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Abstract 

In recent years there has been a global trend in declines of pollinator species 

primarily due to anthropogenic stressors, including habitat fragmentation and 

land-use change resulting from agricultural intensification. The subsequent loss 

of foraging plants via this process creates habitat ‘islands’, causing genetic 

isolation similar to that found on geographic islands. Isolated populations are at 

a much greater risk of inbreeding and reduced genetic diversity, which in turn 

increases their susceptibility to disease. To reduce the fragmentation of wildlife 

populations, the EU introduced Agri-environmental schemes (AES) which 

provide mitigation methods including offers of financial aid to farmers planting 

wild flower margins. This thesis compared two wild bumblebee species between 

island and mainland sites in the UK and France to assess the impact of 

geographic isolation on populations. This thesis also sampled four bumblebee 

species in sites with different levels of AES in the UK, to assess the efficacy of 

the schemes in terms of promoting genetic diversity and analyse relationships 

between heterozygosity and disease.  

By using genetic techniques to estimate the diversity, structuring and population 

size of each species, comparisons between different environment types were 

made. Molecular analysis found significant structuring in Bombus pascuorum (θ 

= 0.122) populations across the UK and French populations. Within B. 

pascuorum populations, there was found to be a higher prevalence of the gut 

trypanosome Crithidia bombi in populations with reduced heterozygosity. 

Molecular analysis of the agri-environmental sites found a positive relationship 

between floral diversity and the heterozygosity of the population, and a large 

proportion of genetically similar sister pairs were sampled within these sites. 
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The overall conclusions from the research presented in this thesis are that to 

sustain wild pollinator numbers, further development of agri-environmental 

schemes is required with a focus on increasing floral diversity. Even with low 

intensive sampling effort sister pairs are likely, which can impact the results of 

epidemiological studies of haplodiploid species. Furthermore, the genetic 

analysis presented here suggests a strong link between population isolation and 

disease prevalence, thus isolated populations are at greater risk of extinction 

unless intervention occurs.  
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Chapter 1: General Introduction 

1.1 The importance of wild pollinator species 

There are circa 250 bumblebee species living in the world today, distributed 

primarily in temperate regions, with 25 species located in the UK. These insect 

species provide a valuable ecosystem service, which was estimated to be worth 

approximately $215 billion globally in 2005 (Gallai et al., 2009), as pollinators 

both in agriculture and the natural environment. Insect pollinators account for 

the pollination of approximately 75% of crops and 94% of wild flower species 

(Klein et al., 2007) due to their generalist foraging nature. However, over the 

past 50 years there has been a global trend for a decline of pollinator numbers 

and range contractions in both wild and managed populations in the Northern 

Hemisphere where they are primarily found (Goulson et al., 2008; Williams and 

Osborne, 2009; Bommarco et al., 2011; Cameron et al., 2011; Garibaldi et al., 

2013; Woodcock et al., 2016). Since the start of the 20th century, two 

bumblebee species have become extinct and eight are now listed as 

endangered in the UK (Ollerton et al., 2014). Declines cause deserved 

ecological and economical concern with regards to the pollination service 

bumblebees provide. This reduction in numbers has been linked to a decline in 

wild flowers and crop provisions for humans (Biesmeijer et al., 2006; Potts et 

al., 2010).  

Long term studies of these population declines have been observed, but very 

little is known about how pollinator populations have changed more recently and 

how the dynamics are influenced temporally due to interacting anthropogenic 

and environmental factors. These declines in bumblebee numbers are 

concentrated in central England (Fig. 1.1) with a comparison of pre-1960 data to 

post 1960s showing declines throughout England, Scotland and Wales. 

Analysis of European wild bee species, comprising of bumblebees and solitary 

bees, found 1,101 out of a total of 1,942 species were listed as Data Deficient 
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under IUCN criteria (Nieto et al., 2014). This means there is insufficient 

information to make an informed assessment of the species risk of extinction. 

1.2 Force of natural geographical barriers 

Islands provide unique ecological environments which have been used in many 

studies worldwide due to characteristics that make them distinct from mainland 

habitats. At a community level, these island sites are more likely to have 

decreased levels of fauna and flora diversity compared to the mainland (Mac 

Arthur & Wilson 1967), which in turn increases the level of intra-specific 

interactions at the species level. Biogeographical theory predicts that island 

populations are less genetically diverse than the mainland due to decreased 

migration rates, inbreeding (due to bottlenecks and small population sizes), 

founder effects and genetic drift (Wright, 1931; Mayr, 1978; Frankham, 1997). 

These populations are likely to diverge from their mainland relatives, with some 

examples suggesting sub-species are likely to develop dependent on the 

degree of isolation (Nilson and Andren, 1981; Beheregaray et al., 2003; Hille et 

al., 2003). Parallel to the limited gene pool, increasing climate change and a 

necessity for populations to adapt, these secluded populations are at greater 

risk of extinction (Frankham 1998). These high risks of extinctions and close 

interactions between species means a removal of a species at one trophic level 

 

Figure 1.1: Maps of species richness for British bumblebees from the Bumblebee 

Distribution Maps Scheme data measured at the scale of 50 x 50 km grid cells for 

(a) former richness (pre 1960 and 1960 onwards records); (b) declines in richness 

(pre 1960s records); (c) present richness (1960 onwards records). Equal 

frequency grey-scale classes are used to maximise differentiation among regions. 

Reproduced from Williams 2005. 
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would greatly impact others, as well as the ecosystem services the species 

provide (Wood et al., 2017a; Wood et al., 2017b). 

These insular populations are found not only geographically via oceanic islands, 

but also within fragmented habitats such as arable landscapes and housing 

developments with decreased floral heterogeneity. Most wild pollinators 

including the bumblebee are arthropods and can fly, allowing for dispersal 

across water. Bombus spp. have also successfully colonized islands such as 

New Zealand and Tasmania due to human importation (Hingston and 

McQuillan, 1999). These populations show decreased levels of genetic diversity 

but also the ability to withstand high levels of inbreeding (Schmid-Hempel et al., 

2007), as a clear genetic structure between Tasmanian, New Zealand and 

populations of origin in Lincolnshire was observed. By comparing the fitness of 

Bombus spp. populations of island sites with similar mainland sites, the impact 

of genetic structuring and heterozygosity can be studied. Oceanic islands 

provide important model systems into the effects of isolation over long periods 

of time. Anthropogenic stressors can create inland ‘islands’ such as within 

fragmented habitats, potentially causing genetic isolation as seen within these 

island populations.  

1.3 A changing world 

Since the post-war era, the UK and the rest of the world has undergone 

considerable economic, ecological and social transformation. Well documented 

advances in technology and social activism have not always benefitted natural 

landscapes and the biodiversity within them. Climate change as a consequence 

of human population growth and industrialisation is set to accelerate unless 

immediate intervention occurs (Sirois-Delisle and Kerr, 2018) and as a result, 

extinctions are likely as it is predicted that some species will be unable to adapt 

adequately (Sinervo et al., 2010). 

Increased use of pesticides, habitat fragmentation, and intensification of 

agriculture have all contributed to pollinator declines within the UK (Goulson et 

al., 2015). Agricultural intensification is just one example of the pressures 

exerted upon the ecosystem by continual modernisation of farming methods, 

and consists of increased field sizes, and crop-enhancing chemicals such as 

pesticides and machinery. Alongside the fragmentation of arable landscape, this 
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increase in chemical usage aids the decline in insect species which provide 

valuable ecosystem services as pollinators and even as biological pest control.  

 

 

Global environmental trends not only affect wild pollinator species, but a whole 

array of biota. In 1992 there were reports on the current state of human impacts 

on the environment to push for a more sustainable future (Ripple et al., 2017). 

Here there was an emphasis on the limits of the biosphere before irreversible 

harm is made and how close to this threshold the world is. The research 

highlighted many areas of global change from increasing human population size 

to the production of carbon dioxide (fig 1.2). 

1.4 Reversing impacts of human intensification of agriculture 

Agricultural output increased more extensively between 1945 and 1965 than 

any other period in history (Brassley, 2000). This intensification of agriculture, 

driven by a desire for self-sufficiency, also resulted in increasing homogeneity of 

the UK landscape and a parallel increase in farming activities such as fertiliser 

use and spraying of crop pesticides. In the UK alone there has been a 

significant rise from 37% in 1962 to 77% by 1982 in nitrogen fertiliser use within 

permanent grassland (Wells and Sheail 1988). Trends in increasing agricultural 

 

Figure 1.2: Trends over time 

for environmental issues. 

The years before and after 

the 1992 scientists’ warning 

are shown as grey and black 

lines, respectively. 

Percentage change, since 

1992, for the variables in 

each panel are as follows: 

(a) –68.1%; (b) –26.1%; (c) –

6.4%; (d) +75.3%; (e) –2.8%; 

(f) –28.9%; (g) +62.1%; (h) 

+167.6%; and (i) humans: 

+35.5%, ruminant livestock: 

+20.5%. Figure adapted 

from Ripple (et al., 2017). 
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intensification are not localised to the UK (Fig. 1.3), as these factors are global 

issues. 

As a mitigation tool against these trends in loss of biodiversity, the EU created 

agri-environmental schemes (AES) under the Common Agricultural Policy 

(CAP) introduced in 1992. Over the years there have been many changes to the 

CAP, primarily the allocation of the EU budget, with input declining from 73% in 

1984 to 39% in 2003 (Stoate et al., 2009). These schemes subsidise farmers to 

support a greater standard of living and encourage an increase in food 

production to meet demand of Europeans, whilst maintaining sustainable 

management of the landscape. One method the policy adopts is encouraging 

the planting of wild flower margins and less intensive farming methods whilst 

trying to maintain a high level of productivity. The aims behind this initiative are 

to protect biodiversity by reducing pesticide use and mitigating the effect of 

habitat fragmentation by preventing loss of wild populations (Kleijn and 

Sutherland, 2003). 

 

Figure 1.3: (A) Trends in annual rates of application of nitrogenous fertilizer (N) 

expressed as mass of N, and of phosphate fertilizer (P) expressed as mass of 

P2O5, for all nations of the world except the former USSR (FAO 2001), and trends 

in global total area of irrigated crop land (H2O) (FAO 2001). (B) Trends in global 

total area of land in pasture or crops (FAO 2001). (C) Trend in global pesticide 

production rates, measured as millions of metric tons per year (WHO 1990). (D) 

Trend in expenditures on pesticide imports (FAO 2001) summed across all 

nations of the world, transformed to constant 1996 U.S. dollars. All trends are as 

dependent on global population and GDP as on time. Reproduced from Tilman (et 

al., 2001). 



18 
 

These wild flower strips are used to encourage pollinator species and result in 

smaller areas of dense heterogenous foraging plants which bee species are 

more likely to visit (Carvell et al., 2004; Wood et al., 2015). The foraging 

behaviours of insects are shaped by the man-made landscape and have the 

potential to bias results of genetic diversity and estimates of population size. By 

sampling wild flower strips the resultant increased observation in genetic 

diversity could be due to increased density in the specific sampling area as 

opposed to the entire agricultural landscape. Investigations which suggest 

improvements by these schemes do not necessarily explore the population-

level effects as it could be a case of manipulating forager density in the 

homogeneous landscape (Holland et al., 2015). Pollinator richness declines 

with increasing distance from these foraging habitats (Garibaldi et al., 2011) 

therefore the manipulation of the landscape through these AES need to be 

strategic. 

1.5 Important role of disease 

Stressors negatively impacting pollinator numbers such as reduced floral 

diversity and pesticide use may also lead to an increase in susceptibility to 

parasites and pathogens (Goulson et al., 2015). The infection with diseases 

such as the trypanosome Crithidia bombi is likely to be contributing to the global 

decline of bumblebee numbers (Schmid-Hempel and Tognazzo, 2010; Koch 

and Schmid-Hempel, 2011). Investigations into the direct effect of reduced 

genetic diversity on the prevalence of disease in bumblebee populations has 

suggested that there is an increase in the gut parasite C. bombi in populations 

with lower genetic diversity (Whitehorn et al., 2011). The study found the 

prevalence of C. bombi to be higher in populations with reduced genetic 

diversity; however, there was no correlation with the immune response (levels 

of phenoloxidase and encapsulation response) and population heterozygosity. 

The levels of the enzyme phenoloxidase did decline, however, with an increase 

in parasite abundance. Therefore, this study suggests isolated, more 

homozygous populations are likely to have increased parasite prevalence. 

The varroa mite (Varroa destructor), is another emerging world-wide parasitic 

vector of disease and has detrimental effects on both wild and managed bee 

populations (Yang and Cox-Foster, 2007). Pathogens have proved to be a 
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significant threat to the apicultural industry in recent years, with dramatic 

declines observed in populations of Apis mellifera (European honeybee) (Smith 

et al., 2013). Individuals and brood parasitized by the virus-vectoring Varroa 

mite are almost 100% likely to be co-infected with Deformed Wing Virus (DWV) 

(Genersch, 2005) and Acute Bee Paralysis Virus (AVPV) (Ball, 1985). 

Spill-over of the emerging infectious disease from honeybees into bumblebee 

populations has been observed (Furst et al., 2014), as well as from pathogens 

present in commercial bumblebee colonies (Graystock et al., 2013) via floral 

resource sharing (Durrer and Schmidhempel, 1994; Graystock et al., 2015). 

There has been an increase in the demand for managed bee populations as 

pollinators for crops around the world, and this has led to mass transportation of 

pollinator species worldwide. Parallel transportation of associated diseases 

such as the Varroa mite has also been accelerated by this global trade of 

commercial bees (Goulson and Hughes, 2015). It is thought that Emerging 

Infectious Diseases (EIDs) such as DWV have a broader host range than 

originally thought; of the 24 viruses isolated from honeybees many can also 

infect bumblebee, solitary bee, wasp, ant and hoverfly species (de Miranda et 

al., 2013; Bailes et al., 2018; McMahon et al., 2018). The disease transmission 

route will likely influence the spread between pollinator species; for example 

directly transmitted diseases, such as those transmitted sexually and vertically 

will likely occur within and not between host species, whereas indirect 

transmission, such as food, faecal, and vector-borne, may increase 

transmissions between host species (Woolhouse et al., 2005). Inter-species 

transmission of diseases is more likely to occur with an increase in pollinator 

density and sharing of floral resources such as plants within agri-environmental 

schemes. 

Parasites and diseases are more likely to be transmitted between genetically 

similar hosts. An increase in heterozygosity (a measure of genetic diversity) 

leads to a greater chance of a resistant host being present in the population 

(Anderson and May, 1986) leading to a decrease in the overall disease risk 

within the species (Keesing et al., 2006). By reducing individual and population 

level genetic heterozygosity, inbreeding can increase host susceptibility to 

infectious parasites (Ellison et al., 2011). The underlying idea behind this 

increase in disease prevalence and reduced genetic diversity is also known as 
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the ‘monoculture effect’ and has been well documented in agricultural studies 

(Smithson and Lenne, 1996; Mundt, 2002; Reiss and Drinkwater, 2018). It has 

been suggested that host genetic diversity could buffer populations against 

epidemics in nature, but it is not clear how much is required to prevent the 

spread of disease (King and Lively, 2012). Current patterns of genetic diversity 

and disease spread have been analysed and recorded by King and Lively 

(2012), with research primarily focusing on endangered mammal species. The 

black-footed ferret for example, is believed to have been removed from its 

natural habitat because of low genetic diversity aiding the spread of a virulent 

canine distemper epizootic (Thorne and Williams, 1988).  

The genetic diversity of a population greatly influences its fitness with regards to 

infection with parasites, with reduced heterozygosity greatly increasing a 

populations’ prevalence of disease. Isolated and inbred populations are 

therefore at a much greater risk, not only due to small population sizes but also 

their susceptibility to infectious pathogens. Genetic structuring within species of 

bumblebee could theoretically prove valuable as related hosts provide easy 

transmission pathways for diseases. 

1.6 Aims and objectives for this thesis 

To better aid conservation of declining bumblebee species, a greater 

understanding of their population trends in terms of dispersal and population 

size is required both nationally and globally. To secure pollination services and 

improve current and future conservation efforts with regards to invertebrate 

pollinator species, a clearer understanding of the relationship between genetic 

and environmental factors affecting populations is key. By appreciating the 

impact of low genetic diversity, small effective population sizes and prevalence 

of disease on populations, methods of buffering anthropological changes in 

habitat fragmentation can be improved upon. There have been previous studies 

demonstrating the impacts of agri-environmental schemes (Wood et al., 2015; 

Carvell et al., 2017) and island biogeography (Schmid-Hempel et al., 2007) on 

populations of wild bumblebees; however, in this thesis I link genetic diversity 

with measures of effective population size and pathogen prevalence and load in 

large scale field conditions.  
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This thesis aims to combine described methods of population genetics with 

epidemiology to analyse wild populations of bumblebees in England and 

France. By using these techniques, this thesis will be the first to compare 

current mitigation tools aimed at improving wild pollinator conservation efforts 

with measures of genetic diversity and disease. I will also show relationships 

between heterozygosity and disease prevalence in natural populations of B. 

pascuorum and B. terrestris in island sites. This thesis aims to contribute 

towards increasing the efficacy of conservation efforts of declining wild 

pollinator species and provide a pathway for future research studies. 

I sampled naturally occurring isolated populations on islands and compared 

genetic structuring and impacts of heterozygosity on disease prevalence with 

those of mainland populations. I also sampled within agri-environmental sites 

and assessed how methods implemented to buffer against fragmented 

landscapes are impacting the genetic diversity and population structure of 

bumblebee species. These two investigations into bumblebee populations aim 

to increase understanding of the role of factors influencing heterozygosity of 

populations, and how this affects susceptibility to disease.  
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Chapter 2: Genetic structure within and between insular and mainland 

populations of Bombus pascuorum and Bombus terrestris 

2.1 Abstract: 

Island populations are at a greater risk of extinction resulting from reduced 

genetic diversity, due to their isolation from mainland populations, via founder 

effects and genetic drift. Isolated communities tend to have reduced species 

diversity which results in a highly complex and connected biotic structure; 

therefore, extinctions within one trophic level would negatively impact species 

within another. Insects, such as the bumblebee, provide valuable ecosystem 

services as wild flower and crop pollinators. A potential loss in genetic diversity 

within island Bombus spp. populations leads to a reduction in fitness, causing a 

greater risk of extinction by factors such as environmental change, pesticide 

use and emerging infectious diseases. Here I investigate the relationship 

between island and mainland sites in terms of their effective population size, 

genetic diversity and structuring as well as the effect of pathogen prevalence on 

two common bumblebee species; Bombus terrestris and Bombus pascuorum. I 

found genetic structuring (θ pascuorum=0.122, θ terrestris=0.069) as well as 

significant isolation by distance within B. terrestris populations. Within B. 

pascuorum populations, I found a reduction in heterozygosity lead to an 

increase in the prevalence of two common bee diseases; Crithidia bombi and 

Apicystis bombi. My research highlights the importance of understanding 

genetic structuring of bumblebees from within isolated populations and explores 

potential fitness consequences derived from inbreeding and reduced genetic 

diversity. 
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2.2 Introduction: 

Islands provide a unique model system for conservation studies due to their 

geographic isolation and increased levels of endemism and extinctions (Jensen 

et al., 2013). These insular ecosystems occur not only due to ocean barriers but 

also on mountain tops, in lakes and in ponds. Isolated islands tend to have 

reduced species diversity resulting in a highly complex and connected biotic 

community (Simberloff, 1974). Therefore, any changes in the community 

structure at a single trophic level would have a greater cascading impact on 

other species populations than within a less isolated area such as on the 

mainland  (May, 1975; Sahasrabudhe and Motter, 2011). 

Substantial evidence shows loss of Bombus spp. populations globally, primarily 

in the northern hemisphere where Bombus spp. are most common (Biesmeijer 

et al., 2006; Goulson et al., 2008; Williams and Osborne, 2009; Bommarco et 

al., 2011; Cameron et al., 2011; Garibaldi et al., 2013; Ollerton et al., 2014; 

Woodcock et al., 2016). This loss of pollinator species has a knock-on effect at 

other trophic levels (Brosi et al., 2007). Both island and mainland populations of 

bumblebees and other hymenopterans are of great importance because of their 

role as crop and wild flower pollinators (Corbet et al., 1991), ecosystem 

engineers (Jones et al., 1994), and natural pest-predators (Van Mele and Cuc, 

2000). Studying how isolation on island sites impacts the decline of wild 

bumblebee populations can help current understandings of reductions globally.  

Genetic diversity is of great importance when studying species conservation. It 

has long been predicted that island populations exhibit less genetic variation 

than mainland populations, and endangered species experience a further 

reduction in genetic variation (Frankham, 1996). Increased genetic diversity can 

help populations buffer against a whole host of biological stressors, such as 

gradually increasing global temperature and environmental isolation, by 

facilitating genetic adaptations to these changes. Evidence supporting these 

hypotheses has been shown in a range of species from bighorn sheep 

(Fitzsimmons et al., 1995) to reef-building coral, Pocillopora damicornis 

(Thomas et al., 2017). Inbreeding and bottlenecks have been discovered in 

numerous bumblebee species, most prevalent in island or isolated populations 

(Darvill et al., 2006; Ellis et al., 2006; Schmid-Hempel et al., 2007). These 
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populations are characterised by low genetic diversity, smaller population sizes 

and weak structuring because of these bottlenecks, as well as founder effects 

and genetic drift (Wright, 1931; Mayr, 1978; Frankham, 1997).  

A meta-analysis by Britten (Britten, 1996) supported a strong relationship 

between the heterozygosity of a population and fitness within a variety of plant 

and animal species. Within haplodiploid organisms such as the bumblebee, the 

effects of inbreeding and low genetic diversity are greater than in similar diploid 

species (Cook and Crozier, 1995). Within these haplodiploid species, sex is 

determined by zygosity at a specific sex determining locus; individuals 

heterozygous at the locus become female and those that are hemizygous 

develop into males. Populations with high levels of inbreeding increase the 

likelihood of a queen mating with a male who shares a sex determining allele, 

resulting in diploid, non-viable (sterile) males (Whitehorn et al., 2009). Inbred 

populations with diploid males had a much slower growth rate and produced 

significantly fewer offspring and consequently demonstrated an increased 

likelihood of declines and extinction (Frankham, 2005; Zayed and Packer, 2005; 

Goulson et al., 2008) 

Over the years, many factors have been suggested as main causes behind 

island extinctions, including habitat removal, species introductions, predation, 

the arrival of human populations and the spread of disease (Frankham, 1998). 

However, some island populations may become extinct due to natural 

environmental and genetic factors (Shaffer, 1981). The overall size of an 

individual island, as well as its distance from the mainland and time elapsed 

since isolation, will influence the rate of species extinction, with a species’ flight 

and dispersal capabilities affecting its own extinction rate. The likelihood of a 

species being able to colonise an oceanic island depends on several factors 

such as the distance from the mainland, the dispersal ability of the species and 

the opportunity to fill a niche within the new ecosystem.  

The effective population size can be of great importance in conservation 

research and in understanding the evolutionary history of a certain species. 

Graur (Graur, 1985) was the first to collate data from a range of taxa to show a 

positive correlation between effective population size and the heterozygosity 

within different species. Within my study of haplo-diploid hymenopteran species, 
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the effective population size (Ne) is the number of colonies (or nests) in each 

area and not the number of individuals within them. This is due to the complex 

eusocial behaviour of bumblebee species; these insects live in colonies of up to 

400 individuals depending on the species, with a single fertile queen 

representing the reproductive unit of the whole nest (Goulson, 2003). 

Insular genetic isolation and resultant inbreeding depression within Bombus 

spp. lead to decreased heterozygosity and this in turn can increase an 

individual’s and population’s susceptibility to disease (Woodard et al., 2015) as 

well as cause fitness declines, slower growth rates and lower reproductive rates 

(Whitehorn et al., 2009). In order to optimise conservation efforts for a given 

species, genetic diversity as well as the distribution of disease within and 

among populations should therefore be considered. 

My thesis studies populations of two common bumblebee species: B. terrestris 

and B. pascuorum. Both species are polylectic eusocial bumblebees with a wide 

distribution across England and France. Recently, rearing techniques of B. 

terrestris have greatly improved, producing colonies for commercial crop 

pollination services in the agricultural sector (e.g. to provide pollination services 

for crops such as tomatoes and blueberries (Vanbergen et al., 2013). This has 

resulted in Europe-wide transportation of B. terrestris colonies, which affects the 

genetic diversity of wild populations and can also introduce diseases without 

careful screening processes (Otterstatter and Thomson, 2008; Graystock et al., 

2013).  

B. pascuorum are widespread throughout the UK and France except for on the 

Scilly Isles, Outer Scottish Isles and Shetland (Williams and Osborne, 2009). 

Recently, the species has been established on the Orkneys (Plowright and 

Plowright, 1997). B. terrestris populations have a similar range distribution, 

however the species is found on the Scilly Isles (Williams and Osborne, 2009) 

and they have been spreading in Northern Scotland (Macdonald 2001). The 

high prevalence of both species within the UK and France makes them the 

perfect study species to assess their genetic diversity and structuring within this 

thesis. 

As well as an increase in habitat fragmentation, increases in pesticide use and 

other such anthropogenic stressors, disease and viruses of bee species have 
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become a more important area of study over the past few decades. Varroa 

destructor is an ectoparasitic mite that acts as a vector for many bee viruses 

such as Deformed Wing Virus (DWV) (Furst et al., 2014) and has spread 

globally (Oldroyd, 1999) via a novel transmission route in Apis mellifera. This in 

turn results in an observed increase in the prevalence, viral load (Martin et al., 

2012) and virulence (Genersch et al., 2010; Ryabov et al., 2014) of viruses such 

as DWV. In places where Varroa is present, there has been shown to be an 

increase in the prevalence of pathogens in both Apis and Bombus species, 

suggesting there is also the ability for multi-host pathogen spill over (Manley 

2017). Such pathogens include the trypanosome Crithidia bombi and the 

neogregarine Apicystis bombi, both of which are multi-host parasites and are 

likely to be transmitted via faecal-oral routes whilst workers forage on flowers. 

C. bombi parasitized workers are less likely to forage for pollen, and visit fewer 

flowers when foraging (Shykoff and Schmidhempel, 1991; Otterstatter et al., 

2005). A. bombi infected workers have an increased mortality, reduced fat body 

content and increased sensitivity to sucrose (Graystock et al., 2015), with very 

few bees being highly infected due to the high pathogenicity of the 

neogregarine. Other emerging infectious diseases (EIDs) in both managed and 

wild populations of bees can negatively impact pollinator services and therefore 

the subsequent food security this provides. Arbetman et al., (Arbetman et al., 

2017) found that species which have no association with the three most 

common bee pathogens (Crithidia bombi, Nosema spp., Locustacarus buchneri) 

were more prone to decline, suggesting these species have a reduced 

tolerance to infection. Whitehorn et al., (Whitehorn et al., 2011) went one step 

further looking into the declining bee species B. muscuorum in island 

populations, to suggest that the prevalence of C. bombi was higher in 

populations with lower genetic diversity.  

Populations of B. terrestris have been the subject of many genetic studies 

globally for numerous years, as they are widespread and abundant. Studies 

have shown genetic variation across island/mainland populations (Widmer et 

al., 1998); and within mainland populations (Kraus et al., 2009). Subdivision 

within B. terrestris has also been observed (Rasmont et al., 2008). Very few 

genetic studies of B. pascuorum populations have been conducted; however, 

studies that have, show a similar pattern with geographic isolation and high 
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genetic diversity and structuring as found in B. terrestris (Pirounakis et al., 1998; 

Widmer and Schmid-Hempel, 1999; Herrmann et al., 2007). 

In this present study, I calculated the genetic diversity and structuring of B. 

terrestris and B. pascuorum populations within and between 12 island and 

mainland sites in the UK and France, using microsatellite markers. I used 

estimates of genetic diversity (FST), genetic structure (θ) and effective 

population size (Ne) to study the impact of geographical isolation on wild 

pollinator populations. I also used these measures to analyse the relationship 

between the heterozygosity of populations and the prevalence and abundance 

of the pathogens C. bombi and A. bombi. 
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2.3 Materials and Methods: 

2.3.1 Sample species 

B. terrestris and B. pascuorum were sampled across 12 field sites in the UK and 

France, resulting in a total of 283 B. pascuorum workers (see table 2.1) and 645 

B. terrestris workers (see table 2.2). To allow for whole body RNA sequencing 

for pathogen detection, whole individuals were sacrificed. Haploid males were 

removed from analysis, as this would increase the levels of homozygous 

results. B. terrestris individuals were differentiated from their cryptic sister 

species B. lucorum following methods from Ellis et al., (2006). 

2.3.2 Sample sites 

Samples were taken from 12 geographically matched island and mainland sites 

in England and France with the islands ranging from 40-130km from the 

mainland (Fig. 2.1; Table S3, Table S9). Alderney (A), Belle Ile (P), Brest (B), 

Cherbourg (C), Falmouth (F), Guernsey (G), Isle of Man (M), Jersey (J), 

Liverpool (L), Quiberon (Q), Scillies (S) and Ushant (U). The individuals were 

caught whilst foraging and all within the same day, providing the temperature 

was greater than 15oC and there was less than 80% cloud cover. The bees 

were collected from a 1kmx1km plot within each site, where they were caught in 

individual tubes, then first stored in a cool bag to be later sacrificed and kept 

frozen at -80oC. Data collection took place in June and July 2015.  

Figure 2.1: A map of the studied 

area with the approximate location 

of each sampling location in the 

UK and France with islands 

marked in orange, and mainland 

sites marked in blue. Alderney (A), 

Belle Ile (P), Brest (B), Cherbourg 

(C), Falmouth (F), Guernsey (G), 

Isle of Man (IOM), Jersey (J), 

Liverpool (L), Quiberon (Q), 

Scillies (S) and Ushant (U).  
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Table 2.1: B. pascuorum samples per site (island or mainland location), population genetic metrics (heterozygosity and allelic richness 

per location including standard error) and prevalence of the parasites Crithidia bombi and Apicystis bombi. Varroa status indicates 

whether the honeybee population was infested with the honeybee parasite Varroa destructor (see Manley et al. 2019). ‘Sister pairs’ 

indicates the number of sister pairs per site with the number of unique colonies (the number of times when only one worker represented a 

nest) in brackets. The effective population size was calculated using the ECM (Event Capture Model) with those populations best 

described using TIRM (Two Innate Rate Model) marked with *; the 97.5% confidence intervals (CI) was calculated by bootstrapping 

(1,000 bootstraps), and max pop size equal to 1000. The average values for island and mainland populations for each measure is 

highlighted in bold below. Quiberon and Scillies were removed from analysis due to insufficient sample sizes.  

Site

Island/ 

Mainland

Varroa 

status Queens Workers Males

Workers 

Genotyped Heterozygosity

Allelic 

Richness

Sister pairs 

(unique 

colonies)

Effective 

population size 

(CI)

C. bombi 

prevalence 

(%)

A. bombi 

prevalence 

(%)

Alderney Island Negative 0 30 0 30 0.62 (± 0.07) 4.95 (± 0.52) 4 (26) 208 (77, 1000) 29 57

Belle Ile Island Positive 0 19 0 18 0.64 (± 0.04) 7.73 (± 0.49) 2 (17) 165 (51, 1000) 53 35

Brest Mainland Positive 0 19 0 18 0.66 (± 0.08) 6.73 (± 0.73) 2 (16) 147 (45, 1000) 43 43

Cherbourg Mainland Positive 0 26 4 24 0.65 (± 0.07) 5.67 (± 0.69) 9 (15) 58* (34, 141) 10 30

Falmouth Mainland Positive 0 33 0 27 0.74 (± 0.06) 8.40 (± 0.52) 2 (26) 369 (117, 1000) 69 38

Guernsey Island Positive 0 31 0 25 0.50 (± 0.08) 4.95 (± 0.45) 6 (19) 92 (41, 292) 50 36

Isle of Man Island Negative 0 27 1 25 0.29 (± 0.08) 2.67 (± 0.31) 11 (13) 38 (22, 84) 37 58

Jersey Island Positive 0 33 1 23 0.73 (± 0.05) 6.76 (± 0.51) 6 (17) 77 (34, 245) 35 85

Liverpool Mainland Positive 0 30 0 25 0.67 (± 0.08) 6.36 (± 0.46) 10 (15) 52 (29, 142) 20 65

Ushant Island Negative 0 28 0 17 0.75 (± 0.04) 6.24 (± 0.59) 2 (15) 130 (40, 1000) 0 13

Quiberon Mainland Positive 0 1 0 0 n/a n/a n/a n/a n/a n/a

Scillies Island Negative 0 0 0 0 n/a n/a n/a n/a n/a n/a

Average Island n/a n/a n/a 23.08 0.50 n/a 0.50 n/a n/a 118.33 34 47

Average Mainland n/a n/a n/a 22.51 0.54 n/a 0.68 n/a n/a 189.33 36 44  
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Table 2.2: B. terrestris samples per site (island or mainland location), population genetic metrics (heterozygosity and allelic richness per 

location including standard error) and prevalence of the parasites Crithidia bombi and Apicystis bombi. Varroa status indicates whether 

the honeybee population was infested with the honeybee parasite Varroa destructor (see Manley et al. 2019). ‘Sister pairs’ indicates the 

number of sister pairs per site with the number of unique colonies (the number of times when only one worker represented a nest) in 

brackets. The effective population size was calculated using the ECM (Event Capture Model) with those populations best described using 

TIRM (Two Innate Rate Model) marked with *; the 97.5% confidence intervals (CI) was calculated by bootstrapping (1,000 bootstraps), 

and max pop size equal to 1000. The average values for island and mainland populations for each measure is highlighted in bold below. 

Ushant was removed from analysis due to poor sampling efforts. 

Site

Island/ 

Mainland

Varroa 

status Queens Workers Males

Workers 

Genotyped Heterozygosity

Allelic 

Richness

Sister pairs 

(unique 

colonies)

Effective 

population size 

(CI)

C. bombi 

prevalence 

(%)

A. bombi 

prevalence 

(%)

Alderney Island Negative 0 56 1 33 0.75 (± 0.05) 7.13 ± (0.93) 0 (33) 33 45 45

Belle Ile Island Positive 0 54 5 46 0.72 (± 0.05) 7.49 (± 1.26) 19 (27) 78 (53, 132) 37 34

Brest Mainland Positive 0 57 4 54 0.79 (± 0.05) 9.34 (± 1.40) 20 (34) 137* (102, 322) 78 83

Cherbourg Mainland Positive 0 43 18 40 0.79 (± 0.05) 10.14 (± 1.74) 19 (21) 72* (52, 142) 69 42

Falmouth Mainland Positive 0 52 6 46 0.78 (± 0.05) 9.54 (± 1.37) 4 (42) 502 (192, 1000) 49 51

Guernsey Island Positive 0 43 3 36 0.77 (± 0.05) 8.37 (± 1.14) 0 (36) 36 64 67

Isle of Man Island Negative 0 53 1 51 0.64 (± 0.06) 6.13 (± 0.81) 16 (35) 162* (109, 325) 46 39

Jersey Island Positive 0 51 8 47 0.78 (± 0.05) 8.64 (± 1.23) 6 (41) 345 (139, 1000) 73 55

Liverpool Mainland Positive 0 44 15 43 0.79 (± 0.04) 8.92 (± 1.48) 9 (34) 166 (86, 437) 63 63

Ushant Island Negative 0 13 0 0 n/a n/a n/a n/a n/a n/a

Quiberon Mainland Positive 0 56 3 44 0.77 (± 0.04) 9.21 (± 1.36) 20 (24) 71 (48, 120) 64 55

Scillies Island Negative 0 45 14 45 0.68 (± 0.05) 7.15 (± 0.87) 11 (35) 189 (118, 525) 64 46

Average Island n/a n/a n/a 47.25 6.50 n/a 0.73 n/a n/a 136.20 55 48

Average Mainland n/a n/a n/a 46.52 6.96 n/a 0.78 n/a n/a 181.30 65 59
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2.3.3 DNA extraction 

DNA was extracted from a tarsal sample removed from the individuals, using 

the Chelex extraction method (Walsh et al., 2013). The tarsal samples were 

placed in liquid nitrogen where they were crushed in Eppendorf® tubes to a fine 

powder using sterile pestles, reducing contamination by autoclaving between 

uses. 200µl of 5% Chelex solution (Bio-Rad) and 2µl of Proteinase K was 

added to the crushed tissue and the mixture was then thoroughly vortexed. The 

crushed samples were placed in a 56oC water bath for an hour and then 96oC 

for 15 minutes to deactivate the enzyme. After this time, the samples were 

placed in a centrifuge at maximum speed for 1 minute, and 150µl of the 

supernatant was pipetted into 96-well plates and stored at -20oC. 

2.3.4 Microsatellite Genotyping 

The extracted DNA was amplified at 9 polymorphic microsatellite loci (Estoup et 

al., 1995; Estoup et al., 1996), multiplexed in three reactions per sample 

(following methods in, (Dreier et al., 2014)(Table 2.3)). Because of poor 

amplification results across sites, two loci (B121 and B118) were removed from 

the B. pascuorum data set.  

All PCRs were 10µL in volume and contained 1µL Betaine (Q-solution), 3mM 

MgCl2, 20µM dNTPs, 2.6µL 5x GoTaq® Flexi buffer, 1.2µL of primer (0.2µL of 

forward and reverse of each primer), 2u Taq polymerase and made up with 

Milliq Water and 1µL of template DNA. PCRs were performed in a thermocycler 

with an initial denaturing step at 95oC for 15 minutes followed by 25 cycles of 

30s at 94oC, 90s at optimum annealing temperature (see table 2.3) and 60s at 

72oC, with a final extension step of 45 minutes at 60oC. The PCR product was 

diluted 1:10 then visualised on an ABI 3730 capillary DNA sequencer using 

GeneScan Liz 500 size standard. Fragments were then scored using Geneious 

version 9.1.5 (Kearse et al., 2012).  
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Table 2.3: The combination of primers used during genotyping PCR methods 

with their respective dyes in brackets and the optimum annealing temperature 

used. Within primer mix 1, B100(VIC) was replaced with B121(VIC) and in 

primer mix 3 B119(FAM) was replaced with B131(FAM) in B. pascuorum 

individuals – highlighted in bold. 

Primer Mix Optimum Annealing Temperature 

(Tm) 

B100(VIC)/B121(VIC) –B118(NED)-

B132(FAM) 

58oC 

B10(VIC)-B11(NED)(Garibaldi et al.)-

B96(FAM) 

52oC 

B119(FAM)/B131(FAM)-B124(NED)-

B126(PET) 

56oC 

 

2.3.5 Gut DNA extraction 

After removal from the -80oC freezer, the gut was extracted from the abdomen 

using forceps, the contents mixed with 200µL insect Ringer solution and then 

homogenised with a pestle. Between use for each sample, the forceps and 

pestles were soaked in 20% bleach and autoclaved to prevent contamination. 

The DNA was then extracted from the solution using a Chelex method like host 

species DNA extraction. 35µL of the gut extract was added to 1000µL of 10% 

Chelex® 100 resin (Bio-Rad) solution with 2µL of Proteinase K and vortexed 

thoroughly before incubation. The tubes were incubated at 56oC for one hour 

during which time the samples were vortexed twice and then incubated for a 

further 15 minutes at 95oC. Once the incubation periods were over, the solution 

was centrifuged at maximum speed and the supernatant was removed and 

stored at -20oC for further analysis. 

2.3.6 Pathogen presence PCR 

The presence of Crithidia bombi and Apicystis bombi were determined via PCR 

using published protocols with the following primers respectively; CB_ITS1-F/R 



33 
 

(Schmid-Hempel and Tognazzo, 2010), and NeoF/R (Meeus et al., 2010). For 

the detection of C. bombi, a 20µL reaction mix contained 2µL DNA, 1x reaction 

buffer, 1.0µL dNTPS of 2.5mM each, 0.4µL of each primer of 10µM and 0.5 U of 

Tag polymerase. The PCR amplification was as follows: a denaturation step of 

5min at 95oC was followed by 40 cycles of 30s at 95oC, annealing for 30s at 

55oC, and 1 min extension at 72oC, the last cycle was followed by 10min at 

72oC. The fragmented DNA was then checked on a 1.5% agarose gel. For 

detection of A. bombi, a 20µL reaction mix contained 1.5 mmol 1-1 MgCl2, 0.4 

mmol 1-1 dNTPs, 0.5µmol 1-1 primers, 1.25 U Taq polymerase and 1µl of DNA. 

The PCR amplification was set as follows: initial denaturation steps of 2mins at 

94oC, followed by 35 cycles of 30s at 94oC, 30s annealing at 56oC, 45s at 72oC, 

and a final 3mins at 72oC to complete polymerisation. The fragmented DNA was 

viewed on a 1.5% agarose gel. 

2.3.7 Phase-contrast microscopy 

The gut samples stored at -20oC were diluted 1:10, 9µL of this dilution was 

pipetted onto an Immune Systems FastRead 102 haematocytometer and 

examined at 40x magnification using a Motic BA300 light microscope. 

Pathogens were than counted by eye in the homogenate using the counting 

chamber within all positive B. terrestris and B. pascuorum individuals based on 

PCR presence results. 

2.3.8 Statistical Analyses 

MICRO-CHECKER (Van Oosterhout et al., 2004) was used to identify 

microsatellite genotyping errors by analysing each locus for homozygote 

excess, which serves as an indicator for the presence of null alleles.  

COLONY 2.0.6.4 (Wang, 2004; Jones and Wang, 2010) was used to identify 

sister individuals within the sample sites. If individuals were identified to be from 

the same colony with a posterior probability of >0.8, one was randomly 

assigned to represent the colony and the others were discarded from further 

population genetic analysis. This method follows previous literature studying 

Bombus sp. genetic analysis (e.g. (Carvell et al., 2012; Dreier et al., 2014; 

Carvell et al., 2017).  
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From these sister-pair reconstructions, the effective population size (Ne) can be 

calculated. We used the DNA mark-recapture method to estimate population 

size based on the number of times an individual is recaptured, implemented in 

the software R (R Core Team 2014) using the package Capwire (Miller et al., 

2005). Within my study species’, ‘recapturing’ an individual is represented as 

the assignment of a sister pair. Both methods implemented in the Capwire 

package, the Event Capture Model (ECM) and the Two Innate Rate Model 

(TIRM) were used to estimate the effective population size. The ECM assumes 

that all individuals within an area have the same probability of being caught. 

The TIRM, however, allows for heterogeneity in the probability of capture 

between individuals. To determine which model best fitted the data, Likelihood 

Ratio tests (LR) were conducted by simulating both ECM and TIRM and fitting 

both to the data. The significance of the LR was then used to determine which 

model best described the data. It was assumed that all workers within a colony 

were offspring of one singly-mated queen (Estoup et al., 1995; Schmid-Hempel 

and Schmid-Hempel, 2000) and a genotyping error rate of 0.05% was taken for 

both species following previous methods by Dreier et al., (2014). With finite 

sampling, we expect that not all colonies at a site were sampled, i.e. that some 

colonies are represented by zero workers in the sample. For B. terrestris at 

sites Alderney and Guernsey, this ‘zero’ category could not be estimated, as all 

individuals caught from this site were from a unique colony, i.e. represented by 

only one worker. Therefore, only the minimum number of colonies can be stated 

for these two populations.  

GENEPOP 4.1.2 (Rousset, 2008) was used to verify Hardy-Weinberg 

equilibrium (HWE) across populations and loci, and to detect linkage 

disequilibrium (LD). The genetic structure was assessed using population-

specific F-statistics (Wright, 1965) via the hierarchical Bayesian F-model (Foll 

and Gaggiotti, 2006), in FSTAT version 2.9.3.2 (Goudet, 2001). Global statistics 

across all populations and pairwise θ values per sample pairs as well as the 

inbreeding coefficient (FIS) per population were estimated. θ describes the 

levels of heterozygosity within the population and is therefore a measure of 

population differentiation due to genetic structuring. The means and standard 

errors reported were obtained by jack-knifing over samples and loci, with 

significance levels of p-values adjusted using Bonferroni corrections. Allelic 
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richness and expected heterozygosity were also calculated in FSTAT, using a 

resampling procedure to avoid bias of different sample sizes. A Pearson 

correlation test was conducted to analyse the relationship between genetic 

diversity and allelic richness.  

Tests for Isolation by Distance (IBD) were calculated by firstly measuring the 

shortest direct distance between sites using Google Maps (Google 2018) and 

tests for correlation of FST and geographic distance were conducted using the R 

package ‘vegan’ (Oksanen et al., 2013). The statistical significance of the 

correlation coefficients was estimated using 1,000 permutations. Data were 

analysed in RStudio, version 1.0.136 (Racine, 2012). 

Structure 2.3.4 (Pritchard et al., 2000) was used to conduct Bayesian analysis 

to investigate population structure by using a model-based clustering method. 

This software determines the optimal number of genetic clusters (K) using 

Markov Chain Monte Carlo (MCMC) methods to estimate P(XK) (the probability 

that the defined number of populations equals the estimate of genetic clusters). 

The number of clusters was set from 1 to 11 for B. terrestris, and 1 to 10 for B. 

pascuorum with an initial burn in of 20,000 followed by 80,000 MCMC iterations. 

20 iterations of the MCMC runs were completed using the admixture model and 

correlated allele frequencies (default parameter settings). Results were then 

uploaded into StructureHarvester 0.6.94 (Earl and Vonholdt, 2012) where the 

Evanno method was implemented to calculate the optimum value of genetic 

clusters K (Evanno et al., 2005; Earl and Vonholdt, 2012; Francis, 2017).  

Phylogenetic trees of populations for B. terrestris and B. pascuorum were 

constructed using the UPGMA (Unweighted Pair-Group Method with Arithmetic 

Mean; (Sneath, 1987) based on FST values. Additionally, Neighbor-Joining trees 

were calculated using Nei’s chord distance (Nei et al., 1983). The trees were 

built using Poptree2 (Takezaki et al., 2010) and were constructed after 1000 

bootstraps.   

In order to define genetic structuring of populations, Principal Component 

Analyses (PCA) of the heterozygosity of the populations were conducted per 

population in R using the package “prcomp()”. PCA allows for the 

representation of raw genetic data in a low-dimensional Euclidean space using 

a matrix of dissimilarity (in this case, FST), visually representing the data within 
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two axes. PCA allows for multiple factors (in this case alleles) to be presented 

on two principle coordinate axes, via explaining the variance with Eigen 

Vectors. To test for population differentiation, AMOVA (Analysis of Molecular 

Variance) was conducted in ARLEQUIN ver 3.5.2.2 (Schneider et al., 2000) to 

detect population differentiation using the molecular markers. This statistical 

method studies the patterns and degree of relatedness within populations, 

within individuals within specified groups and between specified groups by 

multidimensional scaling and the clustering dendrogram.  

2.4 Results: 

2.4.1 Null alleles and Hardy-Weinberg 

A total of 232 B. pascuorum were successfully genotyped for 7 markers, with 

loci B121 and B118 removed from analysis due to poor amplification. Null 

alleles were only present in locus B10 (>10% in 9 out of 10 of the sites 

sampled), B10 was therefore removed from further analysis. No significant 

deviations from HWE or linkage disequilibrium were observed (p>0.05, 

Benjamini-Hochberg correction for multiple testing). Subsequent analysis was 

performed using the remaining 6 loci for B. pascuorum (B132, B96, B11, B131, 

B124 and B126). 

In total, 486 B. terrestris were genotyped. Null alleles were present in locus 

B126 (>10%) for more than half of B. terrestris populations, therefore the locus 

was removed from further analysis. Global tests by population showed no 

significant departure from HWE or linkage disequilibrium across all loci (p>0.05; 

Benjamini-Hochberg correction for multiple testing). Subsequent analysis was 

carried out using the final 8 remaining loci for B. terrestris (B132, B100, B118, 

B96, B10, B11, B120 and B124).  

2.4.2 Colony Reconstruction 

A total of 232 B. pascuorum individuals were sampled and grouped into 203 

colonies (an average of 1.14 workers per colony) between 10 of the field sites. 

486 B. terrestris individuals were sampled which were grouped into 411 

colonies (an average of 1.21 workers per colony) across 11 field sites in the UK 

and France. The number of sister pairs can be seen in tables 2.1 and 2.2.  
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2.4.3 Effective Population Size 

Due to no assignment of sib-ships from COLONY, the effective population size 

of B. terrestris could not be estimated for the populations in Alderney and 

Guernsey. This left a total of 9 sites with estimated effective population size for 

B. terrestris and 10 sites for B. pascuorum. Based on a log likelihood 

comparison in the CAPWIRE program, ECM was the best representing model 

for 5/9 B. terrestris sites and 10/10 B. pascuorum sites (tables 2.1 and 2.2). 

There was no significant difference between the number of colonies estimated 

for island and mainland sites (B. pascuorum: t=-0.49 df = 8 p=0.64, B. terrestris: 

t=-0.54 df=9 p=0.60) (tables 2.1 and 2.2; fig. 2.2). A Pearson’s correlation test 

revealed no significant relationship between the effective population size and 

the heterozygosity of each site (B. pascuorum: r = 0.43, p= 0.21, B. terrestris: r 

= 0.15, p= 0.69). 

2.4.4 Population Structure 

Significant global genetic structuring was found within B. pascuorum (θ = 0.122 

(± 0.022), p<0.05), and all pairwise θ values between sites were significant 

except Liverpool and Falmouth (p = 0.378). Global genetic structuring was not 

significant in B. terrestris (θ = 0.069 (± 0.0009), p=0.53). For both species, 

genetic diversity is significantly correlated with allelic richness (Pearson’s 

 

Figure 2.2: The effective population size within island (orange) and mainland 

(blue) sites estimated for a) B. pascuorum and b) B. terrestris, estimated 

using CAPWIRE. Figure shows error bars of 95% confidence intervals and 

the mean. 

a) b) 
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correlation, B. pascuorum n=206, r=0.865, p<0.001; B. terrestris n=410, 

r=0.357, p<0.001). 

2.4.5 Genetic isolation by distance (IBD) 

There was no evidence for a pattern of IBD among B. pascuorum population 

pairs (Mantel test, r=0.26, p=0.15; fig. 2.3a), whereas B. terrestris analysis 

showed a significant relationship between pairwise FST values (θ) and 

geographic distance (km) (Mantel test: r=0.36, p=0.04; fig. 2.3b). 

 

 

2.4.6 Genetic structure analysis 

Results from STRUCTURE revealed support for two clusters (K=2) given by the 

high ΔK value from downstream STRUCTURE HARVESTER analysis (fig. 2.4) 

for B. pascuorum, with weaker support for K=3. All populations of B. pascuorum 

show high levels of cluster 1 (red), with fewer individuals from A, G and M 

included within the second cluster (green) (fig. 2.5). A third cluster (blue) is 

underrepresented in the island (A, G, M, J and U) populations than compared to 

the mainland sites (fig. 2.5). 

The ΔK statistic was greatest at K=2, with significantly weaker explanatory 

power when including additional clusters across B. terrestris populations (fig. 

2.7). Support for genetic clustering of individuals from the Isles of Scilly can be 

a) b) 

Figure 2.3: The (logged) geographical distance and the genetic distance (FST) 

between each of the sampled field sites in a) B. pascuorum (p=0.15) and b) B. 

terrestris (p=0.04). 
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observed by the lack of contribution in the second cluster (green, fig. 2.8). The 

addition of a third cluster (K=3), shows further genetic structuring of the Isles of 

Scilly in the second cluster, and the Isle of Man populations dominating the third 

cluster (blue, fig. 2.8). 

Such weak support for genetic structuring between populations of both species 

is further evident from constructed UPGMA and NJ trees, both with weak 

bootstrapping values (fig. 2.6, fig. 2.9). 

 

Figure 2.4: Inference of the 

optimal value of K using the ΔK 

method of Evanno (et al., 2005) 

for B. pascuorum populations. 

Figure shows support for 2 

clusters (K) and weaker support 

for K=3. 

Figure 2.5: Population structure analysis bar 

graphs from STRUCTURE for populations of 

B. pascuorum with support for K=2 and K=3. 

Alderney (A), Belle Ile (P), Brest (B), 

Cherbourg (C), Falmouth (F), Guernsey (G), 

Isle of Man (M), Jersey (J), Liverpool (L) and 

Ushant (U). Each individual genotype is 

represented by a coloured vertical bar 

representing the posterior assignment 

probability of being assigned to the clusters. 

The clusters are shown as different colours 

within the graphs. 

Figure 2.6: A UPGMA (a) and NJ tree (b) showing the relationship between 

genetic distances of the 10 sample sites for B. pascuorum populations. 

Alderney (A), Belle Ile (P), Brest (B), Cherbourg (C), Falmouth (F), Guernsey 

(G), Isle of Man (M), Jersey (J), Liverpool (L) and Ushant (U). Branch 

numbers represent bootstrapping percentage. 

a) b) 
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Figure 2.7: Inference of the 

optimal value of K using the ΔK 

method of Evanno (et al., 2005) 

for B. terrestris populations. 

Figure shows support for 2 

clusters (K). 

Figure 2.8: Population structure analysis 

bar graphs from STRUCTURE for 

populations of B. terrestris with support 

for K=2 and K=3. Alderney (A), Belle Ile 

(P), Brest (B), Cherbourg (C), Falmouth 

(F), Guernsey (G), Isle of Man (M), Jersey 

(J), Liverpool (L), Quiberon (Q) and The 

Isle of Scillies (S). Each individual 

genotype is represented by a coloured 

vertical bar representing the posterior 

assignment probability of being assigned 

to the clusters. The clusters are shown as 

different colours within the graphs. 

Figure 2.9: A UPGMA (a) and NJ tree (b) showing the relationship between 

genetic distances of 10 sample sites for B. terrestris populations. Alderney 

(A), Belle Ile (P), Brest (B), Cherbourg (C), Falmouth (F), Guernsey (G), Isle 

of Man (M), Jersey (J), Liverpool (L), Quiberon (Q) and The Isle of Scillies 

(S). Branch numbers represent bootstrapping percentage. 

a) b) 
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2.4.7 Principal Component Analysis 

Results from PCA show no distinct clustering in multivariate space on the PC1 

and PC2 axes for both B. pascuorum and B. terrestris (fig. 2.10), with very high 

levels of admixture between sample sites. 

 

 

2.4.8 Analysis of Molecular Variance 

Results from the AMOVA show the landscapes producing the greatest 

significant among-group percentage variation for B. pascuorum and B. terrestris 

were using the groupings of the STRUCTURE analysis (Table 2.4). Within B. 

pascuorum, 10.4% (n=6, p<0.001) of genetic variation is explained by grouping 

together the Channel Islands (A, G+J), taking the other islands as their own 

groups (M, U, P) and grouping the remaining mainland populations together. 

Within B. terrestris populations grouping the four UK sites (S, M, F, L) 

individually and then grouping the remaining sites, accounted for 5.21% (n=5, 

p<0.05) of genetic variation between groups. 

Neither B. pascuorum nor B. terrestris showed genetic variation between island 

and mainland sites (p>0.05); however, B. terrestris results show a small 

variation between UK and French populations (n=2, 1.04%, p<0.05).  

Figure 2.10: Principal Component Analysis performed in R for a) B. pascuorum and b) 

B. terrestris populations with each colour representing each sampling site; Alderney 

(A), Belle Ile (P), Brest (B), Cherbourg (C), Falmouth (F), Guernsey (G), Isle of Man 

(I), Jersey (J), Liverpool (L), Quiberon (Q), The Isle of Scillies (S) and Ushant (U). 

Each point represents an individual sampled, and the distance between each point 

represents how dissimilar the samples are to each other.  

a) b) 
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Table 2.4: Analysis of Molecular Variance (AMOVA) of microsatellite data from (a) B. pascuorum and (b) B. terrestris populations within 

the UK and France grouped by different criteria. Values shown are percentage variation within populations of the species, among 

populations of the species and between the designated groups within the species. Results in bold represent the grouping with the 

greatest among-group variation percentage.

Landscape
Total Number 

of Groups

Within-population % variation, FIS (P-

value )

Among-population % variation, FSC (P-

value )

Among-group % variation, FCT (P-

value )

Island and Mainland 2 82.8, 0.0559 (0.00119) 11.9, 0.11939 (0.000) 0.37, 0.00374 (0.295)

UK and France 2 83.1, 0.0559 (0.00119) 12.3, 0.12240 (0.000) -0.20, -0.00292 (0.510)

UK Island, UK Mainland, France 

Island and France Mainland
4 82.1, 0.0559 (0.00119) 9.7, 0.10009 (0.000) 3.38, 0.0338 (0.0580)

Varroa and Non-Varroa 2 81.2, 0.0559 (0.00040) 10.5, 0.108 (0.000) 3.58, 0.0358 (0.0640)

STRUCTURE (M+U+P+A,G,J+Rest) 6 81.5, 0.0559 (0.00158) 3.25, 0.0363 (0.000) 10.4, 0.1042 (0.00079)

Landscape
Total Number 

of Groups

Within-population % variation, FST (P-

value )

Among-population % variation, FSC (P-

value )

Among-group % variation, FCT (P-

value )

Island and Mainland 2 84.8, 0.0913 (0.000) 7.22, 0.0718 (0.000) -0.57, -0.00567 (0.942)

UK and France 2 84.2, 0.0913 (0.000) 6.31, 0.0638 (0.000) 1.04, 0.0104 (0.0324)

UK, Channel Islands and France 

Mainland
4 84.5, 0.0913 (0.000) 6.44, 0.0648 (0.000) 0.61, 0.00608 (0.113)

Varroa and Non-Varroa 2 84.2, 0.0913 (0.000) 6.46, 0.0652 (0.000) 0.91, 0.00907 (0.133)

STRUCTURE (S+M+F+L+Rest) 5 83.1, 0.0913 (0.000) 3.35, 0.0353 (0.000) 5.21, 0.0521 (0.0397)  
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2.4.9 Relationships with disease 

Two species of parasite were detected and analysed in this current study: the 

gut trypanosome Crithidia bombi and the neogregarine Apicystis bombi.  

C. bombi was detected at a significantly greater prevalence in B. terrestris 

populations than B. pascuorum populations (Two sample T test: t14.87=-3.22, 

p=0.006; tables 2.1 and 2.2). There was no difference in A. bombi prevalence 

between B. terrestris and B. pascuorum populations (t15.80=-0.87, p=0.40; tables 

2.1 and 2.2). 

2.4.10 Individual Level Results 

There was no significant effect of heterozygosity on the individual count of C. 

bombi or A. bombi within populations of B. pascuorum or B. terrestris (table 

2.5).  

Table 2.5: The results of a generalised linear mixed effect model (GLMM) for B. 

pascuorum (left) and B. terrestris (right) looking at the heterozygosity, A. 

bombi/C. bombi prevalence, island/mainland with site as a random effect on the 

abundance of A. bombi and C. bombi within each species. 

Co-efficient 

estimate

Standard 

Error z-value p-value

Co-efficient 

estimate

Standard 

Error z-value p-value

Heterozygosity -2.1 3.54 -0.6 0.55 Heterozygosity -0.63 1.88 -0.34 0.74

Island 0.3 0.94 9.26 0.75 Island 0.51 0.19 2.75 <0.05

A. bombi count 0.005 0.0005 0.32 <0.001 A. bombi count 0.0004 0.0002 1.77 0.08

Heterozygosity 1.1 3.08 0.4 0.72 Heterozygosity 4.86 4.18 1.16 0.25

Island -0.85 0.82 -1.04 0.3 Island -0.24 0.43 -0.55 0.58

C. bombi count 0.05 0.002 27.21 <0.001 C. bombi count 0.004 0.0007 4.91 <0.001

A. bombi count

C. bombi count

A. bombi count

C. bombi count

2.4.11 Population Level Disease Results 

Results from the glm showed that heterozygosity had a significant negative 

effect on C. bombi prevalence within B. pascuorum populations (z=-2.87, 

p=0.004), but positive effect on B. terrestris populations (z=2.38, p=0.017). C. 

bombi prevalence was strongly correlated with A. bombi prevalence within both 

species (B. pascuorum: z=3.69, p=<0.001; B. terrestris: z=2.75, p=0.006). The 

presence of Varroa and the effective population size increased C. bombi 
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prevalence in B. pascuorum populations only. The type of site (island/mainland) 

had no effect on the prevalence of C. bombi (table 2.6). 

The heterozygosity of the population only effected the prevalence of A. bombi 

within B. terrestris populations (z=2.02, p=0.043), and not within B. pascuorum. 

Similar to C. bombi results, the prevalence of C. bombi significantly affected the 

prevalence of A. bombi within both species (B. pascuorum: z=3.57, p=<0.001; 

B. terrestris: z=2.74, p=0.006). The Varroa status, type of site and effective 

population size did not affect the prevalence of A. bombi for either of the two 

species sampled. 

Table 2.6: The results of a binomial generalised linear model (GLM) for B. 

pascuorum (left) and B. terrestris (right) looking at the heterozygosity, A. 

bombi/C. bombi prevalence, Varroa status, island/mainland and effective 

population size on the prevalence of Apicystis bombi and C. bombi within each 

species. 

Co-efficient 

estimate

Standard 

Error
z-value p-value

Co-efficient 

estimate

Standard 

Error
z-value p-value

Heterozygosity -5.08 1.77 -2.87 0.004 Heterozygosity 9.48E+00 3.98E+00 2.38 0.017

A. bombi 

prevalence
1.23 0.332 3.69 <0.001

A. bombi 

prevalence
5.70E-01 2.07E-01 2.75 0.006

Varroa status 1.25 0.453 2.77 0.006 Varroa  status -3.67E-01 3.91E-01 -0.937 0.349

Island 0.159 0.378 0.421 0.672 Island -4.21E-01 2.68E-01 -1.57 0.117

Effective 

Population Size
0.005 0.00178 2.55 0.011

Effective 

Population Size
8.46E-05 7.44E-04 0.114 0.909

Co-efficient 

estimate

Standard 

Error.
z-value p-value

Co-efficient 

estimate

Standard 

Error
z-value p-value

Heterozygosity -0.238 1.52 -0.157 0.876 Heterozygosity 7.89 3.9 2.02 0.043

C. bombi 

prevalence
1.17 0.327 3.57 <0.001

C. bombi 

prevalence
0.569 0.207 2.74 0.006

Varroa status 0.000621 0.361 0.002 0.999 Varroa status -0.137 0.388 -0.35 0.723

Island 0.621 0.361 1.72 0.085 Island -0.124 0.256 -0.48 0.63

Effective 

Population Size
-0.00303 0.00169 -1.8 0.072

Effective 

Population Size
-0.000286 0.000734 0.39 0.697

C. bombi prevalence C. bombi prevalence

A. bombi prevalence A. bombi prevalence

 

2.5 Discussion 

Understanding the genetic diversity and population structure of bumblebees 

greatly aids their conservation. Here, I investigated population structuring, 

genetic diversity and the association with disease for two common bumblebee 

species (B. terrestris and B. pascuorum) across island and mainland sites in 

England and France. This thesis aimed to test if there was population 
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structuring between island and mainland sites, whether the isolated island 

populations studied had reduced genetic diversity and population size, and how 

the heterozygosity of a population affects the association with disease. The 

results suggest that B. pascuorum but not B. terrestris show levels of genetic 

structuring on a larger scale, that island sites did not have reduced effective 

population sizes, and that in B. pascuorum, a reduction in genetic diversity 

increases the prevalence of both C. bombi and A. bombi.  

2.5.1 Geographical barriers and genetic structuring 

Natural geographic barriers have led to significant genetic differentiation 

between island and mainland sites (Lozier and Cameron, 2009; Cameron et al., 

2011; Goulson et al., 2011a; Lozier et al., 2013; Jha, 2015). The greatest 

geographical barrier within this study is the English Channel, which for B. 

terrestris populations, but not B. pascuorum populations, showed significant 

among-group variation. Around Europe, Bombus species have been observed 

offshore several kilometres away from land, and it has been shown that B. 

terrestris colonised islands up to 30km from mainland New Zealand (Macfarlane 

& Gurr 1995). The minimum distance between mainland UK and France is 

approximately 35km, so it would not be unfeasible for individuals to cross this 

barrier. However, this distance doesn’t consider small oceanic islands such as 

Alderney, Jersey and Guernsey which could allow for further gene flow between 

the two countries. The high levels of admixture seen from this study would be 

determined by the dispersal capabilities of the newly emerging queens and 

males of each colony; i.e. the reproductive individuals produced at the end of a 

colony’s life cycle. However, a more detailed study highlighting the exact 

dispersal abilities of queens within these island populations would prove 

valuable.  

Other factors which could influence the levels of genetic structuring observed 

within this study include the size of the island and the islands’ distance from the 

mainland. Populations with greater migration of reproductives would observe an 

increase in the effective population size as well as avoiding reduced genetic 

diversity by genetic drift (Estoup et al., 1996; Widmer et al., 1998; Shao et al., 

2004; Darvill et al., 2006; Schmid-Hempel et al., 2007; Darvill et al., 2010; 

Goulson et al., 2011b; Lozier et al., 2011; Lye et al., 2011; Darvill et al., 2012; 
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Lecocq et al., 2013; Moreira et al., 2015). It should also be recognised that the 

lack of genetic structuring observed within this study could be a result of limited 

genotypic markers used. Previous studies investigating genome-wide 

heterozygosity tend to use 10-30 loci (Chapman et al., 2009; Maebe et al., 

2019), however this thesis followed methods comprehensively used in the 

literature and well suited to bumblebee genetic analysis (Dreier et al., 2014; 

Wood et al., 2015). Clearly, further studies into these populations would ideally 

sample all 9 loci (if not more) from all 12 field sites for more representative 

results. 

2.5.2 The effective population size 

The estimated number of colonies per site was relatively high with a range of 

71-345 for B. terrestris and 52-369 for B. pascuorum, and despite there being 

no significant difference island sites had on average a smaller population size. 

These figures are likely to incur type II errors due to extrapolation and model 

assumptions as well as missed sister pairs, i.e. due to both amplification and 

human scoring error some sisters will go undetected which would then result in 

an overestimation of the number of nests in a population. Current methods 

surrounding estimates of effective population size need refining, but these 

values still provide great insight into the estimation of colony numbers based on 

caught workers. 

There is much discrepancy as to what constitutes a minimum viable population 

size (Frankham, 1996), but it is believed that anything less than 50 would be at 

a much greater risk of inbreeding and consequently extinction (Frankham, 

1998). Given this, and assuming the estimates are accurate, some of the 

bumblebee populations sampled could be at risk of inbreeding resulting in 

reduced fitness and increased susceptibility to extinction. These small 

populations were primarily observed within island sites which is predicted by the 

theory of island biogeography, which links small population size with increased 

levels of inbreeding. 

Despite the ratio of B. pascuorum to B. terrestris colonies (Island: 1:1.12; 

Mainland: 1:1.2) being much smaller than previously studied (Darvill et al., 

2004; 1:2.68), the overall effective population sizes for both species were much 

greater. This would suggest that islands within the Scotland study were more 
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isolated, and populations studied in this thesis had almost similar population 

sizes between the two species. 

Numerous previous studies within a range of species including plants and 

insects have provided evidence for a positive relationship between population 

size and genetic diversity (Frankham, 1996). For example, a study looking at 

the effects of over exploitation due to overfishing of the New Zealand Snapper, 

suggested that the subsequent isolated populations have a much lower 

effective population size than originally believed, with these populations also 

having lower genetic diversity (Hauser et al., 2002). The results of this study 

show no significant relationship between population size and heterozygosity of 

the population, although low intensive sampling effort could account for this. A 

reduced genetic diversity could affect the adaptive genetic variability of these 

extreme isolated populations. 

Previous studies looking to estimate effective population size within an area 

have assumed the number of 1 worker, 2 workers, 3 workers… etc sampled per 

colony follow a Poisson distribution (Chapman et al., 2003; Darvill et al., 2004; 

Knight et al., 2005; Ellis et al., 2006; Knight et al., 2009). These studies 

acknowledge that assuming all nests are equally likely to be sampled is 

inaccurate due to differences in size and distance from the sampling site. 

Following recent methods, using CAPWIRE allows two models to be simulated 

with the data, the ECM (equal probability of capture) and TIRM (probability of 

capture varies) with comparisons to detect the best model to fit to the data. 

2.5.3 Relationship with disease 

This study is the first large scale island/mainland study to highlight the 

relationship between the genetic diversity of wild bumblebee populations and 

the prevalence and abundance of key Bombus spp. parasites. This thesis set 

out to test; i) if the individual level heterozygosity affects the abundance of 

disease, and ii) if the population level heterozygosity affects the prevalence of 

disease. Contrary to previous studies, this thesis suggests that increasing levels 

of genetic diversity does not increase the pathogen load of an individual (van 

Baalen and Beekman, 2006; Whitehorn et al., 2011). However, increasing the 

heterozygosity decreases the prevalence of both C. bombi and A. bombi in B. 
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pascuorum populations (Sherman et al. 1988; Schmid-Hempel 1998; Whitehorn 

et al. 2010). 

It is hypothesised that due to a reduced level of heterozygosity, homogenous 

populations have a reduced fitness and an increased susceptibility to infections. 

This trend has been observed in many mammalian species (Frankham, 1998) 

as well as in insects such as polyandrous leaf cutting ants (Hughes and 

Boomsma, 2004) but has been little studied in invertebrates and especially not 

in wild populations. The pathogens studied in this thesis which are observed at 

greater prevalence have been shown to reduce the fitness of populations as 

well as increasing mortality rates (Meeus et al., 2010). As island populations 

have the potential to become more genetically isolated and fragmented from the 

mainland, this negative impact on population health could be a major driver in 

species declines (De Castro and Bolker, 2005).  

2.5.4 Conservation and further study 

Understanding the role of population connectivity in conservation strategies is 

vital (Lecocq et al., 2016). It is suggested that in species with low population 

connectivity, the focus should be on preserving local populations to maintain 

species throughout its range. In those species with high population connectivity, 

the management is aimed at preserving gene flow throughout the species.  

Impacts of disease are often overlooked in pollinator conservation studies with 

anthropological factors such as pesticide use and landscape changes 

appearing more frequently in the media for example. More evidence to suggest 

that inbreeding and geographical isolation is a hindrance to bumblebee health 

by loss of genetic diversity would improve the current understanding of isolated 

populations. Mitigation methods such as potential reintroductions to small island 

populations will increase heterozygosity and subsequently fitness (Woodard et 

al., 2015). These unique island sites provide the foundations for isolation 

studies at a much greater scale. 

2.6 Conclusions 

The population genetic structure of B. terrestris and B. pascuorum in the UK 

and France is not as distinct as originally thought, with the English Channel 

restricting gene flow in B. terrestris populations only. The study also revealed 
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differences in the genetic structure between the two species, suggesting 

behavioural and ecological differences could also influence the genetic diversity 

of a Bombus spp. These results highlight the importance of careful identification 

of cryptic bumblebee species mentioned within this chapter. This chapter also 

revealed how low genetic diversity and greater homogeneity within B. 

pascuorum is associated with higher prevalence of disease. The findings from 

this chapter highlight how multiple factors can have varying effects upon genetic 

diversity within a bumblebee species, especially within isolated populations, and 

how emerging infectious diseases associated with these fitness costs are likely 

to increase with homogenous populations. As a result, small, isolated 

populations of bumblebees may be more at risk of extinction due to reduced 

genetic diversity and the associated impacts of disease. 
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Chapter 3: Population Genetics and Agri-environmental Schemes 

3.1 Abstract: 

In recent years intensification of the agricultural landscape has caused an 

increase in associated habitat fragmentation, pesticide use and a reduction in 

flower-rich habitats. Across the EU, agri-environmental schemes have been 

implemented to buffer against the rapidly changing landscape with methods 

such as wild flower strips. Here I investigated the impact of these wild flower 

margins on the population size and genetic diversity of four Bombus spp. within 

farm sites in the UK using molecular microsatellite markers, as well as the effect 

on disease prevalence and abundance in these localised populations. There 

was very little genetic structuring across the four bumblebee species; B. 

hortorum (θ=0.005), B. lapidarius (θ=0.009), B. pascuorum (θ=0.025), and B. 

terrestris (θ=0.005). The study revealed there was no significant impact of the 

level of stewardship on the effective population size or genetic diversity within 

all wild bee species sampled. However, there were positive relationships 

observed between floral density and genetic diversity in all but B. pascuorum 

populations. This research is contradictory to previous studies suggesting that 

targeted agri-environment schemes have a positive effect on population size 

and diversity. However, despite no relationship with the level of stewardship 

from this thesis, these results show increasing floral diversity has a positive 

impact on wild pollinator species.  
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3.2 Introduction: 

In 2018, it was estimated that 38% of the world’s total land surface (or 

approximately half of its habitable area) was occupied by agricultural land 

(Benton et al., 2018). Farmland accounted for around 70% of land area in the 

UK (Defra, 2016), and this trend in intensification of farmland and changing of 

land use is predicted to rise with increasing human population size. An increase 

in arable landscape has resulted in a reduction in the floral diversity and 

consequently in the resources available for insect pollinators. The subsequent 

reduced heterogeneity of the landscape has resulted in a decline in wild 

pollinator numbers (Biesmeijer et al., 2006; Ollerton et al., 2014; Scheper et al., 

2014). These declines have been observed primarily in the Northern 

hemisphere (Goulson et al., 2008; Williams and Osborne, 2009; Bommarco et 

al., 2011; Cameron et al., 2011; Garibaldi et al., 2013; Woodcock et al., 2016) 

and can be attributed to agricultural intensification as well as associated habitat 

fragmentation, pathogens and effects of pesticides (Potts et al., 2010). Parallel 

documented collapse of many honeybee colonies in both the UK and America 

(Potts et al., 2010) signifies the value of these wild pollinators and the 

importance of this continued ecosystem service. 

Many methods have been proposed as mitigation tools to restore and maintain 

biodiversity in these landscapes in order to sustain and boost ecosystem 

productivity. Agri-Environmental Schemes (AES) have been introduced in 26 

out of the 44 European countries (Kleijn and Sutherland, 2003) to buffer habitat 

fragmentation under the EU agricultural policy. All EU member states are 

required to develop these agri-environment programmes under the Common 

Agricultural Policy. The current budget for the 7-year period from 2014-2020 is 

£22.3bn in direct payments and £2.3bn in rural development funds (GOV.UK, 

2013). Agri-Environmental Schemes (AES) provide financial rewards to farmers 

of EU member states to implement Agri-Environment Measures (AEM) currently 

based on a two-tier system; Entry-Level Stewardship (ELS, Defra 2005a), 

consisting of more generalised requirements and standards, and Higher-Level 

Stewardship (HLS, Defra 2005b), with more specific environmental 

requirements and therefore a more limited participation (Quillerou and Fraser, 

2010). As of 2014 around 72% of agricultural land in England was under ELS 

management and around 21% under HLS (JNCC 2014), with methods of 
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mitigation varying between sites. Both ELS and HLS can adopt WFS, however, 

the HLS is more targeted than ELS, creating a more competitive scheme and 

one for which not all land is eligible. This scheme holds the basics of ELS but 

also provides grants for additional conservative work for example restoration of 

farm buildings. Additionally, ELS agreements last for five years in contrast to the 

10 year contracts held by HLS farms (Emery and Franks, 2012). These 

schemes aim to target pollinator conservation via different techniques, one 

example being the provision of Wild Flower Strips (WFS); however, HLS sites 

require a more active management with visits from Natural England. WFS are 

sown within field margins to attract insect pollinators and, by including a mix of 

nectar and pollen-rich annual and perennial flowering species, these WFS aim 

to provide valuable foraging resources between early and late summer. These 

implemented schemes aim not only to increase numbers of pollinating insect 

species such as bumblebees, solitary bees, butterflies, and hoverflies, but also 

to promote biological pest control by increasing plant biodiversity and 

supporting farmland bird populations in the form of seeds and invertebrate food 

resources (Haaland et al., 2011).  

The efficacy of field margins as a targeted method to increase pollinator 

abundance and diversity has been previously studied (Carvell et al., 2004; 

Carvell et al., 2011; Dreier et al., 2014; Wood et al., 2015; Carvell et al., 2017; 

Marja et al., 2018). Previous studies into WFS have demonstrated a positive 

effect of attracting wild honeybees and bumblebees (Carvell et al., 2011) as well 

as enhancing and establishing pollinator nests (Wood et al., 2015; Carvell et al., 

2017). These studies show that sown WFS can provide floral resources all year 

round to improve bumblebee reproduction in intensively farmed areas by 

increasing floral density (fig 3.1).  

One study by Wood et al., (2015) found that the difference between HLS farms 

and ELS was significant with regards to the abundance of bumblebees 

observed within the transect walks, as well as increased nesting densities for B. 

hortorum and B. lapidarius. This suggests that the targeted agri-environment 

schemes which increase the availability of suitable foraging sites significantly 

increase the size of wild bumblebee populations. Population level studies of 

eusocial bumblebees focus on the number of colonies as opposed to the 
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number of individuals in each area as the effective population size of species, 

due to their complex social structure.  

Bumblebees have a complex social structure as haplodiploid hymenopterans, 

with the queen considered as the only reproductive within a colony. Therefore, 

despite an abundance of (sterile) workers, effective population size may be 

small and haplo-diploidy may reduce genetic variation (Chapman and Bourke, 

2001). In hymenopteran species, the sex is determined by zygosity at the sex 

determining locus. Individuals homozygous at the sex locus develop into non-

viable sterile males which incurs a great cost upon the colony (Cook and 

Crozier, 1995). Inclusive fitness and altruism within the colony is greater due to 

this complex social structure. Females are developed from fertilised eggs and 

males from unfertilised eggs, therefore sisters within a colony are more related 

to each other than they are to their own offspring (0.75). Genetically related 

individuals are similar in their susceptibility to pathogens (Bremermann, 1980; 

Hamilton, 1980; Tooby, 1982; Hamilton et al., 1990), and within these eusocial 

insects transmission of disease between nest mates is high (Shykoff and 

Schmidhempel, 1991). The role of population genetics in epidemiological 

studies is often overlooked and is vital especially within study species like 

bumblebees. In this study where field margins have been shown to increase 

bee abundance and visitations (Doublet et al., in press), the transmission routes 

of emerging infectious diseases are important. These agri-environment 

schemes have the potential to alter transmission between individuals by 

increasing the density within which pollinator species can forage, i.e. 

 

Figure 3.1: The relationship between log bumblebee abundance and log flower 

abundance per m2 on arable field margins, with each point representing a sampling point. 

The type of landscape is shown in the figure key. Reproduced from Pywell et al., 2006. 
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bumblebees are visiting flowers which are frequented by others, therefore 

increasing the chance of pathogen transmission. In order to assess this mode of 

transmission fully, sisters much be identified as it is difficult to determine if 

pathogens are passed between these individuals whilst foraging or within the 

nest. 

Genetic diversity is vital to allow Bombus spp. populations the ability to adapt to 

short-term environmental fluctuations and reduce the impact of pathogen 

infections. However, due to fragmentation, it is inferred that gene flow and 

admixture between populations could be limited, creating isolated populations at 

a greater risk of disease. 

I genotyped the four most common bumblebee species (Bombus hortorum, B. 

lapidarius, B. pascuorum and B. terrestris (fig 3.2)) across 10 field sites, to 

estimate the genetic diversity within and between populations and predict 

effective population sizes. These species were chosen due to their widespread 

ecology, therefore allowing for comparison across a range of sites. These 

species are also well documented in terms of their genetic diversity in England 

and across Europe. I also used sequenced RNA of the individuals to assess 

disease prevalence (the proportion of individuals carrying the disease) within 

populations as well as pathogen load (the amount of each pathogen observed) 

of individuals.  

Figure 3.2: An illustration of the four Bombus spp. studied; a) B. hortorum, b) B. 

lapidarius, c) B. pascuorum, and d) B. terrestris. (Illustration: Alice Rosen 2018)  

a) b) 

c) d) 
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This is the first study of its kind to combine methods of genetic diversity to 

explain disease prevalence and load within agri-environment schemes in 

England. This thesis applies previously described methods of microsatellite 

analysis to a unique sampling set to analyse populations within agri-

environment schemes. 

3.3 Materials and Methods 

3.3.1 Study area 

Five paired field sites across the south of England were selected and sampled 

from March to August 2016 and again during the spring of 2017 (fig. 3.3; table 

S8; table S10). Farms were renamed with respect to their scheme type (ELS 

and HLS) to provide anonymity and to ensure independence of data. Farms 

were at least 10km apart to compensate for the maximum foraging range of 

honeybee workers (which were also sampled for further studies) (Schneider and 

McNally, 1993; Steffan-Dewenter and Kuhn, 2003). At this distance, 

bumblebees are also unlikely to travel between sites to forage (Knight et al., 

2005; Osborne et al., 2008). The primary crops within and surrounding the field 

sites were oilseed rape, wheat/barley and either arable or dairy farmlands. 

 

Figure 3.3: A map of the UK showing the location of the 10 field sites sampled during 

2016/2017. Entry-level farms are represented by grey squares and higher-level farms by 

a black circle. 

ELS1 HLS1 

ELS2 

HLS2 

ELS3 

HLS3 

ELS4 

HLS4 

ELS5 HLS5 
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3.3.2 Sample collection 

Three standardised 100m transects were set out for each farm and each site 

was sampled over four time points (TP1 – Early Spring 2016; TP2 – Late Spring 

2016; TP3 – Summer 2016 and TP4 Spring 2017; table 3.1). Insect collection 

was conducted in favourable conditions, including wind speeds at a maximum 

of 5 on the Beaufort scale, and minimum shade temperature of 15oC in the 

summer and 9oC in the spring.  

Table 3.1: Each location and the date of sampling across the four time points in 

2016/2017. 

Site TP1 TP2 TP3 TP4

ELS1 07/05/2016 28/06/2016 09/08/2016 08/04/2017

ELS2 06/05/2016 26/06/2016 08/08/2016 07/04/2017

ELS3 20/04/2016 24/06/2016 06/08/2016 03/04/2017

ELS4 17/04/2016 21/06/2016 04/08/2016 05/04/2017

ELS5 13/04/2016 19/06/2016 31/07/2016 26/03/2017

HLS1 08/05/2016 30/06/2016 10/08/2016 09/04/2017

HLS2 04/05/2016 27/06/2016 07/08/2016 06/04/2017

HLS3 03/05/2016 26/06/2016 05/08/2016 02/04/2017

HLS4 19/04/2016 23/06/2016 03/08/2016 30/03/2017

HLS5 12/04/2016 18/06/2016 30/07/2016 25/03/2017

Date of Sampling

 

The five most abundant pollinator species were collected from each location 

(species used in future studies if they are not represented here, e.g. Apis 

mellifera) and to allow for RNA sequencing for pathogen detection, whole 

individuals were sacrificed. The samples were stored in -80oC freezers at which 

temperature they remained until further investigative steps were required. In the 

case of a Bombus sp. being collected for sampling, the caste type of each 

individual bee was recorded (table 3.2, 3.3, 3.4 and 3.5). Queens were primarily 

sampled in the early spring, workers in the summer, and males later in the year. 

Bombus terrestris was sampled at all 10 samples sites as were B. pascuorum 

and B. lapidarius; however, B. hortorum was collected from 5 HLS and only 4 

ELS sites (tables 3.2, 3.3, 3.4 and 3.5).  

Within each field site, the average floral density was calculated using results of 

observed floral density per transect. A quadrat was thrown randomly along each 
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of the three transects, within which the number of open flowers was counted. An 

average was then calculated between the three transects. 

3.3.3 Genetic sampling 

DNA was extracted from individual tarsal samples, crushed in liquid nitrogen, 

via the Chelex extraction method (Walsh et al., 2013) using 5% Chelex and 2 µl 

of Proteinase K. Extracted DNA was stored at -20o C before downstream 

analyses. 

3.3.4 PCR based differentiation and identification 

B. terrestris and B. lucorum individuals were differentiated using the primer pair 

BBMI_IGSF1 and BBMI_IGSR1 (pers comms Regula Schmid-Hempel). The 

PCR reaction mix contained 4µL of 5x GoTaq® Flexi buffer, 2µL of MgCl2, 2µL 

of dNTPs, 0.5µL of the forward and reverse primers, 0.2µL of GoTaq® Flexi 

DNA polymerase and 2µL of template DNA. The total reaction volume was 

20µL made up with Milliq H2O. PCRs were performed in a thermocycler with an 

initial denaturing step of 95oC for 1 minute, followed by 38 cycles of 15s at 

95oC, 15s at 55oC, 45s at 72oC, with a final extension step of 7 minutes at 72oC. 

The amplified products were then visualised with UV transilluminator on a 2% 

gel stained with RedSafe, running at 120V with 1kB ladder. The resultant 

fragmented DNA bands are expected at 180 bp for B. terrestris and at 210 bp 

for B. lucorum (Supplementary Material).  

B. hortorum and B. ruderatus individuals also required differentiation by 

molecular analysis to prevent incorrect species assignment leading to 

inaccurate results during the investigation. DNA was once again sampled and 

extracted as above, and the individuals were then amplified at the mitochondrial 

region cytochrome b by polymerase chain reaction following methods from Ellis 

et al., (2006). The PCRs contained: 0.8U of Taq, 30pmol MgCl2, 1x PCR buffer 

(containing an extra 45pmol MgCl2), 6pmol dNTPs and 6.5 pmol primer 

(forward: TTCAGCAATTCCATATATTGGAC; and reverse: 

ATTACACCTCCTCATTTATTAGG). The PCRs were conducted in an Applied 

Biosystems® Veriti Thermal Cycler under the following conditions: 4 min at 

94oC; 35 cycles of 30 s at 94oC, 30 s at 48oC and 1 min at 72oC, followed by a 

final extension step of 10 min at 72oC. After this, the PCR product was then 
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digested using the restriction enzyme Tsp45I (New England Biolabs®). The 

individual reactions contained 15µL PCR product, 1U enzyme, 1x buffer N.E 

number 1 with reactions made up to 20µL using H2O. The DNA was digested at 

65oC for 4 hours. Upon completion of the digestion, the products were run via 

electrophoresis on a 3% agarose gel for 180 min at 60V. Fragments were 

compared for a 100bp ladder (Promega®). B. ruderatus are identified by their 

singular band of undigested PCR product at 426 bp, and B. hortorum were 

identified by the same undigested band at 426 bp as well as two digested bands 

at 306 bp and 125 bp (Supplementary Material). The band at 306 bp is most 

prominent, with the other two bands being faint or absent (methods from Ellis et 

al., 2006). 

In order to identify the presence of Apicystis bombi per individual the following 

primer pair was developed: Forward: TGATCCATAATAATTTTGTGAAT and 

reverse: AGTGCTATGTTTGTTTTTAACGA (Anderson per comms). The 

reaction mix contained 5µL of cDNA, 4µL DNTPs, 2µL MgCl2, 4µL PCR buffer, 

0.2µL enzyme and made up to a total reaction volume of 20µL with H2O. The 

PCR was then run in a thermocycler under the following conditions: 2 min at 

94oC; 35 cycles of 30os at 94oC, 30s at 60.7oC and 1 min at 72oC, followed by 

an extension step of 3 min at 72oC. The product was run on a 1.5% agarose gel 

at 110v for 35 minutes with a band present at 392bp if Apicystis bombi is 

present.  

3.3.5 Fragment analysis 

The extracted DNA was amplified at 9 polymorphic microsatellite loci (Estoup et 

al., 1995; Estoup et al., 1996). The same nine markers were used for all species 

(B100, B118, B132, B10, B11, B96, B119, B124, B126), but B100 was replaced 

with B121 for B. pascuorum and B119 replaced with B121 in B. pascuorum and 

B. lapidarius. Three multiplex PCRs were run with the following loci: 

B100(VIC)/B121(VIC) –B118(NED)-B132(FAM), B10(VIC)-B11(NED)-

B96(FAM) and B119(FAM)/B131(FAM)-B124(NED)-B126(PET) following 

methods from Wood et al., (2015). 

PCRs were 10μL in volume and contained 1μL Betaine (Q-solution), 3mM 

MgCl2, 20μM dNTPs, 2U Taq polymerase, 1.2μL of primer (0.2μL of forward 

and reverse of each primer) made up with 1.8μL Milliq Water and 1μL of 
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template DNA. PCRs were performed in a thermocycler with an initial 

denaturing step at 95oC for 15 minutes followed by 25 cycles of 30s at 94oC, 

90s at 54oC and 60s at 72oC, with a final extension step of 45 minutes at 60oC. 

The PCR product was diluted 1:10 then visualised on an ABI 3730 capillary 

DNA sequencer using GeneScan Liz 500 size standard. Fragments were then 

scored using Geneious version 9.1.5 (Kearse et al., 2012). 

3.3.6 Identification of unique colonies and assigning sib-ship 

Individuals with more than 3 poorly amplified loci were removed. MICRO 

CHECKER (Van Oosterhout et al., 2004) was used to identify microsatellite 

genotyping errors by analysing each locus for homozygote excess, which 

serves as an indicator for the presence of null alleles. 

The software COLONY version 2.0 (Jones and Wang, 2010) allows full 

reconstruction of family relationships between individuals for each species 

within each sample site and time point. COLONY uses a full-likelihood approach 

to sibship assignment by estimating posterior probabilities and is the most 

reliable method of estimating sibship in bumblebees (Lepais et al., 2010). 

Following methods from Carvell et al., (2017), the threshold for the estimated 

posterior probability of these sibships was 0.8, any estimates below this value 

were ignored. Based on previous studies (Estoup et al., 1995; Bourke, 1997; 

Schmid-Hempel and Schmid-Hempel, 2000), it was assumed that all workers 

within a colony were the offspring of a single monogamous queen and the 

genotyping error rates were set at 0.05% for all four species. Once all sisters 

were identified, a random number generator was used to select a single 

individual from within each sib-ship assignment and all other sisters were 

removed from further analysis. This was so a single nest mate represented 

each colony throughout the analysis. 

3.3.7 Estimating effective population size 

In sites where all the individuals caught were from unique colonies (i.e. only one 

bee caught per colony with no sibship assignment), an effective population size 

could not be predicted. In these instances, the total number of bees caught was 

used as an estimate of minimum colony size. 

The DNA mark-recapture method estimates population size based on the
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Table 3.2: The number of B. hortorum individuals genotyped per site and sampling time point including the caste type. The 

heterozygosity (FST) and allelic richness per location including standard error; the number of sister pairs per site with the number of 

unique colonies (the number of times when only one worker represented a nest) in brackets. The effective population size and 97.5% 

confidence intervals after 1,000 bootstraps and max pop size equal to 1000, calculated using the ECM with those populations best 

described using TIRM marked with *, the floral density per sample site and the prevalence of A. bombi to the nearest percent. The 

average for ELS and HLS for each of the columns is highlighted in bold below. ELS3 and HLS5 were removed from analysis due to poor 

sampling efforts. 

Site

TP1 

(Queens)

TP2 

(Workers)

TP3 

(Workers)

TP4 

(Queens)

Heterozygosity 

(FST)

Allelic 

Richness

Sister pairs 

(unique 

colonies)

Effective 

population size 

(CI)

Floral Density 

(per m2)

A. bombi 

prevalence (%)

ELS1 2 n/a 13 8 0.84 (± 0.04) 6.16 (± 0.55) 12 (11) 75 (22, 1000) 33.97 n/a

ELS2 3 27 n/a 17 0.84 (± 0.02) 6.29 (± 0.43) 22 (19) 87* (48, 356) 15.38 41

ELS3 6 n/a n/a n/a n/a n/a n/a n/a n/a n/a

ELS4 2 n/a 13 5 0.86 (± 0.02) 6.60 (± 0.53) 13 (12) 86 (26, 1000) 25.90 36

ELS5 n/a 1 24 n/a 0.83 (± 0.02) 6.04 (± 0.48) 18 (13) 34 (21, 67) 24.48 42

HLS1 n/a 30 11 15 0.86 (± 0.02) 6.42 (± 0.50) 31 (24) 79 (48, 172) 40.25 20

HLS2 8 20 6 15 0.85 (± 0.03) 6.45 (± 0.63) 18 (17) 88 (31, 1000) 7.80 38

HLS3 31 28 n/a 34 0.86 (± 0.02) 6.67 (± 0.56) 26 (24) 180 (66, 1000) 27.26 40

HLS4 n/a 10 1 5 0.88 (± 0.02) 6.60 (± 0.51) 10 (9) 51 (15, 1000) 62.20 30

HLS5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Average ELS 3.3 14.0 16.7 10.0 0.84 6.27 16.25 64.7 24.9 39.8

AverageHLS 19.5 22.0 6.0 17.3 0.86 6.54 21.25 99.5 34.4 32.1

Number of Individuals Genotyped
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Table 3.3: The number of B. lapidarius individuals genotyped per site and sampling time point including the caste type. The 

heterozygosity (FST) and allelic richness per location including standard error; the number of sister pairs per site with the number of 

unique colonies (the number of times when only one worker represented a nest) in brackets. The effective population size and 97.5% 

confidence intervals after 1,000 bootstraps and max pop size equal to 1000, calculated using the ECM with those populations best 

described using TIRM marked with *, the floral density per sample site and the prevalence of A. bombi to the nearest percent. The 

average for ELS and HLS for each of the columns is highlighted in bold below. 

ELS1 7 27 13 12 0.74 (± 0.04) 5.09 (± 0.72) 34 (29) 116 (64, 247) 33.97 46

ELS2 29 27 24 26 0.77 (± 0.04) 5.36 (± 0.73) 37 (32) 136 (75, 437) 15.38 42

ELS3 17 19 16 1 0.73 (± 0.05) 4.65 (± 0.54) 28 (23) 73 (42, 187) 14.41 50

ELS4 21 28 18 3 0.74 (± 0.04) 5.00 (± 0.63) 42 (39) 243 (114, 1000) 25.90 33

ELS5 n/a 8 26 n/a 0.75 (± 0.05) 4.85 (± 0.65) 33 (32) 550 (176, 1000) 24.48 40

HLS1 24 56 15 4 0.76 (± 0.04) 5.07 (± 0.59) 34 (27) 86 (49, 166) 40.25 38

HLS2 12 28 24 12 0.73 (± 0.05) 4.78 (± 0.62) 46 (42) 268* (163, 1000) 7.80 37

HLS3 29 33 29 1 0.72 (± 0.05) 4.72 (± 0.60) 53 (46) 189 (114, 357) 27.26 45

HLS4 26 32 18 3 0.78 (± 0.04) 5.13 (± 0.58) 39 (32) 131* (94, 311) 62.20 46

HLS5 4 12 21 n/a 0.77 (± 0.04) 4.79 (± 0.60) 31 (29) 253 (94, 1000) 44.11 48

Average ELS 18.5 21.8 19.4 10.5 0.75 4.99 34.8 223.6 22.8 42.2

AverageHLS 19.0 32.2 21.4 5.0 0.75 4.90 40.6 185.4 36.3 42.8
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Table 3.4: The number of B. pascuorum individuals genotyped per site and sampling time point including the caste type. The 

heterozygosity (FST) and allelic richness per location including standard error; the number of sister pairs per site with the number of 

unique colonies (the number of times when only one worker represented a nest) in brackets. The effective population size and 97.5% 

confidence intervals after 1,000 bootstraps and max pop size equal to 1000, calculated using the ECM with those populations best 

described using TIRM marked with *, the floral density per sample site and the prevalence of A. bombi to the nearest percent. The 

average for ELS and HLS for each of the columns is highlighted in bold below. 

Site

TP1 

(Queens)

TP2 

(Workers)

TP3 

(Workers)

TP4 

(Queens)

Heterozygosity 

(FST)

Allelic 

Richness

Sister pairs 

(unique 

colonies)

Effective 

population size 

(CI)

Floral Density 

(per m2)

A. bombi 

prevalence 

(%)

ELS1 3 29 32 n/a 0.58 (± 0.10) 6.01 (± 1.05) 41 (28) 74 (53, 102) 33.97 44

ELS2 2 31 29 9 0.67 (± 0.08) 6.99 (± 1.02) 42 (31) 83 (54, 130) 15.38 41

ELS3 2 26 26 1 0.64 (± 0.06) 5.57 (± 0.80) 39 (33) 133* 14.41 31

ELS4 3 30 n/a 12 0.60 (± 0.10) 5.76 (± 0.81) 25 (20) 77 (38, 208) 25.90 29

ELS5 n/a 4 29 n/a 0.57 (± 0.12) 6.19 (± 0.94) 29 (24) 87 (47, 187) 24.48 41

HLS1 1 29 13 24 0.58 (± 0.11) 6.66 (± 1.00) 34 (27) 93 (57, 201) 40.25 39

HLS2 19 31 28 31 0.64 (± 0.07) 6.45 (± 0.96) 49 (40) 151 (94, 265) 7.80 38

HLS3 12 31 29 12 0.62 (± 0.10) 7.09 (± 1.09) 46 (34) 118 (77, 217) 27.26 32

HLS4 1 31 30 21 0.57 (± 0.11) 6.14 (± 0.96) 43 (34) 127* (99, 229) 62.20 49

HLS5 n/a 30 30 n/a 0.65 (± 0.08) 7.08 (± 1.01) 45 (36) 144* (108, 305) 44.11 30

Average ELS 2.5 24.0 29.0 7.3 0.612 6.10 35.2 80.3 22.8 37.2

AverageHLS 8.3 30.4 26.0 22.0 0.612 6.68 43.4 120.7 36.3 37.6

Number of Individuals Genotyped
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Table 3.5: The number of B. terrestris individuals genotyped per site and sampling time point including the caste type. The heterozygosity 

(FST) and allelic richness per location including standard error; the number of sister pairs per site with the number of unique colonies (the 

number of times when only one worker represented a nest) in brackets. The effective population size and 97.5% confidence intervals 

after 1,000 bootstraps and max pop size equal to 1000, calculated using the ECM with those populations best described using TIRM 

marked with *, the floral density per sample site and the prevalence of A. bombi to the nearest percent. The average for ELS and HLS for 

each of the columns is highlighted in bold below. 

Site

TP1 

(Queens)

TP2 

(Workers)

TP3 

(Workers)

TP4 

(Queens)

Heterozygosity 

(FST)

Allelic 

Richness

Sister pairs 

(unique colonies)

Effective population 

size (CI)

Floral Density 

(per m
2
)

A. bombi 

prevalence (%)

ELS1 9 17 9 11 0.58 (± 0.10) 6.01 (± 1.05) 23 (20) 100 (45, 1000) 33.97 47

ELS2 12 23 4 12 0.67 (± 0.08) 6.99 (± 1.02) 27 (26) 369 (117, 1000) 15.38 44

ELS3 17 18 n/a 25 0.64 (± 0.06) 5.57 (± 0.80) 16 (14) 71 (32, 1000) 14.41 67

ELS4 31 22 11 4 0.60 (± 0.10) 5.76 (± 0.81) 28 (25) 132* (72, 534) 25.90 44

ELS5 26 10 14 27 0.57 (± 0.12) 6.19 (± 0.94) 22 (20) 130 (47, 1000) 24.48 59

HLS1 19 14 3 10 0.58 (± 0.11) 6.66 (± 1.00) 15 (14) 115 (35, 1000) 40.25 60

HLS2 8 13 23 9 0.64 (± 0.07) 6.45 (± 0.96) 35 (31) 172 (79, 728) 7.80 39

HLS3 18 21 22 5 0.62 (± 0.10) 7.09 (± 1.09) 33 (25) 81 (52, 158) 27.26 33

HLS4 28 26 16 22 0.57 (± 0.11) 6.14 (± 0.96) 37 (33) 158 (81, 417) 62.20 42

HLS5 16 n/a 25 15 0.65 (± 0.08) 7.08 (± 1.01) 22 (19) 92 (41, 1000) 44.11 61

Average ELS 19.0 18.0 9.5 15.8 0.61 6.10 23.2 167.5 22.8 52.3

AverageHLS 17.8 18.5 17.8 12.2 0.61 6.68 28.4 123.6 36.3 47.0

Number of Individuals Genotyped
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number of times an individual is recaptured, implemented in the software R (R 

Core Team 2014) using the package Capwire (Miller et al., 2005). Here, the 

effective population size is represented by the number of colonies as opposed 

to the number of individuals within the sample sites, so that each sister 

represents a recapture event within the model. Both methods implemented in 

the Capwire package, the Event Capture Model (ECM) and the Two Innate Rate 

Model (TIRM), were used to estimate the effective population size. The ECM 

assumes that all individuals within an area have the same probability of being 

caught. The TIRM, however, allows for heterogeneity in the probability of 

capture between individuals. To determine which model best fit the data, 

Likelihood Ratio tests (LR) were conducted by simulating both ECM and TIRM 

and fitting both to the data. The significance of the LR was then used to 

determine which model best described the data. 

3.3.8 Identification of population structure 

GENEPOP 4.1.2 (Rousset, 2008) was used to test for deviations from Hardy-

Weinberg Equilibrium (HWE) across populations and loci, as well as to detect 

Linkage Disequilibrium (LD) using a Markov-chain approximation to exact tests 

and likelihood-ratio tests, respectively. The results from HWE and LD were 

corrected for multiple testing using the Benjamini-Hochberg procedure, with 

both tests significant (p<0.05). 

Estimates of global FST and population heterozygosity were calculated using 

FSTAT version 2.9.3.2 (Goudet 2001) using the hierarchical Bayesian F-model 

(Foll and Gaggiotti, 2006). The genetic diversity per site was calculated both by 

grouping all time points together, as well as per individual time point. For the 

individual time point analysis, only samples of at least 5 individuals per time 

point/site were included to allow for accurate measurement of genetic diversity. 

Standard errors were calculated by jack-knifing across loci. FSTAT was also 

used to calculate the allelic richness per sampling site. 

PopTree (Takezaki et al., 2010) was used to create Neighbor-Joining trees and 

UPGMA (Unweighted Pair Group Methods of Arithmetic Mean) diagrams per 

species, bootstrapping with 1000 replications. 
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AMOVA (Analysis of Molecular Variance) were conducted in ARLEQUIN 

(Schneider et al., 2000); a method of estimating population differentiation from 

the molecular data obtained. This statistical method studies the patterns and 

degree of relatedness between populations and groups by multidimensional 

scaling and the clustering dendrogram; allowing for a greater understanding of 

genetic structuring.  

3.3.9 Data Analysis 

All statistical analyses were conducted in R (R Core Team 2014). Isolation by 

Distance was analysed via a Mantel test using the package ‘vegan’, allowing 

the comparison of pairwise genetic distance (FST) with geographical distance 

(km) between sites. The differences between ELS and HLS sites in terms of 

floral density, population size and heterozygosity were compared with Welch’s 

two-sample t-tests. Generalised linear models were constructed with the 

variables of pathogen prevalence, heterozygosity, floral density and scheme set 

as factors and site as a random factor. Relationships between genetic 

heterozygosity and ecological traits (floral density and population size) were 

analysed using Pearson’s correlation. All linear graphs were constructed using 

the package ‘ggplot2’. 

3.4 Results 

3.4.1 Species differentiation 

B. terrestris was found to be more prevalent that B. lucorum, and B. hortorum 

was more prevalent than B. ruderatus after correct identification using molecular 

techniques (table 3.6). Both species were more prevalent in TP2 sampling 

(18.46% and 10.20% respectively). 

3.4.1 Removal of males, sisters and poor amplification 

After the removal of males and females with poor amplification of loci (i.e. 

greater than 1/3 of the loci failed to amplify) the remaining females were 

assessed in COLONY for maximum-likelihood of sibship assignment. As 

bumblebees are haplodiploid organisms, male diploids of the species are 

removed as they will skew the data appearing as homozygotes giving a false 

over estimation of homozygosity. A total of 46 B. hortorum (n=289), 71 B. 
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lapidarius (n=597), 108 B. pascuorum (n=503) and 129 B. terrestris (n=430) 

were removed prior to further analysis (males, poor amplification and sisters).  

Table 3.6: A table to show the prevalence of the least common species within 

the cryptic species complexes across time points. The total number of B. 

lucorum and B. terrestris caught per time point, with the prevalence of B. 

lucorum. And the total number of B. ruderatus and B. hortorum caught per time 

point with the prevalence of B. ruderatus.  

Time 

Point 

B. 

lucorum 

B. 

terrestris 

Prevalence 

(%) 

B. 

ruderatus 

B. 

hortorum 

Prevalence 

(%) 

1 17 194 8.06 0 31 0 

2 48 212 18.46 15 132 10.20 

3 22 290 7.05 11 141 7.24 

4 21 151 12.21 7 94 6.93 

Total 108 847 11.31 33 398 7.66 

 

3.4.2 Identification of unique colonies and effective population size 

A total of 48 B. hortorum sister pairs (loci=6), 103 B. lapidarius sister pairs 

(loci=9), 203 B. pascuorum sister pairs (loci = 8) and 66 B. terrestris sister pairs 

(loci = 6) were identified within the sample field sites (tables 3.2, 3.3, 3.4 and 

3.5). These figures were used to reconstruct estimates of the effective 

population size as the samples caught are predominantly workers during the 

time of increased colony productivity. There were no ‘non-circular’ nests in 

which there are two sisters related to a third sister but not to each other 

identified within all sister pairs. Global analysis across all field sites and TPs 

1,2&3 per species discovered sister pairs between sites, 19 B. hortorum 

(n=234), 86 B. lapidarius (n=615), 50 B. pascuorum (n=503) and 107 B. 

terrestris (n=614).  

Even Capture Model (ECM) best represented the data obtained in B. hortorum 

(7/8 sites), B. lapidarius (8/10 sites), B. pascuorum (10/10 sites), B. terrestris 
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(9/10 sites) using the Likelihood Ratio Test (LRT) compared with Two Innate 

Rates Model (TIRM).  

3.4.3 Null alleles, Hardy-Weinberg and linkage disequilibrium 

Null alleles were present in loci B100 and B118 for more than half of B. 

hortorum sites and were removed from further analysis. The presence of null 

alleles in the other three Bombus spp. occurred in less than half of the sites so 

remained in subsequent analysis. Significant deviations from HWE were 

present in loci B124 and B126 in B. lapidarius sites and B96, B11 and B126 in 

B. terrestris sites; these loci were removed from further analysis. After 

Benjamini-Hochberg procedure was conducted on the significant values of 

linkage disequilibrium (LD) tests, there was no LD detected between loci across 

all Bombus spp. The total number of loci used during the investigation per 

species were as follows; B. hortorum -6 loci, B. lapidarius -9 loci, B. pascuorum 

-8 loci, and B. terrestris -9 loci. 

3.4.4 Population structure 

The overall FST values for each of the four species are relatively low and 

significant: B. hortorum θ=0.005 (p=0.016), B. lapidarius θ=0.009 (p=0.014), B. 

pascuorum θ= 0.025 (p=0.006), and B. terrestris θ= 0.005 (p=0.011). These 

values were as expected over such a short geographical distance. Parallel to 

this low global structuring within the species, there was also no isolation by 

distance observed for any of the species (fig. 3.4). Results from a Mantel test 

show the lack of significant interaction of geographical range on the genetic 

distance of all but B. hortorum (B. hortorum: r=0.60, p<0.05; B. lapidarius: 

r=0.14, p=0.17; B. pascuorum: r=-0.09. p=0.71; B. terrestris: r=-0.06, p=0.65). 

Neighbor-Joining trees and UPGMA diagrams were created per species (fig 

3.5), also showing very little genetic structuring within each species. 

The STRUCTURE analysis revealed weak support for structural clustering 

within the four species of bumblebee (fig. 3.6, fig 3.7). 2 clusters were estimated 

for B. lapidarius and B. terrestris, whereas support for K=3 with weaker K=7 for 

B. hortorum and K=3 and K= 6 for B. pascuorum were estimated. The bar plots 

for each species allow assignment of each cluster to each sample site, 

separated by the individuals themselves.  
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Given the results observed from the NJ, UPGMA trees and STRUCTURE 

analysis, Analysis of Molecular Variance was calculated in Arlequin (table 3.7). 

Results from the UPGMA provided the greatest variation between groups of B. 

hortorum populations. The structuring included ELS1 and HLS4 in one group 

whilst the other sites occupied their own individual grouping. This number of 

clusters (K=8) was weakly supported for by the results from the STRUCTURE 

analysis. The UPGMA also provided the greatest variation between groups of B. 

lapidarius and B. pascuorum with 6 and 2 groups respectively. These groupings 

were not estimated by the STRUCTURE analysis, and the variation was still 

very low for B. lapidarius (0.99%). Grouping ELS2, HLS2, HLS5 and ELS3 and 

then the rest in another group for B. pascuorum gave a variation of 3.08%. 

Finally, the grouping giving the greatest variation of 0.63% in B. terrestris used 

results from STRUCTURE analysis using K=2, by separating HLS2 and HLS5 

from the other sites, this structuring is also observed in the NJ and UPGMA 

models. From looking at geographical data and information describing these 

sites the reasoning behind this grouping is not clear, and it is likely these 

‘groups’ are spurious. Due to such low population structure within the species, 

 

Figure 3.4: The relationship between the logged geographical distance (km) and genetic 

distance (FST) for a) B. hortorum (p<0.05), b) B. lapidarius (p=0.17), c) B. pascuorum 

(p=0.71), and d) B. terrestris (p=0.65) populations. Each point represents a pairwise 

comparison from genetic and distance matrices. 

a) b) 

c) d) 
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groupings of these locations are unlikely to exist as high levels of admixture 

between sites occurs. 

 

 

  

a) 

b) 

c) 

d) 

 

Figure 3.5: Neighbor-Joining trees (left) and UPGMA graphs (right) for (a) B. 

hortorum, (b) B. lapidarius, (c) B. pascuorum and (d) B. terrestris. Populations are 

as follows: 1- ELS1, 2-ELS2, 3-HLS3, 4-ELS5, 5-HLS1, 6-HLS2, 7-ELS4, 8-HLS5, 

9-HLS4 and 10- ELS3.The branch numbers represent bootstrapping over loci. 
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Figure 3.6: Inference of the 

optimal value of K using the 

ΔK method of Evanno (et 

al., 2005) from 

STRUCTUREHARVESTER. 

Support for a) K=3/K=7 B. 

hortorum, b) K=2 B. 

lapidarius, c) K=3, K=6 B. 

pascuorum, and d) K=2 B. 

terrestris. 

 

Figure 3.7: Population 

structure analysis bar 

graphs from 

STRUCTURE for a) B. 

hortorum, b) B. 

lapidarius, c) B. 

pascuorum and d) B. 

terrestris. Each 

individual genotype is 

represented by a 

coloured vertical bar 

representing the 

posterior assignment 

probability of being 

assigned to the clusters. 

Each colour represents 

a different cluster within 

each of the graphs. 

 

 

a) b) 

c) 
d) 

 

a) 

b) 

c) 

d) 
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Table 3.7: A table showing the results of AMOVA performed in Arlequin for B. 
hortorum, B. lapidarius, B. pascuorum and B. terrestris. The groups are as 
follows: B. hortorum (k=3): ELS1+ELS2+HLS4, HLS3+ELS5+HLS5, 
HLS1+HLS2+ELS4; B. hortorum (k=7): ELS1+ELS2, HLS3, ELS5+HLS5, 
HLS1, HLS2, ELS4, HLS4 B. hortorum UPGMA: ELS1+HLS4, REST AS 
INDIVIDUAL GROUPS. B. lapidarius (k=2): ELS1+ELS2+ELS4+HLS4, 
HS1+HLS2+HLS3+HLS5+ELS3+ELS5; B. lapidarius UPGMA: ELS1+ELS4, 
ELS2+ELS3, HLS3+HLS2, HLS1, ELS5+HLS4, HLS5. B. pascuorum (K=3): 
ELS2, ELS1+ELS4+ELS5+HLS1+HLS3+HLS4, ELS3+HLS2,+HLS5; B. 
pascuorum (k=6): ELS1, ELS2, HLS1+HLS3, ELS4+ELS5+HLS5, HLS2+HLS5, 
ELS3; B. pascuorum UPGMA: ELS1+HLS3+HLS1+ELS5+ELS4+HLS4, 
ELS2+HLS5+HLS2+ELS3. B. terrestris (k=2): HLS2+HLS5, ELS1+ ELS2+ 
HLS3+ ELS5+HLS1+ELS4+HLS4+ELS3; B. terrestris UPGMA: ELS1+HLS3, 
ELS5+HLS4+HLS1+ELS3+ELS4, ELS2, HLS2+HLS5. Results with greatest 
group percentage per variation per species are highlighted in bold. 

Grouping Criteria
Total Number 

of Groups

Within-population % 

variation, FIS (P-

value )

Among-population 

% variation, FSC (P-

value )

Among-group % 

variation, FCT (P-

value )

STRUCTURE (K=3) 3 84.0, 0.157 (0.000)
0.32, 0.00317 

(0.111)

-0.00, -0.00005 

(0.431)

STRUCTURE (K=7) 7 84.0, 0.157 (0.000)
-0.89, -0.00900 

(0.954)
1.23, 0.0122 (0.142)

Scheme ELS vs HLS 2 84.0, 0.157 (0.000)
0.30, 0.00304 

(0.000)
0.02, 0.160 (0.368)

UPGMA 8 84.0, 0.157 (0.000)
-5.03, -0.0532 

(0.957)

5.36, 0.0536 

(0.0269)

STRUCTURE (K=2) 2 98.6, 0.0163 (0.0485)
-0.20, -0.00200 

(0.982)
0.21, 0.0137 (0.222)

Scheme ELS vs HLS 2 98.6, 0.0136 (0.0517)
-0.28, -0.00281 

(0.997)

0.35, 0.0143 

(0.0906)

UPGMA 6 98.6, 0.0136 (0.0486)
-0.97, -0.00979 

(1.00)

0.99, 0.00994 

(0.00653)

STRUCTURE (K=3) 3 86.0, 0.108 (0.000)
0.84, 0.00862 

(0.00000)

2.71, 

0.02713(0.00178)

STRUCTURE (K=6) 6 68.7, 0.108 (0.000)
0.48, 0.00489 

(0.00356)

2.27, 0.02266 

(0.00277)

Scheme ELS vs HLS 2 87.0, 0.108 (0.000)
2.76, 0.02754 

(0.00000)

-0.35, -0.00353 

(0.64208)

UPGMA 2 58.7, 0.108 (0.000)
0.82, 0.00847 

(0.00000)

3.08, 0.03080 

(0.00416)

STRUCTURE (K=2) 2 85.1, 0.141 (0.000)
0.30, 0.00305 

(0.00069)

0.63, 0.00626 

(0.0211)

Scheme ELS vs HLS 2 85.3, 0.141 (0.000)
0.41, 0.00410 

(0.00000)

0.18, 0.00179 

(0.0734)

UPGMA 4 85.4, 0.141 (0.000)
0.13, 0.00127 

(0.07218)

0.55, 0.00554 

(0.00129)

B. hortorum

B. lapidarius

B. pascuorum

B. terrestris
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3.4.4 Floral density and genetic diversity 

As the floral density increases, the genetic diversity increases significantly in B. 

hortorum (R2=0.62, F(1,5)=8.101, p<0.05), B. lapidarius (R2=0.42, F(1,8)=5.74 

populations, p=<0.05) but not significantly in B. terrestris populations (R2=0.148, 

F(1,8)=1.813, p=0.215) whereas a negative correlation was shown in B. 

pascuorum (R2=0.42, F(1,8)=5.875, p<0.05). The graphs show the floral density 

during TP2 sample collection (fig. 3.8). HLS sites had a greater floral density 

(mean = 36.3) than ELS (mean = 22.8), although this was non-significant 

(p=0.22). 

 

3.4.5 Effective Population Size 

The level of stewardship had a significant positive relationship with the effective 

population size for B. pascuorum but not in the other species (B. hortorum: t=-

 

Figure 3.8: The relationship between the average floral density of each field site and the 

observed heterozygosity (FST) of a) B. hortorum (p<0.05), b) B. lapidarius, c) B. 

pascuorum (p<0.05) and d) B. terrestris (p=0.215) populations. Each point represents a 

sampling location with higher-level sites in blue and entry-level sites in orange. 

a) 
b) 

c) d) 
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0.95, df=4.15, p=0.40; B. lapidarius: t=0.41, df=5.27, p=0.70; B. pascuorum: t=-

2.41, df=8.0, p=0.04; B. terrestris: t=0.65, df=4.89, p=0.54) (fig. 3.9). 

The genetic diversity of each site showed no significant relationship with the 

effective population size of each species (B. hortorum: cor=0.001, t=0.002, 

df=5, p=0.998; B. lapidarius: cor=-0.328, t=-0.98, df=8, p=0.36; B. pascuorum: 

cor=0.386, t=1.182, df=8, p=0.27; B. terrestris: cor=0.127 t=0.36, df=8, p=0.73).  

A Pearson’s correlation also found no relationship between the floral density of 

a site and the effective population size of each Bombus sp. sampled in the area 

(B. hortorum: cor=-0.257, t=-0.65, df=6, p=0.54; B. lapidarius: cor=-0.178, t=-

0.51, df=8, p=0.62; B. pascuorum: cor=0.017, t=0.05, df=8, p=0.96; B. terrestris: 

cor=-0.258, t=-0.76, df=8, p=0.47). 

3.4.6 Relationship with disease 

Apicystis prevalence was estimated per site and per species then comparisons 

between HLS and ELS sites were conducted (fig 3.10.). There were no 

Fig 3.9: The level of stewardship (HLS and ELS) and the effective population of a) 

B. hortorum, b) B. lapidarius, c) B. pascuorum and d) B. terrestris with the means 

and 95% confidence intervals. Each point represents an individual sampling 

location. 
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differences found between the two levels of stewardship and the prevalence of 

Apicystis (B. hortorum: t=1.36, df=5, p=0.23; B. lapidarius: t=-0.14, df=8, 

p=0.89; B. pascuorum: t=0.07, df=8, p=0.95; B. terrestris: t=0.72, df=8, p=0.49) 

Finally, I tested interactions between heterozygosity of a population, the type of 

scheme and floral density with the prevalence of Apicystis bombi, by conducting 

Generalised Linear Mixed Effect Models (table 3.8). There were no significant 

interactions between the variables (heterozygosity, scheme and floral density) 

on the prevalence of A. bombi for any of the four species studied. 

Table 3.8: The results of a binomial generalised linear model (GLM) for each 

Bombus sp. (B. hortorum, B. lapidarius, B. pascuorum and B. terrestris), looking 

at the variables heterozygosity, scheme and floral density on the prevalence of 

Apicystis bombi within each population. 

Co-efficient 

estimate
s.e. Z p

Co-efficient 

estimate
s.e. Z p

2.95 26.2 0.113 0.91 heterozygosity 3.55 8.13 0.437 0.662

-0.33 0.54 -0.611 0.541 scheme 0.194 0.254 0.785 0.432

-0.017 0.021 -0.804 0.422 floral density 0.0032 0.011 0.3 0.764

Co-efficient 

estimate
s.e. Z P

Co-efficient 

estimate
s.e. Z P

-256 17920 -0.014 0.989 heterozygosity -10.3 6.77 -1.517 0.128

8.51 2845 0.003 0.998 scheme -0.63 0.331 1.892 0.059

-1.303 94 -0.014 0.989 floral density 0.018 0.011 1.693 0.091

B. hortorum B. lapidarius

B. pascuorum B. terrestris

  

 

Figure 3.10: The prevalence of A. bombi given the type of agri-environment site (ELS vs HLS) for 

populations of a) B. hortorum, b) B. lapidarius, c) B. pascuorum and d) B. terrestris. Each point 

represents a sampling location and the mean, and 95% confidence intervals are given per scheme. 

a) b) 

c) d) 
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3.5 Discussion 

Unlike previous studies looking into the impact agri-environments schemes 

have on the genetic diversity of different bumblebee species (Carvell et al., 

2004; Carvell et al., 2011; Wood et al., 2015; Carvell et al., 2017), this thesis 

found that the type of scheme had no effect on the effective population size, 

heterozygosity or disease prevalence. However, the floral density significantly 

increased the genetic diversity of 3/4 bumblebee species sampled in this study. 

This suggests that further investigative work with more thorough meta-data for 

each site would prove more valuable than a two-tier categorical system (ELS 

vs. HLS) that is currently in place. 

3.5.1 Cryptic bumblebee species 

False identifications of cryptic bumblebee species have the potential to 

invalidate the results of population genetics and epidemiology, weakening 

conclusions drawn from conservation studies. In this thesis, I molecularly 

differentiated between individuals of B. terrestris/B. lucorum and B. hortorum/B. 

ruderatus. B. lucorum and B. ruderatus were found at a much lower prevalence 

(11.31% and 7.66% respectively) than their sympatric, cryptic pair. The low 

prevalence of B. lucorum in these lowland sites reflect previous work (Scriven et 

al., 2015) in which they highlight the species preference for a cooler climate. 

Different species occupy different ecological niches, so the first step in accurate 

conservation studies involves correct identification of sample species.  

3.5.2 Genetic structuring 

The overall genetic structuring for the four-bumblebee species sampled was low 

(0.005-0.025) compared to other similar population-genetic studies (Goulson et 

al., 2011b). The high number of sister pairs globally across sites also confirms 

this. 

B. pascuorum was the only species to show significant IBD as well as this 

higher level of genetic structuring. These results suggest there is a lot of 

admixture between the sites, as well as ‘stepping stone’ populations which were 

not sampled allowing gene flow between populations. Non-specific groupings 

were observed from the results of the UPGMA and NJ trees as well as cluster 

reconstruction with STRUCTURE harvester. Geography therefore has no clear 



76 
 

impact on the groupings and neither does the type of scheme, suggesting high 

levels of inter-population breeding within the area. This thesis found that most of 

the variation observed in these hymenopteran species is present within 

populations rather than among populations. On account of the lack of genetic 

differentiation between geographic regions, it suggests that the distance alone 

is not restricting gene flow and there is no genetic divergence between 

populations. 

3.5.3 Impacts of field margins 

The impacts of field margins providing valuable resources have been shown to 

increase nest density, pollinator abundance and diversity as well as population 

size (Wood et al., 2015). However, this study suggests that although the type of 

scheme does not affect pollinator diversity, the floral density positively increases 

the genetic diversity of pollinator visitors (B. hortorum, B. lapidarius and B. 

terrestris). Using the estimated foraging distances for all four species derived 

from Wood et al. study (B. hortorum- 566m, B. lapidarius-714m, B. pascuorum-

363m and B. terrestris-799m), it can be concluded that there would be no 

overlap in ranges between field sites (minimum separation distance of 12km). 

Parallel to the lack of positive association between the level of stewardship and 

the impact on genetic diversity of bumblebee species, there seems to be no 

significant relationship between the assigned level of stewardship and the 

observed floral density. This would suggest that current efforts invested into 

implementing these schemes are not having the desired outcome. Proxies for 

assessing the efficacy of these schemes include the biodiversity of selected 

species, but these may need to be investigated further. My results suggest field 

margins are not positively impacting the density or species richness within the 

field site under the current two-tier scheme, and therefore there may be an 

expected decrease in genetic diversity of the study species within these 

‘improved’ HLS sites. The lack of genetic structuring observed across the 

sampling area suggests that these fragmented arable landscapes are not 

restricting gene flow, but instead create areas with high foraging densities within 

more floral rich areas. Attracting individuals from many colonies to share these 

resources could mean an increase in the transmission of bumblebee diseases. 
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In addition to the environment scheme and the floral density observed within 

each field site, the landscape context would also play a role in the genetic 

diversity and effective population size of each bumblebee species (Heard et al., 

2007). The surrounding area would greatly impact the density of foraging 

pollinator species, for example the percentage of arable habitat was shown to 

greatly influence the density of all bumblebee species (Carvell et al., 2011). 

Further studies looking into the sample sites and their surrounding would prove 

valuable. 

3.5.4 The effective population size 

Contrary to previous studies, there was no significant relationship between the 

level of agri-environment scheme and the effective population size of Bombus 

sp. other than in B. pascuorum populations. Exploring this further revealed that 

even the density of the flowers within each site had no direct impact on the 

number of bumblebee colonies estimated from the microsatellite data. Thus, 

suggesting the positive impact of HLS sites on B. pascuorum population size is 

most likely spurious, a result of another untested ecological variable or less 

intensive sampling methods. Further to this, the sample sizes of each species 

between sites was not equal (i.e. the sampling effort varied). In order to 

accurately predict and compare the effective population sizes, greater care 

should be taken to ensure equivalent sample sizes for each site and species. 

3.5.5 Temporal influence 

Temporal changes in external factors can have a great impact on the results of 

an individual study, for example a poor winter could greatly influence the 

success of newly emerging queens (Owen et al., 2013). This study suggested 

there were temporal changes between the two sampling seasons, however in 

order to assess this fully, assessing seasonal changes over a longer time period 

would be of greater use. 

3.5.6 The efficacy of targeted agri-environment schemes 

In order to increase the efficacy of agri-environmental schemes in terms of wild 

pollinator management, to conserve rare species and maintain stable 

populations, a more accurate and intensive study of current population diversity 

and structure is required. To be able to track these important variables over 
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time and correlate with the surrounding landscape will aid towards the 

conservation of these declining species. This will also ensure correct changes 

are made to current policy to enable these schemes to continue to enhance 

pollinator abundance and buffer against the surrounding intensification of 

agricultural landscape. This increased knowledge of variables influencing 

population fitness allows inference into the overall stability of individual species 

in the area. A vital aspect of effective conservation is to accurately assess each 

species alone instead of pooling species together, as this could lead to 

inaccurate assumptions of population declines or for increases to be 

overlooked, resulting in a lack of intervention to prevent species loss. 

An issue with assessing the efficacy of field margins is determining whether the 

abundance of pollinator species is increasing or if the high density of sown 

wildflowers is attracting them to a more confined area. Previous studies have 

shown that the Higher-Level Stewardship schemes increase bee population 

sizes significantly in B. hortorum and B. lapidarius (Wood et al., 2015). 

Sampling efforts between the two investigations were not equivalent, with Wood 

et al., sampling over a much larger area; similar methods across projects would 

make it easier to compare results. Despite having a two-tier system, the current 

agri-environment process can have different targeting methods within the entry- 

and higher-level schemes. It would suggest that despite being given the status 

of an HLS site, this does not always accurately represent the ecological 

landscape of the farms as some ELS were found to have greater floral density 

and diversity than similar HLS sites. These levels reflect the heterogeneity of 

the landscape and suggests that to some extent the measure implemented on 

ELS farms can be highly effective. The designated grouping of ELS and HLS 

may be misleading given a whole range of other factors which could influence 

these figures. It is therefore vital to sample the environment of these sites, as 

using the stewardship level alone does not accurately represent the ecology. 

Similarly, as the investigation was not experimental and therefore ecological 

conditions were not standardised both within the sample sites and the 

surrounding area, it would be suggested that farms which opted in to the HLS 

schemes may already have greater levels of semi-natural vegetation as well as 

a greater awareness of the positive impacts of increased biodiversity. 
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3.5.7 Disease prevalence and genetic diversity 

The prevalence of disease within these schemes can have serious 

consequences on bumblebee fitness at the population level. Although the 

relationships between the type of agri-environmental scheme and the 

prevalence of Apicystis bombi was found to be non-significant, the general 

trends suggested these HLS sites had a decreased prevalence of the disease. 

From the results of the GLM however, it is unclear which factors are influencing 

these results as the heterozygosity, type of scheme and the floral density did 

not impact the prevalence of the pathogen. This is unlike previous similar 

studies which suggest an association with the genetic diversity of the population 

(Whitehorn et al., 2011). The heterozygosity of a population increases the 

fitness, making it less susceptible to diseases. Sisters found within these sites 

are more genetically related and would bias results of epidemiological studies 

with transmission occurring at a greater rate within the colonies. By regressing 

multiple factors including genetic diversity within the sites, management 

schemes used to buffer effects of habitat fragmentation can adopt these 

methods to decrease disease prevalence. 

3.5.8 Further study 

This research study focused on the four most abundant Bombus spp. within 

these agri-environment schemes. To further improve upon this research into 

their efficacy, assessing the genetic structuring for less common species would 

be valuable. Apis mellifera were also sampled from every site and it would be 

beneficial to sequence the COI-COII mitochondrial region (which is 

representative of the honeybee lineage) to analyse the diversity of this 

polyandrous bee species, with a much larger foraging range and different 

colony structuring. 

There has been a plethora of case studies and meta-analysis investigating the 

efficacy of agri-environmental schemes, providing evidence that these 

wildflower field margins greatly improve the diversity and community of wild 

pollinators (Carvell et al., 2011; Marja et al., 2018) as well as other fauna (Kleijn 

and Sutherland, 2003). The consensus is that while these schemes do 

positively affect the conservation of many threatened species, there is a trade-

off with the cost of providing better managed and targeted methods. Even with 
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low intensity sampling effort such as during this study, sister pairs are still 

caught at a high frequency within sites and time points. The relatively high 

frequency of sib-ships can skew results of epidemiological studies as the 

individuals are more genetically related and likely to have similar susceptibility 

characteristics.  

3.6 Conclusions 

As with many conservation studies, the efficacy of the implemented schemes is 

subjective as the optimal genetic diversity and structure required to sustain a 

healthy population within these arable landscapes is difficult to estimate. It 

would be useful to combine studies from sites all over the globe to estimate a 

threshold at which a bumblebee population’s genetic diversity, structure and 

population size would prove sustainable and not under threat of extinction. By 

creating a timeline of how these agri-environmental schemes impact the genetic 

diversity year after year, a general trend could be estimated. This will help 

determine if these schemes are having the desired effect on the biodiversity 

they hope to sustain. 

Many methods of reversing human impact on the reduction of biodiversity and 

population numbers tend to target a specific group of animals, for example 

foraging plants for pollinator species. However, this research suggests that 

trends in one species of bumblebee are not always exhibited in another. As with 

most conservation efforts, analysing the effects of different interacting factors 

down to the species level proves valuable. What might be working for one 

species could be having disastrous effects on another, thus reiterating the 

importance of molecular analysis to distinguish between cryptic bumblebee 

species. 

Sister pairs are frequent across these types of landscapes, even with relatively 

low intensity sampling effort. Future epidemiological studies should provide full 

sib-ship reconstruction in order to prevent bias of results from increased colonial 

transmission between these genetically similar sisters. Current disease data for 

this sample group is only complete for Apisystis; however, ongoing research 

should be completed for this data set, to allow for further comparisons of factors 

potentially influencing disease abundance and prevalence. Relating the density 

of flowers within these schemes would hopefully show if there is a correlation, 
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and if so whether these floral-rich areas despite increasing genetic diversity 

might be increasing the transmission of pathogens within populations and 

between species.  
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Chapter 4: General Discussion and Synthesis 

Bumblebees provide a great model species for studying the impacts upon 

genetic diversity and structuring because of their great amount of publicity and 

media attention, as well as the ease of sampling many individuals in a short 

space of time. The general decline of bumblebee species in the UK and France 

since the post-war era can be attributed to a combination of factors such as 

habitat loss and fragmentation, pesticides, parasites, pathogen spill-over and 

climate change. Here we investigated the genetic structuring and association 

with disease for four common bumblebee species in England and France, 

studying the impact of islands and agri-environment schemes on the species.  

4.1.1 Island and Mainland Populations 

4.1.2 Genetic diversity 

The results from this thesis show that structuring for B. pascuorum populations 

across island and mainland populations in the UK and France is high (θ =0.122 

(±0.0 22), p<0.05). Whereas results from B. terrestris analysis show a lower 

non-significant level of genetic structuring between these populations (θ = 0.069 

(±0.009), p=0.053). This would suggest greater ‘stepping-stone’ populations of 

B. terrestris, by which gene flow can occur more often between isolated 

populations. Contrary to these global FST values, B. terrestris populations 

showed a significant isolation by distance whereas this was not observed in B. 

pascuorum populations. 

Interestingly, cluster analysis for both species revealed island populations being 

more genetically dissimilar to the mainland. B. pascuorum showed the greatest 

variation grouping all mainland sites with the Channel Islands and the Isle of 

Man and Ushant creating their own cluster. Grouping within B. terrestris 

samples grouped all sites together however there was clear genetic diversity 

with individuals from the Isle of Scilly.  

The results from this thesis provide further evidence of genetic structuring of 

bumblebee species between island and mainland sites. 

4.1.3 Effective Population Size 
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This thesis found that population size did not differ between island and 

mainland sites in either species, and neither was there an effect of 

heterozygosity on the populations. However, despite similar sampling efforts 

between sites, the confidence intervals for the estimated population sizes vary 

greatly. In order to improve upon the accuracy of these predictions, more 

samples should be taken from each site. This was not achievable for the current 

study as whole body sampling was conducted. In the case of tarsal sampling 

(as has been shown in previous studies (Wood, 2015 #142) more individuals 

could be genotyped, leading to more sister pairs being identified which would 

increase the confidence of the CAPWIRE models. 

4.1.4 Prevalence of Disease 

This thesis combines genetic studies with disease data, an assessment of 

bumblebee health which could serve as a proxy looking into the effect of 

inbreeding within isolate island sites. My results suggest that as the 

heterozygosity of a population increases (i.e. it becomes more diverse), the 

abundance of Crithidia bombi (i.e. the parasite load of each individual) also 

increases. Although contradictory to what would be expected, these results are 

similar to experimental work by Whitehorn et al., (2011). As has been 

suggested before, individuals are more likely to be able to survive with higher 

pathogen loads at these higher levels of genetic diversity. 

At the population level, although C. bombi prevalence decreased significantly in 

B. pascuorum populations with increased genetic diversity there was no effect 

of the type of site (island or mainland). The positive result from B. terrestris 

populations is likely spurious due to the lack of genetic structuring within the 

species. 

Geographical barriers are present all over the world, extending from vast 

mountain ranges, oceanic islands and fragmented agricultural land. All these 

landscape features can prevent admixture between populations, inhibiting gene 

flow, thus creating more genetically isolated populations such as the Isle of Man 

and Scillies from this thesis. Inbreeding within these populations is not rare, and 

the associated fitness costs are high (Whitehorn et al., 2009; Woodard et al., 

2015).  



84 
 

4.2 Agri-Environment Schemes 

4.2.1 Genetic Diversity 

Population structure (global FST values) for all four study species were 

significantly low as was expected over such short geographical distances. 

Parallel to this, weak clustering support with no clear patterns between sites 

provides further evidence for high levels of admixture between these arable 

landscapes. One surprisingly significant result was the positive association 

between floral density and heterozygosity, unexpected due to the lack of 

significant difference in floral density between scheme levels.  

4.2.2 Effective Population Size 

The type of scheme implemented by the farms only significantly affected 

populations of B. pascuorum which is likely to be explained by the highest levels 

of genetic structuring calculated of the species. As the type of scheme (ELS vs 

HLS) has very little impact on any of the other variables of this study, this 

significant result is likely to be spurious and due to other non-recorded factors. 

4.2.3 Impact on agricultural policy 

The results obtained from these studies could be of great value to EU countries 

partaking in the scheme under the Common Agricultural Policy. Positive results 

from such studies would also prove favourable in the UK after leaving the EU, to 

secure monetary subsidies for UK farmers to implement similar localised 

schemes to aid pollinator conservation from the UK government. The current 

OECD average for government support in agriculture is 18% and 22% within the 

EU; Brexit will no doubt impact the agricultural schemes sampled in this study. 

A primary issue with these higher-level stewardship schemes is they are usually 

shaped over a long period of time, sometimes even a decade, so any 

interruption would have a considerable impact on the efficacy of these 

schemes. 

Current policy only allows for WFS subsidies for farmers, preventing gene flow 

by fragmenting the habitats between semi-rural and rural landscape. By 

providing similar subsidies and methods to other possible sources of 

biodiversity and ‘green space’ within the landscape, corridors can be created to 
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prevent genetic isolation and inbreeding. The current method of high-level 

stewardship not only leaves patches of land available but also leaves the 

farming areas subject to further intensification. 

 

4.3 The Study Species 

The focus of this study was on the four most common species found within the 

UK and France; however, of greater concern would be species listed as ‘rare’ 

and ‘declining’ such as B. ruderatus, B. humilis and B. sylvarum (Goulson et al., 

2005). Understanding how geographical barriers and agri-environment schemes 

could influence genetic diversity, population size and disease prevalence of 

threatened species is vital. Being able to target specific specialist pollinator 

species through intervention would greatly improve the ecosystem. 

4.4 Final Remarks 

With the world changing at an unprecedented rate, primarily linked with the 

exponential growth of the human population and associated anthropogenic 

activities, research into current buffering methods is of great importance. This 

thesis demonstrates a broad understanding of the current structuring and 

disease status of two bumblebee species in the UK and France, and four 

bumblebee species within agri-environment schemes. 

From the results of this thesis, further research in this area of study should 

focus on how the landscape can be better managed to mitigate against habitat 

fragmentation. Geographic isolation of bumblebee populations does affect their 

genetic diversity and structuring, as well as disease prevalence. Using this 

information, and the positive results of floral diversity, management schemes 

across the UK should be better assessed to prevent species loss. A larger 

global study of Bombus spp. populations would prove valuable in understanding 

where the primary declines are occurring and exploring gene flow between 

populations. Finally, it is important to appreciate the impact of sister pairs on the 

results of epidemiological studies by understanding that increased genetic 

similarity increases disease prevalence which would only worsen with 

inbreeding. 
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Figure S1: (a) A gel image showing the bands for PCR product from the methods of B. 

terrestris and B. lucorum differentiation. (b) A gel image showing the bands for digested PCR 

product from the methods of B. hortorum and B. ruderatus differentiation. 

a. b. 
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Table S1: A matrix of pairwise heterozygosity (FST) values for B. pascuorum between each sampling location using 6 loci with significant 

values (p<0.05) in bold after Bonferroni corrections. Alderney (A), Belle Ile (P), Brest (B), Cherbourg (C), Falmouth (F), Guernsey (G), 

Isle of Man (M), Jersey (J), Liverpool (L) and Ushant (U).  

A P B C F G M J L U

A 0 0.1569 0.0563 0.0942 0.1078 0.0753 0.2245 0.1094 0.1317 0.1437

P 0 0.1099 0.0917 0.0771 0.2364 0.3154 0.146 0.0772 0.1112

B 0 0.0174 0.0222 0.1049 0.2196 0.0818 0.0508 0.0682

C 0 0.0087 0.1311 0.1641 0.084 0.0181 0.0458

F 0 0.135 0.2382 0.0681 0.0132 0.0333

G 0 0.2912 0.1636 0.1584 0.1759

M 0 0.3134 0.2409 0.2636

J 0 0.0971 0.096

L 0 0.0496

U 0  
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Table S2: A matrix of pairwise heterozygosity (FST) values for B. terrestris between each sampling location using 8 loci with significant 

values (p<0.05) in bold after Bonferroni corrections. Alderney (A), Belle Ile (P), Brest (B), Cherbourg (C), Falmouth (F), Guernsey (G), 

Isle of Man (M), Jersey (J), Liverpool (L) and Ushant (U). 

A P B C F G M J L Q S

A 0 0.0553 0.0478 0.0557 0.0412 0.0694 0.1235 0.0195 0.0642 0.0267 0.1334

P 0 0.0312 0.0529 0.0424 0.0648 0.1034 0.0251 0.0611 0.0178 0.114

B 0 0.035 0.0281 0.0696 0.086 0.02 0.0541 0.0301 0.1236

C 0 0.0233 0.0572 0.1128 0.0361 0.0637 0.036 0.151

F 0 0.0374 0.0847 0.0249 0.046 0.0327 0.1223

G 0 0.1394 0.0454 0.0587 0.0562 0.1272

M 0 0.0946 0.1138 0.1048 0.1835

J 0 0.0441 0.011 0.1073

L 0 0.0471 0.0942

Q 0 0.1072

S 0   
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Table S3: A matrix of pairwise geographical distances between sites (km). Alderney (A), Belle Ile (P), Brest (B), Cherbourg (C), Falmouth 

(F), Guernsey (G), Isle of Man (M), Jersey (J), Liverpool (L) and Scillies (S). 

A P B C F G M J L Q S

A 0 275 222 42 211 41 530 56 413 256 297

P 0 155 283 343 242 772 195 675 19 366

B 0 545 199 182 646 195 570 143 215

C 0 255 71 546 58 428 264 336

F 0 198 455 237 392 330 96

G 0 546 43 439 224 274

M 0 579 134 754 491

J 0 469 208 316

L 0 659 448

Q 0 357

S 0  
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Table S4: A matrix of pairwise heterozygosity (FST) values for B. hortorum between each sampling location with significant values 

(p<0.05) in bold after Bonferroni corrections. 

ELS1 ELS2 HLS3 ELS5 HLS1 HLS2 ELS4 HLS5 HLS4

ELS1 0 -0.0068 -0.0065 0.022 -0.0146 -0.0057 -0.0039 0.0096 -0.0213

ELS2 0 0.0053 0.034 0.0027 0.001 -0.0014 0.0143 -0.0072

HLS3 0 0.0216 -0.001 0.0015 0.0037 0.0081 -0.0103

ELS5 0 0.028 0.0337 0.0248 0.0113 0.035

HLS1 0 -0.0004 0.0029 0.0105 -0.0158

HLS2 0 0.0066 0.0099 -0.0099

ELS4 0 0.0054 -0.0025

HLS5 0 -0.0122

HLS4 0  
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Table S5: A matrix of pairwise heterozygosity (FST) values for B. lapidarius between each sampling location with significant values 

(p<0.05) in bold after Bonferroni corrections. 

ELS1 ELS2 HLS3 ELS5 HLS1 HLS2 ELS4 HLS5 HLS4 ELS3

ELS1 0 0.0134 0.0141 0.0132 0.0245 0.0145 0.0032 0.0225 0.0203 0.0158

ELS2 0 0.006 0.0045 0.0042 0.003 0.007 0.01 0.0091 0.0014

HLS3 0 0.0105 0.0069 0 0.0077 0.0111 0.0096 0.0072

ELS5 0 0.0068 0.0004 0.0079 0.0085 0.0048 0.0059

HLS1 0 0.0046 0.0199 0.0128 0.0098 0.0067

HLS2 0 0.0093 0.0116 0.0074 0.0008

ELS4 0 0.017 0.0132 0.0175

HLS5 0 0.0087 0.0101

HLS4 0 0.0145

ELS3 0  
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Table S6: A matrix of pairwise heterozygosity (FST) values for B. pascuorum between each sampling location with significant values 

(p<0.05) in bold after Bonferroni corrections. 

ELS1 ELS2 HLS3 ELS5 HLS1 HLS2 ELS4 HLS5 HLS4 ELS3

ELS1 0 0.0443 0.0195 0.0006 0.019 0.0344 0.0177 0.0523 0.0222 0.048

ELS2 0 0.0308 0.0337 0.0304 0.0067 0.0355 0.0023 0.0431 0.0163

HLS3 0 0.0046 0.0022 0.0313 0.0057 0.0481 0.0082 0.0518

ELS5 0 0.0027 0.0247 0.0003 0.0409 0.0001 0.0459

HLS1 0 0.0299 0.0062 0.0452 0.0099 0.0567

HLS2 0 0.0225 0.0044 0.0305 0.0132

ELS4 0 0.0381 0 0.0496

HLS5 0 0.0461 0.0165

HLS4 0 0.054

ELS3 0  
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Table S7: A matrix of pairwise heterozygosity (FST) values for B. terrestris between each sampling location with significant values 

(p<0.05) in bold after Bonferroni corrections. 

ELS1 ELS2 HLS3 ELS5 HLS1 HLS2 ELS4 HLS5 HLS4 ELS3

ELS1 0 0.0008 0 0 0 0 0.005 0.0087 0.0035 0.0009

ELS2 0 0.0035 0.0044 0.0054 0.0206 0.0054 0.0158 0.0085 0.0125

HLS3 0 0.0025 0.0044 0.0187 0.0068 0.0159 0.0091 0.0046

ELS5 0 0 0.0101 0.0017 0.0042 0.0018 0.0003

HLS1 0 0.0003 0.0028 0.002 0 0

HLS2 0 0.0156 0.002 0.0023 0.0102

ELS4 0 0.0117 0.0092 0.006

HLS5 0 0.0038 0.0053

HLS4 0 0.003

ELS3 0  
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Table S8: A matrix of pairwise geographical distances between sites (km). 

ELS1 ELS2 HLS3 ELS5 HLS1 HLS2 ELS4 HLS5 HLS4 ELS3

ELS1 0 16 24 92 105 13 31 37 85 117

ELS2 0 24 78 94 29 17 34 72 108

HLS3 0 77 84 24 24 13 67 94

ELS5 0 35 100 62 68 17 56

HLS1 0 108 78 72 25 21

HLS2 0 40 37 91 118

ELS4 0 26 55 92

HLS5 0 56 81

HLS4 0 45

ELS3 0  
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Table S9: The GPS location of each sampling site within Chapter 1. 

Location GPS Coordinates

alderney 49.715004,-2.197356

belle ile 47.347009,-3.156406

brest 48.390394,-4.486076

cherbourg 49.633731,-1.622137

falmouth 50.169173,-5.107088

guernsey 49.454168,-2.549707

iom 54.152337,-4.486123

jersey 49.180502,-2.103233

liverpool 53.408371,-2.991573

quiberon 47.720529,-2.997077

scilly 49.925002,-6.298672  


