then since ¢; = ¢); — ¢);_1 and s; € G(r, 1,71 — 1), 5; and ¢;

commute. If j >4+ 1, then 5; commutes with all the terms in the sum defining ¢;. O]

Let u be the subalgebra of CW generated by ¢1, ..., ¢, and (i, ...,(,. Let a:u — C be a
C-algebra homomorphism and let V' be a u-module. The a-weight space of V' is

Vo={veV]x-v=a(x)v for all z € u}.

A weight of u on V is a C-algebra homomorphism « : u — C such that V,, # 0. We may
identify a C-algebra homomorphism « : u — C with the list

(1), ey (), (1), ooy (i)
Given a u-eigenvector v € V', we write
wt(v) = (a1, ..., an, ¢, ..., ") if ¢y - v = v and ;- v = Yo for 1 < i < n.
For a CW-module V', we define
wt(V) = {wt(v)|v is a u-eigenvector in V'}.

Lemma 2.4.2. We have that

(a) The algebra u acts semisimply on each CW -module V.

(b) Let V' be a CW- module and let v € V' be a u-weight vector of weight

wt(v) = (ay, ..., an, ¢, ..., ")

Then
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(@i, ¢") # (@iz1,C"+1) for 1 <i<mn—1.

Proof. For (a), observe that u is a commutative algebra of operators, and let ¢; is self adjoint
and (; is unitary with respect to any W-invariant positive definite Hermitian form on V.

For (b), suppose that (a;, (%) = (a1, ¢%+1). Computing using Proposition (2.4.1) part (b)
¢:i5i v = (5iQiy1 — m1) - v = (5iip1 — 7)V = @50 — 1V

and hence
(¢ — ai)5i - v = —rv # 0 while (¢; — @;)*5; - v = —(d; — a;) - 70 =0,

so that 5; - v is a generalized eigenvector, which is not an eigenvector for ¢;, contradicting

part (a).
]
The intertwining operator o; is defined on a CW-module V' by the formula
1
cv=35-v+——m-v if veV and wt(v)= (ai,..,a,,¢", ..., C").  (2.4.1)
a; — Q41

The definition makes sense by lemma 2.4.2.
Proposition 2.4.3. Let V be a CW -module and let v € V with wt(v) = (a1, ..., an, ", ..., ).
(a) wt(o;-v) = s;-wt(v), where S, acts on the set of 2n-tuples by simultaneously permuting
the first n and second n coordinates.

(ai — aipy1 — m)(a; — a1 + ;) '

(ai - Gz‘+1)2

(8) 0?0 =

(C) 0i0i+10; "V = 04107041 * U

Proof. All parts of the proposition are straightforward calculations, although part (c) is
lengthy. O

Now we want to give a combinatorial description of the set of possible weights for CWW-
modules. Now we introduce the necessary definitions to do this. A r-partition of n is a
sequence A = (A, ..., \"71) of partitions such that the sum of all the boxes of all the partitions
is n. A standard r-tableau T on ) is a filling of the boxes of the partitions \°, ..., \"~! with
the integer 1, ..., is such way that the entries within each partition A\’ are increasing in the

rows and the columns. For example

A: ) 7®
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is a 3-partition of 12. And a standard 3-tableau on A could be

2[3[7 4]5]6
115]14]6]11 112]17]8/9
B L0 or EIR 0. (2.4.2)
12 12|

We also define the content of a box b € X' by j — k, if b is in the k row and in the j column
from \'. We write it ct(b) = content of b. Let T(i) for the box b of A in which i appears,

and define the function 8 over the set of all boxes of X in the following way:

B(b) =i if b e .

The content vector of a tableau T on \ is the sequence ct(T) = (ay, ..., an, %, ..., (") where
¢ =e¥/" a; =r-ct(T(i)) and b; = B(T(i)). For instance, if we consider the first 3-tableau

of our last example we get that the content vector is

Ct(T) = (07 07 3a _3a 3) 07 67 _37 _67 _37 37 _97 g07 C17 Cla <17 CO’ g1, <17 CO’ C17 <17 Cla Cl)

Theorem 2.4.4. Each CW-module V' has a basis consisting of simultaneous eigenvectors

foru. If v € V is non-zero and wt(v) = (aj, ..., an, ¢, ..., C") € wt(V) then

(a) For each 1 < i <mn either a; =0 or there is some 1 < j < i such that

¢t = (% and a; =a; £r
(b) If 1 <i<j<n and (a;,¢") = (a;,C%) then there are i < k <1 < j with
Cor = ¢ = ¢ and {a; +r,a; — r} = {ay, a;}.

(c) If a 2n-tuple (ay, ..., an, %, ..., o), where ¢ = >/ b; € 7, and ay, ..., a, € C, satisfies

(a) and (b), then there is a r-partition \ and a tableau T' on A\ with

Ct(T) = (ah ceey Apy,y Cbl7 "'7Cbn)

(d) If V is an irreducible CW -module, then there is a r-partition A of n such that

wt(V) = {ct(T)| T is a tableau on \}

and the u-eigenspaces on V are one-dimensional.
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Proof. First observe that a; = 0 since ¢; = 0. Now, if a; # 0, then by using parts (a) and (b)
of proposition (2.4.3) we concludes that either ¢% = (% and a; = a; + r for some 1 < j < i,
or one may apply a sequence of intertwiners to v to obtain an eigenvector with a; = 0. This
proves (a).

For (b), first we prove that we cannot have (a;, (%) = (a0, (%*2). Otherwise, by using
Lemma 2.4.2 part (b) and Proposition (2.4.3) parts (a) and (b) we have

op-v, i+ =¢% and ai =a; £ (2.4.3)

Suppose for instance that a;,.; = a; + r. Then

Ozs_i-v—l—;v:s_i-v—v, (2.4.4)
a; — Qi1
whence
5;-v=v and similarly s, -v=—v. (2.4.5)
Therefore
—V = §;5;118; * U = 5;418iSi41 UV = 0, (2.4.6)

and this is a contradiction. The case a;;; = a; — r is similar. Thus (a;, (%) # (a0, C0+2).
Thus, if 1 <i < j < n and (a;, ") = (aj,¢%) we have j — 1 > 3. Assume that (b) is false
and choose a counterexample with 7 —¢ minimal. Then by Proposition 2.4.3 and minimality
of j — 1 we have

aiy1 =a; £r=a;_, and (Vi = (b= (b1, (2.4.7)

Again by minimality of j — 1 and the fact that ¢ + 1 # j — 1 proved above, there is some k
with 14+ 1 < k < j — 1 with
ar =a; and (% = (b, (2.4.8)

contradicting minimality of j — 1. For (¢) we work on induction on n. The base case n = 1
is using part (a). For the inductive step one may assume given a tableau 7" on a r-partition
p with ct(T") = (ay, ..., @n_1, ", ...,¢%1). One attempts to build a new tableau by placing
a box labeled n on the end of the a,th diagonal of the partition p’». Using (a) and (b) one
checks that this indeed gives a tableau T with ct(T) = (ay, ..., an, ¢, ..., ).

Finally we come to (d). Consider the vector subspace
U = C-span{o;, 04, - -0, -0} CV (2.4.9)

spanned by all the words in the intertwiners applied to v. Since each element in this set is
a u weight vector, U is stable under ¢; for 1 < i < n. On the other hand, if v € U and
1 <7 <nthen g;-v" € U and hence

1
—  m Y evu. (2.4.10)

!/

S5 =00 — =
U ]
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Where aj,a;,, € C are the weights of ¢; and ¢;; on . Thus is a CW-submodule of V'
whence U = V by irreducibility.

Suppose that wt(v) = (ay, ..., an, ", ..., (") is a weight of V, T is the tableau with ct(T') =
(ag, ..., an, ¢, ..., %), and that s; - T is not a tableau. On the one hand, one checks that
s; - wt(v) is not the content vector of a tableau and it follows from the previous parts of
the theorem that o; - v = 0. Therefore since U = V the weights of V' must all come from
tableaux on one partition A. On the other hand, one checks that if 7" and 7" are two tableau
on A, then there is a sequence s;,, ..., 5;, of transpositions such that 7" = s;,...s;, -T" and with
each s;...s;, - T a tableau on A. It follows that the content vector of all tableau on A actually
occur as weights of V.

For the assertion about the dimension of the weight space one observes that if the weight of
0j,...04, - v is the same as the weight of v, then s;,...s;, - T'=T, where T' is the tableau with
ct(T') = wt(v). Thus s;,...s;, = 1 in S,. Now since the o;'s satisfy the braid relations and

their squares are multiplication by a constant on each weight space, we get that
oi 05, -v=cv forsome ceC. (2.4.11)

(Here we use the fact that (S,,{s1,...,Sn—1}) is a Coxeter System). This shows that all

weight spaces are one-dimensional and completes the proof of the theorem. O

Now we wish to normalize the GZ basis in a particular way. Let Ty be the row-reading
tableau on the r-partition A. Tj is obtained by inserting the numbers 1,2, ...,n into A from

the left to the right and from the bottom to the top and working from A\° towards A"~*. Thus
for the 3-partition -
= (FHER)

we have ‘ ‘ ‘ -
11213]]5/6]8
Ty = —].
’ <4 7] ’9)
A sequence s;,,...,s;, of simple transpositions is admissible for a tableau T', if for each

1 < j < q we have that s;;...s;, - T"is a tableau. The length [(T) of a tableau on A is the
smallest number ¢ such that is an admissible sequence s;,...s;, for the row reading tableau
Ty with

Sip-Siy - To =T, (2.4.12)

If s, ..., 55, is another such sequence, then one checks that

Siy .8y = Sji -8, Sy, (2.4.13)
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We fix a GZ vector vy, with
wt(vg,) = ct(Th) (2.4.14)

and define the standard GZ basis of S* by
vp = 04, - 04, - 1o (2.4.15)
for any minimal length admissible sequence s;, ...s;, for Ty with
Siy..-5i, - To =T. (2.4.16)

It follows from Proposition 2.4.3 and theorem 2.4.4 that for the standard GZ basis vy,

0 if s; - T is not a tableau
S B if ¢ £ ¢+t or s; - T is a tableau with I(s; - T') > (T
i 0 UT — )
(1 - (a;a,) ) if ¢% = (b1 and s; - T is a tableau with i(s; - T) < I(T)

These formulas become somewhat simpler, if one renormalizes the standard GZ basis.
Let (-,-) be a W-invariant positive definite Hermitian form and define the normalized GZ

basis wr by y
T

<UT7 UT> 1/2

For a tableau T such that s; - T' is a tableau with I(s; - T') > [(T') one obtains

wr = for all tableaux 7" on A. (2.4.17)

(g1, Vs, ) = (0i - vr, 00 - vr) = (vr, 07 - vr)

<UTaUT> if Cbi ;,é Cbi+1
- 2
(1 - (aw:—ai) ) <'UT, 'UT> if Cbi _ Cbi-H

Thus for a tableau 7" such that s; - T is a tableau with (s, - T) > (1)
vg, - T

<UT7 UT> 1/2

w,, if ¢ £ (o

- 2\ 1/2
<1 N (az‘+1—ai) ) Ws,.T lfc = C +1

It follows from this formula and Proposition (2.4.3) that

g; - Wr

0 if s; - T is not a tableau

Ws,;.T if Cbi 7é Cbi+1

o\ 1/2
<1 o (ai+1—ai> ) Ws;-T if ¢ = ¢

Corollary 2.4.5. The irreducible CW -modules may be parametrized by r-partitions A =
(A%, ..., A7) of min such way that, if S* is the irreducible CW - module corresponding to the

r-partition X then S* has a basis vy indeved by tableaux T on X\ with the following properties:
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(a) Let ct(T) = (ay, ..., an, ¢, ..., C) be the content vector of T. Then vr is a u-weight
vector of weight ct(T)).

(b) The G(r,1,n)-action on S is determined by the formulas

G - vr = o

and

Vs, T if ¢ # (i
. tour if s;T 1is not a tableau, a;1 1 = a; £ r
ST = 2\ 2

<1 - (=) ) vr + s=or if siT is a tableau with (% = (b

Proof. Let vr be the normalized GZ basis defined by (2.4.17). Hence the corollary follows
from Theorem (2.4.4), equation (2.4.18), the definition of ¢;, and the fact that

o;-vp =0 if s;-T is not a tableau.

O
2.5 Rational Cherednik algebra for G(r,1,n)
We remember some notations. Let
(=em"m and ¢ =diag(l,...,¢, ..., 1) for 1<i<n. (2.5.1)
Let
S; = Si;+1  where s;;=(ij) for 1<i<j<n (2.5.2)

is the transposition interchanging 7 and j. There are r conjugacy classes of reflection in
G(r,1,n):

(a) The reflection of order two:
Clsi¢;0 for 1<i<j<n 0<I<r-1 (2.5.3)
(b) The remaining  — 1 classes, consisting in diagonal matrices
¢ for 1<i<n 0<i<r—1 (2.5.4)

where ¢! and CJ’?“ are conjugate if and only if k = [.
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Let
vi=(0,...,1,..,0)" and z;=(0,...,1,...,0) (2.5.5)

so that ¥y, ..., y, is the standard basis of h = C" and x, ..., x,, is the dual basis in b*. If

= (¢l al = (P = Oy for s = (2.5.6)
and
as =1 — oy ol =y —(ly; for s = (s (2.5.7)
then
st =z — (r,a))a, and s7'(y) =y — (o, y)a) (2.5.8)

for s € T, x € b*, and y € h. We relabeled the parameters defining H by letting
co=cs and ¢=cy for 1<i<r—1 (2.5.9)

Proposition 2.5.1. The rational Cherednik algebra for W = G(r,1,n) with parameters
K, €0y C1y vy Cr_1 1S the algebra generated by Clxy, ..., x,], Cly, ..., yn] and W for w € W with
relations

wo =wo, wr= (wr)w and wWy=(wy)w

fO?" w,v € W7 YIS C[xb "-7xn]} and Yy e C[yla --'>yn];

Yi%j = T3y + Co Z QerSTenl (2.5.10)
1=0
for1 <i#j<n, and
r—1 . r—1 -
yiwi = aigi+ £ — > _al ==Y D> s (2.5.11)
=1 j#i 1=0

for1 <i<n.

Proof. This is just a matter of rewriting the equation (2.2.1) using our G(r, 1, n) notation.
For1<i<j<n,

yir; = x;m; + K{Tj, i)

Do > (e oy @ e = Clym)Chsim G

1<k<m<n =0

n r—1
—ZZCI “lay, yi) <37j7(€l+1 = Qyr)G
k=1 1=1
r—1 r—1
=2y +K-0—co Z i = 0 = @y + ¢ ZC_leSiijl-
1=0 1=0
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The calculation for 1 < j < ¢ < n is similar. For ¢ = j,

Vit = 2 + k(T Yi)

r—1
—co > > (= o g (i vk = ¢ ) s

1<k<m<n [=0

n r—1
- Z Z alC g, yi) (i, (KM = Qur) G
k=1 I=1
r—1 r—1 r—1 o
=ZTiYi T K—C Z Z ClsimC — co Z Z Chsindy' — ch(l — (NG
1<i<m<n 1=0 1<k<i<n 1=0 =1

]

Now we give an equivalent description of our rational Cherednik algebra, changing the

parameters by s, co,dy, ...,d,_1, and defining d; for all ¢ € Z by the equations
do + d1 + —f- dr—l = O and dz = dj lf Z :j HlOd T. (2512)

Proposition 2.5.2. The rational Cherednik algebra for W = G(r,1,n) with parameters
K,Co,d1, ...,d._1 is the algebra generated by Clxy, ..., z,], Cly1, ..., yn| and @ for w € W with
relations

wo =wv wx = (wr)w and Wy = (wy)w

forw,v e W, x € Cly,...,x,] and y € Cly1, ..., ynl,

r—1
Yi%j = T3Yi + Co Z ¢ (2.5.13)
=0
for1<i#j<n, and
r—1 r—1 .
Yil; = T;Y; + K — Z(dj — dj*1>eij — Cp Z Z CZ-ZSUC;] (2514)
=1 j#i 1=0

for 1 <i <n. Where e;; € CW is the idempotent

r—1
1 T
ey =~ > ¢t (2.5.15)
1=0
Proof. If ¢; is the parameter attached to the class containing ¢!, then the formula
1 r—1
_ —lj
= - d;
l r Z g J
7=0
for [ =1,2,...,r — 1, relates these parameters to the new ones. O
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For p = (ay, ...,a,) € Z let be a# = x{*x5?...xd.

Proposition 2.5.3. Let p € Z and 1 <i <n. Then

xt — (s, i
yirh = aty; + kpgat T — COZ Z C jC C’swC : Zd it ey — ei,j'hui)

J#i 1=0

where e; has 1 in the ith position and 0°s elsewhere.
Proof. The proof of this is replace our data in proposition (2.2.2). ]

We describe the standard modules for the rational Cherednik algebra of type G(r,1,n).
Recall from Corollary (2.4.5) that the irreducible CIW-modules S* are parametrized by r-
partition A of n. Define the standard module A(X) to be the induced module

A(X) = Indéwacy S (2.5.16)
and define the Cly, ..., y,] action on S* by
yirv=0 for 1<i<n and wveSh (2.5.17)
By the PBW theorem for H we have an isomorphism of C-vector spaces

A(N) ~ Clxy, ..., 7] ®¢ S (2.5.18)

2.6 Rational Cherednik algebra for G(r,1,2)

W = G(r,1,2) is the group of 2 x 2 monomial matrices, where each entry is a r-root of unity.

For now we assume that x = 1. By the PBW theorem we have that as vector spaces
H ~ C[.Tl,l'z] Xc Ccw Rc (C[yl,yQ]. (261)
The following proposition give us the relations in H.

Proposition 2.6.1. The relations between y; and yo with an element of the form x7xy' are

gien by:

(a)

r—1 , r—1 ——
n— d; —lj —Iln : 0
pafal = ajafy +ay ey (n— =) U= ¢ )(% 1)>




(b)

o d; 710\
yarfay' = afag'ys +afay” 1(??%-27] C‘“(l—C‘lm)< 0 ¢l ))

Proof. The proof follows from replacing our data in proposition (2.5.3). Here = (n,m) so

xty; = xPxTy;. Observe that

l —1 l l
i (5 ) (5 D) - (5D (& )-(8 )

Hence we have

=1 n.m — n,.m r—=1 T3y — — R ey e AN
_Colexz_dslzgll'%%m:—coz — (Cl 0 ! 2( 0 Cl)
—0 $1—<l$2 ! ! n X1 Cl$2 C_l 0
We need to prove that
r—1 r—1 r—1
d; _ o CE O
Zdj(€17j_€17j+n):' 7J C”(l—Cl)(O 1)
]:0 ]ZO =0

Using the definition of e; ; we have

1 r—1 r—1
—1li A —l(j4+n) ~1
ery = Y and eqyn = -3 (TOTIG
1=0 1=0
and we get
r—1 r—1 —1 r—1 -1

dj(e1; — €144n) =

<
Il
=)
<
Il
=)
-
I
)
<
Il
)
—
I
=)

This proves the relation for y;. For ys the proof follows in the same way. n

We want to describe the action of H in the standard modules. We have three kinds of

0).

r-partition of two, they are:

() A= (0.0 L]
(b) A ( o
() A :( NN ,(2))

27



Where the boxes are in position ¢ and j. The irreducible representations S* and SA are
one dimensional with basis v7. The irreducible representation S is two dimensional with

basis vy, and vr,. The action of W on the irreducible representations S is described in the

following table

i A\
10 , 10 .
(o ¢ )or=cor| (1o ¢ ) or=con
0 , 0 ‘
<(C) 1)'UT:CUT (8 1)'UT:(ZUT
0 1 B o1y
10) oo 10) T
A’L,j
10 , 10 ,
0 C Uy = C]UT1 ( 0 C U, = CZ/UTQ
0 , 0 4
8 1 U = CZUTl ( g 1 ) Uy = CJUTz
0 11 B 0 1Y B
10 ) 'nTn 10) =T 0n

For our later computations we are particular interested in three elements of G(r,1,2):

¢ 0
0 1

(

10
0 ¢

) (o d)

0
C_l

Cl
0

{

) for 0<{<r-—1.

We want to compute the action of these elements in each of the three cases of S*. We have

that

(

0
gfl

¢! 0

0

)=

10

1 1 0

0 ¢

¢ o
0 1

) (1) d)

The actions of these elements in S* are given in the following table:

i A
(o o) em=ctur| (g &) or=cion
%l(l) cvr = (ur (g? ~vp = Moy
(LG )or=or (L g) er=ur
i

(1) 2 cory = (o (0 Cl) = ("o,
o1 )= (G O) = (o,
(&G ) em=comu, (Col ) o=




2.6.1 The action in A())

The elements of A(\) are sums of elements of the form z7x}* ® vy. Our interest is to focus
on how H acts in elements of this form. The elements of C[xz1, x2] act by multiplication and
the group elements act in the obvious way. Our main interest is to focus on how y; and ys

act on the element 727" ® vy. There are three cases:

2.6.1.1 Case 1: A= )\,.
Proposition 2.6.2. The action of y1 and ys in a generic Vx5 @ vr is given by:

(a) Y1 - xyTy @ ur =

p

(n —d; + di_p, — cor)z} ol — cor E a:" br=lymthr | Qup if n>m

[mn

(n—d;i+d;_ n)”le—l—cO'r’Zx”*leg‘m ® vr if n<m

\

(b) yo - 22y @ vp =

;

(m — d; + di_p)xhhy ™" + cor Z p R L @ if n>m

(m — d; + di_py — cor)ziah ™" — cor E x”*kr U @up dif n<m

\
The brackets over the sum ([x]) mean the entire part.
Proof. We prove the action of y;. Note that y; - (2725 ® vr) = y12ah* @ vy and we use the

commutating rules of Proposition (2.6.1). x7x5y; @ vr is zero, because y; acts as zero in S*.

For now we omit the tensor ®vr at the end of each equality.

0 l
1ol r—1 x?ﬂf?—( - ) - ryry
yatey = xiap (n — Z —JZCfl](l — ¢ C”) Z pr—T
_ . 1(i—5) I(i—j—n) | _ — 277y —
SR I (0 W) SR coz <
7=0

L g
n—1 122
= o2y (n—di+diy) — og .




In the first equality we made the group elements act in S* using the action rules. In the

second equality we use (

r—1

¢t o

) catad = (Mgl For the third equality we have

that Z (M =7 if k =0 mod r and it is zero in other cases. This implies that the non-zero

=0

terms appear exactly when 7 =4 mod r or j =i — n mod 7.

We separate in two cases, when n > m and when n < m.

(a) n>m

eyt (n—di + di_y)

r—1
56??6?(?6?
—w)

2 (n — di + di_y) —cole%(‘”

ol (n —di + di_y, —COZ
(=0

2yt (n—d; + di_n) — co

eyl (n—di + dimy — cor) — cor Z x]

=0
r—1

=0

n—-m

k=0
nml
[3

—

o Cl(n—m)xg*m
— (lay
1T = (Clag)™™)
Ty — Cl$2

n—m—1
n—1 m m n—m—1—k ~lk .k
] m(n—d—i—dln—cog ' g ] "y

rlnml

Zglknlkark

r—1
n—1—-k _m+k lk
Ty Lo E ¢
=0

— ¢or E xn 1—kr ;n-i—k’r

[n

k=1

—1

]

n—kr— 1x72n+kr

(Factor x"xb")

(Rewriting)

(%)

(Rewriting)

(Rewriting)

(%)

(Rewriting)

In () we use the factorization (a™ —b") = (a—b)(a" ' +a"2b+a" 30> +...ab" 240" 1)

attached to our case. In (%

zero (when k£ = 0 mod 7).

) we consider the values of & for which the last sum is not

The number of such £ depends on the difference n — m.

There are exactly ["‘Tm_l] + 1 of such k£ in the sum. We have counted these k£ on the

sum and we have rewritten it in terms of a new k.

(b) n<m
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n—1 afay (ay ™" = ¢mmgt )
= ' e (n—d; +di_,) — ¢ Factor x7x%
g N (Factor af})
r—1 n N m—n 1 m—n
n—1 —zyay(vy " — (C'ay) ) fs
= ' (n—d; +di_,) — ¢ Rewritin
1 2 ( ) 0; Cl(xQ _C lxl) ( g)
r—1 m—n—1
= 2Vl (n—di+di_y) —COZ—:E?QJQ - Z D G O
1=0 k=0
r—1 m—n—1
= 27 (n—di + din +Coz Z (TR gtk gk (Rewriting)
=0 k=0
m—n—1
= 1$72n (n—d; +di_) + co Z x’f”kagl_l_kZC_l(kH) (Rewriting)
k=0
[mfn
= 2"l (n—di +diy) + cor Z gtk =tk (%)
k=1

This proves the action of y;. For the action of y we use the relation of (2.6.1) applied

to our case:

0 ¢
r=l gl -1 x{wy — a0 - xtay
n,m __ n %y lm 7
yariay = aiwy'” <m . ZC )¢ > Z 79 — iy
j=0  1=0 =
r—1 r—1 r— 1
— d; i i iem ol — ¢Hm=nm)pman
= gra 1<m— D DI S >)— oy = e 2
7=0 1=0 =0 !

Cl(m n)x $2

2 — Cl$1

In this case the arguments are essentlally the same as before. We separate in two cases,

L gngm
-1 1%
= ated ™ (m—d;+di_py) — co E "

when n > m and when n < m.

(a) n>m
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Cl m— n)In m)

= a2t (m—d; +di_m) — o Z ey (o (factor x"zl)

— (la
m—1 afag (7" = (Clag)™™™) rs
= ¥ —d;i+di_p) Rewrit
afxy (m + Coz —Ql (@ = Ty (Rewriting)
n—m-—1
= 2t N m—d; + di_) —COZ—C_Z:UT:U’QH Z ghmemk etk gk (%)
'r’:ln m—1
= oty (m—d; +di_m) —i—CoZ Z n-l=ke—lktL) pmetk (Rewriting)
=0 k=0 »
= 2 (m—d; +di_) + o a:? 1=k g”““Zg Hk+1) (Rewriting)
k=0
[(*=]
= 2t (m—d; +di_) + cor Z gk g k=l (%)
k=1
(b) n<m
r—1

= 2™ Y m—d,+di_m) — co Factor z7x%
122 122

—o Ty — oy
Tl non(,m-n l m—n
e il (x —(C'x .
= 2ty (m—d; +di_y) — o Z 125 2902 — Cl(xl ) (Rewriting)
1=0
r—1 m—n—1
= 20l (m—d; +di_y) — o Zx’f:vg Z G €Y
1=0 k=0
r—1 m—n—1
= 2t ' (m—d; +di_y) — o Z gt t=k ik (Rewriting)
=0 k=
m—n—1 T
= 2ty (m—d; +di_y) — o ghtngm—i=k Z ¢tk (Rewriting)
k=0 =
[m=n=d)
= ot N (m—d; +di_pm) — cor ghrmgm—hr=1 (xx)
k=0
[m—n—l]
= oty (m —d; + di_pm — cor) — cor Z ghrtngm—hr=1 (Rewriting)
k=1
With this we finished the proof of the action of y; and y, when A = \;. n

2.6.1.2 Case 2: \ =\

Proposition 2.6.3. The action of y1 and ys in a generic Vx5 @ vr is given by:
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(a) y1- 270y @ vp =
( —m—
(=]

n-m-1
(n —d; + di_p, + cor)x? 12l + cor g Rl L @ if n>m
k=1

(n—d; +di_p)x? 2l — cor Z gtk =lym=kr 1 @ up if n<m
k=1
\
(b) yo - 2yay @ vp =
( [n—m]
K
(m — d; + di_p) 2ty — cor Z Rl IR TP if n>m
k=1

m

[===]
(m —d; + di_ + cor) 2y + cor Z gy @ up if n<m
k=1

\

The brackets over the sum ([x]) mean the entire part.

]
Proof. In \* the group element ( C(L % ) acts by —vp in S instead of vy. If we change

¢o into —cg the proof follows in the same way. O

2.6.1.3 Case 3: A=\, ;.

In our third case we have two generators of S* called vy, and vy,.

Proposition 2.6.4. When \ = <®, ...,D, ...,D, - @) and the boxes are in position 1 and

J, the action of y1 and ys in a generic z{zy @ vy, or a generic x}xy @ vy, s given by:

(a) y1 - 22l @vp, =

/ —m—1tj—i
[n m = J z]
-1 n—kr+j—i—1_ m+rk—j+i .
(n —d; + di_p)x} 2 @ vy, — ey E ] I T Qup, if n>m
k=1
{mfnfjﬁ»i]
s
-1 n+kr+j—i—1 m—rk—j+i .
(n—di + di—n)xy™ 23" @ v7y + 70 E wy T T ey dif n<m
k=0,
\ (n—d; +di—p)2? 25 @ vp if n=m
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(b) yr- 272y @up, =

( [n—m—l—j+i]
T
1 n—kr—j+i—1_ m-+rk+j—i .
(n—dj+dj_p)xy™ 28 @ vy, — reg E T Qo if n>m
k=0
I:mfnﬁ»jfi]
T
-1 nt+kr—j+i—1 m—rk+j—i .
(n—dj+dj_p)xy™ 28 @ vp, + e E A Qo if n<m
k=1
n— n y —
\ (n—dj +dj_p)x]  ah @ vp, if n=m

(c) yo - 2705 @y, =

( [n—M—i-H']

-
1 n—kr—i+j m+rk+i—j—1 .
(m—dj 4+ dj_p)xixy ™" @ vr, + reg E ] Iy T @up,  if n>m
k=1
I:mfn+i7j71]
T
n,.m—1 n+kr—i+j _m—rk+i—j—1 .
(m—dj+dj_p)ztzy ™ vy — 1 E x] Ty ®uvp if n<m
k=0
(n—d; +dj_p)x]  ah @ vp if n=m

(d) ys - 22l @ vp, =

( [n—m+i—j]
s
1 n—kr+i—j m4rk—i+j—1 .
(m —d; + di_p)xtxd " @ vp, + e E ] Iy T @un, if n>m

[mf'r]i&»:jqifl]

T

ntkr+i—j m—rk—i+j—1 .
(m — d; + di_p) 2yt @ v, — g g ) T T @up if n<m
k=1
(n—d; +di—p)zt  2h @ v, if n=m

The brackets over the sum ([x]) mean the entire part.

Proof. We prove the relation y; - 2723 ® vy,. In this case, if we use the action in S* we have

that

Y1 - TTTy @ vpy

r—1 r—1
d » ahaly — (mmigmpn
o n—1_m S —ls —In\ ~il 12 1 %2 ~(j—i)l
= I I TL—E 75 A=) ®'UT1_COE : z1 — Clo g( )®UT2
s=0 ' 1=0 1=0 ! 2
r—1 r—1 r—1
d T — C(n—m)lxmwn o
— :L,leflxan n— § ?5 szs)l C(zfs n)l ® vr, — Co E : 142 — Clx 12 C(]*’L)l ® v,
s=0  1=0 1=0 ! 2
r—1 m n—m)l,.m .n
2 §( 5151 Lo

rix
= (n—d; +di_p)r" 2T ®@ vy, — co Z
We have 3 cases.
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(a) (n>m)

= (n — dZ + dz_n)flf?

=(n—d;i+di_n)x}

= (n — dz + dz_n)l'qf
= (n — dl + dzfn)ljll 1

= (n — dl + dzfn)l'? !

(b) (n<m)

=(n—d;+di_n)x}
=n—di+di_p)a? 'z
= (n—di +di_p)a} ™t
=n—d;i+di_p)a? 'z
=n—d;i+di_p)at 'z
=(n—d;+di_p)x}

(¢) (n=m)
= (n — dz + dz_n)l‘? 1

We now need to prove the relation y; -x7
the relations are the same as before and we can repeat the same proof (interchanging i <+ j
and vy, <> vy, in each step of the proof). For the case y, - x5 ® vy, we interchange x; <>

and 7 <> j (note that with this change the case n > m now is the case n < m). With these

1,.m
Ty ®UT1_CO

727L®UT1_CO

r

-1
n,.m n—m)l .m .n
Zwl% —C( )fl )

Leg @ vr, — ¢ o (V@ v,
1=0 2
r—1
T al (x" ™ (Cry)™)
7 ®vr — Co Z A & O @y,
1=0 2
r—1 n—m—1

n—m—1—k ~lk .k ~(j—1)l
E T C ZE2C( ) ® vy,
1

m—
n 1-k m+kc k+j— z)l®,UT

E 2

k=0

-1

n—

FMWM

n—-m

1 1—k_mik k+j
@ v — ¢ g T xy g C( =) ®UT2

[n m—14j5— z]
T
n—1—kr—i+j m+tkr+i—j
MR vr, — TC E ] Iy ! ® vp,
k=1
r—1 nm C(n m)l,.m

a2t — (Tl
1 129 1 L2 . (j=i)l
I?®UTI—COE ; ¢U= ® v,
1 — Clao

P 1 i (Y

C(J'*i)l ® vr
= —(! (w2 = () ’

5 ® v

-1, .k —lk —n—1—k ~(j—1)l
mvﬁw@:xl% > k¢ rapr R @ v,

rlmnl

®UT1 +COZ Z xn+k m k— lg(jfifkfl)l®vT2
=0 k=0

m—n—1 r—1
E k k—1 E j—i—k—1)l
® ,UTI _|_ CO $n+ m C(] 7 ) ® UTQ
k=0 =0

(=]

T

1 n+kr+j—i—1_m—kr—j+i
" ® up + 1o E T T T @ v,

k=0

rhm C(n—m)lwmxn s
®UT1_COZ 142 v 1 2{(3 )Z®UT2

Ty ®UT1
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interchanges the proof follows in the same way as before. For y, - 2725 ® vy, we interchange
i 4> j, x1 <> x9 and n <> m. With these interchanges the same proof works. (They are little
differences in the starting point of the sums. In some cases it is one and in others cases it
is zero. This is because we assumed that ¢ < j and this implies that + — j < 0 and that

j —i > 0. This makes the difference in the step where we use the entire part). O
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Chapter 3

Morphisms between standard modules

3.1 Singular polynomials

In this section we want to describe some polynomials that we call ”singular polynomials”.
This polynomials are annihilated by the action of y; and y,. They are fundamental to
describe the morphisms between two standard modules. We consider the three cases of

standard modules.

3.1.1 Case 1: A= \,.

Proposition 3.1.1. The following are singular polynomials in A(N;):
(a) (2} — 25)* ® v, when co = & for positive odd k.

(b) xxh @ vy whenn —d; + d;_, = 0.

k
l

co(co—1)...(co = 1)
(co—k)(co— (k—1))...(co — (k—=1))

(c) Forkr<n<(k+1)r7@l:(
[5]

(5]
n n—(k=0r (k=0)r n—Ir Ir
p(a1, 73) = o7 + Zalﬂl% B Z afyzy ™"l

=0 =1
when n—d;+d;_, —cor =0 (if co = m is an integer that indeterminates some (3, then

) and ) =

the polynomial is (co — m)p(x1,z3)).

Proof. We prove that these three polynomials are annihilated by y; and y,. We start with
case (b), then case (a) and we finish with case (c).
Case b). Using the formulas and the fact that n — d; + d;_, = 0 we have that:

y1 - xjzy = (n—d; + di_n)x?_lx’g =0
Yo -l = (n —d;y +di_p)atah Tt =0
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Case a) As we now (2] — z5)k = Z (ll{) (—1)la B0 1!

=0

k r k k—1)r k k—2)r or k r (k—=1)r k r
= (O)xlf — (1)$§ 2 Ty + (2)m§ 2 x% — ... F (l{:—l)xlx(z b _ (k)xg .

We apply y; to this element. For this we will construct its matrix respecting to the monomial
bases. We will record this in a form of a table. We construct a table with k£ + 1 rows and &
columns. Each row is indexed by (k — ¢)r for i = 0,1, ..., k, and each column is indexed by
(k—i)r—1for:=0,1,....k — 1. If £ = 7 we have the following table:

k=7|T7r—1|6r—1|5r—14r—-1|3r—1|2r—1|r—1

r
6r
or
4r

3r

2r

1r

Or

We fill in the first % rows of the table in the following way: The first row has % in the first

position and =&«

2
@ in the second position and

in the other positions. The second row has 0 in the first and last positions,

—kr
2

positions 1,2,k — 1 and k, @ in the third and ’T’”’ positions. We continue in the same
kt1
2
example we obtain:

in the other positions. The third row has 0 in the

way. The row has 7 in the center position and 0 in the other positions. If we fill in our
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k=7 m—1|6r—1{5r—1|4r—1|3r—1|2r—1|r—1
o ol [F [ [3[F]o
5r 0 0 I I I 0 0
4r 0 0 0 5 0 0 0
3r
2r
r
0
Now we fill in the last % rows. For this we start with the last row putting % in each

position. The k row has 0 in the first position, r in the last position and k—; in the other
positions. The & — 1 row has 0 in positions 1,2 and k, 27 in position £ — 1 and % in the
other positions. The k — 2 row has 0 in positions 1,2,3,k,k — 1. In position £ — 2 we have

3r and % in the other positions. We continue in the same way. At the end, the row % +1

% in the center position, %T next to the center position (at the right) and 0 in other

positions. If we fill in our example we have:

has

k=7|Tm—-1|6r—1|5r—1|4r—1|3r—1|2r—1|r—1
5r 0 0 & = | £ 0 0
4r 0 0 0 z 0 0 0
3r 0 0 0 I 3r 0 0
2r 0 0 I I I 2r 0

These tables correspond to the matrices of y; acting in the monomials of the form

xgk_i)rmg' for i« = 0,1,...,k. The index of the rows of the table represents the exponent

of 21 in the monomial of degree kr. The kr represents the monomial z%". (k — 1)r represents

xﬁ’“‘”"xg and so on. The index of the columns represents the exponent of z; in the monomial
of degree kr — 1. The kr — 1 represents 25" ~'. (k — 1)r — 1 represents x§’“*1)’”1x5 and so on.
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The entries of the table are the coefficients of the action of y; in the monomials indexed by

the rows. If we want to interpret our k = 7 table we have that:

Y-

Y1 -

Y1

Y1 -

N

U1

hn

Y1+

TXp Xy = A Ty

- T] Ty :7% 5 —l—?xl Ty —i-?xl Tq

1= 5N 2%“’2212212215’72212

5r r r r Tr
6r .r __ 6r—1_r 5r—1_2r 4r—1 _3r 3r—1_4r 2r—1_.5r
EPRE R e SR s

s o _ O 5r—1,,.2r r 4r—1x37‘_7r 3r—1, Ar

"Xy Ly = ?ml 2 _?xl 2 3% Lo
4r 3r 4r—1 _3r
Ty Ty = 2% 2

T 4. _
3r ,.4r 5 4r—1 3r_|_3rxi137" 1x%r

Tr r Tr
2r .57 5r—1,_2r 4r—1,_3r 3r—1 47"_’_27,1,%1“ lxgr

2 2 2 2 2

r r Tr r r Tr
r __ x?r 1+ 5 (157" 1x72"+ 5r 1x§r+_ 4r 1$§T+— 3r—1 4r+_l,2r 1,57

I2—51 ?xl 9 5 1 T

+

T gy 7 g o 7 s [y m . m oo o
T 0 r—1_ "0 6r—1 r__xE)r 1 2r__x4r 1 37"__1_37" 1 4r__$2r 1,57 r 1x6r

5T Ty

2

Tr r Tr r Tr
6r—1 5r—1,.2 4r—1_3 3r—1_4 2%r—1_5 1.6
. x{:tgr = —u) ro+ —a) Ty + —xy xy +——x) xy +—x] x4 ra) xy

r
—I‘T lxgr

2 1

The purpose of this table is the following: If we want the action of y; on (2] — %)

we need the action on each of the monomials that appear in the expansion. These are the

monomials that index our rows. If we multiply each row by the corresponding factor of the

expansion of (z] — z%)

k

our example we get the table:

we get a new table that we use to prove that y; - (2} — 25)% = 0. In

k=7 7r—1|6r—1|5r—1|4r—1|3r—1]2r—1]| r—1
i 50 | 76 | 76 | 76 | F60 | T | TG
Gr 0 | -5O) | 50 | 56 | FQ) | FO | 0
5r 0 0 | 56 | FE) | TG | 0 0
4r 0 0 0 (%) 0 0 0
3r 0 0 0 =® | 3 0 0
2r 0 0 -5 |[-56) | -F6) | -2 | o0

r o O | 5O | 5O | FO | 5O | 0
0 -50) |50 | -50) | -50 | -50) | -5 | -5
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If we want to prove that y; - (27 — 2%)* = 0 we need to prove that the coefficients on each
column add up zero. We prove this column by column. We reorder the columns of the table
for a better visualization. First we put the first column, then we put the last column, then
the second column, then the £ — 1 column and so on. In our example we get the following
table:

k=7 m—-1| r—1|6r—1|2r—1|5r—1|3r—1]| 4r—1

o 50O 50 70 0 | 0 | 6 | 50

6r 0 0 150 56 | 5O | 30 | 36

R ERECIEIED

4r 0 0 0 0 0 0 (%)

3r 0 0 0 0 0 ar(5) | Z()

S EEEEEEECIECIETIET

: BEOERIECEEECRED

0 50 |50 150 |50 | -56) | =56 | -50)

The first column adds up zero. In this new table the sums of the nth column and (n-+1)th

column for even n, are equal. The reason is that in the n-column we have (—1)%“% I;
2

n
2

n (k— k 0 kr [k
and in the (n + 1)-column we have (—1)2%< > and (—1)2“%( ) If we sum up

n
2

the coefficients of the (n + 1)-column we have

i (y) =0 ()

It follows that we only need to prove that the sum of the coefficients of the even columns is

0. The sum of the even columns is equal to

S (B (o

Ss=

In this case n € N and the sum corresponds to the 2n column. We prove by induction over

n that: -
> (=1 (i) kr + (=1 (i) nr = 0.

s=0
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For n =1 we have —kr 4+ kr = 0. Now for n + 1 we have:

zn:(—l)s+1 (i) kr+ (=1)" (n _]i 1) (n+1)r

s=0

- n_l( 1)** (k) kr+ (—1)"*! (k) kr + (=1)" (nil) (n+1)r

1)”“( )kr—l—( 1" +1)(n+1)
b ke + (<1)" nf_l)(n—l—l)r

= (=1)" nr+ (—1)"*
kr + (—=1)" i) (k —n)r

S >3
3%3??‘

nr + (—1)"Jrl

We have used the induction hypothesis in the second equality.

We have proven that the sum of the elements in each column is zero. This means that
y1- (25 —25)* = 0. Now we need to do the same for y,. For 3 the tables are exactly the same,
but now the interpretation of the index of rows and columns correspond to the exponent of
T3 in the corresponding monomials. We can conclude that (2] — z5)* is annihilated by
and y,. We have finished the case a).

Case c¢) We construct tables in a similar way than case a). First we assume that k is
odd. We construct a table with k£ + 1 rows and k£ + 1 columns. The rows are indexed by

k—1 kE+1
(n,n—r,n—?r,n—i’)r,...,n— 5 T, — ;—T,...,n—kr>

and the columns are indexed by
m—r—1n—-2r—1,.,n—kr—1).

As an example we construct the table for £ = 5.

k=5 |n—r—-—1|n-2r—1|n—-3r—1|n—-4r—-1|n->5m-1
n

n—r

n—2r

n— 3r

n — 4r

n — or
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The first row is filled in by —cgr in each entry. The second row is filled in by —r in the first
entry, 0 in the last entry and —cyr in the other entries. The third row is filled in by 0 in the

first and in the two last entries, —2r in the second entry and —cyr in the other entries. We

continue until the row indexed by n — £1r is filled in by —cor in the center position, —&=1r
Yy 2 Yy 2

at the left side of the center and 0 in the other positions. In our example we can fill in the

first 3 rows and we have:

k=5 |n—r—1|n—-2r—1|n—-3r—1|n—4r—1|n—->5mwr-—1
n —cor —cor —cor —cor —cor
n—r —r —cor —cor —cor 0
n—2r 0 —2r —cor 0 0

n— 3r

n —4r

n — or

We need to fill our last rows. First our last row, which is filled in by (¢ — k)7 in the
last position and cgr in the other positions. The second from the bottom to the top is filled

in by 0 in the first and in the last position, (¢g — (k — 1))r in the second from right to left

and cor in the other positions. We continue until the row indexed by n — %r is filled in by
(co — %) r in the center position and 0 in the other positions. In our example we get:

k=5 |(|n—-r—1|n—-2r—1|n—-3r—1|n—4r—1|n—->5ir-—-1

n —cor —cor —cor —cor —cor

n—r —r —cor —cor —cor 0

n—2r 0 —2r —cor 0 0

n—3r 0 0 (co — 3)r 0 0

n —4r 0 cor cor (co—4)r 0

n — 5r cor cor cor cor (co — B)r

We interpret this tables in the same way as in case a). The numbers indexing the rows are
precisely the exponents of the z; in the monomials of p(xy, z5). We need to consider in our
table the coefficients of each monomial of p(z,xs). For this we multiply the last row by
aofp. The next row, from the bottom to the top, we multiplied it by «1/5;. We continue
ktly yow, which is multiplied by Qrnt BnT—l. The first row stays equal. From

2
the second row to the (n — %) row we multiply each entry by a8y, asf1,..., @x—1P%-3. In
2 2

until the n —

our example we have the table:
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k=5 |n—r—1|n—-2r—1| n—3r—1 n—4r—1 n—>or—1
n —cor —cor —cor —cor —cor
n—r —rayf —coranfy —cora By —corai 0
n—2r 0 —2ras 5y —coran 4y 0 0
n—3r 0 0 (co — 3)ranfs 0 0

n —4r 0 coray By coray Py (co — 4)ran by 0
n—>5r | coraobo | coranfo coraoo cor oo (co — 5)ranSo

We need to prove that in this table the columns add up 0. First we reordered the columns
to have a better visualization. We start with the last column then the first column and we

continue so on. We delete the r in each entry because it appears in each factor. In our

example we have:

k=5 n—o5r—1 |n—r—1| n—4r—-1 |n—-2r—1| n—3r—1
n —cp —Cp —cp —Cp —Cp
n—r 0 —a fy —co1 o —co1 o —co1fo
n—2r 0 0 0 —2a53 —coaia 3
n—3r 0 0 0 0 (co — 3)a s
n — 4r 0 0 (co —4)an coa By coa By
n—>5r || (co —5)aofo | coofo oo oo oo

First we prove that, if the ¢ column adds up zero, then the £ — 7 4+ 1 column will add up
zero. For this, these two columns involved only differ in the factors of the middle. In the ¢
column we have (¢o — (k — 1))y and in the i+ 1 column we have —(I 4+ 1)a;416; and coay ;.

We only need to prove that
(co— (k=1)uf = coouy — (I + 1)y B
This is true, if
(l{i - l)Oél == (l + 1)()él+1,

which is true, if we use the definition of ;. Now we prove that the odd columns add up 0.
Note that the sum of coefficient of the odd columns is:

n

—Co — Z coouBi—1 + Z coq—1B1-1 + (co — (k — n))a,fn
=1

=1
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(here n correspond to the 2n + 1 column). Rewriting this, we need to prove that for n =
0,1,2,...

—c (1 + Z(al — ag_1)51_1> + (co — (kK —n))a,B, = 0.

We proceed by induction. For n = 0 we have —cq + (co — k)aofy and using the definition of

g and [y we get
Co

—Cp + (CO — /{Z) =0.

Co—k

Now assuming it works for n we need to prove that

—Cp (1 + Z(al — Oél_l)ﬁl—1> + (C[) — (lﬂ — (n + 1)))an+1ﬁn+1 =0.

=1
We have:
n+1

—co | 1+ Z(Oél - Oél1)ﬁl1> + (co— (k= (n+1)))otni1Bnt1

=1

=1
n

= —C (1 + Z(Oﬂ —oq1)Bi-1 + (g — 04n)ﬁn> + (co = (k= (n+1)))@nt18n41

= —¢ |1+ = oy-1)fi-1 | + (co = Qn
=1
_(CO - (k - n))anﬂn - CO(an+1 - O‘n)ﬂn + (CO - (k - (n + 1)))an+16n+1
k—n k—n co—n—1
= - — — — — 1
COanﬁn_‘_(k n)anﬁn Co n+1an Qp /6n+(60 k+n+ )n—{—lanc(]—k—i—n—i—l

k—n
- _C(]Oénﬁn + (k - n)anﬁn — Co "+ 1an — Oy ﬁn
k—n
(. o -n —n)(cg—n —
= Co+k n Con+1+00+ n4+1 )anﬁn
(k—n)(n+1)—co(k—n)+ (k—n)(co—n—1)

= Oénﬁn
n—+1

= 0.

We have used the induction hypothesis and considered
k—mn co—n—1
Opy1 = 1an and Bn—H:COE/{?—I—TL—f-an'

We have finished the case when k is odd. Now we assume that £ is even. This case is almost
the same. Now our starter table is filled in by —cgr in the first row. The second row is filled
in by —r in the first position, 0 in the last position and —cyr in the other positions. The
third row is filled in by 0 in the first and the two last positions, —2r in the second position
and —cor in the other positions. We continue until the g + 1 row, which is filled in by —gr

in the g position and 0 in the other positions. The remaining rows are filled in the same
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k
way as before. The row indexed by n — (g + 1) r has cor and (CO — <— + 1)) r in the two

center positions. We can see the table for k£ = 6.

2

k=6 |[n—r—1|n—-2r—1|n—-3r—1|n—-4r—-1|n—-55wr—-1|n—-06r—1
n —cor —cor —cor —cor —cor —cor
n—r —r —cor —cor —cor —cor 0
n—2r 0 —2r —cor —cor 0 0
n—3r 0 0 —3r 0 0 0

n — 4r 0 0 cor (co—4)r 0 0

n —br 0 cor cor cor (co—5)r 0

n — 6r cor cor cor cor cor (co—6)r

We need to add the coefficient of p(z1, x2) to our table. The first row stays the same. Starting
by the second row, until the row indexed by n — (% — 1) r, we multiply each entry by a5y

) 0@61 9 e

, k4 fr. The other rows are multiplied by a8y, @151, cefs,...,ax B from the
2 2 2 2

bottom to the top. In our example we have:

k=6 |[n—r—1|n—-2r—1|n—-3r—1| n—4r—1 n—>5—1 n—6r—1
n —cor —cor —cor —cor —cor —cor
n-—r —roifly | —coraifBy | —coraif —corai B —corai B 0

n —2r 0 —2ran —coran —coran 0 0
n—3r 0 0 —3rasfs 0 0 0

n — 4r 0 0 cor a3y (co — 4)ranSs 0 0
n—or 0 coran P coa1 Py cora B (co = B)rarfr 0

n — 6r coraip o coraoo coraoSo coraoo corapPo (co — 6)raofo

Reordering the table to have a better visualization and deleting r in each factor, we get the
following table:
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k=6 n—6r—1 |n—r—1| n=5r—1 |n—2r—1| n—4r—1 |n—3r—1
n —Co —Co —Co —Co —Co —Co
n—r 0 —a1fo —co1 5o —co1 B —co1 B —co1 B
n—2r 0 0 0 —2a5 41 —coan 3y —coa
n—3r 0 0 0 0 0 —3a3 3
n —4r 0 0 0 0 (co — 4) a3y coig 3o

n — 5r 0 0 (co — By fy coa B1 coa B1 coov1 B

n —6r | (co —6)aofo cooo coo o coo o cooJo coo o

To finish the proof we need to prove that the columns of the last table add up 0.

This table

has the same structure as the table for the odd value of k so the same proof works in this

case.

In addition, if ¢cg = m and ¢y — m indeterminate some [3; then the polynomial that we
are looking for is (co — m)p(x1, 22). This new polynomial works, because the factor (co —m)

appears almost in degree one in the denominator of some coefficients. Now we need to prove

that yo also annihilates the polynomial, but as in the case a) the system involved is the

salne.

Example 3.1.2. Suppose that we have the following data:

e r—4

Then you have that

This is a condition of case ¢) when A = \;. k = 3 because

The corresponding polynomial is

3-4<13<L4-4.

13—di+di13—cor=13—1-10—2=0.

13 12 5.8 9.4
p(x1,x2) = 277 + agbor125” + a1byxixs + a1boxiws.
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We calculate now ag, a1, by, b;.

3 Co 1

— —1 by — -

“=\o P
3 Co(CO — 1) 1
“= 1 ' lw—3) (-2 15

This implies that the polynomial is:
1 1 3

pzy, m9) = 27° — —xy25° — —2bah — —ala).

) 5) )
This polynomial is annihilated by y; and y in A(A;). We can find more conditions and

therefore more polynomials. In these values of the parameters the other singular polynomials

e r — 3 annihilated in A()\;) for all i =0,1,2,3
210730 annihilated in A(\)
ritad! annihilated in A(\)
219239 annihilated in A(\3)
xixd annihilated in A(\3)

21’ — 332§ — 22925 annihilated in A(\)
3 annihilated in A(\;)

T annihilated in A(\y)

3.1.2 Case 2: A\ =\,
Proposition 3.1.3. The following are singular polynomials in A(\?):
(a) (x] — 25)F ® v, when ¢ = =% for positive odd k.

(b) zhaly ® vy whenn —d; +d;—, =0

k Co(Co+1)...(Co+l)
Forkr<n<(k+1r, q= d g =
(¢) Forkr<n<(k+1r, a (z) B = ) (o + (k= 1)) (o + (k= 1)
] k—U)r (k-1 &
p(x1,22) = 2] + Z oqﬂlxl_( N )Txg 4 Z Byl
1=0 1=1
when n — d; + di—, + cor = 0 (if co = —m is an integer that indeterminates some [3y,

then the polynomial is (co +m)p(xy, x2)).
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Proof. The proof in this case is similar as in the )\; case. We only need to change ¢y into
—Cp. ]

Example 3.1.4. Suppose that we have the following data:

e r=4 e dy =0
o dy=2 o ds=0
.d1:—2 OCOZ—B

We have the condition
14—ds+dsa+4-(—3)=14—0-2—12=0.
This is a condition of case ¢) in A(A3). k = 3 because
3-4<14<4-4.
The polynomial is (in first instance):
p(x1,29) = 21 + apborizy® + arbyxial + arborzs.

We calculate ag, ay, by, b;.

3 Co
“0=\0 0T o+ 3
3 CO(CO + 1)
“= 1 ' (oo + 3)(co + 2)

In this case the denominator is zero for ¢g = —3. We multiply the polynomial by (cq + 3)

and we get:

2 12 CQ(CO + 1)
= 33—
p(il?l, .1’2) Col1 Ty + o 9 X

We can simplify by ¢ to have the polynomial:

6.8 10,4

1Ty + 3coTy T
_ 212 6.8 10,4

p(a1, x3) = xiwy” + 62725 + 37 5.

This polynomial is annihilated in A(A3). The other singular polynomials are:

rixd annihilated in A(\g)
272 annihilated in A(\3)

210 + 3z328 + 6297 annihilated in A()\;) and A(\y)
2223 + 62925 + 32{%3  annihilated in A()\)
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3.1.3 Case 3: A=\, ;.

Proposition 3.1.5. The following are singular polynomials in A(N; ;) fori < j:

(a) p(l‘1,$2 (.1'1 —I—Zblxn lr l’") ®UT1 _|_Zaxn Ir+j—i lr ]+Z®U

Wherek;r<n+j—z<(k;+1) —d; —|—d1 n=0,8=j—i—dj+d; —1tr, s, #0
and a;, by satisfy the system:

Z) S1a1 = CoTr
2) si = Sp_ip1ap—i11 for 1 <1< [EH]
3) by = (k—Dbgy for1 <l < [%}

-1 kE—92i
4) (ll:%(z ] jbk_j—l—l

=1

v (g (4 )

J=

(if sy = 0 for some t, then the polynomial is s; - p(xq,x2)).

k-1
Ir n—Ir lr+j—i_ n—lr—j+i
(b) p(x1,x0) = <x2 + g by ) ® v, + g a1y 7y ® v,

1=0
Where(k—l)r<n+1—]<kr n—dj+di_,=0,s,=i—j—d;+d; —(t—1)r

and ay, by satisfy the same system as before. (if s, =0 for some t, then the polynomial
is 8¢ - p(x1,xa) ).

k

(¢) p(x1,m2) = (2} @ vp, — 2 @ vpy) + > ay (27725 @ vy, — 272~ @ )
=1
Wheren =1 —j+ (k+1)r , n=d; —d; +rcy and a; are defined for 1 <1 < [%] by:

D o= = e e — = 1) (o= k= (= 1)

2) s — Leolo=1)leo —2)..(co ~Dk(k —1)..(k— (1= 1))
= (co— ) (co— (k= 1))(co— (k — 1)

5)) = C()CE k

If k is an even number we compute ar considering the definition of a; instead the
2
definition of ar_;. If co is an integer m such that the denominator of some a; is zero,

then the polynomial is (co — m) - p(xy, x2).

20



k

(d) p(x1,22) = (2] @ vpy + 25 vpy) + Z ar (z77"a @ vp, + 2i'al T @ v,
I=1
Where n =i —j+ (k+1)r , n=d; —d; —rco and a; are defined for 1 <1< [EH] by:

colco+1)(co+ (U —=1))k(k—=1)...(k—(1—-1)
(co+ k)(co+ (k—1))...(co + (k — (I — 1))
%) apy = 1eo(co+1)(co+2).-(co+ Dk(k—1)...(k = (1= 1))
ST (co+k)(co+ (k—1))...(co+ (k= 1))

Co
Co—f-k’

If k is an even number we compute ax considering the definition of a; instead the

1) al:%

5)) ap —

definition of ap_;. If co is an integer m such that the denominator of some a; is zero,
then the polynomial is (co +m) - p(x1, T2).

k

(e) plar,a2) = (a1 @ v, —af @ vn,) + 3o (217ah @ vp, —aflay ™ @ vry)
1=1
Wheren = j —i+kr ,n=d; —d; +rcy and a; are defined for 1 <1 < {%} by:

coleo — 1)e(co — (I — D)k(k — 1) (ke — (1 — 1)

Doa=q (co—k)(co— (k- 1))(co— (h— (I —1))

2) Gy = lCO(CO — 1)(60 — 2)(00 - l)k’(k’ — 1)([€ — (l - 1))
ST (co— E)(co — (k —1))o(co — (k —1))

3) W= COCE k

If k is an even number we compute ax considering the definition of a; instead the
definition of ar_;. If co is an integer m such that the denominator of some a; is zero,
then the polynomial is (co — m) - p(xy, z3).
k
(f) plx1,22) = (2} @ v, + a5 @opy) + Y ar (27 "wy @ vg, + a2y @ vry)
=1

Wheren =j —it+kr ,n=d; —d; —rcy and a; are defined for 1 <1 < [%} by:

0 o= 1colco+ D)e(eo+ (L= 1)k(k = 1).(k — (1= 1)
O a+R) o+ (k= 1)(co+ (k= (1 1))

2) a o lCO(CO + 1)(60 + 2)(00 + l)k(k — 1)(/{7 — (l — 1))
ST (co+ k)(co+ (k—1))...(co + (k= 1))

3) W= Coc—|0—]€

If k is an even number we compute ax considering the definition of a; instead the
definition of ai_;. If co is an integer m such that the denominator of some a; is zero,

then the polynomial is (co +m) - p(xy, x2).
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Proof. Case a) We construct a table in a similar way as before. The table that we construct

has 2k rows and 2k — 1 columns. As an example we construct a table when & = 4 and k = 5.

Define N=n+j7—1i—1.

] k=4 Hn—l—r‘n—l—Qr‘n—l—BrHN—T‘N—2T\N—3T‘N—4r‘
n 0 0 0 —cor —cor —cor —cor
n—r —r 0 0 0 —Cor —coT 0
n—2r 0 —2r 0 0 0 0 0
n—3r 0 0 —3r 0 cor cor 0
n+j—i—r —cor —cor —cor S1 0 0 0
n+j—1i—2r 0 —cor 0 0 S9 0 0
n+j—1i—3r 0 cor 0 0 0 S3 0
n+7j—1i—4r cor cor cor 0 0 0 Sy
‘ k=25 Hn—l—r‘n—l—2r‘n—1—3r‘n—l—4r‘N—T‘N—Qr‘N—Br N—4T‘N—5T‘
n 0 0 0 0 | —cor —cor —cor —cor —cor

n—r —r 0 0 0 0 —cor —cor —cor 0
n—2r 0 —2r 0 0 0 0 —cor 0 0
n—3r 0 0 —3r 0 0 0 cor 0 0

n — 4r 0 0 0 —4r 0 cor cor cor 0
n+j—i—r —cor —cor —cor —cor S1 0 0 0 0

n+j—1—2r 0 —cor —cor 0 0 So 0 0 0

n+j—1—3r 0 0 0 0 0 0 S3 0 0

n+j—i—4r 0 cor cor 0 0 0 0 S4 0

n+j—1—5or cor cor cor cor 0 0 0 0 S5

In these tables the color gray means tensor vy, and the color white means tensor vp,. It is

simple to fill in these tables, independent of the value of k. We do not describe this filling in

general, because these examples are illustrative. We multiply each row by the corresponding

factor to get the following tables:

| k=4 |n-1-rln-1-2r|n-1-3 [ N-r|[N—-2r[N-3r|N—dr|

n 0 0 0 —cor —cor —cor —cor
n—r —rby 0 0 0 —corby | —corby 0
n—2r 0 —2rby 0 0 0 0 0
n—3r 0 0 —3Tb3 0 Co’l”bg C()T’bg 0
n+j—i1—r —coraq —coray —coray s1aq 0 0 0
n+j—1—2r 0 —coras 0 0 Soy 0 0
n+j—1—3r 0 coras 0 0 0 S3a3 0

n+j—1—4r CoTray CoTay CoTay 0 0 0 S4G4
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k=5

Hn—l—r‘n—l—2r‘n—1—3r‘n—l—4r‘ N*T‘N*QT"N*Z‘]T

n 0 0 0 0 —cor —cor —cor —cor —cor
n—r —rby 0 0 0 0 —corby | —corbi —corby 0
n—2r 0 —2rb,y 0 0 0 0 —corby 0 0
n —3r 0 0 —3rbs 0 0 0 corbs 0 0
n—4r 0 0 0 —4rby 0 corby corby corby 0
n+j—i—r —coray —Coray —Ccoray —coray s101 0 0 0 0
n+j—1—2r 0 —coras —CoTas 0 0 SoQs 0 0 0
n+j—1i—3r 0 0 0 0 0 0 S3a3 0 0
n+j—1—4r 0 CoT iy CoT Gy 0 0 0 0 S40y 0
n+j—1—5or | eoras CoTas CoTas CoTas 0 0 0 0 Ssas
The first column of the white part says that
ai181 = CoT,

which is the first part of the system. Now if we look only at the white part we can see that
the [ column and the £k — [ + 1 column have the same first £ entries. In the other entries
we have q;s; in the [ column and ag_;1S5_;+1 in the £k — [ + 1 column. This implies that
;8] = Qp_141Sk—1+1, which is the second part of the system. If we look at the gray part we
can see that the last £ — 1 entries are the same in the [ column and in the k£ — [ column.
We can also see that the first k£ — 1 entries of these columns are —Irb; in the [ column and
—(k —1)rby_; in the k — [ column. This implies that Ib; = (k — [)by_; ,which is the third part
of the system. For the fourth part of the system we have to look at the white part of the

table. We have: -

;s = cor + E corbj — corbi—;j.
=1

If we combine this with b, = (k — 1)bgx_;, we get

-1 k‘ o -1 ]{j 9
a;S; = Cor + ZCQT’ ; ']bk,j - Co?"bk—j = COTZ j jbkfj +1,

J=1 Jj=1

which is the fourth part of the system. For the fifth part of the system we have to look at
the gray part of the table to get

-1
Irb; = Z —Corajq1 + Corag—j
j=0
and we use a;8; = ax_;+15k_1+1 t0 get
-1 ' -1 ' '
lrb, = Z —cor Sk a—j + Corag—; = cor Z Mak—j.

=0 Sj+1 j=0 k=i
Finally we have sy_s — s;41 = (kK — 2j — 1)r and this completes the last part of the system.

The table for y, is almost the same. In our cases the corresponding tables are:
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‘ k=4 Hn—l—r‘n—l—Qr‘n—l—i%rHN—T‘N—QT‘N—ST‘N—ALT

n 0 0 0 cor cor coT cor
n—r rb; 0 0 0 corby corby 0
n—2r 0 21by 0 0 0 0 0
n— 3r 0 0 3rbs 0 —corbs | —corbs 0
n+j—i1—r coTaq CoTaq CoTaq —S10a1 0 0 0
n+j5—1—2r 0 Coras 0 0 — 8909 0 0
n+j—1—3r 0 —coras 0 0 0 —S30a3 0
n+j5—1—A4r —CoTay —CoTray —Coray 0 0 0 —S4Qy
\ k=5 [n—1-r[n—-1-2r[n—1-3r[n—1-4 | N—r[N—-2r[N—-3r N—4r|N—5r|
n 0 0 0 0 coT cor cor cor coT
n—r rby 0 0 0 0 corby corby corby 0
n—2r 0 2rbs 0 0 0 0 corba 0 0
n—3r 0 0 3rbs 0 0 0 —corbs 0 0
n—4r 0 0 0 4rby 0 —corby | —corby  —corby 0
n+j—i1—r CoTay Coray Coray Coray —s1aq 0 0 0 0
n+j—1i—2r 0 CoT s CoTas 0 0 — S99 0 0 0
n+j—1—3r 0 0 0 0 0 0 —S3a3 0 0
n+j—1i—4r 0 —Coray —Coray 0 0 0 0 —S404 0
n+j—1i—05r —coras —coras —coras Ccoras 0 0 0 0 —S505

These tables correspond to the same system as before.
Case b) If we define N = j —i — 1, the table for y; and k =5 is

| k=5 [[r=1[2r=1[3r—-1[4—-1] N | N+r|[N+2r[N+3r[N+4r

0 0 0 0 coT coT coT cor cor

r by 0 0 0 0 corby corby corby 0

2r 0 21by 0 0 0 0 corbsy 0 0

3r 0 0 3rbs 0 0 0 —corbs 0 0

4r 0 0 0 4rby 0 —corby | —corby | —corby 0

7 —1 coray coray Coray cora; || —siaq 0 0 0 0

J—t+r 0 CoT Qo CoT Qo 0 0 —So0o 0 0 0

J—14+2r 0 0 0 0 0 0 —S3a3 0 0

j—1i4+3r 0 —Coray | —Ccoray 0 0 0 0 —5404 0
J—1+4r || —coras | —coras | —coras | coras 0 0 0 0 —S5as

This table is the same table of y, in case a). For y, the same system is involved.
Case c) If we take n =i — j + 5r, we have that k = 4. The table in this case is:
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[ k=4]n-1]n-1-r[n-1-2r[n-1-3r[n-1-4r[r—1[2r—1]3r—1]4r -1

n cor 0 0 0 0 —cor | —cor —cor —cor
n—r 0 cor — T 0 0 0 0 —cor —cor 0
n—2r 0 0 cor — 2r 0 0 0 0 0 0
n—3r 0 0 0 cor — 3r 0 0 cor cor 0
n —4r 0 0 0 0 cor — 4r cor cor cor cor

0 cor cor cor cor cor 0 0 0 0

r 0 cor cor cor 0 r 0 0 0

2r 0 0 Cor 0 0 0 2r 0 0

3r 0 0 —Ccor 0 0 0 0 3r 0

4r 0 —Cor —cor —cor 0 0 0 0 4r

It is simple to fill in such a table with a general value of k. The coefficients of the monomials
are a;. This coefficients are attached to a row of the first gray part and for the white part

the coefficient is —a;. (The first row has coefficient 1 and the first row of the white part has

coefficient —1). We get the following table:

| k=4]n-1]n-1-r[n-1-2r[n—-1-3r|n-1-4rr—1][2r—1 3r—1[4r -1
n coT 0 0 0 0 —cor —cor —cor —cor
n—r 0 ay(cor — 1) 0 0 0 0 —ai1cor  —aqCoT 0
n—2r 0 0 as(cor — 2r) 0 0 0 0 0 0
n—3r 0 0 0 az(cor — 3r) 0 0 asCor asCor 0
n—4r 0 0 0 0 a(cor — 4r) ascor | ascor aqCoT ayuCor
0 —cor —cor —Cor —cor —cor 0 0 0 0
r 0 —ayCor —a1CoT —ayCor 0 —aqr 0 0 0
2r 0 0 —asCoT 0 0 0 —a92r 0 0
3r 0 0 ascor 0 0 0 0 —as3r 0
4r 0 a4sCor a4sCor a4Cor 0 0 0 0 —CL447”

We need to prove that the sum of the coefficients of each column is zero. The first column is
clearly 0. The sums of the other columns of the gray part are exactly the same sums of the
the columns of the white part. This implies that we need to prove that the white columns
add up zero. We want to prove this for a generic table, so we proceed by induction. First

see that the last column says that
—cor + agcor — apkr =0

and this implies that
Co

A = .
CO—]{?

We need to prove that the formula for a; works for [ = 1. If we look at the first column of
the white part we have that

—cor + apcor — a1r = 0.
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Using the definition of a; we have that

C
—cor + ——cor — ayr =0
Co — k
and this implies that
Cok
a; = .
! Co — k

We look at the penultimate column. This column says that
—CoT — 16T + ag—1CoT + agcor — agp—1(k — 1)r =0
and if we replace a; and a; we get

Cok Co
+ ag—_1CoT +
Co — k

—cor — CoT cor — ag—1(k —1)r =0.

Co—k‘

This says that
C()(C() — 1)/{5

BT o —R)(eo— (k= 1))

We assume now that the formulas work for n. The corresponding sum to compute a,; is

n

—CoT" — Z Coraj + Z Coray—j — ant1(n + 1)r =0,

j=1 =0
which implies that
n n
ani1(n+1)r = —cor — Z cora; + Z CoTQ—;
j=1 =0

= —cor (1 + Z(aj — Qp—j) — ak>
=1
Co & 2j — k
= — 1 —_— - —— .
COT( Co—k+jz_:a]00—(k—j)>

If we prove that

2j — k c
_ E N L — 1 _
o a]co—(k—j) a1+ 1)+ o co—k

we have proven the formula. For this we proceed by induction again. If n = 1 we have

2—k %, + ct
C0—<k—1) 2 0 Co—k

—Co1

and this is true by replacing
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Cok and a5 1 C()(Co — 1)]{?(]{? — 1)

o —1 " 2(co—k)(co— (k—1))’

ap =

We assume now that

27—k 2
—COZajJ—j = (n+1) +cg— —

is true and we need to prove that

n+1

2) — 2
_Cozajco— k— 7 = api2(n+2)+co— P
is also true. Now
s, 2] - . 2] — 2(n+1)—k
02t 2 T M =t T
and using our induction hypothesis we get
K2k 2 2n+1) —k
_cozlajm =ap1(n+1)+co— - E e coanHCO —((k : ()n )
This last equation is true, because
2(n+1)—k (co—(n+1)(k—(n+1))

ans1(n+1) — = (n + 2)an42

A k= (1) " o —(k-(n+1)

the last equality is by the definition of a,,.1 comparing with a,,.2) and the proof is complete.
q y y + +

Case d) This case is similar to case c¢). The corresponding table for k = 4 is:

| k=4]n-1]n-1-r[n-1-2r[n—-1-3r|n-1-4r—1][2r—1 3r—1[4r -1

n —cor 0 0 0 0 —cor | —cor —cor —cor
n—r 0 —ay(cor +7) 0 0 0 0 —aiCo  —aycor 0
n—2r 0 0 —ay(cor +2r) 0 0 0 0 0 0
n—3r 0 0 0 —as(cor +31) 0 0 ascor ascor 0
n — 4r 0 0 0 0 —au(cor + 4r) ascor | ascor ascor QayuCor

0 coT cor cor cor cor 0 0 0 0

r 0 acor acor acor 0 arr 0 0 0

2r 0 0 asCoT 0 0 0 aos2r 0 0

3r 0 0 —ascor 0 0 0 0 as3r 0

4r 0 —aycor —aucor —aycor 0 0 0 0 asdr

If in the last table of case c¢) we change ¢y by —co, we get exactly the system of case d).
(The white columns can be multiplied by —1 to get exactly the same system). This implies

that if we interchange ¢y by —c¢p in the formulas the solutions are the same of case ¢) . This
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proves case d).
Case e) In this case we have the same tables as in case ¢) (interchanging the colors).

Case f) The tables in this case are the same as in case d) (interchanging the colors).

Example 3.1.6. Suppose that we have the following data:

o r=4 e dy =0
o dy=13 e d3;=0
o dy =—13 ® cp=—3

In this case we have 8 conditions that hold. We need to find 8 singular polynomials. We

compute these polynomials:

1) n =13 for Ag;.

In this case we have that
13—d0+d0,13:13—13—020

and
12<13+1-0< 16

thus k£ = 3. This condition corresponds to case a). The polynomial annihilated is:

p(z1,m2) = (21° + bialzy + boxlal) @ vpy + (a121°25 + asafa] + azzizy') @ vy,
We compute the coefficients. In this case

S1 = 23, So = 19, S3 = 15.

The relation sya; = cor implies that

12
a1 = —%3
Now we can use the second part of the system (which says that sja; = sza3) in order to
compute
4
az = —E

We can compute b; using the last part of the system. This says that b; = ¢ (i—;") a; and

this implies that
96

bl:ﬁ'
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Using the third part of the system we have that b; = 2b,. This implies that

48
by = —.
7115
We finish computing as.
Cor 1956
=—(by+1)=———
az =" (bt 1) = =575
We have computed all the coefficients and the polynomial is:
96 48 12 1956 4
p(z1,29) = (xf’ + Ex?wé + Exi’xg) ® v, — (%mﬁox% + TSE)x?:C; + ga;fxél) ® v

n = 13 for AO’Q.

In this case we have that
13—d0+d0_13: 13—13—020

and
12<13+2-0<16

thus k£ = 3. Using the same process as before we get that the singular polynomial is:

96 48 12 708
p(ry,22) = (:EF’ + ﬁ:p‘llxg + ﬁa:?xg) ® vr, — (ﬁ:ﬁx%l + 7—7x§:p; + 41‘%01‘3) ® vy .-

n = 13 for )\072.

In this case we also have the condition

13—dy+dy 13=13—-0—-13=0
which correspond to case b). We have

8<13+0-2<12
thus k£ = 3. The singular polynomial is:
p(z1, 2) = (23° + bialzy + boxfad) @ vy + (12125 + asalal + azzizy') @ vr,.

Solving the system with

$1=—15, s =-19, s3=-23

we have that the polynomial is:

. 96 48 4 1956 12
p(z1, ) = (:c%“ + Ex?aé + Ex?wé) R vr, + <5xiox§ + %x?x; + ﬁx%x;) ® v
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4) n =13 for Ay 3.

In this case we have that
13—dy+dyp_13=13—-13—-0=0

and

12<134+3-2<16
thus k£ = 3. Using the same process as before we get that the singular polynomial is:

96 48 708 12
p(xy,22) = (xf” + ﬁx“f:pg + ﬁxﬁgwg) ® v, + (495%:17%1 + W:v?x; + ﬁx%oa:g) ® vry.
5) n = 25 for )\073.

In this case we have that
do—dg—CoT:13—0+12:25

and
25=0—-3+(6+1)- 4.
This corresponds to case d) and k = 6. The singular polynomial is:

_ 25 25 21,4 4,21
p@la $2) = (xl Qv + 73 & UTz) +a (xl Ty QU + 2775 & UTz)
17..8 8 17 13,.12 12,13
+ag (21" @ vpy + 2575 @ UT2) +as (‘Tl Ty @ vry + 71705 @ vpy,)
9,.16 6..9 5,.20 20,5
+ay (2]73° @ vy, + 2925 @ vp,) + as (2725 @ vy + 27723 @ vry)
+ag (123 @ vy, + ¥y Q) .

We find the 6 coefficients involved:
Co -
Cco + k N

a)p =

e — 1 co(co + Dk(k —1) 15
2T A o+ K)o+ (k—1))

G — l Co<Co+1)(CO+2)]€(k’— 1)(]{7—2) — 9
7 3l (co+ k) (co+ (k— 1)) (co + (k — 2))

s — l Co(C() —|— 1)(60 —|— 2)]{3(]{3 — 1) o _15
721 (co + K)o + (k — 1) (co + (k — 2)))

a — Co(CO -+ 1)]{? . 6
’ (g + k)(co+ (k1))

46 = Co + k -

and the singular polynomial is:
p(r1,x2) = (23 Qupy +23° @ vp,) — 6(27' 23 @ vp, + x123' @ vp)

+15(2i2f @ vy, + 282l @ vp) — 20(2B2l2 @ vy, + 222l @ up)
—15(x}21% @ vy, + 292 @ vp,) + 6(2523° ® vy, + 23025 @ vy,)
— (123 @ vy, + 22wy @ vp,)
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6) n = 25 for )\172.

In this case we have that
do—dy —cor=0+13+12=25
and
25=2-146-4.
This corresponds to case f) and & = 6. The singular polynomial is:

p(r1,m2) = (2P Qup, + 2P @ vp) — 6(2?'2) @ vy, + zird @ o)
+15(21728 @ vy, + 282l @ vp) — 20(2B2l? @ vp, + 222l @ vp)
—15(2{23° ® v, + 2823 @ vy ) + 6(2523° @ vy, + 23025 ® vry)
—(z123* ® vy, + 2322 @ vry)

7) n =1 for Aggs.
In this case we have that
do — d3 + CoT = 1

and
1=0-3+(0+1)-4

This corresponds to case ¢) and k = 0. The singular polynomial is:
p(r1, ) = 11 @ vy, — T2 ® v,

8) n =1 for )\172.
In this case we have that
dg — dl + cor = 1

and
1=2—-1+0-4.

This corresponds to case e) and k = 0. The singular polynomial is:

p(z1,29) = 21 @ V1, — T2 @ U7y

3.2 Singular polynomials and morphisms

In this section we make explicit the relation described in Subsection 2.2.1 between singular

polynomials and morphisms. Suppose we have a morphism of H-modules ¢ that goes from

one standard module to another.
o:AN) — A(/\\)
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We assume first that A\ and \' are of type \; or M in any possible combination. Observe first
that the morphism structure depends only on the image of 1 ® vy, because is an H-module

homomorphism and if we have p(z1,x2) ® vy € A()N), then

d(p(x1,2) ® vr) = p(1, 22)P(1 @ V7).

We want to establish that, if ¢(1 ® vr) = q(x1, x2) ® vy, then q(x1,x2) ® vy is annihilated
by y; and yp in A(X"). First we have that y; ® vy = 0 thus ¢(y; ® vr) = 0, but

d(yr ® vr) = y1d(1 @ vr) = y1(q(21, 22 ® v7)) = 0.

The same works, if we change y; by yo. We have proven that ¢(z, x2) ® vr is annihilated by
y1 and yo in A(N'). By now we have established that any morphism between two standard

modules of type \; or M is given by a singular polynomial. Now suppose that
where \ is A\; or \*. We use the same arguments as before, with the only difference that now

P(1®@vr) = qu(71, T2) @ v1y + @21, 72) @ vy

We have that ¢;(z1,22) ® vy, + ga(21, 2) ® vy, is a singular polynomial. Our next case is
when

where X is A, or A\¥. In this case we claim that the morphism depends only on the image of

1 ® vy, because we have

¢(1®UT2):¢(((1) (1))-1®le> :((1) (1))¢(1®UT1)

and the image of 1 ® vy, is determined by the image of 1 ® vy,. Finally, the image of a generic

element is given by

d(p1(x1, 22) @ vy + Po(1, 22) @ vp,) = pr(x1, 22)P(1 @ vyy) + Paz1, T2p(1 @ vry,)

and by the same arguments of the last cases we can say that the image of 1 ® v, is necessary

a singular polynomial. In the last case, when
(b : A<)\Z,]) — A()\k’l),

the arguments are the same. We can conclude that any morphism of two standard modules is

given by a singular polynomial. Now the converse is not true. We cannot create a morphism
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just by taking a random singular polynomial of the codomain. For example if we take the
data of example 3.1.2 we can see that z{x) ® vr is a singular polynomial in A(\p). If we

want to construct a morphism

¢ : A()\l) — A()\Q)
where ¢(1 ® vyp) = z{7) ® vy we can see that
¢ 0 9,9
o) 0 1 )®vr = d((®vr) = (P(1 @ vr) = (TiTy ® VT
and
0 0 0

( g 1 ) o(l®vr) = ( g 1 ) i ry@ur = (i) ( g 1 )@vT = ()29 Qur = 2]2) QU
In the last equalities we have used the action of the group elements. We can see that in this

Cb((g (1))®"UT)7£(6 (1))¢(1®UT)

and this means that it is not a H-module morphism. If we change the domain of ¢, that is

case

gb . A()\()) — A()\g)7

we have a morphism between H-modules.

3.3 Necessary conditions for the existence of morphisms

We recall some definitions from Section 2.4.2. If we have a r-partition A = (A%, AL, ... A"71),
define the content of a box b € A by j — k, if b is in the k row and in the j column from \’.
We write it ct(b) = content of b. If T is a standard Young tableau associated to A , let T'(7)
for the box b of A, in which ¢ appears. Define the function S over the set of all boxes of A in

the following way:
Bb) =iif b e N,
We also define the charged content c¢(b) of a box b of A by the equation
c(b) = ct(b)reo + dag)- (3.3.1)
Now we enunciate theorem 5.1 of [10] (in [10] 77'(i) means T'(i) using our notation).

Theorem 3.3.1. If there is a non-zero morphism A(X) — A(u) , then there are T € SYT ()
and U € SYT () with

c(U(i)) = e(T(i)) € Zzo and c(U(i)) — «(T(i)) = B(U(7)) = B(T(i)) mod r .
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This theorem allows us to find necessary conditions for the existence of morphisms be-

tween standard modules. If we apply this theorem to our case we get:

Corollary 3.3.2. The necessary conditions for the existence of a morphism between two

standard modules for G(r,1,2) are given by the following tables:

| LA [ ALy [ A | AWV) | AWy | Al |
. . . — _k J v . — J t
A(N) di —d; | co | o=k d; —d; — cor dy— d; — cor
. d; —d, d; —d
7 k J ? . R R J ?
A(/\ ) Cy — B o = % dj dz dj dz + CoT dk B dj + cor
| LA [ AN [ AW [ AN AR [ AR | Alwks) |
dy — d;
ds — d,;
dy, — d; dy, — d; v
A()\i’j) dl‘ - dj + CoT dl‘ — dj — CoTr dk _ dj + cor dk _ dj + cor dk — dj p (i/ "
dy, — d;

Columns represent the domain, rows represent the codomain and the entries represent
conditions on the parameters. When more than one condition appears this means that both
must hold. The condition d; — d; means that d; — d; € Z>¢ and d; —d; =i — 7 mod r. The
condition d; —d; £ cor means d; —d; X cor € Z>p, d;—d;£cor =i—j mod r. The conditions

co = i% says that k is a positive odd integer.

Proof. Almost all the conditions are given by applying Theorem 3.3.1. In the cases of

k

Ai — M and X' — ); the theorem gives us that o = —% and ¢y = % respectively, without

the condition that k is odd. By applying Theorem 1.2 of [10] with G = G(1, 1,2) we obtain

a non-zero morphism from A (sign) — A, (triv) and this implies that ¢y = £ for odd k. O

We prove in the next section that for each of these conditions we can construct an explicit
morphism. This implies that the conditions are necessary and sufficient for the existence of

morphisms between standard modules.

3.4 Sufficient conditions for the existence of morphisms

We analyze each of the conditions of the last table. For this, we give a resume of all the

singular polynomials described before.

Remark 3.4.1. The singular polynomials are:

1) For )\z
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(a) (2] — 25)" ® v, when ¢ = £ for odd k.
(b) ztxh @ vy whenn —d; +d;_, =0

_(k _ co(co—1)...(co—1)
(c) For kr <n < (k —E— ]1)7' Ly = (l) and f3; = (Co_k)(fo_o(k_l))mo(m_(k_l))
k
2

5]
p(w1, x2) = 2T + Z L A S > iyl
=1

when n — d; + dZ n— cor = 0 (if ¢g = m is an integer that indeterminates some (3,

then the polynomial is (co — m)p(xy, z3)).
2) For M.

(a) (27 — 25)" ® v, when ¢g = —% for positive odd k.
(b) z}zy @ vy whenn —d; +d;_,, =0

_ (k _ co(co+1)...(co+l)
(c) Forkr <n<(k+1)r,q = ( ) and 3, = c0+k)(§0+0(k ) 0(c0+(k—l))
(5]

(k—l)r
p(a1,22) = o] + Zazﬁﬂl "+ Z ayfaxy " al
1=0
when n —d; + d;_, + cor = 0 (if ¢ = —m is an integer that indeterminates some [,

then the polynomial is (co + m)p(z1, z2)).

3) For \; ;.

(a) p(l'l,CEQ xl _'_Zblxn lr lT‘ ®,UT1 _'_Zaxn Ir+j—i lr j+z®1}

Wherek:r<n+j—2<(k+1)r n —d; +dz n—O ss;=j—i—d;j+di—tr, s #0

and ay, b; satisfy the system:

1) siay = cor
2) s = Sp_ip1ap—i41 for 1 <1 < [%}
3) Wby = (k— by for 1 <1 < [E]

— k —2j
4) a; = % (Z ; bk_j + 1)

J=1

5) bp=¢ <lz:§ (W) aj+1>

(if s; = 0 for some ¢, then the polynomial is s; - p(z1, x2)).
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l l lr4j—i n lr—j+1i
(b) p(xy,x0) = [ xh + g bix] xy~ T) ® vp, + g a1y T 7T Qv

Where (k—1)r < TL+Z—] < kr,n—d; +dj =0, =i—j—d;+d;—(t—1)r and
ay, by satisfy the same system as before (if s; = 0 for some ¢, then the polynomial is

St ~p(x1,x2))

p(z1,22) = (27 ® vy, — 28 @ vp,) + Zaz Y @ — aflal T @ )
=1
Where n =i —j+ (k+1)r , n=d; — d; + rco and q; are defined for 1 < | < [EH1]

co(co — 1)o(co — (L — 1))k(k — 1)...(k — (I — 1)

1
= e k(o — (b~ 1))on(eo — (k— (I~ 1))
2) ars = Leo(co = 1)(co = 2)e(co = Dk(k = 1)...(k = (1 = 1))
/! (co—K)(co— (k—1))...(co — (k=)
3) ar = “
co— k
k
plar, ) = (2} @ vy + 23 @ vp,) + ¥ ar (27" @ vpy + 272y @ v, )
=1
Where n =i —j+ (k+1)r , n=d; — d; — rcy and q; are defined for 1 <1 < [EH]
by:
1) a = slco+ 1) (co+ (= 1)k(k =1)...(k = (1 -1)
P e+ k)(eo+ (k—1))...(co+ (k— (1 —1))
2) 0y — Leoleo+ Dleo +2).(co + Dk(h = 1.k — (1 = 1)
/! (co+k)(co+ (k—1))...(co+ (k=1))
3) Q. = 0
co+k
k
p(z1,22) = (27 @ vp, — 25 @ vry) —|—Zal Tl @ vp, — aflal T @ vpy)

=1
Where n = j —i+kr ,n=d; — d; +rco and q; are defined for 1 <1 < [%} by:

colco — 1)o(co — (1 — D))k(k — 1)...(k — (I — 1)

1) a =3 (co—k)(co— (k—1))...(co— (k— (1= 1))

2) ag_; = lCo(CO — D(co =2)..(co = Dk(k =1)...(k = (1 = 1))
ST = Ble - = D)l - (k1)

3) ar = o E k

k
(f) p(z1,22) = (2] @ vy, + 25 @ vpy) + Z a (27 "2y @ v, + 22y @ vry)

1=1
Where n =j —i+kr ,n=d; —d;, —rco and a; are defined for 1 <1 < [%] by:

1) o = scolco+Do(co+ (= 1))k(k=1)..(k=(—1)
T g+ B)(co+ (k= 1))(co+ (k= (1= 1))
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1 colco + 1)(eo + 2)--(co + Dk(k = 1)..(k — (1 — 1))
l! (Cg+k3)(CQ+(kJ—1))(Co—f‘(k’—l))

_Co—l-k’

2) ap_y =

3) Qg

For now we refer to the singular polynomials with the corresponding enumeration given

before (1.b or 3.c and so on).

Theorem 3.4.2. The necessary and sufficient conditions for the existence of morphisms

between the standard modules are the same of corollary 3.3.2.

Proof. To prove that these conditions are sufficient we construct an explicit homomorphism
using our singular polynomials described before. We start by the cases when we only have

one condition.

1) A(N) = A(N).
In this case the condition is d; — d;. If we use n = d; — d; we have the condition of the

1.0). In this case the morphism is given by sending 1 ® vy — z]2) ® vr.

2) A(N) = ANY).
In this case the condition is ¢y = —g and we have the condition of the case 2.a). In this

case the morphism is given by sending 1 ® vy — (2] — 25)* ® vr.

3) A(N) = A(Nij).

We have the condition d; — d; — c¢or. Now we have two options:

(a) i < j. In this case we use n = d; —d; — cor and we have the condition of the case 3.f).
In this case the morphism is given by sending 1 ® vy — p(z1, x2), where p(xq, x2) is

the singular polynomial of the case 3.f).

(b) ¢ > j. In this case we use n = d; —d; —cor and we have the condition of the case 3.d).
In this case the morphism is given by sending 1 ® vy — p(z1, x2), where p(xq, x2) is

the singular polynomial of the case 3.d).

1) AN — A(\).

In this case the condition is ¢y = £ and we have the condition of the case 1.a). In this

case the morphism is given by sending 1 ® vy — (2] — 25)* ® vp.

5) AN — A(N).
In this case the condition is d; — d;. If we use n = d; — d; we have the condition of the

case 2.b). In this case the morphism is given by sending 1 ® vy — x}z} ® vr.
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6) AN) = A(Ni;).

We have the condition d; — d; + cor. Now we have two options:

(a) 4 < j. In this case we use n = d; —d;+cor and we have the condition of the case 3.c).
In this case the morphism is given by sending 1 ® vy — p(z1, x2), where p(xq, x2) is

the singular polynomial of the case 3.c).
(b) ¢ > j. In this case we use n = d; —d; — cor and we have the condition of the case 3.e).

In this case the morphism is given by sending 1 ® vy — p(x1, x2), where p(x1, z3) is

the singular polynomial of the case 3.e).

In this case the condition is d; —d; +cor. If we use n = d; —d; + cyr we have the condition

of the case 1.c). Now we have two options:

(a) i < j. In this case the morphism is given by sending 1 ® vy, — p(z1, 22) ® vy, where
p(z1,x5) is the singular polynomial of the case 1.c).
(b) 7 > j. In this case the morphism is given by sending 1 ® vy, — p(z1, z2) ® vy, where

p(z1, x2) is the singular polynomial of the case 1.c).

In this case the condition is d; —d; — cor. If we use n = d; —d; — cor we have the condition

of the case 2.c). Now we have two options:
(a) ¢ < j. In this case the morphism is given by sending 1 ® vy, — p(x1,x2) ® vy, where
p(z1, x9) is the singular polynomial of the case 2.c).
(b) ¢ > j. In this case the morphism is given by sending 1 ® vy, — p(x1, x2) ® vy, where

p(z1,x9) is the singular polynomial of the case 2.c).

In this case the condition is d — d;. Now we have four options:

(a) i < j and ¢ < k. In this case we use n = d — d; and we have the condition of the
case 3.b). In this case the morphism is given by sending 1 ® vy, — p(x1,x2), where

p(z1,x2) is the singular polynomial of the case 3.b).

(b) ¢ < j and i > k. In this case we use n = dj, — d; and we have the condition of the
case 3.a). In this case the morphism is given by sending 1 ® vy, — p(x1, z2), where

p(z1,x2) is the singular polynomial of the case 3.a).
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(c) i > j and i < k. In this case we use n = dj, — d; and we have the condition of the

case 3.b). In this case the morphism is given by sending 1 ® vy, — p(x1,x2), where

p(x1,x2) is the singular polynomial of the case 3.b).

(d) ¢ > j and i > k. In this case we use n = dj, — d; and we have the condition of the

case 3.a). In this case the morphism is given by sending 1 ® vy, — p(x1,x2), where

p(x1, x2) is the singular polynomial of the case 3.a).

We need to prove the cases when we have two conditions. There are 7 cases with two

conditions:

(a)

A(N) = A(N) or AN = A(N)).

For A(\;) — A(N) we have the conditions d; — d; and ¢¢ = —£. The condition
co = —% allows the construction of the morphism A()\;) — A(A). The condition d; —d;
allows the construction of the morphism A(\) — A(MN). The composition of these
two morphisms is a morphism from A();) to A(M). This is a non-zero composition,
because it is of the form 1 ® vy ~~ pg ® vy, where p and ¢ are non-zero polynomials.

For A(X) — A();) we use the same arguments as before attached to this case.

A(N) = A(Njr) and AN = A(Njx).

For A(X\;) = A();x) we have the conditions d; —d; and dy—d;—cor. The condition d; —
d; allows the construction of the morphism A();) = A();). The condition dj —d; —cor
allows the construction of the morphism A();) — A(\;x). The composition of these
two morphisms is a morphism from A(\;) to A();). This is a non-zero composition,
because it is of the form 1 ® vy ~» pg ® vy, + pr ® vy, where p,q,r are non-zero
polynomials. For A(A\") — A();x) we use the same arguments as before attached to

this case.

AN ) = A(Xg) and AN ;) = AF).

For A(); ;) = A(\;) we have the conditions dy — d; and dy, — d; + cor. The condition
dp — d; allows the construction of the morphism A(\;;) — A(A;x). The condition
di—d;+cor allows the construction of the morphism A(\; z) — A()A;). The composition
of these two morphisms is a morphism from A(); ;) to A()\;). This composition is of
the form 1 ® vy, ~ (pr+qr') ® vy, where 1’ corresponds only to interchange x; and x9
in r. Looking at the coefficients of the polynomials involved we can see that (pr + gr’)
is a non-zero polynomial . For A(\; ;) — A(A¥) we use the same arguments as before

attached to this case.
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(d) ANi;) = As)-
For this case we have the conditions dy — d; and ds — d; (or ds — d; and dj — d;).
The condition dj, — d; allows the construction of the morphism A(X;;) — A(Mx,).
The condition d; — d; allows the construction of the morphisms A(X; ;) — A(Ags).
The composition of these two morphisms is a morphism from A(J; ;) to A(A; ). This
composition is of the form 1 ®@ vy, ~ (pr+q¢r') @ vy, + (ps + ¢s') @ vy, where 7’ and &’
correspond only to interchange x; and x5 in r and s. Looking at the coefficients of the
polynomials involved we can see that (pr + ¢r’) or (ps+ ¢s’) is a non-zero polynomial.

For the condition ds; — d; and dj, — d; we can do the same as before.

3.5 Dimension
In this section we prove that, if we have the conditions
o d; —dy £ cor
o dj —d; £ cor
,where ¢ is a non-zero integer, then we have that
Dim(Homg (AN k), A(Nij))) = 2.

We have that these four conditions allow the construction of morphisms between some stan-

dard modules. In particular we have that

1 dz — dk + cor A(/\z,k) — A()\z)
2 dl — dk — CoT A(/\z,k) — A()\Z)
3 dj — dl + cor A()\l) — A()\%])
41 d;—d; —cor | A(N) = A(Niy)

We can see that we have two ways to go from A(); ;) to A()\; ;). We prove that these two
ways are linearly independent. For this we see the leading terms of each of these morphisms.
In order to compute the leading terms of the singular polynomials involved, we need to
consider that, if ¢y is an integer it could change the leading terms. Suppose that ¢y > 0. The

leading term can be calculated using the singular polynomials:

di—d;+cor—1U'r

!
o 1’ xL" for case 1.
dj—d;—cor
o 1/ "™ for case 2.
d;—dy+cor—1 di—dj+cor—1
o plrpyi T H O @ gy — T ROl @ v, for case 3.
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di—dy— di—dy—
o 15 T @up + 2l T @ vy, for case 4.

In these polynomials [ and I’ are integers. The composition of the morphisms follows by

multiplying the polynomials. The leading terms of the compositions are:
e For the composition 4 o 1

dj*diJrCo?"*l'T Uy d;—di—cor d;—dp—cor
(7 zy") (7Y @ v + Ty ®vp,) =

dj—di+cor—U'r _d;—dy,—cor+l'r dj—dx=U'r 1y
Ty Ty’ Q@ vry + Ty Ty Qv

e For the composition 3 o 2

(Idrdi*cw) (‘,L.llrw;li*dk+corflr

d;—di+cor—Ir
1 1

® v — ‘/L‘ZQT ® UTZ) =

dj—di—cor+lr d;—dp+cor—Ir dj—di—lr 7,
Ty Tq K Up — Ty Ty @ Ur,.

If we compare these two terms we can see that they are linearly independent. In conclusion
we have two linearly independent ways to go from A(); ) to A(); ;). This implies that the

dimension of the space of homomorphism is 2.

3.6 Example

In this section we give an explicit example.

Example 3.6.1. For this example we work with » = 3. Suppose that 10 —dy+ dy = 0. This
condition is of the form dy — dy and allows the construction of some morphisms.

do —dy A()\Q) — A()\O)
A()\112> — A()\O,1>
We add the condition 5 — dy + d; = 0, which is of the form dy — d;. With these two

conditions we can form a new one by subtracting the second condition from the first one.

This new condition is 5 — d; + do = 0 and is from the form d; — d,. We have now a bigger

table, where the red color corresponds to the new condition imposed.

[\
~— —

do — do

~—

AR A A

[\

N =

d() — (11
d1 — dg

J—

P e

NN N S S S~
Pl I

oo — — — —

~—

=

\]
—_



Now we impose the condition ¢y = 1. We have 6 new conditions

13—d0+d2—60’l":0 (do-dg-’-Co’f’)
7—d0+d2+607“=0 ( dQ—C()?“)
8—d0+d1—007':0 (do—d1+COT>
2—d0+d1+007”:0 (do—d1—607”>
8—d1+d2—007’=0 ( d2+607’>
2—d1+d2+COT’:O (dl dQ—CoT’)

and this allows us the construction of 12 new morphisms.

do — dy A()\2) — A()\O) 2

A()\lyg) — A()\OJ) 3

A = A() |4

d() — dl A(/\Q) — A(/\l) 6

d1 — d2 A()\l) — A()\O) 7

A(/\Lg) — A(/\O’Q) 8

A(AOV‘Z) — A(/\071> 9

A()\OJ) — A()\()) 10

A()\Q) — A()\Lg) 11

o =1 A()\(),l) — A()\O) 12

d —Od T oenr A()\Q) — A()\l,g) 13

do o d2 o COT A()\Q) — A(}\O’Q) 14

do B d2 + COT A()\LQ) — A()\l) 15

do . dl . 0 A()\Lg) — A()\l) 16

07 AT A o A(Ny) | 17
dy — dy + cor ’

d —do — cor A()\l) — A()\OJ) 18

! 2 0 A(}\O’Q) — A()\Q) 19

A(}\(]’Q) — A()\O) 20

A()\2) — A()\Qg) 21

In this last table we have enumerated the morphisms and we obtain the following diagram

72



We describe each of the 21 morphisms using our singular polynomials. All the computations
are using our three imposed conditions. If we delete one of the conditions the polynomials

could change.
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1 1 1
(23 + gatas) ® v + (32172 + 52173) ® vr,
5 3,.2 4, 1.4
(w3 + gwl%) ® v — (§x1x2 + §$1x2) & vy
2§ — xial — 22043
z} @ vry, + a3 ® vy,

2
T

1

8 5.3 2,6 8 3.5 6,.2
(x% - Z)x};% - ffﬂz) ® vy, — (73 7_ 3921% 4_ x11x2) ® vr,

3 6 3 6

(z] + 3T1T5 + §$1$2) ®vr, — (T4 + 3T1Ty + §$1$2) & vy
2§ — xial — 22003

2
T

1
(2] — 2a%23 — 2{af) ® vy, — (2§ — 2x{x3 — 2f23) @ v,
3 @ vr, + a3 ® vy,
13 1 12 4,103
7.1

6_ 243
13 01,127 4103 13 _ 1,12 4,310
21 | (277 — gmimy” — 321°23) @ vy — (23° — 321720 — 30715°) @ vy,

© 00 O UL W N -
&
—
&
[

— =
i)

N — = = = =
S © 00~ O T Wi

There are many morphisms that can be constructed by using other morphisms. If we
delete from the diagram all the morphisms that come from other morphisms, we will get the

following diagram
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For the three morphisms from A(A;2) to A(Ag1), only two of them are linearly indepen-
dent and we have that Dim(Homg(A(A12), A(Xo1))) = 2. See also that this last diagram
is self-dual and graded and it raises the question, if there is a structural condition for this

phenomenon.
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Appendix A

Case ¢cg =10

Until now we have always assumed that ¢y # 0. The reason is that in this case is all very

simple. In this case we have that the action of H on the standard modules is given by:

(a) For A = \;.

Y- 2ty @up = (n —di + di_) a2 @ vy
Yo - TN @ vp = (M — di + di_) 2T 2) ! @ vp

(b) For A = Al

Y1 -2t @up = (n—d; + di_p) 2y 2l @ up
Yo - 7Y @ vp = (m — di + di_p) 22y @ vp

(c) For A=\, ;.

n,_.m n—1,_m
Y1 - Ty Qup = (n—d; + di_p)x] " xh @ vpy

n_.m _ n—1_.m
y1 - iy @up, = (n—dj + dj_n)2) " 2y @ v,

n_.m o n_m—1
y2 - wixy @ v = (m—dj + dj_p)ri2y Qup

n,.m n, m—1
Yo - 21Ty @ up, = (M — d;i + di_) T2y ™ @ vy,

We can see that for \; and A\ is the same. If we want to have some monomial of the
form z7 canceled by y; and y,, then we have the condition n — d; + d;—, = 0. These are
the singular polynomials in these two cases. For A, ;, if we want to have a polynomial of the
form x7xy' ® vp, the conditions are n — d; +d;_,, and m —d; 4 d,;_,,. These are our singular
polynomial in this case.

Now if we use the Theorem 3.3.1 in this case we have the following table:
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| LA | A [AN) [ AW) [AQy) [ Ak) |

d; —d;

AN) | o |di—d| @ |di—d|di—d; %_@
AN || @ |di—d| @ |dj—d;|d;—d dj = di
J T J 1 J 1 dk_dz

| AN TAN) [ A T AQH TAMNY) [AC) | Al |

dy, — d;
dy — d;
ANij) || di—d; | di — dj 2:% 2:% g | dy—d; dmd
dy, — d;

We can see that these conditions are necessary and sufficient. The reason is that for each
condition of the form d; — d; we can take n = d; — d; and construct the morphism using the

singular polynomial for this case.
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