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We investigate the optimum emitter position within reflecting parabolic antennas whose size is comparable to the
emission wavelength. Using finite-element modeling we calculate the dependence of the amount of power directed
into a 20° half-angle cone on the emitter’s position and compare with results obtained using geometrical optics.
The spatially varying density of states within the wavelength-scale reflector is mapped and its impact discussed.
In addition, it is demonstrated that changing the characteristic size of the reflector within the range from 0.5 to
1.5 times the emission wavelength has a strong bearing on the optimum emitter position, a position that does not
in general coincide with the parabola’s focus. We calculate that the optimal antenna size and emitter position
allow for the maximum directed power to exceed that obtained in the geometrical optics regime.
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1. INTRODUCTION

The parabolic reflector is one of the most popular and important
means of generating highly directional radiation. At the macro-
scale, the broadband characteristics and simple design of parabolic
reflectors have made them part of our daily lives, from automotive
headlights and satellite dishes [1,2] to confocal microscopy and
optical single-molecule spectroscopy [3,4]. Recently, the desire for
highly directional radiation has seen this familiar concept applied
to nanoscale sources of light, where the size of the reflector is
comparable to the wavelength of emission [5–8]. As the reflector
size decreases, the effects of interference, diffraction, and changes
in the optical density of states (DOS) produce a deviation in the
total radiated power and its directionality from the solution pro-
vided by the geometrical optics approximation [2,9–11].

The ability to locate and subsequently fabricate the reflector
around a single-photon source has enabled precise alignment of
the emitter with the geometrical focus of the reflector [5,6].
Here we explore, through finite-element modeling, the effect
of emitter position within the parabola on the directionality
and emitted power as the parabola size is reduced down to
subwavelength sizes.

A paraboloid of revolution has the remarkable property that
all incident rays parallel to the central axis will be reflected to
the focus, making it the ideal shape to collect a collimated beam
or to generate one starting from a point source. Figure 1 shows
a simplified scheme of such a parabolic antenna.

The geometrical optics picture breaks down when the typ-
ical size of the parabolic antenna (or the distance between the

emitter and the reflective surface) is comparable with the wave-
length. At these scales, interference between the emitter and
reflected waves plays a major role, modifying both its angular
distribution and the total power radiated [12]. This latter effect,
an entirely classical phenomenon, is usually associated with the
local density of optical states [13]. Mapping the impact of the
emitter position and reflector size on the radiated power is an
integral part of understanding the emission of light using wave-
length-scale parabolic reflectors and is the subject of this paper.

2. METHOD

To determine the impact of the emitter position within the reflec-
tor on the resulting radiation, we calculated the far-field pattern as
a function of the position and orientation of a dipole emitter.
Finite-element modeling software COMSOL Multiphysics (5.3a)
was used to obtain far-field radiation patterns for emission from
nanoscale and, for comparison, macroscale (geometrical optics re-
gime) parabolic antennas [14].We have chosen the power directed
into a 20° half-angle right circular cone in the far field as a useful
measure of the “performance” of the reflector. The cone and
paraboloid share a common central axis and vertex. The resulting
patterns were then post-processed using MATLAB R2018a to de-
termine the power coupled into the cone.

An example of a far-field radiation pattern is shown in
Fig. 2(b), with its corresponding local field distribution in
Fig. 2(a). In Fig. 2(b) the dashed white circle marks the 20°
half-angle cone within which the radiated power is integrated
to quantify the performance of the reflector.

Research Article Vol. 58, No. 29 / 10 October 2019 / Applied Optics 7957

1559-128X/19/297957-05 Journal © 2019 Optical Society of America

https://orcid.org/0000-0003-3611-6809
https://orcid.org/0000-0003-3611-6809
https://orcid.org/0000-0003-3611-6809
https://orcid.org/0000-0002-7163-6343
https://orcid.org/0000-0002-7163-6343
https://orcid.org/0000-0002-7163-6343
https://orcid.org/0000-0002-9474-5534
https://orcid.org/0000-0002-9474-5534
https://orcid.org/0000-0002-9474-5534
mailto:hp289@exeter.ac.uk
mailto:hp289@exeter.ac.uk
mailto:hp289@exeter.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1364/AO.58.007957
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.58.007957&amp;domain=pdf&amp;date_stamp=2019-10-02


For the case of the macroscale paraboloids (size ≫ wavelength),
radiation patterns were obtained using COMSOL’s Geometrical
Optics Module (Ray Tracing study). In a three-dimensional
simulation, isotropic emission was released from a point within
a finite-height reflecting paraboloid defined by the equation z �
�x2 � y2�∕2, with x ∈ �− ffiffiffi

2
p

,
ffiffiffi
2

p �, y ∈ �− ffiffiffi
2

p
,

ffiffiffi
2

p �, and
z ∈ �0, 1�, with a perfect reflection boundary condition. The sim-
ulation domain was closed with a hemispherical boundary over the
open portion of the paraboloid. The “freeze” boundary condition
was applied here to terminate rays propagating into the far field.
Wave vectors from rays frozen on this boundary were then used to
obtain a far-field radiation pattern. Exploiting the radial symmetry
present, this process was repeated for a regular two-dimensional
grid of source positions, sampling the area within the parabola
on one side of its central axis of symmetry. A “normal” physics-
controlled mesh was used throughout.

For the wavelength-scale paraboloids, a frequency-domain
study within COMSOL’s Electromagnetic Waves, Frequency

Domain module (Frequency Domain study) was used. The posi-
tion and orientation of an oscillating electric point dipole was swept
within a reflective paraboloid of revolution with the same shape as
in the macroscale case. For a dipole moment perpendicular to the
central axis of the reflector, a three-dimensional sweep of one quad-
rant of the reflector is required, while for the case of a dipole
moment oscillating parallel to this axis, a two-dimensional sweep
over r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
and z is sufficient.

The paraboloid was designed to have a height of λ0 and
a radius at its opening of

ffiffiffi
2

p
λ0, with a design wavelength

λ0 � 600 nm. To produce the results of Fig. 5(a), the emis-
sion wavelength λ was varied between 0.5λ0 and 1.5λ0.
As COMSOL employs the Stratton–Chu method [15–18]
to transform from the near field to the far field, it is necessary

Fig. 1. A section of an infinite parabola (red) on Cartesian axes, de-
fined by being equidistant from both the focus (red dot) and the direc-
trix (blue, dashed) at all points. The distance from vertex to the focal
point is the focal length f . Emission from the focal point (green lines) is
collimated by specular refection from a parabolic surface.

Fig. 2. (a) Contour plot of the calculated electric field amplitude in the y � 0 plane, surrounding an oscillating electric point dipole within a
nanoscale parabolic reflector. The emission wavelength λ � 600 nm. The dipole is located at the parabola’s focus (on axis at z � 0.5λ) and is
oscillating in the x̂ direction as indicated by the red arrow. The amplitude of the field has been normalized to unity. (b) Corresponding far-field
contour plot, in wave-vector (kx , ky) space. The amplitude of the far field has been normalized to unity. The white circles mark emission inclination
angles as labeled, with the dashed circle corresponding to the 20° half-angle cone used to measure the performance of the reflector.

Fig. 3. Geometrical optics solution for power directed into a 20°
half-angle cone for an isotropic emitter at varying positions within
a finite parabolic reflector. As the solution is independent of the size
of the reflector in the geometrical optics regime, the dimensions are
given in terms of the vertex to opening distance y0. Power values are
normalized to the total emitted power. The red dot marks the focus of
the paraboloid.
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to enclose the whole system in a closed surface with uniform
properties. The reflecting parabolic surface was continued by a
horizontal annulus of width 0.2λ0, which formed a closed sur-
face with a hemisphere below the paraboloid. The perfect elec-
tric conductor boundary condition was applied to this entire
surface. This allows an additional spherical air layer of annular
radius 0.3λ0 to act both as the homogeneous boundary for the
near-tofar-field transformation and a second-order scattering
boundary condition (which effectively releases radiation from
the simulation domain) on its outer surface. A “normal” phys-
ics-controlled mesh was used throughout.

3. RESULTS AND DISCUSSION

As a baseline to assess the emission characteristics of sources
within wavelength-scale parabolic reflectors, we first calculated

the geometrical optics solution. Figure 3 shows the variation in
the power directed into a 20° half-angle cone as the source po-
sition is varied, simulated using the geometrical optics approxi-
mation. As expected, a region of efficient coupling into the
target cone is found when the source is near the focus of
the reflector. This efficiency remains below 100%, as the reflec-
tor is of finite extent. It is also noteworthy that the focus is not
the optimum position for a source, even within the geometrical
optics approximation; this is a consequence of both the finite
extent of the paraboloid and the finite collection angle. While a
source at the focus still optimizes emission on axis, emission
into the cone is optimized when the source lies below the focal
point as seen in Fig. 3.

With the macroscale solution established, we may now ex-
amine the wavelength-scale scenario. At this scale, the dipolar
nature of an individual emitter must be taken into account.

Fig. 4. Directed power for dipole emitters as a function of their position within a wavelength-scale parabolic reflector (top row), corresponding
total radiated power (middle row), and fraction of total radiated power within the target cone (bottom row). The emission wavelength λ � 600 nm.
The dipole orientation is given by the red arrows, where Av. denotes the geometric mean of the three orthogonal dipole orientations (where the dipole
oscillation in the y case is obtained from the oscillation in the x solution shown). In (a)–(c) the power directed into a 20° half-angle cone is normalized
to the total power emitted in the absence of any reflector, as is the total radiated power (d)–(f ). Results for dipoles orientated in the ẑ direction and
the geometric mean possess rotational symmetry about the z axis, while perpendicular orientations have symmetry about the x � 0 and y � 0
planes. Red dots indicate the geometrical focal point of the paraboloids.
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Results were therefore obtained for different electric dipole mo-
ment orientations.

Figures 4(a)–4(c) show the position-dependent power radi-
ated into a 20° half-angle cone for dipole moments oscillating
in the (a) vertical ẑ and (b) horizontal x̂ directions; (c) shows the
geometric mean of the solutions for the three basis dipole mo-
ment orientations (13 x̂ � 1

3 ŷ� 1
3 ẑ). It can be seen in (c) that the

maximum power radiated into the target cone is approximately
50% of the total power radiated by an equivalent emitter in free
space. As one would expect, this value falls short of the ∼75%
achieved in the geometrical optics regime, which ignores dif-
fraction. It can also be seen that while in the macroscale sol-
ution of Fig. 3 only a small improvement is gained by
repositioning sources below the focal point, for the geometry
chosen in Fig. 4 the geometrical focus is one of the worst pos-
sible choices.

In the COMSOL simulations we observe that for some
emitter positions as much as 10% of the total power radiated
was into directions below the reflecting surface. This power,
which cannot have passed through the perfect electric conduc-
tor boundary condition corresponding to the metal, is attrib-
uted to the finite nature of the metallic surface surrounding the
opening of the reflector [19]. As discussed, a finite metallic
“surrounding” was a requirement of COMSOL’s Stratton–
Chu-based near-to-far-field transformation [15,16].

The maxima and minima present in Figs. 4(a)–4(c) can be
understood by examining the spatial variation in the density of
optical states, shown via the changes in total emitted power.
Figures 4(d)–4(f ) are equivalent to their top row counterparts,
but they display the total power emitted for each source posi-
tion and orientation. It can be seen that the poor performance
around the focal position in Figs. 4(a)–4(c) can be attributed

Fig. 5. (a) Variation in the power directed into a 20° half-angle cone with emitter position along the reflector’s central axis and with emission
wavelength. The emission wavelength is given in units of the design wavelength λ0 � 600 nm, which determines the (fixed) size of the reflector. The
size and shape of the reflector remains as in Fig. 4, with a vertex to opening distance of λ0 � 600 nm. Directed power values are normalized to the
total power radiated by an equivalent emitter (at the specified emission wavelength) in free space. The black squares indicate values obtained by
simulation, and the connecting black lines are visual guides. The dashed red lines indicate the position of the geometrical focus. The “λ � 0” values
represent the solution in the small wavelength limit in which the geometrical optics approximation may accurately be applied, and the solution does
not depend on wavelength. (b) As in (a), but showing the total radiated power.
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to a considerable reduction in the DOS here, compared both
with its free-space value and more noticeably with the elevated
DOS above and below the focal position. It can also be seen in
Figs. 4(d) and 4(e) that the variations in the DOS follow intui-
tively from the case of an oscillating dipole above an infinite
ground plane [20–23]. In this simplified case, consideration of
the image charges induced in the mirror by the dipole provides
an intuitive explanation. For a dipole oscillating immediately
above and parallel to a mirror, the induced image charges effec-
tively cancel out the dipole moment, whereas for a perpendicular
dipole its effective moment is increased. This behavior is clearly
seen for emitters close to the reflector in Figs. 4(d) and 4(e).

Figures 4(g)–4(i) show the fraction of total emitted power
that is coupled into the target cone. This shows the results of
the top row for directed power, normalized to the total radiated
power of the middle row, as opposed to the power radiated in free
space. This allows one to independently see the effects of the
changes in the DOS and the “focusing ability” of the reflector,
which combine to yield the directed power behavior seen in
Figs. 4(a)–4(c). As one might expect, the focusing behavior seen
in Fig. 4(i) is less pronounced and less spatially localized than
that seen in the geometrical optics regime of Fig. 3.

Figure 4 shows that at this scale the local DOS has a strong
bearing on both the optimum emitter position and the corre-
sponding value for the directed power. As the size of the reflector
is varied, so too will be the local DOS. Figure 5(a) shows the
amount of power directed into a 20° half-angle cone for emitter
positions along the central axis of the reflector, for a range of
emission wavelengths, effectively varying the reflector size. The
geometrical optics solution is present at the lambda � 0 posi-
tion, for comparison. It can be seen that as the effective size of
the antenna decreases, maxima in the directed power broaden
and decrease in number. The expected trend of a general decrease
in directed power with decreasing effective size is also observed,
but has its exceptions as it competes with the changing location
of maxima and minima in the DOS. Figure 5(b) shows the
variation of the total emitted power (DOS).

The impact of the DOS on the directed power can clearly
be seen by comparison of Figs. 5(b) and 5(a). For a λ∶λ0 ratio
of 4/6, the directed power can be seen to exceed the optimal
value obtained in the geometrical optics regime. This occurs for
an emitter positioned 7/10 of the way from paraboloid vertex
to the opening, over half an emission wavelength above the
optimum inferred from geometrical optics.

4. CONCLUSIONS

It has been shown through numerical calculation that for para-
bolic antennas whose characteristic size is approximately the
emission wavelength, the optimum emitter position deviates
considerably from the paraboloid’s focus. An informed choice
on placing the emitter allows the power emitted into a cone
to exceed the optimum value for the geometrical optics solu-
tion. In contrast, choosing to position the emitter at the focus
may result in less than 50% of the directed power expected
from geometrical optics. In summary, our results show that
there is considerable scope to optimize the performance of
wavelength-scale parabolic reflectors.
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