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ABSTRACT 

 

Tropical ecosystems harbour the highest concentrations of biodiversity on Earth and 

play a pivotal role in the global carbon cycle, yet deforestation and degradation 

continue unabated in many regions, with net forest loss at 5.5 million ha yr-1 between 

2010 and 2015. Protected areas offer a partial solution to this problem, with a 

growing body of evidence demonstrating their effectiveness for habitat conservation 

in the dense forests of Amazonia, Central Africa and Southeast Asia. Despite 

containing over a quarter of global biodiversity hotspots and being low density but 

significant carbon stores, tropical drylands have received far less attention in 

conservation terms, and research into protected areas in these ecosystems is far 

more limited. The overall effectiveness of protected areas in different dryland 

regions, and the factors influencing performance, are less understood. By measuring 

protected area performance as a function of aboveground biomass change, this 

study investigated the effectiveness of protected areas in the savannah belt of 

Nigeria, a country with a long history of environmental degradation. L-band Synthetic 

Aperture Radar (SAR), a form of remote sensing that penetrates the vegetation 

canopy, provided a means of consistently monitoring aboveground biomass change 

over time. Twenty-one areas, ranging in size from 117,000 ha to 608,410 ha, and 

offering varying levels of protection according to IUCN designations, were selected, 

with aboveground biomass changes between 2007 and 2017 determined by 

subjecting L-band SAR data to a novel approach called ‘Biomass Matching’. The 

combination of SAR and Biomass Matching allowed aboveground biomass changes 

within these protected areas to be detected and estimated without the need for 

supplementary field data, which is usually required to calibrate such remote sensing 

data. All but four protected areas experienced increases in aboveground biomass 

over the study period, with mean change being +1.22 Mg ha-1, compared to +0.26 

Mg ha-1 for a set of twelve similar unprotected areas. Furthermore, their performance 

was affected by an array of factors, though accessibility and management efficacy 

were deemed the most influential. These results suggest that, with appropriate 

monitoring and resourcing, protected areas in Nigerian dry forests and savannahs 

can provide effective habitat conservation, though more inaccessible areas will 

inherently perform better.  
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Introduction  

1.1 Tropical Ecosystems, Climate Change and the Paris Climate 

Agreement 

Tropical ecosystems are a key constituent of the global carbon cycle, with 

approximately 55% of terrestrial carbon contained within tropical forests alone 

(Pan et al., 2011). This is apportioned between live biomass – both 

aboveground (AGB) in stems, branches and leaves, and belowground (BGB) in 

roots – soil, deadwood and litter. In the tropics, the majority of carbon is stored 

in living structures (Pan et al., 2011), with carbon constituting approximately 

50% of live biomass (Brown and Lugo, 1982; Roy et al., 2001). Dense, intact 

forests are the primary component of this store (Malhi and Grace, 2000; Pan et 

al., 2011), but other tropical ecosystems make important contributions. For 

example, mangroves are incredibly high density but spatially-limited stores, 

holding around 1000 Mg C ha-1 (Donato et al., 2011), while dryland forests, 

which cover a similar area to their dense forest counterparts (Bastin et al., 

2017) are a low density but extensive carbon sink. Tropical carbon storage is 

distributed across three main regions: tropical America, sub-Saharan Africa and 

Southeast Asia (Pan et al., 2011; Saatchi et al., 2011; Baccini et al., 2012; 

Avitabile et al., 2016), so estimating total tropical carbon stocks is extremely 

challenging. Field-based forest inventories and remote sensing are the primary 

means of gathering this information (FAO, 2015; Keenan et al., 2015), but 

differences in the data and exact methods used yield large disparities in 

estimates between studies (Mitchard et al., 2014; Table 1.1). Matters are further 

complicated by the uncertainties associated with different approaches: field-

based methods directly measure AGB (and therefore, C), but are prone to 

human error and require upscaling, whereas remote sensing can estimate 

large-scale stocks but cannot directly measure AGB (Avitabile et al., 2016). 

However, regardless of such uncertainties, it is clear that the tropics are a 

globally significant carbon store.         

As the majority of carbon in tropical ecosystems is contained in live biomass 

(Malhi and Grace, 2000; Pan et al., 2011), when these ecosystems are cleared 

or degraded the carbon within the stems, branches and roots of trees is 

released into the atmosphere as carbon dioxide (CO2; Baccini et al., 2012). 

Consequently, tropical deforestation and degradation is a major source of global 
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CO2 emissions. A net forest loss of 5.5 million ha yr-1 2010-2015 (Keenan et al., 

2015) would have substantially increased atmospheric greenhouse gas (GHG) 

concentrations, with many studies suggesting that tropical ecosystems are a net 

source of CO2 emissions, ranging from 1.3±0.7 Gt C yr-1 (1990-2007; Pan et al., 

2011), to 1.0 Gt C yr-1 (2000-2010; Baccini et al., 2012). Indeed, between 1850 

and 2015, over 70% of land-use and land-cover change (LULCC) CO2 

emissions originated from tropical regions (Houghton and Nassikas, 2017). 

Despite this, the terrestrial biosphere as a whole is still responsible for 

sequestering around 30% of annual anthropogenic CO2 emissions, a sink which  

Study Tropical regions 
included 

Data 
collection 
methods 

Tropical 
carbon stocks 
– live biomass 
(Gt C) 

Avitabile et al. 
(2016) 

Central and South 
America, Africa, 
South and 
Southeast Asia 

Fusion of 
Saatchi et al. 
(2011) and 
Baccini et al. 
(2012) maps 

187.5 

Baccini et al. 
(2012) 

Central and South 
America, Africa, 
South and 
Southeast Asia 

Field-
calibrated 
spaceborne 
LIDAR 

228.7 

Saatchi et al. 
(2011) 

Central and South 
America, Africa, 
South and 
Southeast Asia 
(including 
Australia) 

Field-
calibrated 
spaceborne 
LIDAR 

247 

FAO (2011) – 
State of the 
World’s Forests 

Central and South 
America, Africa, 
South and 
Southeast Asia 

National forest 
inventories 

183.2  

Feldpausch et al. 
(2012) 

South America, 
Africa, Australia, 
Southeast Asia 

Permanent 
forest sample 
plots 

285  

Köhl et al. (2015)  Central and South 
America, Africa, 
South and 
Southeast Asia 

Estimates 
based on 
combining 
Saatchi et al. 
(2011) and 
Pan et al. 
(2011) data 

298.4 

Table 1.1: Tropical Carbon Stocks. This shows estimated tropical carbon stocks (Gt 

C) in live biomass by a selection of studies. Differences in the data included and 

collection methods can yield markedly divergent results. 
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is estimated to have increased in size from 1.4±0.7 G tC yr-1 in the 1960s, to  

3.0±0.8 Gt C yr-1 between 2007 and 2016 (Le Quéré et al., 2018).  

Understanding the potential for LULCC to act as both a source and sink of 

atmospheric carbon (Houghton et al., 1999; Le Quéré et al., 2009; Ballantyne et  

al., 2012; Sitch et al., 2015) is therefore becoming ever more important in the  

context of climate change.  

The pertinent need to address the issue of 21st Century climate change is 

receiving increasing global recognition, most clearly exemplified by the 2015 

Paris Climate Agreement (UNFCCC, 2015). The historic accord aimed to unite 

countries against the threat of climate change, ‘keeping a global temperature 

rise this century well below 2⁰C above pre-industrial levels and to pursue efforts 

to limit the temperature increase even further to 1.5⁰C’ - achieving this goal will 

require rigorous policy-making, and the implementation of effective mitigation 

strategies to greatly reduce current GHG emissions (UNFCCC, 2017). Failure to 

restrict global temperature rise could irreversibly modify the Earth system 

(Steffen et al., 2018) and present ‘intolerable risks’ to humanity (Schellnhuber et 

al., 2016). Indeed, there is growing evidence to suggest that even a 2⁰C 

increase could have dangerous consequences (IPCC, 2018), increasing the 

severity of long-term impacts on both terrestrial (Jones et al., 2009; Lewis et al., 

2011; Chadburn et al., 2017) and marine (Hoegh-Guldberg et al., 2007; Fabry 

et al., 2008) ecosystems. With only twelve years remaining to limit global 

temperature rise to 1.5⁰C (IPCC, 2018), the demand for swift and effective 

climate action has never been greater.  

Under the terms of the Paris Climate Agreement, the basis for countries 

implementing management strategies are the Nationally Determined 

Contributions (NDCs); many of these include considerable contributions from 

the land-use sector, which comprise a nation’s agricultural and forestry activities 

(Grassi et al., 2017). Such activities may account for up to 10% of global CO2 

emissions annually (Le Quéré et al., 2015), as well as around a quarter of 

methane (CH4) and Nitrous Oxide (N2O) emissions (Tubiello et al., 2015). The 

expectation of many countries, particularly those in tropical regions, to meet 

their NDCs with key contributions from the land-use sector means that land-



4 
 

based climate mitigation and the concept of ‘negative emissions’ will comprise a 

vital component of the Paris Climate Agreement (Grassi et al., 2017; Houghton 

and Nassikas, 2017; Houghton and Nassikas, 2018). Indeed, such nations may 

achieve negative emissions through a number of means; these include 

significant reductions in rates of tropical deforestation and degradation, 

increasing the sustainability of timber harvesting and extraction, and 

encouraging forest regrowth and expansion (Houghton and Nassikas, 2018). 

Approaches to protecting and enhancing carbon stores in tropical ecosystems 

have long been recognised for their potentially significant contribution to 

combatting climate change (Gibbs et al., 2007; Scharlemann et al., 2010), and 

could offset up to 50% of annual anthropogenic CO2 emissions, yielding results 

far more quickly than attempts to completely transition from fossil fuels to 

renewable energy (Houghton et al., 2015). The effective and responsible 

management of tropical ecosystems could therefore play an essential role in 

addressing the issue of climate change (Houghton et al., 2015; Grassi et al., 

2017; Houghton et al., 2018).    

Though not a universal solution to the problem of anthropogenic GHG 

emissions, enhancing carbon uptake and protecting stores in tropical 

ecosystems through effective land management could be significant in attempts 

to combat climate change (Gibbs et al., 2007; Scharlemann et al., 2010; 

Houghton et al., 2015; Grassi et al., 2017; Houghton et al., 2018). Indeed, 

protecting current stores in undisturbed, primary forests could be particularly 

important, as these ecosystems store large quantities of carbon and continue to 

accumulate it with age (Carey et al., 2001; Luyssaert et al., 2008; Stephenson 

et al., 2014). There are, however, significant political and economic obstacles 

which complicate the implementation of such strategies (Houghton et al., 2015), 

and thus considerable debate exists as to how these aims may best be 

achieved. Good evidence exists to suggest that, when effectively managed, 

protected areas are a valuable resource for conserving biodiversity and 

valuable ecosystem services, particularly carbon storage and sequestration 

(Juffe-Bignoli et al., 2014). Therefore, protected areas may contribute 

considerably to efforts to tackle tropical deforestation and degradation, and 

subsequently, offsetting anthropogenic GHG emissions and mitigating climate 

change.  
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1.2 Protected Areas and Conservation  

1.2.1 Protected Areas – an overview 

In practical terms, a protected area (PA) is ‘a clearly defined geographical 

space, recognised, dedicated and managed, through legal or other effective 

means, to achieve the long-term conservation of nature with associated 

ecosystem services and cultural values’ (Dudley, 2008). The extent of these 

areas across both the terrestrial surface and the world’s oceans has increased 

substantially in recent decades owing to the collective decisions of 

governments, publicly-funded bodies and local communities (Jenkins and 

Joppa, 2009; Watson et al., 2014), with official estimates refuting that around 

209,000 PAs now encapsulate 15.4% of the terrestrial biosphere (excluding 

Antarctica) and 3.4% of the oceans (Juffe-Bignoli et al., 2014). PAs are central 

to global biodiversity targets, but their integration with the United Nation’s 

Sustainable Development Goals (SDGs) acknowledges the wider societal 

benefits they can provide, including fresh water provision (Postel and 

Thompson, 2005), food security (Lubchenco et al., 2003) and carbon storage 

(Dudley et al., 2014; Juffe-Bignoli et al., 2014). This growing reputation will 

almost certainly facilitate further expansion of the global PA network in years to 

come. 

Despite their increasing contemporary importance, PAs have been present in 

various ‘unofficial’ forms for millennia; for example, as sacred sites for 

indigenous communities , or as hunting  grounds maintained for the benefit of 

landowners and ruling classes (Chape et al., 2005; Watson et al., 2014). 

However, the modern movement only truly began in the 19th century, with PAs 

established in North America, Europe, Australia and South Africa to preserve 

places of outstanding natural beauty, or those harbouring rare and spectacular 

wildlife (Runte, 1977; Phillips, 2004). Though, initially, PAs were almost 

exclusively situated in landscapes of little economic potential, growing concern 

with the pace of environmental degradation and increased understanding of the 

importance of in-situ conservation resulted in a rapid expansion of PA networks 

during the 1970s (Phillips, 2004). There is now an expectation for them to 

achieve numerous ecological, social and economic objectives (Watson et al., 

2014), in addition to their primary purpose of conserving and enhancing natural 

habitats.      
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The multi-faceted function of PAs has led to both international organisations 

and individual countries recognising their value (Leverington et al., 2010; Juffe-

Bignoli et al., 2014; Watson et al., 2014). Consequently, many nations have 

declared ambitious protection targets (for example, China has pledged to 

increasing levels of PA coverage to 18% of its total area by 2050), are 

integrating PAs into their natural landscapes by establishing regional PA 

networks, and assessing ecological gaps within their existing networks in order 

to improve their performance (Ervin et al., 2008). As there is good evidence that 

properly managed PAs are an effective means of halting habitat clearance and 

degradation (Juffe-Bignoli et al., 2014), such commitments could be an 

essential component of climate change mitigation efforts (Leverington et al., 

2010; Scharlemann et al., 2010; Soares-Filho et al., 2010; Watson et al., 2014). 

This is particularly true of PAs in dense tropical forests, which contain 

approximately 70.3 Gt C in live biomass and soil to a 1m depth, and between 

2000 and 2005 lost half as much carbon as the same area of unprotected forest 

(Scharlemann et al., 2010). PAs are far from perfect: inadequate funding and 

policing can leave habitats within their borders vulnerable to anthropogenic 

disturbances (Leverington et al., 2010; Scharlemann et al., 2010; Watson et al., 

2014), and conflicts with local peoples can arise when management goals do 

not align with community needs (Agrawal and Redford, 2009; Porter-Bolland et 

al., 2012). However, they generally present a fantastic mechanism for 

addressing a variety of problems, including the continuing deforestation and 

degradation of tropical ecosystems.      

1.2.2 Tropical Protected Areas 

In the tropics, PAs have become central in efforts to protect biodiversity and 

crucial ecosystem services from the continuing threats of deforestation and 

degradation, leading to an explosion of new tropical PAs in recent decades 

(Chape et al., 2005; Jenkins and Joppa, 2009; Laurance et al., 2012; Tranquilli 

et al., 2014). Jenkins and Joppa estimated that in 2009, 20.7% of tropical and 

subtropical moist broadleaf forests were protected; indeed, many countries in 

Central and South America have between a quarter and half of their total area 

under some form of protection, and, overall, these regions have 28.2% and 25% 

of their respective terrestrial areas protected to some degree (Deguignet et al., 

2014). Much of the recent increase in South America’s – and in fact, global – 
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PA coverage has been centred in Amazonia (Jenkins and Joppa, 2009), and 

while this is largely a positive occurrence, there is a danger that other tropical 

regions and biomes may have been somewhat neglected. Compared to moist 

forests, only 8.1% of the tropical and subtropical dry broadleaf forest biome is 

under protection (Jenkins and Joppa, 2009), and other regions with substantial 

areas of both moist and dry forest exhibit far lower levels of terrestrial PA 

coverage: in Africa and Asia, this is 14.7% and 12.4% respectively (Deguignet 

et al., 2014). Although the extent of these networks is clearly important, it is the 

ability of individual PAs to prevent habitat clearance and degradation that is 

most valuable in the context of biodiversity conservation and climate change 

mitigation (Juffe-Bignoli et al., 2014) – a PA is of little use if it cannot adequately 

protect lands within its borders from external disturbances.    

Despite the enormous potential of tropical PAs for addressing a variety of social 

and environmental issues (Bruner et al., 2001; Andam et al., 2008; Jenkins and 

Joppa, 2009; Laurance et al., 2012; Carranza et al., 2014; Geldmann et al., 

2013; Bowker et al., 2017), they are far from untouchable, with many facing 

serious pressures which threaten to limit their overall effectiveness. The list is 

extensive: rapid population growth in many tropical regions has greatly 

heightened the risk of human encroachment (Tranquilli et al., 2014), 

environmental stressors – including changing precipitation patterns and alien 

species invasion – are becoming increasingly prevalent (Lovejoy, 2006; Watson 

et al., 2014), and attempts to exploit natural resources located within their 

borders are an ever-present problem (Laurance et al., 2012; Abernathy et al., 

2013). Furthermore, their capacity to address such pressures can be severely 

hampered by shortcomings in resource allocation and general management, a 

situation that can arise from national and local governments disregarding PAs 

as economically-viable investments (Wilkie et al., 2001), or political instability 

and endemic corruption within these institutions limiting investment in the first 

place (Laurance et al., 2006). Therefore, it is vital to continually assess PA 

effectiveness (Juffe-Bignoli et al., 2014), and to understand how different factors 

may influence this. 
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1.2.3 Tropical Protected Areas – debates on effectiveness  

 

 

 
Study 

 
Data Used 

 
Analytical 
Approach 

Protected Area 
Performance – 
Postive (P) or 
Negative (N)? 

Joppa et al. 
(2008) 

Past forest cover 
and present land-
cover 

Inside-outside 
comparisons  

P – forest cover 
almost always higher 
inside PAs  

Alo and 
Pontius Jr. 
(2008) 

Landsat land-
cover maps for 
years 1990 and 
2000 

GIS analysis of 
systematic land-
cover transitions 

N – forests in 
Ghanaian PAs 
systematically 
transition to bare 
ground 

Clark et al. 
(2013) 

Three 
independent land-
cover datasets 

Historical land-
use change 
models  

N – land-use change 
rates inside and 
outside PAs often 
indistinguishable in 
S. Asia 

Andam et al. 
(2008) 

Forest cover from 
aerial 
photography and 
Landsat 

Matching 
methods 

P – protection 
avoided 10% of 
potential 
deforestation in 
Costa Rica  

Gaveau et al. 
(2009) 

Forest cover from 
Landsat 

Matching 
methods 

P – deforestation 
rates lower in 
Sumatran PAs 1990-
2000 

Nelson and 
Chomitz 
(2011) 

Fire data (as 
proxy for 
deforestation) 

Matching 
methods 

P – PAs significantly 
reduce fire incidence 
in tropical forests 

Carranza et 
al. (2014) 

Remote sensing 
deforestation data 

Matching 
methods 

P – all types of 
Cerrado PAs 
experienced lower 
conversion rates 
2002-2009 

Ament and 
Cumming 
(2016) 

Land-cover data 
from Landsat 

Matching 
methods 

P – natural cover 
loss significantly less 
frequent inside S. 
African PAs 2000-
2009 

Bowker et al. 
(2017) 

Landsat forest 
loss data  

Matching 
methods 

P – most African PAs 
experienced 
significantly lower 
forest loss 2000-
2013 

Table 1.2: PA Performance across the Tropics. Various data sources and analytical 

approaches are represented. Positive of negative PA performance is determined by 

their effectiveness in relation to unprotected areas.   
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Considerable evidence exists to suggest that PAs make substantial 

contributions to reducing deforestation and degradation in tropical regions. 

Forest cover within pan-tropical PAs has consistently been found to be higher 

than that of lands directly outside them (Nagrenda, 2008), and significantly so 

for the more accessible forests of West Africa and the Brazilian Atlantic Coast: 

10km from PA boundaries, around 75% of West African and 50% of Atlantic 

Coast forests respectively have been cleared relative to that inside them (Joppa 

et al., 2008). However, such analytical approaches do not account for the 

positive or negative ‘spillover’ effects which may extend into unregulated lands 

adjacent to PAs (Andam et al., 2008; Ament and Cumming, 2016). Positive 

spillover is when the protective influence of a PA extends beyond its official 

borders, while negative spillover occurs when communities or human activities 

are displaced from within PAs to their immediate surroundings, causing habitat 

clearance (Fig 1.1; Andam et al., 2008; Ament and Cumming, 2016). In South 

Africa, such spillovers have been found to extend over 50km from PA 

boundaries (Ament and Cumming, 2016), and may bias assessments of their 

effectiveness. Therefore, to avoid including these effects and to account for the 

non-random distribution of PAs across landscapes, ‘matching’ methods are 

increasingly used to assess effectiveness: here, the PAs being analysed are 

compared to randomly generated control areas (CAs) possessing similar 

contextual characteristics, delivering objective and unbiased results (Gaveau et 

al., 2009; Joppa and Pfaff, 2010; Nelson and Chomitz, 2011; Carranza et al., 

Fig 1.1: Positive and Negative Spillover Effects. The PA surrounded by a green 

buffer (left) shows how protective influence may extend beyond a PA’s borders to 

give higher AGB levels than in the normal unprotected landscape (shaded in grey), 

while that surrounded by an orange buffer (right) shows how detrimental activities 

may be displaced to adjacent areas, resulting in lower AGB densities than 

surroundings. 

Legend 

      Protected area 

      Positive spillover 

      Negative spillover 

      Unprotected land 
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2014; Blackman et al., 2015; Bowker et al., 2017). Such methods regularly 

reach positive conclusions regarding tropical PA performance (Table 1.2), 

supporting the notion that they are an effective means of habitat conservation.   

Alternatively, there are those who question the ability of tropical PAs to prevent 

deforestation and degradation, presenting results to suggest that forest loss 

inside their borders can equal or even exceed that occurring outside (Alo and 

Pontius Jr., 2008; Pfeifer et al., 2012; Clark et al., 2013). In some 

circumstances, forests within PAs may be at greater risk of clearance from 

logging and timber harvesting than areas outside, as these may already have 

been converted to agriculture (Alo and Pontius Jr., 2008), while in other regions, 

habitat conversion rates inside PAs may be indistinguishable from those taking 

place on nearby unprotected lands (Clark et al., 2013). However, such adverse 

findings may originate from the unique methodologies used to assess PA 

performance (Table 1.2), so differing conclusions from investigations which use 

matching methods may be expected. However, an increasingly prevalent and 

recognised hindrance to effectiveness is the phenomenon of protected area 

downgrading, downsizing, and degazettement (PADDD): PAs may legally have 

their protection levels lessened (downgrading), be legally reduced in size 

(downsizing), or even have all legal protection eliminated (degazettement; 

Mascia and Pailler, 2011; Symes et al., 2016). Such events challenge previous 

assumptions of PA permanence, and for many years were severely under-

reported (Mascia and Pailler, 2011; Symes et al., 2016), though now evidence 

for continuing and even increasing occurrences of PADDD in certain parts of 

the world (De Marques and Peres, 2014) present significant threats to the 

efficacy of PAs for preventing deforestation and degradation.  

 

1.2.4 Tropical Protected Areas – factors influencing effectiveness 

While it is important to consider the effectiveness of tropical PAs in relation to 

unprotected lands, individual PA performance is determined by a multitude of 

factors; therefore, comparing PAs against one another is also essential when 

assessing their contributions to habitat conservation. For example, Bowker et al. 

(2017) find that the Democratic Republic of Congo and Tanzania are home to 

some of the most and least effective PAs in tropical Africa, so national-level 
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governance alone cannot explain PA performance in this region. Instead, it will 

be the function of various drivers: perhaps many of the more effective PAs have 

been designated stricter protection under the International Union for 

Conservation of Nature (IUCN) classifications (Bruner et al., 2001; Scharlemann 

et al., 2010; Pfeifer et al., 2012; Nolte et al., 2013; Schafer, 2015), while those 

which have experienced greater internal forest loss are in less remote locations, 

and hence more accessible to anthropogenic disturbances (Joppa and Pfaff, 

2009; Freitas et al., 2010; Nelson and Chomitz, 2011; Nolte et al., 2013; Pfaff et 

al., 2014; Bowker et al., 2017). To complicate matters, these drivers frequently 

interact with one another, making it difficult to assess their individual impacts on 

PA effectiveness. Therefore, the following paragraphs will discuss the relative 

influence of different factors on PA performance (Table 1.3) and allude to the 

potential importance of any interrelationships between them.  

Factor influencing 
PA performance  

Included in 
studies… 

Direction of relationship – 
positive/negative/contested 

 
 

Size 

Bruner et al. (2001), 
Blackman et al., 
(2015), Bowker et al. 
(2017), Struhsaker et 
al. (2005), Joppa et 
al. (2008), Symes et 
al. (2016) 

Contested – size may 
interact with other factors to 
enhance PA performance, 
but may also increase 
likelihood of PADDD 

 
 

Age 

Eagles et al. (2002), 
Dudley et al. (2007), 
Andrade and Rhodes 
(2012), Blackman et 
al., (2015), Bowker et 
al. (2017) 

Contested – improved 
reputation over time may 
increase resourcing and 
community compliance, but 
recent establishment may 
also do this 

 
 
 

Level of Protection 
(according to IUCN 

classification) 
 

Bruner et al. (2001), 
Nagrenda (2008), 
Scharlemann et al. 
(2010), Pfeifer et al. 
(2012), Nolte et al. 
(2013), Schafer 
(2015), Nelson and 
Chomitz (2011), 
Porter-Bolland et al. 
(2012) Blackman et 
al. (2015), Ferraro et 
al. (2013) Pfaff et al. 
(2014)  

Contested – some consider 
stricter protection to offer 
better habitat conservation, 
while others argue that 
mixed-use areas can be 
equally or even more 
effective 

Table 1.3: Factors Influencing Tropical PA Effectiveness. These are the factors 

most regularly cited by studies investigating the drivers of tropical PA effectiveness. 

The general consensus of how each factor is perceived to influence performance is 

also included.  
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Governance Regimes 
and Resourcing 

Blackman et al. 
(2015), Symes et al. 
(2016), De Marques 
and Peres (2014), 
Leverington et al. 
(2010), Laurance et 
al. (2012), Tranquilli 
et al. (2014), 
Jachmann (2008), 
Watson et al. (2014)  

Positive – effective 
governance and greater 
resourcing will lessen habitat 
clearance and degradation 

 
 

Accessibility 

Joppa and Pfaff 
(2009), Nelson and 
Chomitz (2011), 
Freitas et al. (2013), 
Nolte et al. (2013), 
Pfaff et al. (2014), 
Bowker et al. (2017) 

Negative – more accessible 
PAs will be at greater risk of 
habitat clearance and 
degradation 

 

The strictness of protection afforded to PAs in the tropics (and worldwide) is far 

from uniform, with a spectrum of management categories and designations 

applicable which are derived from both IUCN specifications and national 

authorities (Burgess et al., 2005; Dudley, 2008). The IUCN (Dudley, 2008) 

provides a ranking system to translate local descriptions of management 

rigorousness into a universal categorisation, ranging from 1a (the highest level 

of protection) to VI (the lowest); more restrictive governance is often associated 

with categories 1a – IV, while V and VI are less restrictive and permit 

sustainable use of natural resources (Pfaff et al., 2014), though interpretations 

differ between studies (see Nelson and Chomitz (2011) and Blackman et al. 

(2015) for examples). Areas afforded IUCN categorisations are generally 

managed by wildlife conservation authorities, though there are also those 

managed by forest authorities (i.e. Forest Reserves) which were specifically 

established for controlled resource utilisation, and hence cannot ‘officially’ be 

considered PAs (Burgess et al., 2005). Mirroring this variability in levels of 

protection, there is considerable debate as to which designations exert the 

greatest influence on PA effectiveness, particularly regarding habitat 

conservation. Consistent with what might be expected, some studies suggest 

that stricter PAs – such as National Parks (IUCN II) and Strict Nature Reserves 

(IUCN 1a) – offer the greatest conservation benefits (Bruner et al., 2001; 

Scharlemann et al., 2010; Pfeifer et al., 2012; Nolte et al., 2013; Schafer, 2015). 

Conversely, others argue that mixed-use landscapes (IUCN V and VI, and 
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sometimes IV) – such as indigenous lands and community-managed forests – 

can be an equally, or even more, effective means of habitat protection, whilst 

simultaneously offering economic and social benefits to local people (Nelson 

and Chomitz, 2011; Porter-Bolland et al., 2012; Blackman et al., 2015). 

Frequently, however, the situation is more complex: the overall impact on 

deforestation and degradation of different management categories and 

designations is variable between countries and regions (Nelson and Chomitz, 

2011; Ferraro et al., 2013; Pfaff et al., 2014), and at times these may fail 

completely to explain differences in PA effectiveness (Nagrenda, 2008). Such 

arguments suggest that, although a PA’s level of protection is often influenced 

by its categorisation, it is likely also a product of the resourcing it receives from 

local and national authorities, and the commitment of these to wildlife and 

habitat conservation. 

The effect of governance regimes on PA performance is a similarly complicated 

matter, intricately linked to the management and resourcing they receive. A 

logical assumption would be that wealthier national governments and local 

authorities, committed to conservation and climate change targets, are less 

likely to permit potentially destructive activities within their PAs (Symes et al., 

2016), whilst simultaneously allocating them sufficient funding for monitoring 

and law enforcement purposes (Blackman et al., 2015). However, a country’s 

wealth is rarely an adequate indicator of PA performance: PAs in less 

developed tropical nations can sometimes be particularly effective in efforts to 

reduce deforestation and degradation (Nagrenda, 2008), whereas more affluent 

countries which have made impressive advances in reducing forest clearance, 

such as Brazil (Nepstad et al., 2009; Arima et al., 2014), can still be hindered by 

corrupt authorities or allow PADDD to satisfy certain economic and 

infrastructural demands (De Marques and Peres, 2014). Therefore, it could be 

argued that, when governance is concerned, a general commitment to 

conservation and adequate resource provision are the most important 

determinants of PA effectiveness (Bruner et al., 2001; Watson et al., 2014). 

Indeed, resourcing can directly link to various parameters which may influence 

PA performance, including boundary demarcation, levels of law enforcement 

and the provision of park infrastructure (Leverington et al., 2010). For example, 

there is good evidence that increases in ranger patrols and on-the-ground 
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protection efforts can greatly reduce threats such as logging, fires and hunting 

(Laurance et al., 2012; Tranquilli et al., 2014) within PAs. However, there are 

often further intricacies associated with these parameters: in this case, the 

success of such law enforcement can be affected by various qualitative factors, 

including the amount of training provided to park rangers and their individual 

motivation (Jachmann, 2008). Despite the complexities involved (Jachmann, 

2008) and suggestions that even under-resourced PAs can sometimes provide 

conservation benefits (Blackman et al., 2015), it seems fair to conclude that 

appropriate funding and resource allocation are positively correlated with PA 

effectiveness (Leverington et al., 2010; Laurance et al., 2012; Tranquilli et al., 

2014; Watson et al., 2014; Blackman et al., 2015), and thus their potential to 

reduce deforestation and degradation.   

Conversely, size is a far more straightforward characteristic of PAs to 

comprehend, but this has not prevented debate as to how it might affect their 

performance. Though some suggest that little relationship exists between PA 

size and effectiveness (Bruner et al., 2001), more recent investigations argue 

that larger PAs experience significantly lower levels of relative forest loss within 

their borders – for example, in Bowker et al. (2017)’s study of PAs in humid 

African forests, forest loss inside PA boundaries significantly decreased 

(p<0.05) as size increased. Indeed, larger PAs are bordered by large areas of 

land which, though not officially protected, can effectively buffer against 

encroachment of adverse activities into the PAs themselves (Blackman et al., 

2015). However, this is likely an overly-simplified explanation; the common 

perception that size is linked to success means that larger PAs will often receive 

greater attention and funding from authorities and non-governmental 

organisations (NGOs), while it would also be naïve to assume that it does not 

interact with other factors determining effectiveness (Struhsaker et al., 2005; 

Joppa et al., 2008; Blackman et al., 2015). For instance, PA performance in the 

Democratic Republic of Congo improves with size, though their situation in 

generally inaccessible areas cannot be overlooked as a further potential 

influence (Bowker et al., 2017). Additionally, and to complicate matters, 

increases in size may subsequently increase the chances of PADDD, owing to 

the higher opportunity costs of larger PAs associated with resource extraction 

(Symes et al., 2016). Therefore, despite being far less nuanced, the ultimate 
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effect of size on tropical PA performance is no less difficult to ascertain, though 

variations between countries (Bowker et al., 2017) and interactions with other 

recognised factors (Struhsaker et al., 2005; Joppa et al., 2008; Blackman et al., 

2015) do appear evident.  

Interplay with additional factors is essential when considering the influence of 

PA age on effectiveness, though again, views are polarised as to the exact 

nature of this relationship. Regardless of its direction however, it is generally 

supported that age is strongly related to the resourcing and management a PA 

receives (Dudley et al., 2007; Andrade and Rhodes, 2012; Blackman et al., 

2015; Bowker et al., 2017). On the one hand, there is the assumption that 

management will improve with age (Dudley et al., 2007), owing to enhanced 

reputation resulting in increased regional, national and global protection 

interests (Eagles et al., 2002); indeed, increasing age has been argued to 

positively correlate with local community compliance in management efforts 

(Andrade and Rhodes, 2012). Alternatively, there is the argument that a 

recently-established PA, especially if situated in a stable country dedicated to 

conservation, is more likely to receive adequate resources to facilitate good 

performance (Blackman et al., 2015). Evidence to support this can be drawn 

from several regions across the tropics, including Mexico (Blackman et al., 

2015) and the humid forests of central Africa, where PAs gazetted in a post-

colonial era are deemed to be in a far stronger position to receive support from 

local communities (Bowker et al., 2017). The influence of age on PA 

performance may therefore be heavily dependent on location, and particularly 

on its relationship with management and resource provision.   

A PA’s location can have important implications for its accessibility, widely 

regarded as a crucial determinant of effectiveness (Joppa and Pfaff, 2009; 

Nelson and Chomitz, 2011; Freitas et al., 2013; Nolte et al., 2013; Pfaff et al., 

2014; Bowker et al., 2017). This can often be considered as a measure of PA 

‘remoteness’, and thus how easily it can be reached by actors intending to 

undertake detrimental activities, such as logging, mining and hunting (Joppa 

and Pfaff, 2009). However, because there is no universally accepted definition 

of ‘accessibility’, different studies will incorporate various combinations of 

environmental variables which are perceived to influence it (Joppa and Pfaff, 

2009; Nelson and Chomitz, 2011; Freitas et al., 2013; Bowker et al., 2017), 



16 
 

thereby advocating a degree of caution when comparing the findings of such 

investigations. For example, Joppa and Pfaff (2009)’s meta-analysis focuses on 

elevation, slope, distance to urban areas and road networks, agricultural 

suitability and ecoregion; Nelson and Chomitz (2011) also broadly measure 

accessibility in relation to these variables, though agricultural suitability is 

considered purely as a function of precipitation estimates, and travel time to 

major cities and country of origin are included as additional variables. Despite 

this variation, it is consistently concluded that less accessible PAs are less likely 

to experience deforestation and degradation (Joppa and Pfaff, 2009; Nelson 

and Chomitz, 2011; Freitas et al., 2013; Bowker et al., 2017), and that PA 

effectiveness is often heavily reliant on location. Therefore, although high-

performing PAs may be subject to strict management regimes (Nolte et al., 

2013) and receive substantial resources (Watson et al., 2014), their situation in 

topographically inaccessible areas, with low surrounding population densities 

and low agricultural suitability (Joppa and Pfaff, 2009), may ultimately explain 

their effectiveness.  

 

1.2.5 Tropical Protected Areas – spatial bias in current knowledge  

When the issues of tropical deforestation and degradation are considered, 

research frequently focuses on the humid evergreen forests of Amazonia, 

Central Africa and Southeast Asia (Laurance, 1999; Fearnside, 2005; Malhi et 

al., 2008; Achard et al., 2014), owing to their extremely high levels of 

biodiversity and significance regarding valuable ecosystem services, particularly 

the storage and sequestration of atmospheric CO2 (Malhi and Grace, 2000; Pan 

et al., 2011; Baccini et al., 2012; Houghton et al., 2015; Avitabile et al., 2016; 

Grassi et al., 2017; Houghton et al., 2018). This focus is reflected in studies of 

tropical PAs, with the majority of literature concerned with PA performance 

across the pan-tropics (e.g. Gaveau et al., 2009; De Marques and Peres, 2014; 

Bowker et al., 2017). However, it cannot be forgotten that the tropics comprise a 

variety of biomes and ecosystems, ranging from evergreen forest to hot 

shrubland, from montane forest to savannah (Prentice et al., 1992), and that 

these can also be severely threatened by adverse anthropogenic activities 

(O’Higgins, 2007).  
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Tropical drylands, including dry forest and savannah ecosystems, are often 

underappreciated for the rich array of flora and fauna they harbour, and vital 

ecosystem services they provide. Covering approximately 41% of Earth’s 

surface (Sorensen, 2009), they are home to over a quarter of global biodiversity 

hotspots (Myers et al., 2000), supply important goods and services to support 

local livelihoods (Maestre et al., 2012) and act as a low density but significant 

carbon sink (Dewees et al., 2010; Bastin et al., 2017; Brandt et al., 2018). 

Recent assessments even suggest that forest cover across drylands is 

considerably higher than previously thought, increasing estimates of global 

forest cover by at least 9%, with important implications for global carbon storage 

(Bastin et al., 2017). However, these ecosystems face severe pressure from 

both climatic variability and anthropogenic-induced LULCC (Rudel, 2013); 

carbon losses from drying trends in African drylands between 2010 and 2016 

exceeded those from humid forests, being 0.05 and 0.02 PgC yr-1 respectively 

(Brandt et al., 2018). Despite this, these ecosystems regularly receive far less 

protection than their humid forest counterparts. For example, the Brazilian 

Cerrado contains both considerably fewer (Barr et al., 2011) and less effective 

PAs than Amazonia, even though it harbours around 30% of the country’s 

biodiversity and is experiencing much higher rates of deforestation (Francoso et 

al., 2015). Consequently, a real impetus exists for expanding PA networks in 

drylands around the world, as well as furthering our current understanding of 

their overall performance (Nacoulma et al., 2011; Carranza et al., 2014; 

Francoso et al., 2015; Paiva et al., 2015; Ament and Cumming, 2016) and the 

key factors influencing this effectiveness.    

 

1.3 Monitoring Tropical Protected Areas 

By monitoring changes in AGB and land-cover within PAs over a period of time, 

their performance in terms of habitat conservation and carbon storage can be 

studied relatively effectively (Gross et al., 2009; Nagrenda et al., 2013; 

Schmidtlein et al., 2014). A variety of approaches are available to do this, and 

though field-based methods remain a viable option (Chave et al., 2005; Chave 

et al., 2014), remote sensing applications are becoming increasingly popular, 

with rapid technological advancements rendering them more accurate and 

accessible than ever before (Lu, 2006; Gibbs et al., 2007; Le Toan et al., 2011; 
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Saatchi et al., 2011; Baccini et al., 2012; Nagrenda et al., 2013; Schmidtlein et 

al., 2014; Mitchell et al., 2017). A broad range of these exist, with each having 

associated benefits and disadvantages for estimating AGB and land-cover 

change (Gibbs et al., 2007), and thus PA effectiveness (Nagrenda et al., 2013; 

Schmidtlein et al., 2014). It is therefore important to establish the relative utility 

of such approaches for monitoring tropical PA performance.  

 

1.3.1 Field-based Methods 

One approach to estimating tropical ecosystem AGB is to combine long-term 

forest inventory data with allometric equations (Brown, 1997; Chave et al., 

2005; Chave et al., 2014). These equations are regression models which 

determine AGB per tree from a combination of tree dimensions (Brown, 1997), 

including parameters such as diameter-at-breast-height (DBH), wood density 

and tree height (Chave et al., 2005; Chave et al., 2014). These are then applied 

to forest inventory data collected from periodic measurements of permanent 

sample plots, enabling changes in AGB and carbon density for different 

ecosystems to be estimated from the unique regression equations associated 

with them (Brown, 1997; FAO, 2011; Chave et al., 2005; Chave et al., 2014). 

More general models can be applied to a wider variety of ecosystems, but will 

produce less accurate results (Mitchard et al., 2009), while locally-based 

models will produce more accurate estimates, but only of specific areas (Ryan 

et al., 2012).  

Though they remain important in assessments of tropical AGB and carbon 

density, various limitations with such field-based methods must be 

acknowledged. A constant issue when developing allometric equations is the 

need to destructively harvest trees to obtain the necessary data; the enormous 

variety of tree species and sizes in tropical ecosystems means that many trees 

will require harvesting, an expensive and time-consuming process (Chave et al. 

2005, Chave et al., 2014). However, such samples are often far too small and 

contain a disproportionally small number of large-diameter trees, rendering 

them somewhat unrepresentative of the forest at large (Chave et al., 2005) and 

meaning that two models constructed for the same area of forest can yield very 

different AGB estimates (Brown, 1997; Houghton et al., 2001). Additionally, 
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shortcomings may exist with the forest inventory data applied to these allometric 

equations. Tree height data are important for reducing bias in AGB estimates 

(Chave et al., 2014); for example, incorporating height measurements from 327 

tropical forest plots into models reduces estimates of tropical carbon storage by 

13% (Feldpausch et al., 2012). However, difficulties in measuring this 

accurately – particularly for closed-canopy forests – can lead to it being 

neglected in forest inventories (Hunter et al., 2013; Larjavaara and Muller-

Landau, 2013). Indeed, the laboriousness of compiling these inventories means 

that inaccuracies stemming from human error and antiquated data are also 

common (Grainger, 2008), with the limitation of collecting data from relatively 

small, established, accessible plots preventing truly accurate estimation of AGB 

across large areas. The presence of such errors therefore advocates caution 

when employing these approaches to estimate ecosystem AGB change over 

time, and thus in monitoring PA effectiveness.  

 

1.3.2 Remote Sensing Methods 

The abundance of remote sensing data available from both aircraft and 

satellites presents an extensive and powerful means of monitoring AGB and 

land-cover change (Lu, 2006; DeFries et al., 2007; Gibbs et al. 2007; Saatchi et 

al., 2011; Baccini et al., 2012; Avitabile et al., 2016), and thus the efficacy of 

tropical PAs for preventing deforestation and degradation within their borders 

(Nagrenda et al., 2013; Schmidtlein et al., 2014). Of all available remote 

sensing applications, those offering the greatest potential for monitoring PA 

effectiveness are datasets derived from optical sensors, synthetic aperture 

radar (SAR) sensors, and light detection and ranging (LIDAR) sensors (Gibbs et 

al., 2007; Nagrenda et al., 2013; Mitchell et al., 2017). Repeated observations 

over time allow for estimations of changes in forest structure, AGB and carbon 

stocks, due to both deforestation and the subtler processes of degradation and 

regrowth (Mitchard et al., 2017).  

Optical remote sensing data formed the principal means of monitoring habitat 

changes over larger scales for many decades; this was originally limited to 

coarse imagery from aerial photography and primitive satellites, but now such 

data are readily available from a variety of sources and at increasingly fine 
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resolutions (Lu, 2006; Gibbs et al., 2007, Nagrenda et al., 2013; Mitchell et al., 

2017). Although very high resolution aerial photography and 3D imagery to <5m 

can provide detailed information on forest structure and fine-scale degradation 

(Nagrenda et al., 2013), this is only effective over relatively small areas (up to 

around 10,000 ha; Gibbs et al., 2007), is expensive, and allometric model 

development can be complicated by object shadowing (Lu, 2006; Nagrenda et 

al., 2013). On the other hand, satellite data can provide globally consistent 

records of land-cover change spanning over thirty years, and though initially 

coarse, are becoming progressively more sophisticated and available to 

researchers and policy-makers (Gibbs et al., 2007; Nagrenda et al., 2013). 

Lower resolution data (>100m) from sensors such as the Moderate Resolution 

Imaging Spectroradiometer (MODIS) can be useful for long-term records and 

real-time monitoring of deforestation in tropical regions (Nagrenda et al., 2013), 

while that at medium resolutions (10-100m), from sensors such as Landsat, 

offers an archive of land-use history and AGB change from more discreet 

processes at both local and regional scales (Lu, 2006; Nagrenda et al., 2013; 

Mitchell et al., 2017). While medium resolution satellite data can effectively 

document land-cover changes (e.g. Hansen et al. (2013) analysed Landsat data 

to produce maps of 21st century global forest cover change), AGB stock 

estimates are produced by correlating ground-based measurements with 

spectral indices derived from visible and infrared wavelengths (Gibbs et al., 

2007), a method which yields large uncertainties (Thenkabail et al., 2004). 

Therefore, optical remote sensing data may be considered most useful for 

tracking changes in land-cover and habitat extent within PAs, with other 

approaches likely more able to provide accurate estimates of AGB and C stock 

change over time.  

Active remote sensors, including LIDAR and SAR, can offer complementary 

information to their optical counterparts in studies of forest and AGB change 

(Strittholt and Steininger, 2007). They are able to provide detailed information 

on ecosystem structure and biomass (Koch, 2010) in all weather conditions, a 

significant advantage over optical sensors, where data collection can be 

hindered by high cloud cover, smoke and haze, and low light levels (Lu, 2006; 

Mitchard et al., 2011; Nagrenda et al., 2013). LIDAR systems emit laser pulses 

which interact with forest canopies and ground surfaces, returning a temporally-
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distorted energy profile which can be used to determine the height and vertical 

structure of these ecosystems (Patenaude et al., 2004; Gibbs et al., 2007; 

Mallet and Bretar, 2009). Subsequently, AGB levels and carbon stocks may be 

estimated by applying allometric height-carbon relationship models to these 

data (Hese et al., 2005). Indeed, numerous studies have advocated the utility of 

LIDAR for investigating AGB and carbon stock changes in tropical ecosystems, 

particularly when employed in conjunction with other approaches (Saatchi et al., 

2011; Baccini et al., 2012; Harris et al., 2012). For example, Saatchi et al. 

(2011) combine ground-based LIDAR and MODIS data to estimate carbon 

storage across 25 billion hectares of tropical forest. Although penetrative LIDAR 

sensors demonstrate much promise for obtaining data on tropical AGB change, 

certain limitations remain: if airborne LIDAR sensors are employed, significant 

uncertainties are associated with upscaling measurements for AGB and carbon 

stock estimation (Mitchell et al., 2017), while the requirement for supplementary 

field data will always be a hindrance (Asner et al., 2012a). However, the latter 

could be addressed by use of a ‘universal’ LIDAR model for tropical forest 

ecosystems, an approach which would enable fast and inexpensive calibration 

Fig. 1.2: RCS Signal Saturation in High Biomass Environments. The black arrows 

represent L-band radar waves transmitted from a sensor aboard a satellite: in the 

lower AGB environment (right), waves (in blue) pass through the vegetation canopy 

and return to the sensor, whereas in the higher AGB environment (left), waves (in 

red) cannot penetrate the canopy, and so do not return to the sensor.     

 



22 
 

of LIDAR data (Asner et al., 2012b). This would greatly increase its applicability 

for estimating AGB and carbon stock changes over large scales, and thus its 

potential for monitoring PA effectiveness. 

In operational terms, SAR sensors are very similar to LIDAR. However, rather 

than lasers, radar utilises the microwave region of the electromagnetic 

spectrum, transmitting pulses of polarised electromagnetic waves which interact 

with ecosystem components before returning to the sensor (Balzter, 2001). The 

proportion of energy returning to the sensor – the normalised radar cross 

section (RCS), or ‘backscatter’ – corresponds to the AGB level of a specific 

area, with higher AGB levels resulting in more energy returning and thus a 

higher RCS value (Le Toan et al., 1992; Mitchard et al., 2009; Ryan et al., 2012. 

However, the AGB density of an area will dictate the effectiveness of different 

SAR sensors for estimating vegetation biomass. Waves are transmitted 

between frequencies of 1 – 90 GHz and grouped into different ‘bands’ according 

to the equipment required to generate and detect them (Woodhouse, 2006): 

shorter wavelengths – X-band and C-band – interact with leaves, twigs and 

small branches (Rauste et al., 1994; Le Toan et al., 2001; Englhart et al., 2011), 

so there is often little correlation between these RCS values and total area AGB 

(Le Toan et al., 1992). Conversely, longer SAR wavelengths – L-band and P-

band – are able to penetrate through forest canopies and interact with major 

parameters, such as large branches and stems, rendering them far more 

effective for AGB estimations (Mitchard et al., 2009; Ryan et al., 2012). In 

addition to these different bands, SAR data may also be collected at different 

polarisations. Horizontal-send, horizontal receive (HH) and horizontal-send, 

vertical receive (HV) are most commonly employed for studies of AGB change, 

and though both demonstrate a relationship with AGB, cross-polarised HV data 

responds more strongly to complex forest parameters which change the 

polarisation of incoming electromagnetic radiation, while parameters which do 

not change this polarisation, such as soil moisture, will not be detected (Ranson 

et al., 1994; Mitchard et al., 2011). Longer wavelength, cross-polarised SAR 

data, therefore elicits considerable potential for monitoring AGB change within 

PAs.     

L-band SAR has been employed on numerous occasions to estimate AGB and 

AGB change across tropical ecosystems, both singularly (Mitchard et al., 2009; 
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Lucas et al., 2010; Mitchard et al., 2011; Ryan et al., 2012; Mermoz et al., 2014) 

and in conjunction  with other remote sensing methods (Mitchard et al., 2012; 

Collins et al., 2015). When used alone, strong relationships have been reported 

between L-band RCS values and field-based AGB values for tropical dry forest 

and savannah ecosystems; for example, Mitchard et al. (2011) observe a 

relationship between L-band HV and AGB of R2 = 0.86 in a Cameroonian forest-

savannah region. This suggests that AGB changes can be confidently inferred 

from changes in RCS values, though potential disruptions to this relationship in 

mountainous environments due to topographic interference (Ghasemi et al., 

2011; Mitchard et al., 2012) must be considered. Furthermore, although a 

limitation of many remote sensing approaches is their inability to detect subtle 

changes in tropical ecosystem vegetation (Mitchell et al., 2017), L-band SAR 

can successfully identify small-scale degradation and regrowth across large 

areas (Mitchard et al., 2011; Ryan et al., 2012). However, it is arguably 

ineffective for estimating AGB changes in high biomass, humid forests, as 

competition for scattering and absorption of the microwave radiation as it 

passes through the dense canopy causes saturation of the RCS signal 

(Mitchard et al., 2009; Fig. 1.2). The approximate threshold at which this occurs 

varies between studies (Lucas et al., 2000; Santos et al., 2002; Mitchard et al., 

2009; Carreiras et al., 2017), though it is typically around 100 Mg ha-1, above 

which greatly reduced sensitivity and negative correlations between RCS and 

forest biomass have been reported (Mermoz et al., 2015). Though this limits the 

independent use of L-band SAR to lower biomass tropical ecosystems, such as 

dry forests and savannahs, a fusion approach combining L-band radar with 

LIDAR data may overcome this issue, as the latter does not suffer from signal 

saturation (Mitchard et al., 2012; Collins et al., 2015). Therefore, L-band SAR 

data alone presents an effective mechanism for monitoring AGB change within 

PAs in dry forest and savannah ecosystems, while integration with LIDAR is 

necessary to investigate those in dense, humid forests.   

The majority of L-band SAR data available for tropical ecosystems originates 

from the Japanese Aerospace Exploration Agency (JAXA), collected by SAR 

sensors aboard the Advanced Land Observing Satellites (ALOS) 1 and 2 

(JAXA, 2018). These data have been invaluable to many studies investigating 

AGB change in tropical dryland ecosystems (Mitchard et al., 2009; Mitchard et 
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al., 2011; Ryan et al., 2012), but a major constraint has been the need to collect 

supplementary field data before the first, and after the last, radar scenes have 

been taken (Hill et al., in prep). After collecting data on vegetation 

characteristics, allometric models are developed to allow prediction of AGB from 

L-band RCS values (Mitchard et al., 2011; Hill et al., in prep). Although a strong 

relationship between field-derived AGB and RCS values is often observed 

(Mitchard et al., 2011), these regression models are unique to particular study 

areas, so applying them to other regions of potential interest is problematic. As 

a result, this has generally limited AGB and AGB change estimates to small, 

pre-meditated investigations, preventing changes in more remote and large-

scale areas from being documented (Hill et al., in prep). In order that the L-band 

SAR data from the ALOS missions may be utilised in AGB change studies to its 

full potential, alternative approaches will be needed to develop RCS-AGB 

relationships that are applicable over wider areas.  

In order that L-band SAR data may be more effectively employed to monitor 

AGB changes in tropical PAs, methods that circumvent the requirement for 

Fig. 1.3: AGB Map of Nigeria. This has been derived from Avitabile et al. (2016)’s 

pan-tropical biomass map, with the locations of the PAs used to obtain this study’s 

RCS-AGB relationship outlined in blue and yellow. Those in blue would be included 

in the analyses for research questions 2 and 3, while those in yellow would not. 
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supplementary field data are needed. One means of achieving this is to obtain 

‘universal’ RCS-AGB relationships from remote sensing data of tropical AGB 

(e.g. Avitabile et al. (2016); Fig. 1.3), which can then be applied to a large 

number of areas within a particular region. A recently-developed, iterative 

approach called ‘Biomass Matching’ may provide a solution to the current 

problem (Hill et al., in prep). With this, predetermined regression parameters 

(i.e. a ‘universal’ RCS-AGB relationship) can be used to estimate AGB change 

within PAs over time from relevant L-band SAR data. This could render studies 

of PAs in dry forest and savannah regions considerably more time- and cost-

effective, allowing assessments of PA performance to be undertaken far more 

easily. 

 

1.4 Nigeria – deforestation, degradation and protected areas  

Forest resources are essential to many developing nations in the tropics, 

though it is often these countries where forests and natural ecosystems face the 

greatest pressures. Nigeria is no exception to this rule: forest commodities 

account for roughly 2.5% of its GDP, directly provide employment for over 2 

million people (UNDP, 2016), and are the primary building material and fuel 

resource for much of its population (Oriola, 2009). Simultaneously, the country 

has one of the highest rates of forest loss in the world, with its total forest cover 

decreasing from approximately 17,324,000 ha in 1990 to 9,041,000 ha in 2010, 

a loss of 52.2% (FAO, 2010). This decline has been driven by a multitude of 

factors, including agricultural expansion, logging, mining and fuelwood 

extraction; as the country’s population continues to rapidly increase, pressures 

from these activities are unlikely to lessen (Ogunwusi, 2013). Such alarming 

rates of forest clearance and degradation present serious issues for biodiversity 

and ecosystem services. Most crucially, this may be responsible for up to 87% 

of the country’s CO2 emissions (Balarabe, 2011; UNDP, 2016). Consequently, 

for Nigeria to meet its NDCs in the context of the Paris Climate Agreement 

(Grassi et al., 2017), significant reductions in deforestation and habitat 

degradation within its borders will be required.  

Although clearance and degradation of the mangroves and dense, humid 

forests of southern Nigeria clearly represent a serious problem, the importance 
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of the dry forests and savannah vegetation which cover three quarters of the 

country’s area cannot be underestimated (Oriola, 2009). These areas are a low 

density but significant carbon store (Dewees et al., 2010; Bastin et al., 2017; 

Brandt et al., 2018), averaging 30 Mg C ha-1 in AGB (Alamu and Agbeja, 2011), 

and are home to many endemic tree species of great social and cultural 

significance (CITES, 2015). As these ecosystems come under increasing 

pressure from agricultural expansion, and unsustainable logging and fuelwood 

extraction (Blackett and Gardette, 2008; Wessels et al., 2013), PAs will be 

integral to conserving important habitats and in efforts to stem the rampant 

deforestation and degradation afflicting much of the country. However, thus far, 

Nigerian PAs have been the subject of very little research, and those within the 

country’s extensive dryland zone have received minimal attention from the 

academic community. Furthering our understanding of how effective such PAs 

are for safeguarding habitats, and the factors which influence their performance, 

could be extremely important in the context of conservation and for Nigeria to 

honour its commitments to the Paris Climate Agreement.   

 

1.5 Project Rationale  

PAs across the tropics have enormous potential to conserve and enhance floral 

and faunal diversity and valuable ecosystem services, contributing to 

international biodiversity and climate change targets (Juffe-Bignoli et al., 2014). 

Until now, research into their performance has primarily focused on those 

situated in dense, humid forests (Struhsaker et al., 2005; Jachmann, 2008; 

Gaveau et al., 2009; Scharlemann et al., 2010; Nelson and Chomitz, 2011; 

Laurance et al., 2012; Pfeifer et al., 2012; Soares-Filho et al., 2014; Bowker et 

al., 2017) often at the expense of those in drylands, despite the importance of 

these ecosystem in terms of biodiversity and global carbon cycling (Carranza et 

al., 2014; Francoso et al., 2015; Paiva et al., 2015; Bastin et al., 2017; Brandt et 

al., 2018). L-band SAR presents an effective means of estimating AGB and 

AGB change across dry forests and savannahs (Mitchard et al., 2009; Lucas et 

al., 2010; Mitchard et al., 2011; Ryan et al., 2012; Mermoz et al., 2014), and 

may thus be particularly appropriate for monitoring AGB change within tropical 

dryland PAs, furthering our understanding of their performance in relation to 

similar unprotected lands, and determining the most important factors 
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influencing their ability to prevent deforestation and degradation. Though the 

need for supplementary field data has previously restricted habitat monitoring 

with L-band radar to pre-meditated and relatively small-scale studies (e.g. Ryan 

et al., 2012), novel approaches may be able to circumvent this limitation, 

allowing assessments of AGB change over much larger areas, in far less time 

and at a fraction of the cost (Hill et al., in prep). If this method is robust, L-band 

SAR could be employed to monitor PA performance across tropical drylands, 

providing vital information for policy-makers at regional, national and 

international levels.      

 

1.6 Aims and Research Questions  

1.6.1 Aims 

The principal aims of this investigation are therefore as follows: 

 To test the efficacy of ‘Biomass Matching’ for estimating AGB change 

within tropical dryland PAs over a certain period of time, whereby 

changes in AGB will act as a proxy for PA effectiveness.   

 To quantify AGB change in PAs, evaluating their effectiveness and the 

factors influencing their performance.  

 

1.6.2 Research Questions  

The aforementioned aims will be addressed through the following research 

questions:  

1) How effective is Biomass Matching for detecting and estimating 

aboveground biomass change in dry forests and savannahs? 

This will determine whether Biomass Matching can detect both large-scale and 

subtle AGB changes in these ecosystems, and how accurate change estimates 

are when compared to approaches using supplementary field data.  

2) How effective are protected areas for aboveground biomass 

conservation (compared to non-protected areas)? 
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Here, AGB change in PAs will be quantified and compared to that in similar 

unprotected areas, testing whether PAs are an effective means of habitat 

conservation.  

3) What are the main factors influencing protected area effectiveness? 

This will assess whether PA performance can be explained by a number of 

quantifiable factors, determining how important these are individually, as well as 

the significance of interrelations between them. 

Additionally, the utility of Biomass Matching will be further scrutinised by a case 

study, which will use the approach to assess the performance of a particularly 

reputable PA in Nigeria:   

4) Habitat disturbance in Taraba State, Nigeria – can Biomass Matching 

verify woodland clearance, and to what extent can protected areas 

offer a solution to the problem?  
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Methodology  

2.1 Methods Summary 

This study focuses on 21 PAs situated in the dry forests and savannahs of 

Nigeria, ecosystems which comprise over 75% of the country’s land area 

(Omofonmwan and Osa-Edoh, 2008; Oriola, 2009). PAs ranged in size from 

11,733 ha to 608,410 ha, and were downloaded from the World Database on 

Protected Areas (WDPA). To estimate AGB change 2007-2017 in these PAs, a 

‘universal’ RCS-AGB relationship – developed by regressing RCS data against 

AGB data (derived from Avitabile et al. (2016)) for each PA – was applied to L-

band SAR data collected by JAXA’s ALOS 1 and 2 satellites; this was 

subsequently subjected to the novel Biomass Matching approach (Hill et al., in 

prep). Steps were taken to assess the utility of the method for both detecting 

and estimating AGB change. PA effectiveness was considered as a function of 

AGB change (Mg ha-1) between 2007 and 2017: a higher AGB per ha in 2017 

than 2007 indicated an ‘effective’ PA, and vice versa. Overall PA effectiveness 

was determined by comparison to 12 similar, unprotected control areas (CAs), 

which were created in ArcMap 10.5.1 and subjected to the same process to 

estimate their AGB change 2007-2017. To determine the influence of different 

factors (size; age; level of protection; accessibility) on PA effectiveness, 

appropriate data were collected, and relevant statistical analyses were 

undertaken.    

2.2 Study Area   

 

 

 

 

 

 

 

Fig. 2.1: Vegetation Zones of Nigeria. Significant watercourses and water bodies are 

also displayed (Adapted from: Papaioannou, 2016). 



30 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Le
ge

n
d

 

   
   

   
C

o
u

n
tr

y 
b

o
rd

er
   

   
   

   
 P

ro
te

ct
ed

 a
re

a 

   
   

   
  C

o
n

tr
o

l a
re

a 
   

   
   

   

a 
b

 

F
ig

 2
.2

: 
a

) 
A

G
B

 (
M

g
 h

a
-1
) 

A
c
ro

s
s
 N

ig
e

ri
a
. 
T

h
is

 w
a

s
 d

e
ri
v
e

d
 f
ro

m
 t

h
e
 p

a
n

-t
ro

p
ic

a
l 
A

G
B

 m
a

p
 o

f 
A

v
it
a

b
ile

 e
t 

a
l.
 (

2
0
1

6
).

 T
h

e
 

h
ig

h
e
s
t 
d

e
n

s
it
ie

s
 a

re
 f

o
u
n

d
 i
n

 t
h

e
 m

a
n
g

ro
v
e

s
 a

n
d
 d

e
n

s
e
 f
o

re
s
ts

 o
f 

th
e
 f

a
r 

s
o

u
th

, 
w

it
h

 l
e
v
e

ls
 b

e
c
o

m
in

g
 p

ro
g

re
s
s
iv

e
ly

 l
o

w
e

r 
in

to
 

th
e
 n

o
rt

h
e
rn

 p
a
rt

s
 o

f 
th

e
 c

o
u
n

tr
y
. 

b
) 

P
A

 L
o
c
a

ti
o
n

s
. 
T

h
e
 l
o

c
a
ti
o

n
s
 o

f 
th

e
 o

ri
g

in
a
l 
3

0
 P

A
s
, 

a
n
d
 t

h
e
 1

2
 C

A
s
, 
to

 b
e

 i
n
c
lu

d
e
d

 i
n
 t
h
e

 

a
n
a

ly
s
is

. 
C

A
s
 w

e
re

 c
re

a
te

d
 t

o
 a

v
o

id
 o

v
e

rl
a
p

 w
it
h

 a
n

y
 P

A
s
 l
is

te
d
 i
n

 t
h

e
 W

D
P

A
, 

th
e
 m

a
jo

ri
ty

 o
f 

w
h

ic
h

 a
re

 n
o
t 
d

is
p

la
y
e

d
. 

 



31 
 

Nigeria is situated in West Africa at the inner corner of the Gulf of Guinea, 

encompassing latitudes 3⁰15’ - 13⁰30‘N, and longitudes 2⁰59’ - 15⁰00’E 

(Federal Republic of Nigeria, 2017). Home to over 190 million people, it is 

already the most populous country on the continent, and with a growth rate of 

2.7% per annum, its population is predicted to eclipse that of the United States 

by 2050 (UN, 2017a,; 2017b). Rapid urbanisation in recent decades 

(Omofonmwan and Osa-Edoh, 2008) has led to 48% of the country’s population 

living in towns and cities (UN, 2017a). However, a weak economy and poor 

energy infrastructure means that most urban dwellers, as well as those in rural 

areas, still rely on fuelwood for much of their energy (Gutti et al., 2012). Indeed, 

in some parts of Nigeria, over 95% of households depend on biomass as their 

primary energy source (UNDP, 2016); this has placed considerable pressure on 

the country’s forest resources. Supplement this with agricultural expansion, 

mining and petroleum exploration, and unsustainable logging (Blackett and 

Gardette, 2008; Gutti et al., 2012; Ogunwusi, 2013; Wessels et al., 2013), and it 

is clear that forests and woodlands across Nigeria are becomingly increasingly 

vulnerable to clearance and degradation, including those within PAs.  

Climate strongly influences how different vegetation types are distributed across 

Nigeria, which subsequently determines the average AGB density of natural 

vegetation in different regions. The country covers almost all climatic belts of 

West Africa (Abiodun et al., 2013), with a strong north-south rainfall gradient 

(Federal Republic of Nigeria, 2017): over 2000mm of rain falls on the humid, 

southern reaches each year, while the semi-arid north can receive less than 

600mm annually (Abiodun et al., 2013). Consequently, conditions in the south 

are ideal for mangroves along the coast and dense, humid forests inland 

(Abiodun et al., 2013; Federal Republic of Nigeria, 2017). Guinea and Sudan 

savannah regions include the dry forests, woodlands and savannah comprising 

the country’s central belt, before giving way to marginal Sahel savannah in the 

extreme north (Fig 2.1; Abiodun et al., 2013; Federal Republic of Nigeria, 2017). 

Mangroves and dense tropical forests are by far the highest AGB density 

ecosystems: Nigeria has the most extensive mangrove forests in Africa 

(Ndukwu and Edwin-Nwosu, 2007) which can hold up to 870 Mg ha-1 of live 

biomass (Donato et al., 2011), while intact humid African forests have mean 

AGB densities of 360 Mg ha-1 (Avitabile et al., 2016). Although dry forest and 
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savannah regions have far lower AGB levels – usually around 60 Mg ha-1 

(Alamu and Agbeja, 2011) – the extent of these ecosystems in Nigeria renders 

them significant carbon stores (Fig 2.1; Fig 2.2a). Therefore, as so much of 

Nigeria’s primary forest loss is now taking place in these savannah regions 

(Wessels et al., 2013; CITES, 2015; Ahmed et al., 2016), it is crucial to further 

our understanding of practices which may help to mitigate this.   

 

2.3 Selection of Protected Areas 

To investigate PA performance in Nigeria’s extensive savannah regions, data 

were obtained from the World Database on Protected Areas (WDPA). This is a 

comprehensive resource, providing a wealth of material on PAs across the 

globe, including ‘Reported Area’, ‘Status Year’ and ‘IUCN Management 

Category’, as well as shapefiles delimiting their position and spatial extent. 

Though over 1000 PAs are reported to exist within Nigeria, many of these are 

afforded only the most basic information, rendering them insufficient for focused 

investigations. Consequently, an original subset of 30 PAs broadly situated 

within the country’s central savannah belt (Fig. 2.2b) were selected for analysis, 

with the relevant shapefiles downloaded freely from the WDPA (available at: 

https://protectedplanet.net/country/NG); these would be essential for all aspects 

of the investigation. This would however, eventually be reduced to 22, due to 

issues with a number of the PAs upon input to the Biomass Matching process. 

In relation to research question 2, an additional sample of CAs would be 

required to compare PAs and unprotected areas in terms of effectiveness: 

unlike a number of similar studies, which employ ‘matching approaches’ to 

randomly generate CAs (Andam et al., 2008; Gaveau et al., 2009; Joppa and 

Pfaff, 2010; Nelson and Chomitz, 2011; Carranza et al., 2014; Blackman et al., 

2015; Bowker et al., 2017), this investigation subjectively created CAs in 

ArcMap 10.5.1. Care was taken to ensure that these did not overlap with any 

reported existing PAs by the WDPA.  

  

2.4 ALOS and ALOS 2  



33 
 

To develop a ‘universal’ RCS-AGB relationship, and to estimate AGB change 

2007-2017 in all PAs and CAs, L-band radar data were downloaded from JAXA 

(available at: http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm). 

These data were collected by the ALOS 1 (2007-2010) and 2 (2015-) satellites’ 

phased array type L-band synthetic aperture radars (PALSAR 1 and 2). The first 

mission (ALOS 1) aimed to implement the first fine and medium spatial 

resolution global acquisition strategy for satellite sensors, achieving almost gap-

free global coverage – around 95%, excluding Antarctica – during its four-and-

a-half year operational period (Rosenqvist et al., 2014). This was succeeded by 

the ALOS 2 satellite in 2014, continuing the work of its predecessor with a 

comprehensive acquisition strategy and enhanced PALSAR instrument 

(Rosenqvist et al., 2014).  

For this investigation, data were freely obtained from the global 25m resolution 

PALSAR-2/PALSAR mosaic, where raw SAR data have been subjected to 

sophisticated processing and analysis methods to give a ‘seamless global SAR 

image’ on an annual basis 2007-2010, and 2015- (JAXA, 2018a). This 

processing entails various procedures, including calibration of raw images using 

published coefficients (Shimada and Otaki, 2010), orthorectification and slope 

correction using the 90m Shuttle Radar Tomography Mission digital elevation 

model (SRTM DEM; Shimada, 2010) and projection to a geographic coordinate 

system (Shimada et al., 2014); the result is a pre-processed L-band SAR 

dataset, available in both HH and HV polarisations (JAXA, 2018a). This use of 

free, pre-processed data to monitor tropical AGB change differs from the 

approach of previous studies, which process raw data using their own unique 

procedures (Mitchard et al., 2009; Lucas et al., 2010; Ryan et al., 2012). 

Nevertheless, JAXA’s yearly global mosaics provide an effective means of 

tracking tropical AGB change over time (Shimada et al., 2010).   

To monitor AGB change in PAs, appropriate data tiles were downloaded from 

the PALSAR-2/PALSAR mosaic in HV polarisation for each year – over Nigeria, 

radar scenes were typically collected by the satellite during the wet season, 

which usually runs April – October across the country. These tiles were 

imported into ArcMap 10.5.1 as raster images, where they were combined with 

the WDPA (and subjectively generated CA) shapefiles so that the areas of PAs 

(and CAs) could be extracted. As the 25m resolution mosaic data are stored in 
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digital number form, processing was undertaken to convert this to RCS values 

for each PA for each year. This enabled a RCS-AGB relationship to be 

developed from the set of PAs; combined with RCS values for each PA for each 

year, AGB change within PAs 2007-2010 (i.e. 2007, 2008, 2009 and 2010) and 

2015-2017 (i.e. 2015, 2016 and 2017) could be estimated (for full details of the 

process, see Appendix A).  

2.5 A ‘Universal’ RCS-AGB relationship 

a 

b 

RCS value 

RCS/AGB value 

Fig. 2.3: a) RCS Image of Kashimbila at 25m Spatial Resolution, and b) Images of 

Kashimbila at 1km Spatial Resolution. RCS (left) is compared to an AGB image of 

the same area (right).  
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For any study using radar data to predict AGB change, a relationship between 

the RCS – or ‘backscatter’ signal – and AGB for a particular area or region must 

be developed. Usually, this involves regressing RCS values against field-based 

AGB measurements collected from plots before the first, and after the last, 

radar scenes are taken (Ryan et al., 2012; Hill et al., in prep). For example, in 

Ryan et al. (2012)’s study of small-scale AGB change in Mozambican 

woodlands, they develop a regression equation based on inventory data from 

96 permanent forest, woodland and cropland plots situated in the south of their 

study area. However, rather than using field measurements, this investigation 

used AGB data derived from the pan-tropical biomass map of Avitabile et al. 

(2016), which combines multiple data sources to produce a fused 1km 

resolution map of AGB estimates encompassing the years 2000-2010. 

Therefore, to develop the RCS-AGB relationship, 2010 RCS data for each PA 

was aggregated from 25m to 1km resolution in ArcMap 10.5.1 so that the two 

datasets were at the same spatial scale, and RCS and AGB in equivalent pixels 

could be compared (Fig. 2.3). 1km resolution RCS and AGB data for each PA 

was then compiled in Matlab R2017a and subjected to linear regression 

analysis to produce a regression model of 

𝑌𝐴𝐺𝐵 =  −25.01 + 1091.80(𝑅𝐶𝑆) 

with R2 = 0.29 and p-value of 0 (p<0.001). This indicated a statistically 

significant relationship at the 99.9% confidence interval between AGB data from 

Avitabile et al. (2016) and the equivalent 1km RCS pixels processed from 2010 

ALOS PALSAR data, though this is unsurprising, as 26,331 observations were 

included in the model. This pre-existing RCS-AGB relationship would allow AGB 

for individual pixels to be derived from RCS data for each PA, and therefore the 

potential to estimate AGB change within these PAs between 2007 and 2017. 

 

2.6 Biomass Matching  

In order to detect and estimate AGB change between 2007 and 2017 within 

both PAs and CAs, the prepared L-band SAR data were subjected to Biomass 

Matching. Biomass Matching is an optimisation approach to improve the 

regression parameters of each radar scene being used in AGB change 

analysis: a generic RCS-AGB relationship (such as that described above) is 
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applied to at least the first radar scene, after which an iterative process can 

optimise the regression parameters for the remaining scenes under the 

assumption that AGB in undisturbed pixels will not change (Hill et al., in prep). 

From this, AGB changes within an area over time can be estimated (Hill et al., 

in prep). Processed radar scenes were exported from ArcMap 10.5.1 in the ‘.tif’ 

file format for each area, and then imported into Matlab R2017a. Here, the 

universal RCS-AGB relationship and data for each PA (and CA) were inputted 

to this novel method, giving the following outputs: maps of detected AGB 

Fig. 2.4: The Biomass Matching Procedure (for an individual PA/CA). The step 

highlighted in red is not carried out on the first iteration.  
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change, plots of mean AGB change 2007-2017, and the estimated total (in Mg 

ha-1) and percentage changes in AGB between 2007 and 2017 for each area. A 

summary of the process is presented above (Fig 2.4), with a step-by-step 

account of each stage detailed below:        

 Initialisation: Prepared L-band SAR data for a PA/CA in the ‘.tif’ format 

was imported into Matlab R2017a for Biomass Matching; this file was 

comprised of seven raster images – or radar scenes – corresponding to 

each year 2007-2010, and 2015-2017. The universal RCS-AGB 

relationship was applied to the first scene (i.e. the year 2007), defining 

the slope and y-intercept coefficients which would be used to estimate 

per-pixel AGB values from the RCS data; the remaining six scenes were 

also initialised with these coefficients (Hill et al., in prep). Before 

commencing the procedure, the level of subsampling (≥1, where 1 

includes all pixels, and higher integers include progressively fewer) and 

the change difference threshold for the process had to be set. The 

subsampling level greatly affected the amount of time each iteration of 

the process would take, so rigorousness was dependent on PA/CA size; 

for instance, small areas contain relatively few pixels, so the level could 

be set to ‘1’. The change difference threshold would determine the 

number of iterations the process would have to go through before 

estimates of AGB change between scenes converged and the outputs 

were produced – this is discussed in greater detail below. After fixing the 

regression coefficients for the first radar scene, and setting the 

subsampling level and change difference thresholds, the process could 

be initiated. 

 Optimisation and Iteration: The optimisation procedure of Biomass 

Matching is similar to quantile-quantile (Q-Q) fitting: this is where two 

probability distributions are compared by plotting their quantiles against 

one another, with values roughly sitting on a 1:1 line if their distributions 

are similar (Wilk and Gnanadesikan, 1968). However, Biomass Matching 

differs in that it uses real values (e.g. AGB of individual pixels for 2007 

and 2008 scenes) rather than quantiles, to optimise the regression 

parameters applied to the following six radar scenes. The procedure 

gains confidence by matching the AGB of all unique scene-pair 
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combinations – as there are seven scenes for each PA, this gives 21 

possible combinations. The AGB for individual pixels in different scenes 

is assumed to be identical; any pixels with different AGBs must therefore 

be masked prior to fitting, or the matching process’ attempts to make 

these scenes identical will remove any real traces of AGB loss or gain 

which have occurred (Hill et al., in prep). By masking these AGB 

changes, the optimisation procedure minimises the difference of sorted 

AGB between the seven scenes; the process iterates through enough 

times until AGB change between all scenes becomes less than the pre-

set change difference threshold of either 0.001 or 0.0001%, depending 

on the PA/CA; some would not meet the lower threshold. After this has 

occurred (the AGB changes have ‘converged’), regression coefficients 

can be found for areas of constant AGB, which can then be applied to 

the subsequent six radar scenes to predict per-pixel and overall AGB for 

each scene. (Hill et al., in prep).  

 Outputs: The products of the Biomass Matching process would be 

essential for addressing the research questions established in section 

1.6. The AGB change maps and line plots of mean AGB Change 2007-

2017 for a PA/CA would be needed for validation purposes, testing the 

ability of the process to both detect and estimate AGB changes within a 

certain area (research question 1). Meanwhile, statistics of mean per ha 

and percentage AGB change would be required to answer research 

questions 2 and 3, determining the effectiveness of the sample of PAs 

when compared to the CAs, and assessing which factors may be the 

most important in influencing this effectiveness. Research question 4 

would require all outputs to investigate the issue of woodland clearance 

in Taraba State, Eastern Nigeria, and the potential importance of 

Gashaka-Gumti National Park for conservation efforts.   

 

2.7 Research Question 1 – Validating the Biomass Matching Approach 

Before the Biomass Matching approach could be used for analysis, its ability to 

detect and estimate AGB change had to be assessed. Two methods were 

available to determine the former: visual validation and synthetic validation. 

Visual validation was the less sophisticated approach; here, the AGB change 
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maps produced for each PA were compared to other data sources which might 

display AGB or land-cover change, such as Google Earth. Alternatively, 

synthetic validation entailed manipulating the RCS data imported to the 

Biomass Matching approach in order to simulate AGB loss or gain within a PA. 

Prior to Biomass Matching, a particular sector of a PA for one of its seven radar 

scenes was selected, with all RCS values for that sector reduced (or increased) 

to simulate a certain level of AGB loss (or gain). For example, dividing values by 

2 would simulate 50% AGB loss within that particular sector. Following Biomass 

Matching, an AGB change map of the scene where clearance had been 

simulated could be obtained and compared to a non-doctored scene, to 

ascertain whether the process had detected the change.  

A different method was required to test the robustness of the Biomass Matching 

approach for estimating AGB change. This is because estimates of AGB 

change depended not only on the L-band RCS data, but also on the RCS-AGB 

relationship derived from the Avitabile et al. (2016) pan-tropical biomass map; 

the slope and y-intercept coefficients would directly determine the AGB 

predicted for a given RCS value. Therefore, the universal RCS-AGB regression 

Fig. 2.5: Universal and Ryan et al. (2012)’s RCS-AGB relationships. The universal 

regression has the equation 𝑌𝐴𝐺𝐵 =  −25.01 + 1091.80, while  

Ryan et al. (2012)’s is 𝑌𝐴𝐺𝐵 =  −18 + 1517 . 
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of this study was compared to that of Ryan et al. (2012), who use field-based 

AGB measurements to develop a relationship specific to their 116,000ha study 

area of Mozambican miombo woodland (Fig. 2.5). Both regressions were 

applied to the RCS data for each PA in this study; the per ha and percentage 

AGB change 2007-2017 predicted by each regression for each PA could 

subsequently be compared, and potential causes of any differences explored.    

 

2.8 Research Question 2 – Effectiveness of Protected Areas vs Control 

Areas 

While PA performance was treated as a function of AGB change, it was 

important to determine whether PAs were more (or less) effective for 

conservation than similar unprotected areas. To address this, AGB change 

within PAs was compared to that of the CAs, considered in terms of both per ha 

and percentage AGB change between 2007 and 2017. To create the CAs, the 

‘Draw’ tool was used in ArcMap 10.5.1 to construct twelve polygons in 

unprotected parts of Nigeria’s dry forest and savannah region. Various sources 

were consulted during this process: the WDPA dataset was used to ensure that 

these CAs did not overlap with PAs of any kind, and were far enough away from 

PA borders to avoid the influence of potential positive or negative spillover; the 

AGB change map provided by the remote sensing application ‘Global Forest 

Watch’ (available at globalforestwatch.org) guaranteed that only genuine AGB 

changes Ii.e. due to deforestation, degradation, reforestation or afforestation) 

would be captured; elevation data from “ALOS World 3D – 30m (AW3D30)” 

(JAXA, 2018b) prevented CAs from being situated on floodplains, as 

floodwaters can interfere with the RCS signal to mimic deforestation. The 

created CAs fell into pre-determined ‘Small’, ‘Medium’, ‘Large’, or ‘Very Large’ 

size classes. This allowed these areas to be compared with PAs of similar sizes 

when addressing research question 2. Though arguably more effective than 

simple inside-outside comparisons, this non-random method of configuring CAs 

has various limitations when compared with ‘matching’ approaches (see section 

1.2.3) – these will be discussed in detail in section 4.2.2.   
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2.9 Research Question 3 – Factors Influencing Protected Area 

Effectiveness 

Although a great many factors are cited as potential drivers of PA effectiveness, 

this investigation would include only the most commonly recurring and easily 

quantifiable in detailed statistical analyses. The factors ultimately selected were 

PA size, age, level of protection, and accessibility; the data required to assess 

the influence of each of these on PA effectiveness was derived from various 

sources.  

 

2.9.1 Size 

Information on spatial extent was initially obtained from the WDPA, as this was 

available for every PA included in the study. However, clear inaccuracies with 

this (Nagrenda et al., 2013), led to size instead being calculated in MATLAB 

R2017a, and reported in hectares. As a validation method, these calculated 

spatial extents were compared to ArcMap-derived GIS areas of each PA, which 

were found to closely align and thus suggested a robust approach.  

 

2.9.2 Age 

The year of establishment for most PAs was obtained from the WDPA, though 

this was unavailable for a small number: Ebbe/Kampe, Kogo and Meko. In 

these circumstances, age was estimated by reference to unverified internet 

sources, such as http://www.parks.it/world/NG/Eindex.html; this could present 

issues at later stages of analysis for research question 3. 

 

 

2.9.3 Level of Protection 

As above, data were available from the WDPA, which provides the ‘English 

Designation’ (e.g. National Park) for a PA, along with its associated ‘IUCN 

Management Category’, if applicable. For example, Gashaka-Gumti is a 

designated National Park, affording it an IUCN category of II. Though an 

invaluable resource, there were at times issues with duplicate shapefiles being 
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present for a PA, with different designations and IUCN categories reported for 

each; this, again, could present issues when addressing research question 3.  

 

2.9.4 Accessibility  

This was the most complex factor to consider, as a variety of variables are often 

perceived to influence this (Andam et al., 2008; Joppa and Pfaff, 2009; Nelson 

and Chomitz, 2011; Carranza et al., 2014; Bowker et al., 2017). For the 

purposes of this investigation, a small number of those often cited as having the 

most significant influence on PA accessibility (and thus overall effectiveness) 

were selected for inclusion: 

 Topography – this was treated as a function of the mean elevation (in 

meters above sea level) and slope (in degrees) of each PA. These 

values were obtained from the freely available digital surface model 

“ALOS World 3D – 30m (AW3D30)”, a global 3D map with approximate 

horizontal and vertical resolutions of 30m and 5m respectively (JAXA, 

2018b). Appropriate data were downloaded and imported into ArcMap 

10.5.1, subsequently being processed to give mean elevation and slope 

values for all PAs and CAs.   

 Proximity to Major Settlements – following previous studies, such as 

Bowker et al. (2017), ‘major’ settlements were defined as any with 

populations of greater than 50,000 people in 2010. Data were obtained 

from NASA’s Socioeconomic Data and Applications Center (SEDAC) in 

the form of the ‘Gridded Population of the World, Version 4 (GPWv4) – 

Administrative Unit Center Points with Population Estimates, Revision 10’ 

(available at: https://doi.org/10.7927/H46H4FCT). This dataset contains 

locations – at approximately 1km resolution –  and population estimates 

for city centroids between 2000 and 2020 in five year increments, derived 

from globally-integrated national population data from the 2010 round of 

the ‘Population and Housing Censuses’ (CIESIN, 2017). For Nigeria, 769 

city centroids with populations of over 50,000 were provided for 2010; 

these point shapefiles were imported into ArcMap 10.5.1 for processing, 

the details of which are discussed below.  
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 Proximity to Major Roads – the ‘Global Roads Open Access Data Set, 

Version 1 (gROADSv1)’ from SEDAC combines the best available public 

domain roads data 1980 – 2010 into a global dataset; though spatial 

accuracy vastly improves on previous datasets, there can still be 

considerable variation between countries (CIESIN, 2013). A polyline 

shapefile containing information on all major roads for Africa was 

downloaded from http://sedac.ciesin.columbia.edu/data/set/groads-

global-roads-open-access-v1, and imported into ArcMap 10.5.1.  

 

When processing major settlement and road data, a different approach was 

taken to that of previous studies, which often employ Euclidean distance 

measures to give mean distance from city centroids and roads for protected 

areas (Nelson and Chomitz, 2011; Bowker et al., 2017). Instead, standardised 

buffer zones of 15km were generated around each protected area in ArcMap 

10.5.1; buffer size was founded on inferences from literature, regarding the 

distances individuals and households in sub-Saharan Africa might be expected 

to travel for harvesting of fuelwood and timber (Masozera and Alavalopati, 

2004; Hiemstra-van der Hoorst and Hovorka, 2009; Matsika et al., 2013). 

Proximity to Major Settlements was recorded as the number of city centroids 

within a PA or CA and its associated buffer, whilst the total length of road (in 

km) within an area and its buffer was calculated to give a measure of its 

Proximity to Major Roads.     

 

2.9.5 Statistical analysis   

To thoroughly address research questions 2 and 3, analyses to test for both 

statistically significant difference and statistically significant relationships were 

undertaken. To determine the effectiveness of PAs in relation to similar 

unprotected areas (research question 2), independent samples t-tests were 

employed to test for statistically significant difference in mean per ha AGB 

change between PAs and CAs as a whole, as well as for differences in AGB 

change between subsamples (e.g. small PAs vs. small CAs). The unequal 

number of PAs and CAs overall (n=21 and n=12 respectively) and in the 

subsamples, prevented the use of paired sample t-tests for these analyses. 
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The influence of different factors on PA effectiveness (research question 3) was 

investigated with a combination of different statistical tests. When considering 

the individual impact of different factors, X variables characterised by 

continuous, ratio scale data (Size; Age; Accessibility – Elevation; Accessibility – 

Slope; Accessibility – Proximity to Major Roads) were subjected to linear 

regression analyses (Wheeler et al., 2004; McCarroll, 2017) to determine their 

relationship with AGB change (Y) within the PAs. For example, whether there is 

a positive relationship between PA size and AGB change, and whether this is 

statistically significant. On the other hand, when X variables were discrete, 

ordinal scale data, tests for significant difference were employed (Wheeler et 

al., 2004; McCarroll, 2017), either the independent sample t-test (Level of 

Protection – a) or one-way ANOVA (Level of Protection – b; Accessibility – 

Proximity to Major Settlements). To determine which factor(s) best explains 

variability in AGB change within PAs, all X variables were combined in a 

multiple regression model, before Akaike’s Information Criterium (AIC) was 

used to select the best predictor(s).    

 

2.10 Case Study: Habitat disturbance in Taraba State, Nigeria 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6: PAs and CAs in Taraba State. The approximate border of Taraba State 

delineated by the red line. Although both CAs (shaded in yellow) fall within Taraba 

State, the northern sector of Gashaka-Gumti (shaded in blue) is located in 

Adamawa State.  
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Research question 4 entailed a focused investigation of Taraba State, a region 

of eastern Nigeria which borders Cameroon. Encompassing an area of 

approximately 60,292km2, and with a population of over 2,300,700 (Taraba 

State Government, 2018), it has been devastated by illegal logging in recent 

years (Ahmed et al., 2016; Aiyetan, 2016; Chapman, 2016; Ahmed and 

Oruonye, 2017). Three areas formed the basis of this part of the study: 

Gashaka-Gumti National Park, a CA of similar size, mean elevation and mean 

slope to Gashaka-Gumti, and a CA of similar size but at much lower elevation 

and with gentler slopes to Gashaka-Gumti. Both CAs are situated within the 

confines of Taraba State, while the northern reaches of Gashaka-Gumti fall 

outside (Fig. 2.6). Biomass Matching was be employed to give detected and 

estimated AGB change for each area between 2007 and 2017, which would be 

essential for validating the reported woodland clearance, and assessing the 

potential for PAs to offer a solution to this issue. Any analyses would be purely 

descriptive in nature, as the sample size was far too small to warrant statistical 

testing.  
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Results  

3.1 Biomass Matching – AGB Change Detection and Estimation  

To test the utility of Biomass Matching for this investigation, its ability to firstly 

detect, and then estimate, AGB change within PAs had to be assessed. Change 

detection could be validated by either visual or synthetic means; the former 

entailed visually comparing L-band RCS data to optical remote sensing data, 

while the latter was performed by manipulating data in Matlab R2017a to 

simulate AGB loss or gain. Following these tests, the AGB changes estimated 

in PAs using the universal RCS-AGB relationship of this study, and then the 

RCS-AGB relationship of Ryan et al. (2012), were compared to determine how 

effectively Biomass Matching could estimate AGB change 2007-2017 in 

Nigerian PAs.  

 

3.1.1 Detection – visual validation  

The AGB Change Maps produced by Biomass Matching displayed whether 

pixels inside PAs between 2007 and 2017 had experienced an increase, 

decrease or no change in their AGB levels (Fig. 3.1a; 3.2a). These maps could 

therefore be compared to other data sources to attempt to verify whether such 

changes had occurred. Google Earth 7 was a particularly viable option; this 

version of the software comprises imagery from NASA’s Landsat 7 satellite, 

which has been modified to minimise the presence of striped artefacts, and 

eliminate clouds and other atmospheric effects which might obscure the Earth’s 

surface (Google, 2013). Additionally, the software’s extensive data archive 

enables both past and present images of an area to be viewed with ease, so 

images of PAs for both 2007 and 2016/2017 could be obtained (Fig. 3.1b; 3.2b), 

visually assessed for land-cover changes over the time period, and compared to 

the AGB Change Maps produced by Biomass Matching.   

For certain PAs, this method was a moderately robust means of validating AGB 

changes detected by Biomass Matching. For example, from optical remote 

sensing images of Kamuku National Park, changes in land-cover are clearly 

visible in its southwestern corner between 2007 and 2016, an occurrence 

reflected by its associated AGB Change Map as losses in AGB (Fig. 3.1).  
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However, in other instances, detected AGB changes were seemingly not 

reflected in the Landsat images, thus rendering them wholly ineffective for 

validation purposes (Fig. 3.2). It must also be noted that such optical remote 

sensing data provides information on land-cover change rather than the AGB 

change detected by Biomass Matching (Fig. 3.1; 3.2). The overall utility of this 

method was therefore somewhat limited.         

 

3.1.2 Detection – synthetic validation  
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Simulating AGB change within a PA by manipulating the processed L-band 

SAR data used for Biomass Matching potentially presented a far more robust 

means of validation. Using Opandha, a PA with high mean AGB levels per 

hectare, different levels of AGB change were simulated in designated areas 

between 2016 and 2017 (Fig. 3.3). The results of these tests are included in 

Table 3.1. It is quite clear from the above figures that the Biomass Matching 

approach is able to detect the synthetic AGB changes, and the ‘Results – Mean 

AGB’ column in Table 3.1 quantifies the effect of the changes on mean AGB 

(Mg ha-1) values in each treatment area. This supports the argument that the 

approach is an effective means of detecting AGB change within an area over 

time.  

Site Scenario Synthetic Test 
(applied to 

pixels) 

Results (visual 
interpretation) 

Results – 
Mean AGB 
(Mg ha-1) 

A 100% AGB 
loss 

Pixel values = 
0.005 

AGB values the 
lowest possible 

0.48 

B 50% AGB 
loss 

Pixel values = ÷2 AGB values 
noticeably lower 
than surroundings  

1.12 

C 50% AGB 
gain 

Pixel values = ×2 AGB values 
noticeably higher 
than surroundings 

4.13 

D 100% AGB 
gain 

Pixel values = 1  AGB values the 
highest possible 

42.16 

E No change  Pixel values = 
2016 values 

Identical to 
corresponding 
area on 2016 
change map 

2.63 

  

 

3.1.3 Estimation  

Following confirmation of Biomass Matching’s ability to effectively detect AGB 

change, the extent to which it could effectively estimate AGB change over time 

was assessed. To test this, the AGB change values between 2007 and 2017 –  

Table 3.1: Synthetic Validation Results. Each scenario was applied to an area of 

50x50 pixels for the 2017 RCS data for Opandha before subjecting the full suite of 

data (2007-2017) to Biomass Matching. A brief visual interpretation is given for each 

scenario, as well estimated AGB levels of each treatment. 
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 Universal RCS-AGB 
relationship 

Ryan et al (2012)’s 
RCS-AGB relationship 

Difference between 
Universal and Ryan 
et al AGB Change 

Protected 
Area 

AGB 
Change  
1) Overall 
(Mg) 
2) Mg ha-1 

% AGB 
Change 

AGB 
Change 
1) Overall 
(Mg) 
2) Mg ha-1 

% AGB 
Change 

AGB 
Change 
1) Overall 
(Mg) 
2) Mg ha-1 

%  
AGB 
Change 

Alawa 1) +39,389 
2) +1.21 

+3.86 1) +52,753 
2) +1.62 

+2.69 1) -13,364 
2) -0.41 

1.18 

Dagida 1) +21,976 
2) +0.58 

+10.23 1) +26,928 
2) +0.71 

+2.88 1) -4952 
2) -0.13 

7.35 

Ebbe/Kam
-pe 

1) -31,254  
2) -0.32 

-1.03 1) -40,870 
2) -0.42 

-0.70 1) -9616 
2) -0.10 

0.33 

Falgore 
(Kogin 
Kano) 

1) +107,343 
2) +1.85 

+12.54 1) +152,920 
2) +2.64 

+7.08 1) -45,577 
2) -0.79 

5.46 

Gashaka-
Gumti 

1) 
+2,094,774  
2) +3.44 

+9.45 1) 
+3,296,872 
2) +5.42 

+8.04 1) -
1,202,098 
2) -1.98 

1.41 

Ifon 1) +72,055 
2) +1.40 

+5.27 1) +106,812 
2) +2.08 

+3.87 1) -34,757 
2) -0.68 

1.40 

Kainji 
Lake  

1) +241,413 
2) +0.40 

+6.80 1) +403,624 
2) +0.66 

+2.67 1) -
162,211 
2) -0.26 

4.13 

Kamuku 1) +8840 
2) +0.24 

+1.94 1) +12,950 
2) +0.36 

+1.04 1) -4110 
2) -0.12 

0.90 

Kashimbil
a 

1) +401,636  
2) +3.64 

+10.64 1) +561,711 
2) +5.09 

+7.92 1) -
160,075 
2) -1.45 

2.72 

Kogo 1) -380 
2) -0.006 

-0.11 1) -12,200 
2) -0.18 

-0.77 1) -11,820 
2) -0.174 

0.66 

Kuyamban
-a 

1) +198,858 
2) +1.11 

+5.48 1) +299,905 
2) +1.68 

+3.73 1) -
101,047 
2) -0.57 

1.75 

Lame-
Burra 

1) -77,211 
2) -0.32 

-1.43 1) -75,459 
2) -0.31 

-0.65 1) 1752 
2) 0.01 

-0.78 

Meko  1) +172,642 
2) +0.23 

+8.0 1) +298,360 
2) +3.85 

+6.94 1) -
125,718 
2) -3.62 

1.06 

Ohosu 1) +123,763 
2) +2.42 

+7.47 1) +181,190 
2) +3.54 

+5.74 1) -57,427 
2) -1.12 

1.73 

Opandha 1) +28,252 
2) +2.41 

+5.85 1) +39,537 
2) +3.37 

+4.56 1) -11,285 
2) -0.96 

1.29 

Opara  1) +129,896  
2) +0.58 

+2.42 1) +246,551 
2) +1.10 

+2.20 1) 116,655 
2) -0.52 

0.22 

Orle River 1) +56,204 
2) +1.20 

+5.53 1) +67,428 
2) +1.44 

+3.07 1) -11,224 
2) -0.24 

2.46 

Pandam 
and Wase 
Lakes 

1) -27,582 
2) -1.34 

-6.69 1) -38,889 
2) -1.89 

-4.24 1) 11,307 
2) 0.55 

-2.45 

Table 3.2: AGB Change between 2007 and 2017 for the two RCS-AGB 

Relationships, as well as the difference in overall (Mg), Mg ha-1 and % AGB change 

predicted for all PAs by the two equations. 
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in Mg, Mg ha-1 and percent – produced for each PA when using two different 

RCS-AGB relationships were compared: firstly, the coefficients used in this 

study (see section 2.5), and secondly, those used in Ryan et al. (2012)’s study 

of AGB change in Mozambican miombo woodland (Table 3.2). Furthermore, the 

mean AGB change 2007-2017 estimated for all PAs using each of the RCS-

AGB relationships were plotted on a single figure (Fig. 3.4a), along with that for 

a single PA – Kamuku (Fig. 3.4b). This allowed a comparison of the trends in 

AGB change estimated by the two sets of coefficients.  

   

Udi/Nsukk
-a 

1) +24,487 
2) +1.39 

+5.07 1) +35,534 
2) +2.02 

+3.68 1) -11,047 
2) -0.63 

1.39 

Upper 
Ogun/ Old 
Oyo 

1) +281,137 
2) +1.14 

+4.06 1) +414,005 
2) +1.68 

+3.01 1) -
132,868 
2) -0.54 

1.05 

Yankari 1) +524,000 
2) +2.35 

+29.31 1) 
+1,109,400 
2) +17.40 

+28.00 1) -
585,400 
2) -15.05 

1.31 
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Discrepancies in the AGB change values estimated by the two RCS-AGB 

relationships are immediately apparent. The Ryan et al. (2012) coefficients (with 

a 

b 

Fig. 3.4: These plots show the disparities in mean AGB levels estimated for each 

PA using the different RCS-AGB relationships. a) AGB Change Estimation – 

including all 21 PAs in the study; (b) AGB Change Estimation – focusing on 

Kamuku; this shows how, despite the higher mean AGB estimated by the Ryan et 

al. (2012) coefficients, the trend in AGB change over time is almost identical.  
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the exception of Lame-Burra) consistently estimate greater AGB change (both 

positive and negative) to have occurred between 2007 and 2017 (Table 3.2), 

though an independent samples t-test – t(38) = -1.110, p = 0.274 – does not 

find a statistically significant difference between mean Mg ha-1 change values 

for the two datasets at the 0.05 significance level. However, Fig. 3.4a 

emphasises these differences by displaying the disparities between mean AGB 

changes for all PAs when using the different RCS-AGB relationships for 

Biomass Matching, with Fig. 3.4b showing how for each PA, the nature of these 

changes over time are visually identical.   

 

3.2 Effectiveness of Protected Areas vs. Control Areas  

 

Protected 
Area (size 
class) 

Area 
(ha) 

2007 AGB 
1) Mg 
2) Mg ha-1 

2017 AGB 
1) Mg 
2) Mg ha-1 

AGB 
Change 
1) Mg 
2) Mg ha-1 

% AGB 
Change 
(2007 – 
2017) 

Alawa (S) 32,530 1) 
1,020,500 
2) 31.37 

1) 
1,059,900 
2) 32.58 

1) +39,389 
2) +1.21 

+3.86 

Dagida (S) 38,022 1) 214,791 
2) 5.65 

1) 236,770 
2) 6.23 

1) +21,976 
2) +0.58 

+10.23 

Ebbe/Kampe 
(M) 

97,276 1) 
3,047,368 
2) 31.33 

1) 
3,016,114 
2) 31.01 

1) -31,254 
2) -0.32 

-1.03 

Falgore (M) 58,034 1) 855,950 
2) 14.75 

1) 963,290 
2) 16.60 

1) +107,343 
2) +1.85 

+12.54 

Gashaka-
Gumti (VL) 

608,410 1) 
22,165,936 
2) 36.44 

1) 
24,260,710 
2) 39.88 

1) 
+2,094,774 
2) +3.44 

+9.45 

Ifon (M) 51,410 1) 
1,367,000 
2) 26.59 

1) 
1,439,100 
2) 27.99 

1) +72,055 
2) +1.40 

+5.27 

Kainji Lake 
(VL)  

607,870 1) 
3,552,600 
2) 5.84 

1) 
3,794,000 
2) 6.24 

1) +241,413 
2) +0.40 

+6.80 

Kamuku (S) 36,220 1) 456,210 
2) 12.60 

1) 465,050 
2) 12.84 

1) +8840 
2) +0.24 

+1.94 

Kashimbila 
(M) 

110,310 1) 
3,774,100 
2) 34.21 

1) 
4,175,700 
2) 37.86 

1) +401,636 
2) +3.64 

+10.64 

Kogo (M) 67,010 1) 333,510 
2) 4.98 

1) 333,130 
2) 4.97 

1) -380 
2) -0.006 

-0.11 

Table 3.3: AGB Levels and Changes Estimated by Biomass Matching. For the size 

class of each PA: S = small; M = medium; L = Large; VL = very large.  
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Kuyambana 
(M) 

178,990 1) 
3,626,200 
2) 20.26 

1) 
3,825,040 
2) 21.37 

1) +198,858 
2) +1.11 

+5.48 

Lame-Burra 
(L) 

244,460 1) 
5,409,500 
2) 22.13 

1) 
5,332,336 
2) 21.81 

1) -77,211 
2) -0.32 

-1.43 

Meko (M)  77,460 1) 
2,159,200 
2) 27.88 

1) 
2,331,900  
2) 30.11 

1) +172,642 
2) +2.23 

+8.0 

Ohosu (M) 51,155 1) 
1,655,700 
2) 32.37 

1) 
1,779,500 
2) 34.79 

1) +123,763 
2) +2.42 

+7.47 

Opandha (S) 11,733 1) 482,910 
2) 41.16 

1) 511,160 
2) 43.57 

1) +28,252 
2) +2.41 

+5.85 

Opara (L) 224,080 1) 
5,361,900 
2) 23.93 

1) 
5,491,800 
2) 24.51 

1) +129,896 
2) +0.58 

+2.42 

Orle River 
(S) 

46,842 1) 
1,016,700 
2) 21.70 

1) 
1,072,897 
2) 22.90 

1) +56,204 
2) +1.20 

+5.53 

Pandam and 
Wase Lakes 
(S) 

20,546 1) 412,250 
2) 20.06 

1) 384,660 
2) 18.72 

1) -27,582 
2) -1.34 

-6.69 

Udi/Nsukka 
(S) 

17,621 1) 482,610 
2) 27.39 

1) 507,100 
2) 28.78 

1) +24,487 
2) +1.39 

+5.07 

Upper Ogun/ 
Old Oyo (L) 

246,300 1) 
6,931,101 
2) 28.14 

1) 
7,212,238 
2) 29.28  

1) +281,137 
2) +1.14 

+4.06 

Yankari (L) 222,630 1) 
1,789,800 
2) 8.05 

1) 
2,313,800 
2) 10.40 

1) +524,000 
2) +2.35 

+29.31 

Control 
Area 

     

Small 1 47,733 1) 441,220 
2) 9.24 

1) 408,300 
2) 8.55 

1) -32,918 
2) -0.69 

-7.46 

Small 2  14,536 1) 272,500 
2) 18.75 

1) 283,120 
2) 19.48 

1) +10,620 
2) +0.73 

+3.90 

Small 3 28,327 1) 35,640 
2) 1.26 

1) 58,723 
2) 2.07 

1) +23,083 
2) +0.81 

+64.76 

Medium 1 171,990 1) 497,080 
2) 2.89 

1) 354,100 
2) 2.06 

1) -143,190 
2) -0.83 

-28.81 

Medium 2 85,782 1) 863,540 
2) 10.07 

1) 965,491 
2) 11.26 

1) +101,951 
2) +1.19 

+11.81 

Medium 3 111,820 1) 760,570 
2) 6.80 

1) 826,720 
2) 7.39 

1) +66,150 
2) +0.59 

+8.70 

Large 1  314,130 1) 
1,377,800 
2) 4.39 

1) 730,992 
2) 2.33 

1) -646,808 
2) -2.06 

-46.95 

Large 2 224,710 1) 
3,010,752 
2) 13.40 

1) 
3,095,948 
2) 13.78 

1) +85,196 
2) +0.38 

+2.83 
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To determine whether this sample of Nigerian PAs was effective in conserving 

(and enhancing) AGB levels over time, the mean per hectare AGB change was 

compared with that estimated for a set of twelve unprotected CAs. Furthermore, 
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Small

Medium

Large

Very Large

Overall

Large 3 428,950 1) 
2,999,100 
2) 6.99 

1) 
3,438,912 
2) 8.02 

1) +440,912 
2) +1.03 

+14.66 

Very Large 1 618,090 1) 
24,711,518 
2) 39.98 

1) 
26,906,778 
2) 43.53 

1) 
+2,195,260 
2) +3.55 

+8.88 

Very Large 2 640,120 1) 
2,675,312 
2) 4.18 

1) 
1,862,400 
2) 2.91 

1) -812,912 
2) -1.27 

-30.39 

Very Large 3 617,300 1) 
6,300,700 
2) 10.21 

1) 
6,110,886 
2) 9.90 

1) -189,820 
2) -0.31 

-3.01 

Fig. 3.5: Bar Graph of Mean AGB Change 2007-2017 in PAs and CAs. Mean 

AGB change and standard error (SE) are given beside the column representing 

each category, though independent samples t-tests did not find significant 

differences (p<0.05) between PA and CA means for any category; the results are 

reported below: 

Small: t = 0.696(8), p = 0.51 

Medium: t = 1.45(9), p = 0.18 

Large: t = 1.13(5), p = 0.31 

Very Large: t = 0.57(3), p = 0.61 

Overall: t = 1.99(31), p = 0.06 
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both the PAs and CAs could be subjectively subdivided into groups according to 

their size in hectares: ‘Small’ (0 – 50,000), ‘Medium’ (50,001 – 200,000), ‘Large’ 

(200,001 – 500,000) and ‘Very Large’ (>500,000). The mean AGB change 

values for these equivalent PA and CA groups could then also be compared 

through statistical testing. Estimated AGB levels and AGB changes for each PA 

and CA are recorded in Table 3.3, while the mean AGB change values and 

outcomes of subsequent statistical tests are reported in Fig. 3.5. The 

differences between PAs and CAs in terms of AGB change  

2007-2017 are further visualised by Fig. 3.6.   

 

The AGB change dataset met the requirements for parametric statistical testing: 

it is measured on a continuous scale, normally distributed according to the 

Shapiro-Wilk test (F = 0.978(33), p = 0.735), and Levene’s test found there to 

be homogeneity of variances: F = 0.134(1,31), p = 0.717. Consequently, 

independent samples t-tests were undertaken to assess for statistically 

significant difference between the mean AGB change values overall, and for 

each size category (Wheeler et al., 2004).  

 

Protected areas   

Control areas 

Fig 3.6: Mean AGB Change 2007-2017. This displays estimates for the 21 PAs 

(blue lines) and 12 CAs (red lines) included in the study. 
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Clear disparities are visible between the mean AGB change values for PAs and 

CAs across all groups, with change in PAs consistently more positive than in 

unprotected CAs; indeed this is most starkly visible for the ‘Large’ category, 

where mean AGB levels in PAs increased from 2007 to 2017, whilst the CAs 

experienced AGB loss (Fig. 3.5). Although these visual comparisons suggest 

PAs of all size groups – and therefore, overall – to be more effective than 

similar unprotected areas for conserving and enhancing AGB, the independent 

samples t-tests found no significant difference in AGB Change between PAs 

and CAs on any occasion (Fig. 3.5). Consequently, the null hypothesis of no 

statistically significant difference in per hectare AGB change between PAs and 

CAs must be accepted for each size category, and overall.           

 

 

3.3 Factors Influencing Protected Area Effectiveness 

Statistical analyses were undertaken in order to determine a) the strength and 

direction of relationships between individual factors and AGB change, and b) 

which of the following factors might exert the greatest influence on AGB change 

within the sample of Nigerian PAs (Table 3.5). The type of analysis was dictated 

by the properties of the data. Explanatory statistics were preferable, and 

therefore linear and multiple regression were employed if requirements were 

met: the data was on a continuous scale of measurement; it generally 

conformed to a normal distribution; the relationship between variables was 

linear; the sample size was sufficiently large (over 20); outliers were absent or 

minimal; there was independence of residuals (only applicable for multiple 

regressions); data were generally homoscedastic (McCarroll, 2017). If data 

were not continuous, and therefore regression analysis was not possible, tests 

for statistically significant difference were undertaken instead. Parametric tests 

– independent samples t-test and ANOVA – were undertaken if conditions of 

normality and homoscedasticity were met; if not, the non-parametric equivalents 

of Mann-Whitney U and Kruskal-Wallis were used instead. Regression analyses 

tested the null hypothesis of ‘there is no statistically significant relationship 

between the independent variable(s) and AGB change over time’, while tests for 

significant difference assessed the null  
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hypothesis of ‘there is no statistically significant difference in the AGB change  

values between groups’ . The final stage of the analysis was to combine all 

factors in a multiple regression to determine which variable(s) best explains 

variability in AGB change over time. 

 

 

 

 

 

 

 

 Statistical 
Test 

R2 value  
(Adjusted 
R2) 

Significa
-nce 
value 

Null 
Hypothesis 

Size Linear 
regression 

0.024 0.504 Accept 

Age  Linear 
regression 

0.096 0.172 Accept 

Level of 
Protection – a) 
Strict 
Protection/Mixed-
use; b) IUCN 
Categories 

a) 
Independent 
Samples t-
test;  
b) One-way 
ANOVA 

N/A a) 0.689 
b) 0.906 

a) Accept 
b) Accept 

Accessibility – 
Elevation 

Linear 
regression 

0.012 0.635 Accept 

Accessibility – 
Slope  

Linear 
regression 

0.419 0.001 Reject 

Accessibility – 
Proximity to 
Major 
Settlements  

Kruskal-
Wallis 

N/A 0.697 Accept 

Accessibility – 
Proximity to 
Major Roads 

Linear 
regression 

0.030 0.455 Accept 

Table 3.5: Statistical Analyses for Research Question 3. Linear regression tested for 

the presence of a significant relationship between each factor and per hectare AGB 

change within PAs, while independent samples t-tests, one-way ANOVA and 

Kruskal-Wallis tested for significant difference between groups, from which a link to 

AGB change could be inferred.     
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3.3.1 Size  

Having met the assumptions for linear regression, PA size was regressed 

against AGB change (Mg ha-1) to determine the strength and direction of any 

relationship between them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There was no significant relationship between size (ha) and AGB change: 

F(1,19) = 0.464, p = 0.504, and R2 = 0.024 shows size to explain only 2.4% of 

variance in AGB change. It cannot therefore be confidently stated whether small 
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Fig 3.7: PA Size and AGB change 2007-2017. a) the P-P plot showing the data to 

follow a normal distribution, and b) the scatterplot of PA size vs. AGB change. The 

regression equation is y = 1E-06x + 1.0561.  

 

a 

b 
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or large PAs were more effective at protecting and enhancing AGB within this 

set of PAs.  

 

3.3.2 Age 

Having met the assumptions for linear regression, PA age was regressed 

against AGB change. 

 

 

 

 

 

 

 

 

 

 

 

There was no significant relationship between the two variables: F(1,19) = 

2.017, p = 0.172, and R2 = 0.096 shows age to explain only 9.6% of the 
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Fig 3.8: PA Age and AGB change 2007-2017. a) the P-P plot showing the data to 

follow a normal distribution, and b) the scatterplot of PA age vs. AGB change. The 

regression equation is y = 0.0259x + 0.2196. 

.  
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variance in AGB change. However, age was found to positively influence AGB 

change within PAs, with AGB increasing by 0.026 Mg ha-1 for each year since 

establishment.      

 

3.3.3 Level of Protection  

As this dataset was discrete in nature, tests for significant difference were 

undertaken for the two categorisation approaches which were adopted. The 

Strict Protection/Mixed-Use grouping was informed by the likes of Nelson and 

Chomitz (2011) and Blackman et al. (2015): PAs designated as National Parks 

and Ramsar Sites (wetlands of international importance) were placed in the 

‘Strict Protection’ category, while all others were deemed ‘Mixed-Use’. 

Alternatively, the IUCN Categories approach grouped PAs according to whether 

they were listed as IUCN II and Ramsar Site, IUCN IV, or Forest/Game 

Reserves.  

Assumptions of normality and homogeneity were met for both subsets of data. 

The Strict Protection/Mixed-Use approach returned Shapiro-Wilk results of F(6) 

= 0.980, p = 0.952, for the ‘Strict Protection’ group, and F(15) = 0.961, p = 0.703 

for the ‘Mixed-Use’ group, along with a Levene’s result of F(19) = 1.374, p = 

0.256 for the data as a whole. The IUCN Categories approach returned 

Shapiro-Wilk results of F(6) = 0.980, p = 0.952; F(5) = 0.971, p = 0.881; F(10) = 

0.928, p = 0.429 for the ‘IUCN II and Ramsar Site’, ‘IUCN IV’ and ‘Forest/Game 

Reserves’ groups respectively, with a Levene’s result of F(2,18) = 1.036, p = 

0.375. Consequently, the parametric independent samples t-test and one-way 

ANOVA were applied to the respective subsets of data.  
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The statistical tests reported no significant difference between groups for either 

categorisation approach: the independent samples t-test returned t(19) = -

0.407, p = 0.689, and one-way ANOVA F(2,18) = 0.100, p = 0.906. However, 

the outputs suggest that less restrictive PAs are more effective at conserving 

and enhancing AGB in both instances; this is particularly as ‘Mixed-Use’ PAs 

recorded higher mean AGB change (0.25 Mg ha-1 higher) for the Strict 

Protection/Mixed-Use approach, while ‘IUCN IV’ PAs had the highest mean 

AGB change for the IUCN categorisation (Fig 3.9).  

 

Fig 3.9: Level of Protection and AGB Change 2007-2017. a) The Strict 

Protection/Mixed-Use grouping, where mean AGB change was 1.04(±0.69) and 

1.29(±0.29) for ‘Strict Protection’ and ‘Mixed-Use’ categories respectively. b) The 

IUCN Categories grouping, where mean AGB change was 1.04(±0.69) for ‘IUCN II 

and Ramsar sites’, 1.39(±0.67) for ‘IUCN IV’, and 1.24(±0.30) for ‘Forest/Game 

Reserves’. 

.  

 

a 

b 
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3.3.4 Accessibility 

The environmental variables of Elevation, Slope, Proximity to Major 

Settlements, and Proximity to Major Roads, were each analysed in turn to 

ascertain how they might influence AGB change within PAs. Regression 

analyses were undertaken for Elevation, Slope and Proximity to Major Roads, 

while a test for significant difference was required for Proximity to Major 

Settlements.  
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Fig. 3.10: Mean PA Elevation and AGB Change 2007-2017. a) The P-P plot 

showing the data to follow a normal distribution, and b) mean PA elevation vs. AGB 

Change (Mg ha-1), where elevation is given in metres above sea-level (m a.s.l). The 

regression equation is y = 0.0007x + 0.9744. 
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Having passed the requirements for normality and homogeneity, mean PA 

Elevation was regressed against AGB change. There was however, no 

significant relationship between the two variables: F(1,19) = 0.233, p = 0.635, 

and R2 = 0.012 showed there to be little discernible impact of elevation on AGB 

change within a PA (Fig. 3.10). 
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Fig. 3.11: Mean PA Slope and AGB Change 2007-2017. a) The P-P plot showing 

the data to follow a normal distribution, and b) mean PA slope vs. AGB Change (Mg 

ha-1), where slope is given in degrees (ᵒ). The regression equation is y = 0.2505x + 

0.2384. 
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The data for mean PA slope and AGB change met the requirements for 

normality and homogeneity, so a linear regression was undertaken. A significant 

relationship was present between the two variables at the 99.9% confidence 

interval F(1,19) = 15.419, p = 0.001, and R2= 0.419 showed slope to predict 

41.9% of the variance of PA AGB. The results strongly suggest that PAs with 

steeper slopes are more effective at conserving and enhancing AGB within 

PAs, with AGB increasing by 0.25 Mg ha-1 for every additional degree in mean 

PA slope (Fig. 3.11).      

 

 

The dataset for Proximity to Major settlements and PA AGB change did not 

meet all requirements normality, with the category for 3 settlements within a 

buffer deviating significantly from a normal distribution at the 99% confidence 

interval: Shapiro-Wilk F(3) = 0.756, p = 0.014. The non-parametric Kruskal-

Wallis test was therefore undertaken, but no significant difference was found to 

exist between the means of the different categories, with a significance value of 

0.697. The presence of settlements within PAs (and their associated buffer 

Fig. 3.12: Proximity to major settlements and AGB Change 2007-2017. This was 

determined by the number of settlements within a PA and its associated buffer 

zone. Mean AGB change (Mg ha-1) was as follows for each category: 0 = 0.65; 1 = 

1.60; 2 = 1.03; 3 = 0.93. 4 and 5 contained only one PA; their AGB changes were 

1.20 and 1.14 respectively.   
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zones) appeared to have little impact on the AGB change experienced over 

time (Fig. 3.12).  

 

 

 

 

  

Linear regression analysis was undertaken for the Proximity to Major Roads 

and AGB Change dataset, as it conformed to a normal distribution and was 

homogeneous in nature. However, there was no significant relationship 

between the two variables – F(1,19) = 0.582, p = 0.455 – and R2 = 0.030 
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Fig. 3.13: Proximity to Major Roads and AGB Change 2007-2017. a) The P-P plot 

showing the data to follow a normal distribution, and b) road length within each PA 

(and its associated buffer zone) vs. AGB Change (Mg ha-1), where length is given in 

kilometres (km). The regression equation is y = -0.0009x + 1.5729. 
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showed this factor to account for little of the variance in AGB Change within 

PAs. There appears to be little discernible impact of road length within PAs on 

how their AGB levels changed 2007-2017.   

 

3.3.6 Most Influential Factor  

Stepwise multiple regression analysis was undertaken to determine which PA 

characteristic exhibited the strongest effect on AGB change; ‘Level of 

Protection’ was however excluded, as neither the ‘Strict Protection/Mixed-Use’ 

or ‘IUCN Categories’ approaches contained interval or ratio scale data. Slope 

was found to exert the greatest influence on AGB change within PAs; indeed, 

this was the only predictor included in the model (F(1,19) = 15.419, p = 0.001), 

as the adjusted R2 = 0.419 shows this variable alone to explain 41.9% of the 

variance in AGB change seen within the PAs. The model’s explanatory power 

was not improved by including additional factors, though the t = 2.095 for Age (t 

= 3.927 for Slope) demonstrated how this variable was also an important 

predictor of PA effectiveness. The multiple regression equation can be written 

as 𝑌(𝐴𝐺𝐵 𝑐ℎ𝑎𝑛𝑔𝑒) = 0.238 + 0.251(𝑀𝑒𝑎𝑛 𝑆𝑙𝑜𝑝𝑒); full outputs of the stepwise 

regression are included in Appendix C. 
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Discussion  

4.1 Biomass Matching – detecting and estimating AGB change  

4.1.1 Detection 

When assessing whether Biomass Matching is an effective approach for 

predicting AGB change from L-band SAR data, it must first be ascertained if it 

can effectively detect whether individual pixels have experienced either 

increases or decreases in AGB between two time points. Visually comparing the 

AGB change maps produced by the process to alternative data sources (Fig. 

3.1; 3.2; Appendix B) was one of the options available to do this.    

Optical remote sensing data – such as that freely available through Google 

Earth – offers one potential means of validating such AGB changes, and is 

perfectly viable should circumstances allow. For some PAs, including Kamuku 

(Fig. 3.1), Kainji Lake and Upper Ogun (Appendix B), it is relatively easy to 

discern any areas of notable habitat change within their borders from Google 

Earth’s Landsat data; this renders comparisons with their respective AGB 

Change Maps possible. Conversely, AGB changes within other PAs, such as 

Gashaka-Gumti (Fig. 3.2), are almost impossible to determine from this optical 

data, so here the utility of Biomass Matching for AGB change detection is 

limited. However, these incidences may instead be a function of the inherent 

differences between optical and SAR remote sensing data, rather than resulting 

from shortcomings with Biomass Matching. While optical remote sensing data 

(and Landsat in particular) can provide excellent long-term records of tropical 

forest-cover change (Hansen et al., 2013; Roy et al., 2014; Reiche et al., 2015), 

this is not a measure of AGB change (Thenkabail et al., 2004), and fusion with 

additional data sources is required before it is capable of detecting this (Reiche 

et al., 2015). SAR data is one such source; indeed, a strong relationship 

between L-band RCS and AGB has been found to exist in tropical dryland 

ecosystems (Mitchard et al., 2009; Mitchard et al., 2011; Ryan et al., 2012), so 

even subtle changes in the RCS from a particular area over time may be 

inferred as a change in AGB. This relationship between the RCS signal and 

AGB renders L-band SAR far more sophisticated than its optical counterparts, 

and explains why data obtained by the latter was unable to validate the small-

scale AGB changes in PAs detected by Biomass Matching in this investigation.  
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On the other hand, synthetic validation procedures encounter no such issues 

and consistently demonstrate the robustness of the Biomass Matching 

approach for detecting AGB change. Rather than comparing two different data 

sources, the SAR data collected for a particular PA (Opandha) was manipulated 

to simulate varying levels of AGB loss and gain in different areas of pixels 

between two time points (Fig 3.3; Table 3.1). These synthetic AGB changes 

were successfully identified by the Biomass Matching process and visible on 

corresponding AGB change maps (Fig. 3.3), suggesting that the approach may 

be an effective method for detecting real-world AGB changes within an area of 

interest.      

However, though methodologically sound, the overall utility of the approach is 

contingent on the appropriate radar data being employed to investigate a 

particular ecosystem or region. L-band SAR is arguably sensitive to any AGB 

changes in tropical dry forests and savannahs, where AGB levels rarely exceed 

100 Mg ha-1, though the exact threshold at which RCS signal sensitivity is 

reduced and eventually lost (Imhoff, 1993; Minh et al., 2014; Mermoz et al., 

2015) varies between studies, determined by factors such as the local 

environmental conditions and equipment used (Santos et al., 2002; Mitchard et 

al., 2009; Lucas et al., 2010). Consequently, in order to reliably detect AGB 

change in dense, humid forests, where biomass density frequently reaches and 

exceeds 300 Mg ha-1 (Minh et al., 2014), P-band SAR – the longest wavelength 

of radar – may be the only effective option; this will become available after 

2020, when the first satellite equipped with P-band sensors will be launched by 

the European Space Agency (Le Toan et al., 2011; ESA, 2015). Although L-

band radar data appears to fulfil the requirements for this investigation, the 

potential situation of a small number of PAs within the humid forest biome (Ifon, 

Ohosu, Orle River and Udi) must be considered, as particularly high AGB levels 

within these PAs could limit the accuracy of Biomass Matching for detecting 

changes. 
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4.1.2 Estimation  

As with AGB change detection, the ability of Biomass Matching to estimate 

change within PAs over time is heavily dependent on the data used, and in 

particular, the data from which the RCS-AGB relationship is derived. This is 

exemplified by the differences in AGB change between 2007 and 2017 (Table 

3.2; Fig. 3.4) predicted when using the RCS-AGB relationship specific to this 

investigation, and that of Ryan et al. (2012) from their study of small-scale AGB 

change in Mozambican woodlands. Although the trends in mean AGB change 

are identical for each PA (Fig. 3.4), the RCS-AGB relationship of Ryan et al. 

(2012) consistently predicts higher AGB levels at each time point (Fig. 3.4), 

resulting in greater positive or negative AGB change being estimated for each 

study area between 2007 and 2017, with the exception of Lame-Burra (Table 

3.2). These disparities are a product of the methods and data used to obtain 

each RCS-AGB relationship, as these determine the slope and y-intercept 

Fig. 4.1: Kamuku AGB at 1km Spatial Resolution. These have been derived from 

Avitabile et al. (2016)’s pan-tropical biomass map (above), and L-band RCS for the 

year 2010 (below). Lighter shades indicate higher pixel values for AGB (above) and 

RCS (below); for this PA, there is little correlation between the two.  
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coefficients used to predict AGB density and change from SAR data. Ryan et al. 

(2012) regress the RCS of each radar scene in their investigation against field 

inventory data from 96 forest, woodland and cropland plots in the south of their 

study area between 2006 and 2009; from this, mean slope and y-intercept 

values (and thus a RCS-AGB relationship) could be obtained. Contrastingly, this 

investigation regressed the RCS of all PAs for the year 2010 against the AGB of 

all PAs derived from the pan-tropical AGB map of Avitabile et al. (2016). This 

data combines existing LIDAR-based tropical AGB maps (Saatchi et al., 2011; 

Baccini et al., 2012) with a high resolution reference dataset to give a fused 

AGB map 2000 – 2010 at 1km spatial resolution; while this circumvented the 

need for field data, inherent limitations with this method of obtaining a RCS-

AGB relationship are apparent, including the low resolution of the AGB map 

(Avitabile et al., 2016) and potential dissimilarities between the RCS and 

reported AGB within certain PAs (Fig. 4.1). Although this may be a less robust 

method of obtaining a RCS-AGB relationship, it enabled development of one 

which was arguably more applicable to the PAs in this study than one such as 

Ryan et al. (2012)’s, a set of coefficients unique to that particular investigation. 

Furthermore, the general agreement and absence of statistically significant 

difference between the AGB changes over time estimated for each area by the 

two sets of coefficients (t(38) = -1.110, p = 0.274) suggests that both 

approaches may be a viable means of developing such relationships.  

However, the accuracy of AGB change estimation by Biomass Matching is not 

only influenced by the RCS-AGB relationship employed, but also the SAR data 

itself. Indeed, though a strong relationship between L-band RCS and ecosystem 

AGB has frequently been reported (Mitchard et al., 2009; Mitchard et al., 2011; 

Ryan et al., 2012), interactions between the backscatter signal and vegetation 

structural properties which are uncorrelated with AGB prevents RCS from giving 

‘direct’ measurements of AGB (Woodhouse et al., 2012). For example, while 

Mitchard et al. (2011) record a relationship of R2 = 0.86 between L-band HV 

backscatter and AGB, this still indicates that 14% of the variance in AGB 

remains unaccounted for. Despite the increasing utility of remote sensing for 

informing estimates of ecosystem AGB and AGB change over large areas, the 

importance of robust field data in calibrating and validating estimates derived 

from remote sensing is often still advocated (Mitchard et al., 2014). Indeed, 
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Mitchard et al. (2014) reveal considerable differences in regional AGB estimates 

across Amazonia between two remote sensing-derived pan-tropical maps 

(Saatchi et al., 2011; Baccini et al., 2012) and those obtained from a 

comprehensive field-based dataset. Therefore, although remote sensing 

applications like L-band SAR are becoming increasingly applicable for 

estimating ecosystem AGB change, associated limitations prevent such 

predictions from being wholly accurate; as such, Biomass Matching may be 

regarded as a useful tool for estimating relative AGB change within Nigerian 

PAs, thus providing a more general indication of their ability to protect habitats 

within their borders.  

 

4.2 Habitat Conservation in Nigerian Dryland Protected Areas 

Though the outcomes of statistical tests find no statistically significant difference 

between AGB change in protected and unprotected areas for any size category 

(Fig. 3.5) simple visual comparisons (Table 3.4) demonstrate that PAs in 

Nigerian drylands consistently experienced more positive AGB change than 

similarly-sized CAs between 2007 and 2017. From this, it could be inferred that 

PAs are generally more effective than CAs in Nigerian drylands for purposes of 

AGB and habitat conservation. Such results are supported by the findings of 

several studies comparing the effectiveness of savannah PAs to similar 

unprotected areas. In the Brazilian Cerrado, PAs are generally more effective 

than CAs at reducing habitat loss and conversion (Carranza et al., 2014; Paiva 

et al., 2015), while Ament and Cumming (2016) demonstrate natural cover loss 

in a small sample of South African PAs to be lower than that in matched CAs. 

The latter’s results are particularly encouraging (Ament and Cumming, 2016): 

using similar methods, they find evidence to suggest that dryland PAs in 

another sub-Saharan African country are an effective means of protecting 

habitats from deforestation and degradation.   

These positive findings are not restricted to dry forest and savannah 

ecosystems; studies of other tropical ecosystems repeatedly conclude that all 

forms of anthropogenic disturbance are lower in PAs compared to similar 

unprotected lands. Examples may be drawn from Costa Rica (Andam et al., 

2008), the humid forests of central Africa (Bowker et al., 2017), the Ecuadorian 
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Andes (Cuenca et al., 2016), Mexico (Blackman et al., 2015) and across the 

pan-tropics as a whole (Nelson and Chomitz, 2011). Indeed, even those who 

suggest PA effectiveness has been overestimated (Sarathchandra et al., 2018) 

or find evidence for continuing forest loss within PAs (Gaveau et al., 2009), 

concede that PAs are still more effective than unprotected areas at reducing 

habitat loss and degradation. For instance, forest loss inside Sumatran PAs 

1990-2000 occurred at a rate of 0.5% yr-1, whereas that in unprotected areas 

was 4.1% yr-1 (Gaveau et al., 2009). Importantly, these decisions are also 

reached when using different types of data and different proxies for 

anthropogenic disturbance. These include inspections of optical remote sensing 

data for land-cover change (Beresford et al., 2013; Carranza et al., 2014; Ament 

and Cumming, 2016), fires as indicators of deforestation events (Nelson and 

Chomitz, 2011) and satellite deforestation data (Blackman et al., 2015; Bowker 

et al., 2017). The consistency of findings, even when such a wide range of data 

types are used, provides strong support for PAs being more effective than 

similar CAs at reducing AGB and habitat loss across the tropics.              

 

4.2.2 Accuracy and Reliability of Findings  

Although the results of this investigation reflect those of many similar studies, 

the accuracy and reliability of findings must first be assessed before definitive 

conclusions are drawn about Nigerian PA effectiveness. Firstly, the 

representativeness of this sample regarding Nigerian dryland PAs, and PAs in 

dry forest and savannah ecosystems more generally, is important to consider. 

While the original sample included 30 PAs broadly situated across the Guinea 

and Sudan Savannah biomes (Fig 2.1; Fig 2.2), 9 of these were forcibly 

excluded due to issues with subjecting them to Biomass Matching. Of these 

remaining 21 PAs, it is possible that four would fall into humid forest areas (Fig 

2.1; Fig 2.2), leaving only 17 PAs to represent all those located within Nigerian 

savannahs. Additionally, the PAs included in this study were subjectively 

selected, largely according to the availability of key information on the WDPA; 

this inevitably resulted in a bias towards more strictly PAs for which more 

comprehensive information was available, particularly national parks. Though 

this could have exaggerated the effectiveness of this sample of PAs, the results 
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of analyses regarding the relationship between protection levels and 

performance (Fig. 3.9) and suggestions that stricter protection does not always 

equate to better habitat conservation (Nelson and Chomitz, 2011; Pfeifer et al., 

2012; Ferraro et al., 2013) would limit sample bias. Moreover, despite being 

small in size, high resolution, mesoscale studies may be an ideal means of 

investigating a spatially explicit occurrence such as AGB change, investigating 

PA effectiveness in specific countries or regions by using small samples 

(Curran et al., 2004; Carranza et al., 2014); large-scale studies with extensive 

samples (Nelson and Chomitz, 2011; Tranquilli et al., 2014; Bowker et al., 2017) 

may at times be too coarse to adequately investigate such phenomena (Ament 

and Cumming, 2016). Consequently, this small sample may be perfectly 

suitable for exploring and representing PA effectiveness in Nigerian dry forests 

and savannahs.     

While the PA data may be adequate, the methods used to create CAs and 

thereby test the effectiveness of Nigerian PAs for AGB conservation must be 

scrutinised. ‘Matching’ methods use specialist software to generate any number 

of random control points in unprotected areas with similar characteristics to 

points in PAs; these are becoming increasingly popular in studies of PA 

effectiveness, owing to their objectivity, consideration of the non-random siting 

of PAs in landscapes, and ability to avoid bias from potential spillover effects 

(Andam et al., 2008; Gaveau et al., 2009; Joppa and Pfaff, 2010; Nelson and 

Chomitz, 2011; Carranza et al., 2014; Blackman et al., 2015; Bowker et al., 

2017). Although this investigation employed an approach resembling matching 

methods, subjectively creating CAs is far less sophisticated, and consequently 

comes with potential limitations which could impact the aforementioned findings. 

The most detrimental would be the over-estimation of PA effectiveness: while 

size was considered during CA generation, other characteristics such as 

elevation and slope were only loosely accounted for; the overall similarities 

between PAs and their respectively-sized CAs may therefore have been limited, 

with CAs potentially possessing characteristics which would make them 

disproportionately more vulnerable to anthropogenic disturbance (Nelson and 

Chomitz, 2011; Beresford et al., 2013). Though this possible exaggeration of PA 

effectiveness would limit the investigation’s utility to some extent, a ‘subjective’ 

matching method is arguably still more robust than simple comparisons of PAs 
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to immediately adjacent unprotected areas (Pelkey et al., 2000; DeFries et al., 

2005; Alo and Pontius Jr., 2008). These inside-outside comparisons fail to 

account for potential spillover effects (Fig. 1.1), the magnitude and direction of 

which differ greatly between PAs (Pfaff and Robalino, 2012); while not always 

present (Andam et al., 2008; Gaveau et al., 2009; Carranza et al., 2014), when 

leakage does occur, it can significantly impact inferences of PA effectiveness if 

these surrounding areas are used as the controls. For example, Ament and 

Cumming (2016)’s study of South African national parks found negative 

spillover effects to extend up to 50km from five different PA boundaries, while 

positive effects were evident for another 14, and in some cases extended over 

50km from their borders. Despite its relative simplicity, subjectively generating 

CAs improves the chances of these effects being avoided, thereby limiting the 

potential for significant over- or under-estimations of PA effectiveness. 

Although the collection methods may be relatively robust, characteristics of the 

dataset itself may have restricted analytical rigour, and assumptions pertaining 

to the causes of AGB change could impact the validity of conclusions about PA 

effectiveness. While more focused studies can be beneficial in assessments of 

PA performance (Ament and Cumming, 2016), the small sample sizes of PAs 

and CAs (21 and 12 respectively) limited the utility of tests for statistically 

significant difference between their mean AGB change values. As such, simple 

Fig. 4.2: Fire in Nigerian Dryland PAs. The light blue shapefile delimits the area of 

Upper Ogun/Old Oyo – each red point inside and outside its borders represents a 

fire detected by the MCD14DL sensor for the year 2017.  
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descriptive comparisons were far more useful, revealing that PAs of all size 

classes (and overall) performed better than similar CAs (Table 3.3). It must be 

noted, however, that these size classes used to subdivide PAs and guide CA 

creation were subjectively established; there is no universally-accepted method 

of doing this (Maiorano et al., 2008), so its potential impact on the results (Table 

3.3) and subsequent conclusions must be considered. The greatest influence 

on conclusions of PA effectiveness may however stem from the assumptions of 

what drives AGB change within dry forest and savannah PAs and CAs. AGB 

increases are most likely the product of successful conservation efforts, but 

losses can result from a number of root causes, including both natural and 

unnatural fires. These are ubiquitous in dryland areas and essential for 

maintaining dry forests and savannahs as alternative stable states (Van 

Langevelde et al., 2003; Staver et al., 2011a; Staver et al., 2011b; Hoffman et 

al., 2012). Indeed MODIS data of fires in Nigeria between 2007 and 2017 

(available at: https://earthdata.nasa.gov/firms) emphasises the frequency with 

which fires occur, even within the boundaries of PAs (Fig. 4.2). Although fires 

can be purposefully ignited to facilitate clearance for agriculture (Frost, 1999; 

Nelson and Chomitz, 2011; Archibald et al., 2012), those within tropical dryland 

PAs are just as likely due to lightning strikes or controlled burns by park 

managers (Bond and Archibald, 2003). The source of fires cannot be 

determined by MODIS remote sensing data, but if a large proportion of AGB 

losses 2007-2017 within a PA resulted from either naturally-induced or 

controlled fires, its conservation effectiveness would be underestimated by 

Biomass Matching. The potentially significant impact of fires on AGB change in 

dryland PAs must therefore be considered when making inferences about their 

effectiveness.     

Overall, PAs in Nigerian drylands are generally more effective at conserving 

and enhancing AGB levels than ‘similar’ unprotected CAs. While the potential 

influence of the aforementioned limitations and assumptions on the results must 

be considered, the support from findings of numerous comparable studies 

across the tropics (Andam et al., 2008; Gaveau et al., 2009; Joppa and Pfaff, 

2010; Nelson and Chomitz, 2011; Beresford et al., 2013; Carranza et al., 2014; 

Paiva et al., 2015; Blackman et al., 2015; Ament and Cumming, 2016; Cuenca 

et al., 2016; Bowker et al., 2017; Sarathchandra et al., 2018) gives credence to 
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this argument. Therefore, it can be concluded with some confidence that in 

Nigerian dry forests and savannahs, PAs offer an effective means of protecting 

natural habitats from anthropogenic disturbances.     

  

4.3 Factors Influencing Protected Area Effectiveness in Nigerian Drylands  

Understanding the extent to which different factors drive PA performance is 

incredibly important. Inferences can be made as to why existing PAs are 

particularly effective or ineffective in terms of habitat conservation, informing 

attempts to maintain or improve their performance, and it can assist in the 

establishment of PAs by ensuring that newly gazetted areas possess 

characteristics which will maximise their effectiveness. However, discussions 

surrounding the characteristics and environmental variables influencing PA 

effectiveness in terrestrial ecosystems are incredibly complex: not only can the 

relative importance of factors vary between countries, regions and biomes, but 

interactions between them can make it difficult to isolate their individual effects. 

Regardless of such difficulties, attempts will be made to determine which 

factor(s) may be most important in driving PA performance in Nigerian dry 

forests and savannahs, as findings could play a role in influencing regional and 

national conservation policies.    

 

4.3.1 Accessibility 

Disentangling the effect of accessibility on PA effectiveness is complicated by 

how different studies consider it as the product of different combinations of 

environmental variables (Joppa and Pfaff, 2009; Nelson and Chomitz, 2011; 

Pfaff et al., 2014; Bowker et al., 2017 Beresford et al., 2018); despite this, 

however, it is frequently found to substantially influence PA performance. Slope 

steepness is a crucial factor determining PA accessibility, and in this 

investigation, ‘Accessibility – Slope’ was found to contribute considerably to PA 

effectiveness (Table 3.5; Fig. 3.11). These results imply that inaccessible PAs, 

particularly those characterised by steep slopes and undulating terrain, will offer 

far more effective habitat conservation, an observation supported by a number 

of similar studies (Joppa and Pfaff, 2009; Pfaff et al., 2014; Bowker et al., 2017; 
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Beresford et al., 2018). While it is somewhat surprising that mean elevation, 

proximity to major roads, and proximity to major settlements are responsible for 

so little of the variation in AGB change (Table 3.5), there a various potential 

explanation for this. Although higher values of these environmental variables 

are more commonly associated with greater PA effectiveness (i.e. higher 

elevation, and greater distance to major settlements and roads), this does not 

always hold true (Joppa and Pfaff, 2009); for example, a PA may still perform 

well even if situated at low altitude and surrounded by human infrastructure. 

The small sample size of this investigation would increase the likelihood of such 

incidences having a notable effect on the associated regressions. Furthermore, 

the lack of perceived influence of a PA’s proximity to major settlements and 

roads on its effectiveness could originate from the novel buffering approach 

employed (see section 2.9.4); studies which use alternative methods, such as 

Euclidean distance measures (Nelson and Chomitz, 2011; Bowker et al., 2017), 

find proximity to settlements and road networks to contribute notably to PA 

accessibility, and subsequently to PA effectiveness. Therefore, Nigerian dryland 

PAs appear to broadly support the notion that inaccessible PAs are more 

effective: more remote areas are less susceptible to adverse anthropogenic 

activities and so less likely to experience habitat loss and conversion, rendering 

them more effective for conservation purposes. 

As accessibility is often so prominent in discussions of PAs effectiveness, it is 

unsurprising that it is argued to interact strongly with other factors influencing 

performance. The level of protection a PA receives may be inherently dictated 

by its accessibility, and indeed historically, more strictly PAs have been 

preferentially situated in more remote areas (Scott et al., 2001; Peres and Lake, 

2003; Hoekstra et al., 2005; Joppa and Pfaff, 2009). Early PAs, such as 

Yosemite and Yellowstone national parks, were gazetted in lands which, though 

prized for their natural beauty and rare species, were also perceived to be 

inaccessible and of little economic interest (Scott, 1999; Phillips, 2004); this 

legacy of particularly reputable PAs, such as strict nature reserves and national 

parks, being sited on marginal lands (Joppa and Pfaff, 2009) may overwhelming 

explain why such areas often provide such effective habitat protection. In 

Nigeria, Gashaka-Gumti National Park may exemplify this: between 2007 and 

2017, it experienced the second highest per hectare AGB increase (+3.44), 
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while possessing some of the steepest slopes (11.98ᵒ) and being at the highest 

altitude (739.45m a.s.l) of all the PAs studied. Furthermore, more remote PAs 

are arguably also less vulnerable to PADDD, particularly those isolated from 

major road networks. When this is true, PAs are far less viable for major 

infrastructural projects and resource extraction (Bernard et al., 2014; Symes et 

al., 2016); minimal economic incentives mean that national and regional 

authorities will be less inclined to permit detrimental practices, ensuring that 

PAs remain effective. The influence of accessibility on a PA’s level of protection 

through both non-random siting (Joppa and Pfaff, 2009) and propensity for 

PADDD (Symes et al., 2016), emphasises the significance of this factor in 

determining PA performance.     

 

4.3.2 Level of Protection  

The nationally-implemented – and thus internationally-recognised (Juffe-Bignoli 

et al., 2014) – level of protection a PA receives can be influential in dictating its 

overall conservation effectiveness. Various studies of PAs in both tropical 

drylands (Carranza et al., 2014; Francoso et al., 2015) and humid forests 

(Scharlemann et al., 2010; Pfeifer et al., 2012; Nolte et al., 2013) argue that 

stricter protection results in greater PA effectiveness; the national parks (IUCN 

II) in this sample of PAs – Gashaka-Gumti, Kainji Lake, Kamuku, Upper Ogun 

and Yankari – certainly support this notion, as they all experienced distinctly 

positive AGB change (Table 3.3) between 2007 and 2017. However, on 

average this increase is lower than in IUCN IV PAs (Fig. 3.9b), and indeed, 

there are those who argue that more mixed-use PAs can be equally, if not 

more, effective for habitat conservation than strict PAs (Nelson and Chomitz, 

2011; Andrade and Rhodes, 2012; Porter-Bolland et al., 2012; Sassen et al., 

2013; Pfaff et al., 2014; Blackman, 2015; Blackman et al., 2015). There are also 

those who argue that level of protection has no discernible impact on PA 

performance (Nagrenda, 2008), a stance somewhat supported by the ‘IUCN 

Categories’ categorisation used here (Fig. 3.9a). The conflicting nature of 

findings alludes to considerable complexities associated with this debate, and 

suggests that the direction of the relationship between protection and PA 

performance may ultimately depend on its interaction with additional factors.  
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Consistent with earlier discussions, accessibility can be essential in determining 

whether more or less strict protection is inevitably more effective for an area, 

but this can often be contingent on the measures used to determine PA 

effectiveness. Performance can be a function of absolute AGB change within a 

PA – an approach employed in this investigation and by others (Carranza et al., 

2014; Bowker et al., 2017) – or of avoided AGB or habitat loss; in other words, 

the amount of potential loss prevented by a PA’s presence (Nolte et al., 2013; 

Pfaff et al., 2014). When viewed in relation to absolute change, stricter PAs will 

often be more effective, owing to their situation on more marginal land (Joppa 

and Pfaff, 2009) where the potential for anthropogenic disturbance is unlikely. 

Conversely, mixed-use PAs usually perform better in terms of avoided AGB 

loss, as they are disproportionately established in accessible, high-pressure 

areas where the potential for reducing habitat loss is far greater (Nelson and 

Chomitz, 2011; Nolte et al., 2013; Pfaff et al., 2014). However, such trends do 

not hold true for this investigation or a number of others (e.g. Porter-Bolland et 

al., 2012), where PAs classified as ‘mixed-use’ experienced higher AGB change 

in absolute terms than stricter PAs (Fig. 3.9). It is therefore possible that further 

intricacies may be associated with the levels of protection afforded to PAs, 

running deeper than their overarching classifications.   

While nationally- and internationally-designated levels of protection are 

undoubtedly important to PA effectiveness, smaller scale variations in 

management and resourcing can be equally influential, often circumventing the 

methods of higher institutions (Bowker et al., 2017). Indeed, the importance of 

appropriate management and resourcing to PA effectiveness has been 

repeatedly emphasised (Leverington et al., 2010; Andrade and Rhodes, 2012; 

Laurance et al., 2012; Sassen et al., 2013; Tranquilli et al., 2014; Watson et al., 

2014; Blackman et al., 2015), and the suitability of practices can vary 

considerably depending on location. In high-pressure regions, less strictly PAs 

can be a very practical and rewarding option, particularly in countries where PA 

funding might be limited; this is true of many West African nations, where 

political instability often results in low budgets for PA management (Struhsaker 

et al., 2005; Jachmann, 2008). Allowing low-level habitation and sustainable 

use of PA resources by local and indigenous communities can prevent conflicts 

from arising between these peoples and PA administration, as well as 
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encouraging local participation in management and resourcing, especially when 

community livelihoods depend on a PA remaining intact (Andrade and Rhodes, 

2012; Sassen et al., 2013; Blackman, 2015). These collaborative management 

agreements between PA authorities and local people can aid forest protection 

and recovery (Sassen et al., 2013) and greatly reduce maintenance and 

monitoring costs (Andrade and Rhodes, 2012) to ensure long-term PA viability. 

Such approaches may somewhat explain the observed relationship between 

level of protection and effectiveness for Nigerian dryland PAs: less strictly PAs 

with more flexible management strategies on average experienced greater AGB 

increase between 2007 and 2017 than their more strictly protected counterparts 

(Fig. 3.5). However, the performance of mixed-use PAs is highly variable and 

heavily dependent on concessions offered to local communities (Blackman, 

2015); occasionally, these approaches may not satisfy the requirements of local 

people, leading instead to unsustainable levels of encroachment and resource 

exploitation (Francoso et al., 2015). In these circumstances, strictly PAs which 

are rigorously managed and afforded ample resources are far more likely to be 

effective (Pfeifer et al., 2012; Francoso et al., 2015). Variability in management 

requirements are exemplified by Mt Elgon Forest Reserve/National Park in 

Uganda, where changing contexts over time – such as fluctuating coffee prices 

and population densities – have dictated whether strict law enforcement or 

collaborative forest management are more effective for maintaining forest cover 

within different sectors of the park (Sassen et al., 2013). Management and 

resourcing requirements for PAs differ both spatially (within and between PAs) 

and temporally, with pronounced implications for PA effectiveness.    

 

4.3.3 Size 

Although there is no clear-cut relationship between PA size and performance in 

Nigerian drylands (Fig. 3.7) , there is a general consensus that larger PAs offer 

more effective habitat conservation across the globe, supported by findings 

from such disparate regions as central Africa (Tranquilli et al., 2014; Bowker et 

al., 2017), Canada (Leroux and Kerr, 2013) and Italy (Maiorano et al., 2008). 

While interactions with additional factors are likely to be important, size alone 

may independently account for this positive relationship with PA performance 

on many occasions. A prominent argument is that large PAs have their own 
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‘identity’ (Maiorano et al., 2008): they possess environmental characteristics 

which differentiate them from their surrounding landscapes, and are often 

encompassed by sizeable ‘buffer’ zones, where the positive spillover of PA 

effects (e.g. Ament and Cumming, 2016) provides an extra line-of-defence 

against anthropogenic disturbances (DeFries et al., 2005; Blackman et al., 

2015). Meanwhile, small PAs often lack such buffers, and are more likely to be 

component parts of larger-scale ecosystems outside their borders, leaving them 

more vulnerable to the influences of land-cover change in these areas (Hansen 

and DeFries, 2007; Pfeifer et al., 2012; Clark et al., 2013). As well as 

experiencing less absolute habitat change, large PAs may also perform better in 

relative terms. Longer boundaries in relation to their surface area mean that, 

even if some disturbance leaks across their borders, the majority of the PA will 

remain untouched (Leroux and Kerr, 2013). As a result, larger PAs will usually 

experience proportionally less degradation (Clark et al., 2013); therefore, even if 

more AGB loss occurs within a large PA than a smaller PA overall, the 

distribution of this loss over a wider area means that Mg ha-1 AGB loss will be 

lower within the large PA. With such strong support for larger PAs offering more 

effective conservation, is it somewhat surprising that a more positive 

relationship between size and AGB change is not observed for this 

investigation. 

Interactions with additional factors may explain why there is little connection 

between size and PA effectiveness in Nigerian drylands. Accessibility may play 

a key role in influencing the direction of this relationship; however, evidence 

suggests that this will merely reinforce the existence of a positive relationship 

between size and effectiveness. Similar to more strictly PAs (Joppa and Pfaff, 

2009), large PAs may also be preferentially situated in remote areas (McKinney, 

2005; Leroux and Kerr, 2013; Bowker et al., 2017) characterised by low 

population densities, leaving them less vulnerable to local disturbances such as 

agricultural conversion and resource extraction (Struhsaker et al., 2005). This 

may subsequently link to the high levels of protection large PAs often receive, 

and initiate something of a positive feedback loop. Their size and advantageous 

location within landscapes may attract more generous resourcing from 

governments and NGOs (Struhsaker et al., 2005; Blackman et al., 2015), 

facilitating sound management practices and appropriate law enforcement to 
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ensure long-term viability and effective habitat conservation (Leverington et al., 

2010; Andrade and Rhodes, 2012; Laurance et al., 2012; Sassen et al., 2013; 

Tranquilli et al., 2014; Watson et al., 2014), which, in turn, will encourage further 

resourcing. Therefore, it is difficult to ascertain why large PAs in Nigerian 

drylands are not notably more effective than smaller PAs, as the results 

displayed here are certainly somewhat anomalous in the context of previous, 

similar investigations.     

 

4.3.4 Age  

There is debate as to whether older (Eagles et al., 2002; Dudley et al., 2007; 

Andrade and Rhodes, 2012) or younger PAs (Rao et al., 2002; Blackman et al., 

2015; Bowker et al., 2017) might offer better habitat protection, but in Nigerian 

drylands increasing age results in increased PA effectiveness (Fig. 3.8), with a 

subtle relationship apparent between the two variables. As age is an abstract 

characteristic, any influence on PA performance will only result from interactions 

with other factors, though this may almost exclusively relate to level of 

protection, and specifically, management and resourcing. Over time, PA 

administration in both strictly monitored and mixed-use areas may naturally 

improve (Eagles et al., 2002; Dudley et al., 2007); in the former, this may stem 

from greater resourcing stimulated by enhanced reputation and global interest, 

whereas the latter may benefit from increased community compliance with 

regulations (Andrade and Rhodes, 2012). Alternatively, it is also possible that 

younger tropical PAs, established post-colonially, will receive more enthusiastic 

support from both national governments and local communities (Blackman et 

al., 2015), rendering them less vulnerable to disturbance (Rao et al., 2002) or 

from PADDD (Symes et al., 2016). This may even be particularly applicable to 

tropical Africa (Bowker et al., 2017), where many countries were still recently 

subjected to colonial rule (Babou, 2010). However, as none of the PAs included 

in this investigation were established until after Nigeria gained independence in 

1960 (Encyclopaedia Britannica, 2019) such an argument would be invalid, and 

thus potentially explain the positive relationship between PA age and 

performance in Nigerian drylands.  

4.3.5 Summary 
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When assessing the relative importance of different factors in driving PA 

effectiveness in Nigerian drylands and at broader scales, it must be considered 

how each characteristic affects PA performance both independently and 

through interactions with others. While the type of protection a PA receives, 

particularly with regards to its management and resourcing, is a commonly 

recurring theme in debates (Leverington et al., 2010; Andrade and Rhodes, 

2012; Laurance et al., 2012; Sassen et al., 2013; Tranquilli et al., 2014; Watson 

et al., 2014; Blackman et al., 2015), disagreement persists as to whether strict 

protection (Pfeifer et al., 2012; Francoso et al., 2015) or mixed-use approaches 

(Andrade and Rhodes, 2012; Sassen et al., 2013; Blackman, 2015) exert a 

more positive influence on effectiveness. On the other hand, a clear trend exists 

between accessibility and PA performance, with more remote areas almost 

always offering better opportunities for habitat conservation (Joppa and Pfaff, 

2009; Nelson and Chomitz, 2011; Pfaff et al., 2014; Bowker et al., 2017 

Beresford et al., 2018). Combine this with its key interactions with other factors, 

particularly level of protection (Joppa and Pfaff, 2009), and it could be argued 

that accessibility is the most important determinant of PA performance in the dry 

forests and savannahs of Nigeria.     

 

4.3.6 Potential limitations  

The WDPA was an invaluable resource for this investigation, providing 

information regarding particular PA characteristics, as well as downloadable 

shapefiles which were integral to all parts of the analysis; however, at times 

there were issues with this data. Some such problems could be rectified: the 

large inaccuracies with reported PA sizes could be avoided by instead using 

MATLAB R2017a to manually calculate the spatial extent of each, and if a PA’s 

‘Status Year’ was not given by the WDPA, this could be roughly estimated by 

reference to less verified sources (e.g. Parks.it, 2018). Unfortunately, some 

problems were irresolvable, with perhaps the most important being the spatial 

inaccuracies often associated with the PA shapefiles, an issue also recognised 

by previous studies (Nagrenda et al., 2013). Considerable complications could 

arise if these inaccuracies were sufficiently large, affecting a PA’s mean 

elevation and slope values – crucial variables associated with accessibility – 

and its calculated size, all of which could influence the observed relationships 
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with AGB change for the sample of Nigerian PAs. An even more pertinent issue 

Fig. 4.4: Multiple PA Shapefiles. The outlines of the two shapefiles available for 

Alawa, overlying 2017 L-band SAR data, where lighter pixels indicate the PA’s 

approximate extent. The red shapefile (left) is highly inaccurate, whereas that in 

blue (right) – though imperfect – follows the PA’s boundaries far more closely.  

Fig. 4.3: Spatial Inaccuracies with WDPA Shapefiles. The outline of the shapefile for 

Yankari National Park (in red) overlies 2017 L-band SAR data, where lighter shades 

reflect higher values and therefore indicate the PA’s extent. Clear inaccuracies with 

the shapefile are visible, both where lands outside the PA have been included within 

it, and areas inside which have been excluded.    
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could be the potential impact of such spatial errors on perceived PA 

effectiveness: if adjacent, unprotected lands which had experienced disturbance 

2007 – 2017 were wrongly included within a shapefile’s area, this would 

underestimate the effectiveness of the PA in question. The opposite would be 

true if such areas had instead experienced AGB increases during the course of 

the study period. Indeed, this is exemplified by Yankari National Park, where the 

shapefile provided by the WDPA does not adequately reflect the PA’s 

boundaries (Fig. 4.3). Furthermore, certain PAs were represented by two 

different shapefiles, sometimes varying considerably in terms of shape and size. 

For some, the ‘correct’ shapefile was easy to ascertain (Fig. 4.4), whereas for 

others this was far more challenging. These inherent shortcomings with the 

WDPA shapefiles could extend to multiple parts of the investigation, highlighting 

the disadvantages of relying on a single source for such important data.  

In addition to the potential limitations with the WDPA dataset, there were spatial 

inaccuracies associated with the city centroid (CIESIN, 2017) and road network 

(CIESIN, 2013) data used to measure the proximity of each PA to major 

settlements and roads in Nigeria. For the settlement data, the locations of cities 

were depicted by individual pixels, the precision and accuracy of which were 

wholly dependent on the size of input areal units (CIESIN, 2017), while for the 

road data, horizontal accuracy could be anywhere between 30-500m (CIESIN, 

2013). This could have altered both the number of settlements and length of 

road found within a PA and its associated 15km buffer. Furthermore, though 

populations of city centroids were largely derived from the 2010 round of 

national censuses collected between 2005 and 2014, in some circumstances 

contemporary data was unavailable, forcing older estimates to be used or 

figures to be extrapolated (CIESIN, 2017). As, for the purposes of this 

investigation, major settlements were classed as those with populations 

exceeding 50,000 in 2010, any outdated information could influence the number 

of city centroids included in the analysis, and hence the number of settlements 

located within PAs and their associated buffers. These limitations could have 

affected the extent to which these two variables were perceived to interact with 

PA AGB change (Fig. 3.12; Fig. 3.13). 

Although spatial inaccuracies may partially account for the limited relationships 

observed between AGB change and PA proximity to major settlements and 
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roads, the novel buffering approach (see section 2.9.4) may provide a better 

explanation. Unlike the Euclidean distance measures of previous studies 

(Nelson and Chomitz, 2011; Bowker et al., 2017), standardised buffers of 15km 

were placed around all PAs; all settlements and roads within PAs and their 

associated buffers were deemed to have easy access to the PA, so the number 

of city centroids and length of road contained within each of these was 

recorded. As well as rendering the resultant data less comparable to the 

findings of others (Nelson and Chomitz, 2011; Bowker et al., 2017), the buffer 

extents were subjectively established. This presented its own issues: 

accessibility measures were heavily founded on the distances local 

communities in sub-Saharan Africa are willing to travel for key resources, 

especially fuelwood (Wessels et al., 2013); the ‘15km’ value was derived from 

the study of an urban area in Botswana, which found that most residents would 

travel no further than 15km for fuelwood (Hiemstra-van der Hoorst and Hovorka, 

2009). This arbitrary figure could easily be less (some argue local disturbance 

will rarely extend 1.5km beyond an urban area (Wessels et al., 2013)) or more 

(dedicated fuelwood suppliers would likely be willing to travel further (Matsika et 

al., 2013)), but using travel distances for fuelwood as a proxy for accessibility 

may be particularly applicable to Nigeria. An outdated energy infrastructure 

means that 95% of households still use biomass as their primary energy source 

(UNDP, 2016), but the generally poor condition of many rural road networks 

(Akinwale, 2010; Idris and Salisu, 2016) will limit the distances people are able 

to travel for extraction. Therefore, while unsustainable fuelwood practices 

(Matsika et al., 2013) are an important form of disturbance, poor rural 

infrastructure (Akinwale, 2010; Idris and Salisu, 2016) may render fuelwood in 

PAs largely inaccessible to all but the most local rural dwellers; as such, 15km 

may be a reasonable size for PA buffers. The buffer extents can therefore be 

justified to some degree, but the approach itself may still be largely responsible 

for the lack of relationships between PA effectiveness and proximity to major 

settlements and roads. Consequently, mean elevation and slope may provide a 

far better indication of PA accessibility in this investigation.  

Methodological design may also have affected how a PA’s level of protection 

was perceived to influence its performance. The results here suggest that less 

strictly PAs are more effective in conservation terms (Fig. 3.9), but the 
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categorisations applied were guided by the approaches of previous studies 

(Scharlemann et al., 2010; Nelson and Chomitz, 2011; Pfeifer et al., 2012; Nolte 

et al., 2013; Carranza et al., 2014; Blackman et al., 2015) and so ultimately 

subjective in nature. This is particularly true of the ‘Strict Protection/Mixed-use’ 

grouping (Fig. 3.9a), as the category PAs are designated to often differs 

between studies: some consider IUCN I – IV to be ‘strict’ and IUCN V – VI to be 

‘mixed-use’ (Nelson and Chomitz, 2011; Carranza et al., 2014; Blackman et al., 

2015), others believe IUCN I and II to be stricter and III – VI to be less restrictive 

(Scharlemann et al., 2010), and there are those who employ more graded 

groupings uninformed by IUCN classifications (Pfeifer et al., 2012; Nolte et al., 

2013). As there is no universal criteria when it comes to grouping PAs into 

‘strict’ and ‘mixed-use’ protection, it should be considered how the 

categorisations applied in both this investigation and others might have 

influenced conclusions about the effect of different levels of protection on PA 

performance. For example, in this study, if IUCN IV PAs had been included in 

the ‘Strict Protection’ category, more strictly PAs would have experienced more 

positive AGB change than those which classed as ‘Mixed-use’ (Fig. 3.9a). 

Therefore, considering management stringency in terms of IUCN classification 

(Fig. 3.9b) is the more reliable approach, as though imperfect (Burgess et al., 

2005; Leroux et al., 2010), it more objectively represents the level of protection 

received by different PAs.         

While there are limitations associated with the factors included in the analysis 

for research question 3, the exclusion of potentially significant factors should 

also be considered. Indeed, the four factors considered to impact PA 

effectiveness in Nigerian drylands were selected according to their perceived 

importance in the literature and relative ease of measurement (Maiorano et al., 

2008; Joppa and Pfaff, 2009; Scharlemann et al., 2010; Nelson and Chomitz, 

2011; Blackman et al., 2015; Bowker et al., 2017). Other studies of PA 

performance incorporate more, some of which can be difficult to quantify. 

Perhaps the best example of this is the management and resourcing received 

by PAs (Leverington et al., 2010; Andrade and Rhodes, 2012; Laurance et al., 

2012; Sassen et al., 2013; Tranquilli et al., 2014; Watson et al., 2014; Blackman 

et al., 2015). While this was considered in terms of its interactions with other 

factors, the sheer number of quantitative and qualitative variables involved 
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rendered it far too complex for this investigation to assess independently of 

other characteristics. For example, Leverington et al. (2010) list of host of 

potential indicators, and while some of these are quantifiable, many more – 

including adequacy of staff training, adequacy of law enforcement and 

maintenance of equipment – are inherently subjective and complex in nature, 

requiring extensive knowledge which was beyond the scope of this study. 

Indeed, this factor emphasises the intricacies involved in debates of PA 

effectiveness, and the difficulties in ascertaining which might exert the greatest 

influence on their performance in Nigerian drylands.    

 

4.4 Case study: Habitat disturbance in Taraba State, Nigeria 

 Size (ha) Mean 
Elevation 
(m a.s.l) 

Mean 
Slope (ᵒ) 

AGB change 
(Mg ha-1) 

Gashaka-
Gumti 

608,410 
 

739.45 
 

11.98 
 

+3.44 

Control 
Area 1 

618,090 
 

654.93 
 

12.07 +3.55 
 

Control 
Area 2  

640,120 
 

164.91 
 

1.77 
 

-1.27 
 

 

 

To determine the effectiveness of Biomass Matching at detecting (and 

estimating) incidences of known disturbance, and to assess the contribution of 

PAs in Taraba State to habitat conservation, AGB change maps for Gashaka-

Gumti, and ‘very large’ CAs 1 and 2 were compared (Fig. 4.5), along with the 

estimated AGB change 2007 – 2017 to have occurred in each (Fig. 4.6). While 

both CAs are a similar size to Gashaka-Gumti, only CA 1 is also characterised 

by high elevation and steep slopes; CA 2 is far more topographically accessible, 

encompassing lowland areas with far gentler slopes (Table 4.1).    

 

 

 

 

 

Table 4.1: Research Question 4 – Key Characteristics of Areas; while Gashaka-Gumti 

and CA 1 are noticeably very similar in all aspects, CA 2 is clearly situated in a more 

lowland area.    
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4.4.1 Woodland Clearance in Taraba State – verification by Biomass Matching  

Recent, alarming rates of woodland clearance in Taraba State, a savannah 

region of eastern Nigeria, have been reported by a variety of a variety of 

authors (Ahmed et al., 2016; Aiytan, 2016; Chapman, 2016; Ahmed and 

Oruonye, 2017), but there has been little attempt to validate or quantify the 

actual extent of this disturbance. Biomass Matching, using L-band SAR data, 

may provide a means of resolving this issue, so as part of this investigation, 

three sizeable areas within Taraba State were subjected to the procedure: 

Gashaka-Gumti National Park, and ‘very large’ CAs 1 and 2. While both 

Gashaka-Gumti and CA 1 were characterised by high altitudes and steep 

slopes, land within CA 2 was far more topographically accessible (Table 3.6), 

and thus potentially more vulnerable to anthropogenic disturbance (Joppa and 

Pfaff, 2009). Therefore, CA 2 would arguably be the most useful in any efforts to 

validate accounts of extensive woodland clearance in the state (Ahmed et al., 

2016; Aiyetan, 2016; Chapman, 2016; Ahmed and Oruonye, 2017), particularly 

Fig. 4.6: Mean AGB Change 2007-2017 for Gashaka-Gumti, (Very large) Control 

Area 1 and (Very large) Control Area 2.  

Gashaka-Gumti 

Control Area 1 

Control Area 2 
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as even subtle AGB changes in tropical drylands can be effectively detected by 

L-band radar (Mitchard et al., 2011; Ryan et al., 2012).  

The outputs of Biomass Matching for CA 2 certainly support the growing body of 

evidence documenting the denudation of large swathes of West Africa’s 

savannah woodlands (Franck and Hansen, 2014; CITES, 2015; Ahmed et al., 

2016; Aiyetan, 2016; Chapman, 2016; Ahmed and Oruonye, 2017). While 

unsustainable forestry has been a recognised issue in West Africa for some 

time (Blackett and Gardette, 2008; Wessels et al., 2013), the extensive 

clearance of recent years has arguably resulted from the excessive, and often 

illegal, harvesting of a single species synonymous with these woodlands – 

Pterocarpus erinaceus, or the African rosewood (CITES, 2015). This tree has 

long been important to local communities: its wood is ideal for construction and 

joinery, (Segla et al., 2014), its dried leaves are highly nutritious animal fodder 

(CITES, 2015), and it possesses various pharmaceutical qualities (Ouedraogo 

et al., 2006). However, in the last decade Chinese demand for P. erinaceus has 

grown exponentially, with its import value burgeoning from $12,000 in early 

2009, to $180 million by the end of 2014 (CITES, 2015); this ‘rapacious 

appetite’ for rosewood (Chapman, 2016) has driven boom and bust cycles of 

Fig. 4.7: Mean AGB Change 2007-2017 for (Very large) Control Area 2. This has 

been displayed alone to emphasise the recent decline in AGB.    
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extraction across West Africa, with levels of exploitation in different countries 

varying according to the safeguarding measures established and the extent of 

remaining stocks (CITES, 2015). Nigeria has recently found itself at the 

forefront of this unsustainable harvesting. Commercial rosewood logging began 

in Taraba State as recently as 2011 (Ahmed et al., 2016), but by the end of 

2015 the country as a whole had already become the region’s largest exporter 

to China, accounting for 45% of its total imports (Aiyetan, 2016). This initiation 

and then rapid expansion of harvesting is visible in the outputs of Biomass 

Matching for CA 2; there are concentrated pockets of AGB loss within the area 

(Fig. 4.5c), much of which appears to have occurred between 2011 and 2016 

(Fig. 4.7). Therefore, the analyses undertaken here arguably validate the 

reports of extensive woodland clearance in Taraba State (Ahmed et al, 2016; 

Aiyetan, 2016; Chapman, 2016; Ahmed and Oruonye, 2017), though the 

complexities associated with AGB change estimation from L-band RCS data 

(Mitchard et al., 2011; Ryan et al., 2012) mean the results better serve as a 

more relative indication of AGB loss. Furthermore, as CA 2 is only a 

representation of the areas of Taraba State vulnerable to disturbance, it is 

probable that lands surrounding major settlements (such as Jalingo and Bali) 

will have experienced even more dramatic clearance and degradation.    

 

4.4.2 Woodland Degradation and Disappearance – is there a solution? 

Unsustainable timber harvesting has been an enduring issue afflicting forests 

and woodlands across West Africa (Blackett and Gardette, 2008), facilitated by 

an array of factors which complicate attempts to address it. Indeed, though the 

clearance of entire woodlands of P. erinaceus is currently a major problem, 

there are fears that other endemic species could suffer a similar fate once 

rosewood stocks become suitably depleted, triggering vicious cycles of 

exploitation which could devastate West Africa’s dry forests and savannahs 

(CITES, 2015). Despite established timber regulations to protect particular 

species and fragile habitats, illegal harvesting often continues unabated 

(CITES, 2015), encouraged by severe deficiencies in management and 

resourcing (Franck and Hansen, 2014). In Taraba State, such regulations were 

reinforced in both 2007 and 2009 to stimulate greater general habitat protection, 

as well as within forest reserves (Ahmed et al., 2016); however, the relative 
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absence of any formal monitoring or maintenance for such PAs (Burgess et al., 

2005), coupled with endemic corruption, has rendered these policies largely 

ineffective, with such reserves largely incapable of protecting their habitats from 

anthropogenic disturbance (Ahmed and Oruonye, 2017). This emphasises the 

pivotal role of appropriate management and resourcing in deterring detrimental 

activities and ensuring strong PA performance (Leverington et al., 2010; 

Andrade and Rhodes, 2012; Laurance et al., 2012; Sassen et al., 2013; 

Tranquilli et al., 2014; Watson et al., 2014; Blackman et al., 2015), and it may 

be the most effective means of addressing unsustainable harvesting, not only in 

Taraba State, but across West Africa. The effectiveness of Gashaka-Gumti 

National Park when compared with CA 2 (Fig. 4.5; 4.6) could be partially 

explained by this: while its management and resourcing may be insufficient for a 

PA of its size (Chapman et al., 2004), it still receives greater protection than 

smaller PAs or unprotected lands in the state (Burgess et al., 2005; Oruonye 

and Abbas, 2011; Ahmed and Oruonye, 2017). Therefore, even small increases 

in the monitoring and maintenance afforded to vulnerable savannah woodlands 

could be critical in attempts to halt their current decline.  

However, it is unlikely that the starkly contrasting trends in AGB change 

between Gashaka-Gumti and CA 2 (Fig. 4.6) are solely a product of differences 

in management and resourcing. Not only would this be consistent with earlier 

Fig. 4.8: Mean AGB Change 2007-2017 for (Very large) Control Area 1. This has 

been displayed alone to emphasise its steady increase in AGB over time.    
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discussions of various factors interacting to influence PA effectiveness, but it is 

strongly suggested by the products of Biomass Matching for CA 1: despite 

lacking any formal protection, the area experienced steady AGB increase 

between 2007 and 2016 (Fig. 4.8), and even greater per hectare AGB change 

than Gashaka-Gumti (Table 4.1). Indeed, the high elevation and steep slopes of 

CA 1 make it topographically inaccessible (Table 4.1), providing a natural 

deterrent against anthropogenic disturbance which may largely explain the 

observed conservation (and enhancement) of habitat within its artificial borders 

(Joppa and Pfaff, 2009; Pfaff et al., 2014; Bowker et al., 2017; Beresford et al., 

2018). In addition to this remoteness, the absence of economically valuable 

species such as P. erinaceus from these high altitude forests and woodlands 

(Chapman et al., 2004; CITES, 2015) would further discourage commercial 

harvesting. It may therefore be postulated that the impressive performance of 

Gashaka-Gumti as a PA primarily results from both the resourcing it receives 

and its situation in the mountainous, eastern reaches of Taraba State. While 

this offers hope that similarly inaccessible areas in the state may be spared 

from the current wave of habitat degradation (Ahmed et al., 2016; Chapman, 

2016; Aiyetan, 2016; Ahmed and Oruonye, 2017), it accentuates the challenges 

facing its lowland wooded areas, suggesting that without effective protection 

measures, loss of the state’s rosewood woodlands may be all but inevitable.   
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Conclusion  

5.1 Summary of Findings  

The novel Biomass Matching procedure developed by Hill et al. (in prep) may 

provide an excellent means of using SAR remote sensing data to detect both 

large-scale and subtle AGB changes in tropical ecosystems. Large-scale habitat 

changes displayed by optical remote sensing data (e.g. Google Earth 7) can 

often be confirmed by the AGB Change maps produced by Biomass Matching 

(Fig. 3.1; Appendix A), while synthetic validation approaches (Fig. 3.3; Table 

3.1) demonstrate the procedure’s ability to also detect more subtle AGB 

changes in an ecosystem. The ability of Biomass Matching to detect these 

changes is, however, contingent on the appropriate SAR data being used to 

study an ecosystem. L-band SAR is applicable to tropical drylands, as AGB 

levels here will rarely exceed 100 Mg ha-1 (Mitchard et al. 2009), but above this 

threshold the RCS signal sensitivity can be greatly reduced (Mermoz et al., 

2015). Accurately predicting AGB change using Biomass Matching may 

however be far more challenging, because estimates are heavily dependent on 

the RCS-AGB relationship applied to the procedure. Although trends in AGB 

change for the Nigerian PAs are identical when using either Ryan et al. (2012)’s 

or the universal RCS-AGB relationship (Fig. 3.4), the AGB levels predicted for 

each year differ; this results in Ryan et al. (2012)’s regression almost 

consistently estimating greater per hectare AGB change for each PA between 

2007 and 2017 (Table 3.2). Furthermore, these RCS-AGB relationships are 

heavily dependent on the data and methods used to develop them. The 

universal regression was developed using data which is far more applicable to 

this investigation, but with a less robust approach (Avitabile et al., 2016); that of 

Ryan et al. (2012) was calibrated using field data, making it specific to a their 

study site in Mozambique, but methodologically more sound. It must also be 

considered that RCS is not a ‘direct’ measure of AGB (Woodhouse et al., 2012), 

so no estimates will be completely accurate. Therefore, Biomass Matching may 

best be used to infer relative AGB change over time, and provide a more 

general indication of PA effectiveness.   

In Nigerian drylands, PAs are more effective at both conserving and enhancing 

AGB levels than similar unprotected CAs. PAs of all size categories, and 

overall, experienced more positive AGB change 2007-2017 (Table 3.3; Fig 3.5), 
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although differences between samples were not statistically significant at the 

95% confidence interval (p>0.05). Limitations with the methodology and data 

interpretation – including the subjective creation of PAs as opposed to more 

robust ‘matching’ methods (e.g. Andam et al., 2008), and assumption of AGB 

loss resulting from adverse anthropogenic activities (Frost, 1999; Bond and 

Archibald, 2003; Nelson and Chomitz, 2011; Archibald et al., 2012) – may have 

influenced findings to some degree. However, these results support the growing 

body of literature advocating the importance of PAs in both tropical drylands 

(Carranza et al., 2014; Paiva et al., 2015; Ament and Cumming, 2016) and 

humid forests (Andam et al., 2008; Gaveau et al., 2009; Joppa and Pfaff, 2010; 

Nelson and Chomitz, 2011; Beresford et al., 2013; Cuenca et al., 2016; Bowker 

et al., 2017) for conservation purposes.  

Discussions around the factors influencing PA effectiveness are incredibly 

complex: not only may a factor influence PA performance independently and 

through interactions with others, but its perceived importance may be biased by 

the datasets, methods and analyses employed by that particular investigation. 

In Nigerian drylands, accessibility – and particularly slope (Fig. 3.11) – emerged 

as a key determinant of PA effectiveness, both independently (Table 3.5; Fig. 

3.11) and by virtue of its effect on other factors. For example, the level of 

protection assigned to a PA may have been heavily influenced by its 

accessibility (Joppa and Pfaff, 2009). However, the potential importance of 

other factors cannot be discounted, both those explicitly included in this study 

(such as age), and those not considered; the latter particularly refers to the 

management and resourcing a PA receives, as appropriate measures can 

contribute enormously to habitat conservation (Leverington et al., 2010; 

Andrade and Rhodes, 2012; Laurance et al., 2012; Sassen et al., 2013; 

Tranquilli et al., 2014; Watson et al., 2014; Blackman et al., 2015).  

The outputs of Biomass Matching for (very large) CA 2 verify reports of 

extensive, unsustainable logging of Taraba State’s woodlands in recent years 

(Table 4.1; Fig. 4.5; Fig. 4.6). This has likely been driven by the excessive 

demand for P. erinaceus timber from China, a phenomenon which has 

devastated large swathes of West African savannah woodland (CITES, 2015; 

Ahmed et al., 2016; Aiyetan, 2016; Chapman, 2016). The encouraging 

performance of Gashaka-Gumti implies that, with appropriate management, 
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PAs in Taraba State – and perhaps in drylands across the region – could be an 

effective means of preventing habitat clearance and degradation. However, the 

similarly strong performance of (very large) CA 1 suggests that inaccessibility 

may also be a crucial cause of its effectiveness. Therefore, while effective 

management is important for PAs in Taraba State (and across the drylands of 

West Africa as a whole) to succeed, the ability of more topographically 

accessible PAs to halt woodland clearance may be somewhat limited.   

 

5.2 Recommendations for Future Research  

This study has purposed to further our understanding of PAs in tropical dry 

forest and savannah ecosystems. Not only has it underpinned their critical role 

in habitat conservation efforts, but revealed consistencies in the factors 

influencing PA performance across tropical and extra-tropical regions. 

Importantly, the novel Biomass Matching approach has been established as an 

effective means of detecting AGB change, although its utility for change 

estimation may be limited to more relative inferences. Time and financial 

constraints limited some aspects of the study, and certain avenues of 

investigation were not possible; therefore, some recommendations for future 

research into tropical PAs are as follows:  

 It would be useful to ascertain the accuracy of AGB changes estimated 

using RCS-AGB regressions developed from reference datasets such as 

that of Avitabile et al. (2016) for a set of study sites. A field-derived RCS-

AGB relationships could be developed specific to these study sites, and 

estimates of AGB change from the two regressions could be compared. 

 All subsequent investigations into West African dryland PAs should 

employ sophisticated ‘matching’ methods when assessing overall 

effectiveness; this objective approach will account for the non-random 

siting of PAs in landscapes and prevent potential spillover effects from 

over- or underestimating PA performance in relation to CAs, as well as 

ensuring comparability with studies employing the same method (Andam 

et al., 2008; Gaveau et al., 2009; Joppa and Pfaff, 2010; Nelson and 

Chomitz, 2011; Carranza et al., 2014; Blackman et al., 2015; Bowker et 

al., 2017).  
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 When considering the factors affecting PA performance, the broadest 

range possible should be included in descriptive and statistical analyses. 

A factor that should always be explicitly explored – if possible – is the 

management and resourcing received by PAs, as although it can 

constitute a host of quantitative and qualitative variables, it may be one 

of the most important determinants of PA effectiveness (Leverington et 

al., 2010; Andrade and Rhodes, 2012; Laurance et al., 2012; Sassen et 

al., 2013; Tranquilli et al., 2014; Watson et al., 2014; Blackman et al., 

2015).  

 Once P-band SAR data from the ESA’s BIOMASS mission is available 

(ESA, 2015), this should be subjected to Biomass Matching to enable 

extensive studies of AGB change in dense tropical forest PAs. This could 

be particularly effective for detecting both subtle and large-scale AGB 

change (Mitchard et al., 2011; Ryan et al., 2012), giving robust 

indications as to their overall performance.     
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Appendices 

Appendix A – Processing of L-band SAR data in preparation for Biomass 

Matching  

The following details the steps taken in ArcMap 10.5.1 to prepare L-band SAR 

data (2007 – 2010 and 2015 – 2017) for each PA for Biomass Matching in 

MATLAB R2017a: 

1. Appropriate data was first imported into a new ArcMap ‘project’; this 

comprised of a PA’s shapefile – downloaded from the WDPA (2018) – 

and radar scenes covering the shapefile’s area for each year, imported 

as individual rasters (JAXA, 2018; Fig. A.1).  

 

 

 

 

Fig. A.1: The shapefile for Gashaka-Gumti (shaded in blue) set against the sixteen 

individual radar scenes downloaded to encompass most of Taraba State, Nigeria. 
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2. If multiple rasters were required for each year, 

these were combined to produce mosaics by 

using the ‘Mosaic to New Raster’ tool, 

followed by the ‘Mosaic’ tool in the 

ArcToolbox. After this, the ‘Clip’ tool was used 

to extract the PA’s area from the each year’s 

mosaic (Fig. A.2), giving the raw data 

required for processing. 

 

 

3. As the raw data was in the form of digital numbers, this needed to be 

converted to RCS values; using the ‘Raster Calculator’, the following 

equation made this conversion possible: 

 

0.0000000050119 x DN2 

 

where ‘DN’, or ‘Digital Number’, represents the clipped PA for a 

particular year (Fig. A.3). This produced new rasters for each year, with 

values for each pixel now corresponding to RCS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.2: Gashaka-Gumti, extracted 

from raw L-band SAR data for 2017. 

Fig. A.3: Using the ‘Raster Calculator’ to obtain RCS values 

for each PA for each year. 
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4. The RCS rasters were then combined into a stack by using the 

‘Composite bands’ tool. From this, RCS data for each year for the PA 

could be exported from ArcMap as a ‘.tif’ file, ready for Biomass 

Matching.  

 

Appendix B – Visual validation of AGB change in Kainji Lake and Upper 

Ogun  
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Kainji Lake 

The PA can be clearly identified in Google Earth – definite boundaries for 

both 2007 (above) and 2016 (below). The Landsat is slightly patchy, but 

decreases in AGB identified by Biomass Matching on the west side of 

smaller subsection of the PA can arguably also be seen in Google Earth.  
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Upper Ogun 

The PA is clearly visible in Google Earth, with defined boundaries which remain 

constant between 2007 (left) and 2016 (right). However, as incidences of AGB 

change within the PA are fairly sporadic, it is not particularly useful for validation 

purposes. 

 

Appendix C – Outputs of multiple regression analysis for research 

question 3  
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