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ABSTRACT
Generic simulation models are designed to enable model reuse. We argue that there are
two weaknesses within the generic simulation modelling literature. Firstly, that generic
models sacrifice the relative simplicity of a bespoke simulation model for flexibility.
Secondly, that generic models are published in conceptual form only. If researchers cannot
access computer implementation of models, then there is little incentive or benefit to
recode one over coding a simpler bespoke simulation model. We introduce an incremental
approach to generic modelling in discrete-event simulation. We develop an archetype
setting-specific generic model of a hospital ward. The archetype model is first developed
and applied in a rehabilitation ward setting. Then a second team applies the model in a
specialised intensive care setting. We report the successes, obstacles and redevelopment
needed for reuse of the generic model along with how the results of these studies were
used to inform healthcare delivery.
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1. Introduction

The development, verification and validation of dis-
crete-event simulation (DES) models are time-
consuming and expensive. The reuse of existing mod-
els is often pointed to as a method to reduce this
upfront cost (Kaylain et al., 2008; Robinson, Nance,
Paul, Pidd, & Taylor, 2004). Model reuse can occur at
different levels within a DES study: from the reuse of
a conceptual model (Balci & Nance, 2008; Monks
et al., 2017), to simulation components (Pidd &
Carvalho, 2006), to an entire coded model
(Robinson et al., 2004) to re-applying insights from
abstract queuing models (Fletcher & Worthington,
2009). We adopted Fletcher and Worthington
(2009) the definition of a setting-specific generic
model to describe a DES model designed for reuse
in a general hospital ward. There are several examples
of setting-specific generic models in the health-care
simulation literature (e.g., Di Mascolo & Gouin, 2013;
Fletcher, Halsall, Huxham, & Worthington, 2007;
Günal & Pidd, 2011; Sinreich & Marmor, 2004;
Weerawat, Pichitlamken, & Subsombat, 2013). We
argue that there are two weaknesses of the DES gen-
eric modelling literature. First, the models are often
complex relative to a bespoke simulation model due
to the need to be able to reconfigure the model to run
in more than one setting. Second, the computer
implementation of the generic models is unavailable.
Complex models usually require more data, are
harder to understand and can have a long run time.

Our approach advocates beginning with a simple
archetypal generic model of a process and only add-
ing further detail if needed. Application in multiple-
settings can expose the weaknesses in the design of
a generic model and the adaptions that are needed
(Robinson et al., 2004). The requirement to recode
the, possibly complex, generic model reduces the like-
lihood of opportunistic reuse and testing of a model
by new modelling teams substantially (Monks &
Meskarian, 2017). Our approach is to make computer
implementations of the model findable, accessible
and citable.

This study aims to address the re-application and
re-development gaps in the DES generic modelling
literature. We report two generic modelling studies
in healthcare. The applied examples in question were
two real and sequential studies about the configuration
of hospital wards that were commissioned by the NHS
(National Health Service) in the UK. The first model
was designed by the first two authors who are experi-
enced simulation modellers. The context is the transfer
of patients from an acute hospital setting to
a community hospital for rehabilitation. The second
modelling study was executed by the last two authors
who were novice simulation modellers and at the time
were undertaking a master’s degree in Operational
Research. The second study tested the generic proper-
ties of the first model in a more specialised (intensive
care) ward and identified additional flexibility needed
in order to successfully reuse it. As both studies were
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informing real decision-making, our work also contri-
butes to the growing, but still limited, evidence about
the impact of computer simulation in health
(Brailsford & Vissers, 2011; Fone et al., 2003; Günal
& Pidd, 2010; Monks et al., 2018; Crowe, Turner,
Utley, & Fulop, 2017). In each case, we describe the
use of the models and their results in practice and the
challenges faced in reuse.

2. Study aims

Our study had five aims:

● To develop a base generic simulation model of
a hospital general ward;

● To test the model in both general and highly
specialised hospital wards;

● To identify adaptions needed to reuse the model
in a more specialised setting;

● To identify challenges, obstacles and benefits of
developing the generic models;

● To document the use or lack of use of these
generic models in practice.

This paper begins with a description of the model
development methods and then reports the two mod-
els in detail, before giving details of the case studies,
including sample results and a narrative of the use of
the models in practice. It then concludes with the
implications of this work and suggestions for further
work.

3. Methods

3.1. The general approach to model design

We grounded model design in real capacity planning
problems faced in the NHS. We followed standard
“include/exclude” approaches to set the model level
of detail from the formal literature on conceptual
modelling (Robinson, 2008a, 2008b). Overarching
this process, were three generic modelling require-
ments that we based on generic hospital modelling
literature (Günal, 2012; Günal & Pidd, 2011).

• The principle of keeping the model as simple as
possible, to facilitate understanding and, where
necessary, incremental adaptation, whilst providing
sufficiently accurate results to convince decision-
makers to use the results to support ward capacity
planning;

• Incorporating enough flexibility in the model
configuration to allow the model to be reused, for
its intended purpose, across multiple hospitals;

• Ensuring the model was intuitive for users with
limited simulation or programming training and for
future adaptions by other simulation modellers.

We note that these requirements are sometimes
contradictory. Too much flexibility would come at
the expense of both intuitive usability and simplicity
and was likely to result in redundant functionality or
“feature bloat”. Our approach, therefore, settled on
creating an archetype ward model that could be used
independently or easily adapted for more specialised
wards. We believed our base model to be reusable
across many general medical and surgical wards in
different types of hospital. For example, it could be
used to model a respiratory or rehabilitation wards or
an acute medical unit. The base purpose of the model
was to assist the planning of the number and config-
uration of beds required to minimise admission
delays for heterogeneous patient populations both
now and in the future. We identified the components
of the problem that varied between wards (flexibility
requirements) through discussions with our NHS
collaborators, literature review and through our own
experience of modelling to assist the NHS with ward
capacity planning. We selected what we felt was
a simple to learn, use and relatively inexpensive com-
mercial simulation package for model implementa-
tion. We also limited the extent to which the user
interacts with the simulation software by using an
Excel interface.

A second team of modellers, supervised by one of
the original team, reused the archetype model in
a more specialist context: an intensive care unit.
Where necessary we incrementally added to the
level of detail and flexibility of the base model to
produce sufficiently accurate results to support deci-
sion-making.

3.1.1. Access to the generic models
To facilitate reuse and refinement of the models we
developed, we adopt an open science approach to this
study (Taylor et al., 2017). All model code is findable,
accessible, reusable and citable, via Zenodo (https://
zenodo.org/), along with test data for model verifica-
tion. The coded models are implemented in Simul8
Professional 2018. We document the model using the
STRESS-DES reporting guidelines (Monks et al.,
2018). The full STRESS-DES documentation is avail-
able in the online appendix.

3.2. Archetype ward model

3.2.1. Motivation and objectives
A common problem for managers in hospitals is
planning ward bed capacity. Too few beds and there
is a problem with patient flow: patients will experi-
ence significant admission delays to specialist care or
may not be able to transfer from one ward to another
either in the same or a different hospital. In extreme
circumstances, patient may be admitted to wards
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outside of their specialist needs. Too many beds and
continuous patient flow comes at the expense of
a hospital’s need for value-for-money.

This is a classic queuing problem with a waiting
time versus value-for-money trade-off. To support
health-care planners, the generic ward model outputs
the long-run average and distributions for admission
waiting time and ward occupancy. Waiting metrics
consist of the number of patients waiting for admis-
sion (queue length) and waiting time for those unable
to enter the ward straight away and where relevant
the number of patients who wait so long that they are
treated elsewhere and never enter the ward. Ward
occupancy metrics represent the utilisation of beds
in the simulation. The model outputs both the aver-
age and maximum ward occupancy. The model also
outputs a third type of output measure: transfers
between beds within the ward. This was included
due to single-sex accommodation requirements we
discuss below.

3.2.2. Level of detail
To build a generic model for a hospital ward, we need
to consider the features of a typical ward, as well as
the variation in the arrival rate and length of stay.
There is a requirement, introduced in 2011
(Department of Health and Social Care, 2011), that
in the UK “all hospital accommodation is same-sex”
(Care Quality Commission, 2015). This is also
a requirement in other countries, for example, in
South Africa (Bloem, 2015). This means that the
division of the ward into a combination of same-sex
multi-bed bays and single rooms is an important
consideration. If only single rooms are used, then
they will automatically be same-sex and it is only
the capacity of the ward that needs to be considered.
In general, it is more expensive to build and staff
a ward of entirely single rooms (Spesyvtseva, n.d.).
There is also mixed evidence as to whether single
rooms are better or worse environments for patients.
Study findings range from reporting considerable
patient benefits of single rooms (Wales NUS Estates,
2005), no clear effect of single rooms on safety

(Simon, Maben, Murrells, & Griffiths, 2016) and in
some settings sharing a bay with other patients can
actually assist patient recovery (Department of
Health, 2008). Isles (2013) argues that a mix of single
rooms and muli-bed bays facilitates infection control
where needed, while allowing those who prefer hav-
ing company to do so. Given this uncertainty,
a generic simulation model needs to allow users to
input different ward configurations, in terms of the
number of single beds and the size of any bays used.
The model must also take account of the same-sex
requirement when assessing if there is space for the
patient. Should this not be required the data can be
entered as if all patients are of one gender.

3.2.3. Model logic
The logic of the model is shown in Figure 1. Patients
arrive into the model at the point when the decision
is made to admit them to the ward being modelled,
the inter-arrival times are sampled from an empirical
distribution. At this point, a patient is assigned
a gender and length of stay sampled from the corre-
sponding empirical distribution.

Patients then join a queue of individuals waiting
for a space in the ward. In practice, this is a virtual as
opposed to a physical queue. It is the list of patients
waiting elsewhere in the hospital for transfer to the
ward. From the queue, they move to a decision point,
which attempts to allocate them to a bed on the ward.
If a suitable space in the ward is found they move to
a bed in the ward.

If there is no suitable space in the ward, the patient
will be assumed to stay elsewhere in the hospital and
be waiting for a space in the ward. A short waiting
time is allocated before an admission is reattempted.
Patients move from the queue in ‘first in first out’
order if more than one arrives or reaches the end of
their short wait at the same time. For patients who
wait for a space in the ward a proportion of the time
that they wait may be removed from the length of
stay (this is user-defined). It is also possible for the
user to specify when patients have waited so long that
they no longer require the ward (they have been

Figure 1. The structure of the single ward model.
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treated elsewhere). When this happens patients will
be sent out of the system.

Patients then remain on the ward for their
sampled length of stay before being discharged from
the ward.

3.2.4. Model inputs
The model includes two controllable ward design
variables: the number of beds in a hospital ward and
how they are divided into a mixture of single rooms
and multi-bedbays.

The variation in the arrival of patients to the ward
and their subsequent length of stay on a ward is
handled through sampling from empirical distribu-
tion functions. The model allows multiple patient
types. Each of which can be assigned its own length
of stay distribution. This for example, could be age
bands within the population or patients with different
care needs. Health-care planners, therefore, have the
flexibility to use the model with data of differing
levels of detail. In cases where data are highly limited,
planners can use the model with a single homoge-
nous patient population. However, if more detailed
data are available, planners can plan across multiple
populations by varying arrival and length stay distri-
butions based on predictions of future demand.

3.2.5. Simul8 implementation
In a generic model the flexibility to model different
systems should come from making changes to the
input data (Di Mascolo & Gouin, 2013; Fletcher &
Worthington, 2009). For our model the model config-
uration and input data for the ward (discussed above)
are specified in a separate Microsoft Excel 2016
spreadsheet. Our target audience are individuals who
work in health-care service delivery, they are likely to
be familiar with Excel and therefore be more comfor-
table with entering data in a familiar environment.

Within the spreadsheet patients can be divided
into up to five different groups, these could represent
different types of condition, age groups, or any other
division that effects either the arrival rate or the
amount of time required on the ward (length of
stay), for the particular ward being considered. In
some cases a clinically relevant division into groups
will be apparent, for others, statistical techniques
such as classification and regression tree (CART)
analysis could be used, an example of how this can
work in a health-care setting can be found in Harper
et al. (2003). The arrival rates and empirical data are
all entered via the user interface. The interface allows
users to enter raw numbers from their data and then
transforms these into the format required by the
model. This is all intended to increase the user-
friendliness of the model for those already familiar
with Excel and allow adaptions to allow for some
differences between wards without requiring

a simulation expert to make changes to the model.
The interface also includes features to assist the user
in setting up scenarios involving changes to patients’
lengths of stay and/or demand for the ward.

The data contained in the interface is loaded into
a model in Simul8 Professional 2018 (https://www.
simul8.com/), which is discrete-event simulation spe-
cialist software. The arrows containing text in
Figure 1 represent the entry and exit points of the
model, the circles the queues and the rectangle the
decision point. The actions discussed on the diagram
are generated using a combination of Simul8’s labels
(patient attributes) and, its bespoke programming
language, visual logic. The ward is modelled as
a queue where patients “wait” to be discharged, the
number of patients in the ward is controlled by
keeping track of the number of patients in each
bay/in single beds through the implementation of
a spreadsheet to which they are added when admitted
and removed from when discharged.

As any multi-bed bays must be single sex the
algorithm below is used to assign each patient to
a bay within the ward:

(1) If there are spaces in at least one bay contain-
ing patients of the same gender as the patient
to be assigned, then assign the patient to the
one with the highest proportion of its beds
occupied. This is to allow the possibility of
the least full bays becoming empty and poten-
tially switching gender. Bay index number is
used as a tie break if required.

(2) If the patient was not assigned a bed in step 1
and there are any empty bays assign the
patient to the bay with the highest index
number.

(3) If the patient was not assigned a bed in step 1
or 2 and there are any spaces in single rooms
available assign the patient to a single room.

(4) If the patient was not assigned a bed in step 1,
2 or 3 and there is a patient of the opposite
gender in a single room and it is possible to
move that patient to an appropriately gen-
dered bay move that patient and assign the
original patient to the single room.

(5) Else assign a short waiting time to the patient
and send them back to the queue.

The user interface, Simul8 model and a brief user
guide are available from DOI 10.5281/zenodo.1468287
(Penn &Monks, 2018). The full STRESS-DES documen-
tation for the model is contained in the online appendix.

The model was validated using the applied example
set out below by comparing the outputs when run with
current admissions with the results for the current
wards. Detailed verification of the logic was conducted
by creating data sets that would require the full range of
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outcomes and running through the code step by step. It
was further validated through demonstrations of the
model and results to our contacts at the hospital.

3.3. Redevelopment of specialised version:
Intensive care unit model

3.3.1. Motivation
We went on to test and reuse the archetype model in
a more specialised ward environment: capacity plan-
ning in intensive care units (ICU). ICU capacity plan-
ning requires similar experimentation functionality to
that provided in the archetype ward model. However,
there are differences in how patients are treated whilst
waiting for a space and the lengths of stay are con-
siderably shorter. This section will explain how the
model was redeveloped to address these differences.

ICUs are where the most critically ill patients are
cared for, the equipment required is complex and
expensive and high staffing ratios are required. The
annual running cost of an ICU bed in the UK is
approximately £361,000 (Griffiths, Jones, Read, &
Williams, 2010). It is important to balance the need
to have enough ICU beds to avoid delays in caring for
critically ill patients, with concern that running ICU
beds that are not used would be poor use of limited
resources (Zhu, Hoon, & Teow, 2012). The quality of
intensive care has been the subject of national focus
due to the consequences ofinadequate capacity, parti-
cularly for elective surgery cancellations and emer-
gency patient transfers (Costa, Shahani, & Harper,
2003).

As for the archetype model, there is variability in
both the arrival rates and lengths of stay of patients,
with concern about reducing the extent to which
patients stay longer than medically required. The
significant differences are that ICUs are exempt
from the same-sex accommodation rule, and that
ICU patients can only wait limited time for a bed to
become available before they must be transferred
elsewhere or have their operation cancelled.

In an ICU the groups into which patients naturally
divide are based on the level of care they require and
whether they will require more than one level of care
during their stay.

3.3.2. Adaptions to the conceptual model
We have started with the generic ward model dis-
cussed above and redeveloped it to become a generic
ICU model. We implement a user interface based on
that discussed above, but with more data required for
the additional features of the model. Figure 2 illus-
trates the conceptual model. The basic flow model is
identical apart from the replacement of “ward” with
“ICU”. However, the comments about what is hap-
pening at each stage are different; the differences are
underlined for emphasis.

Table 1 provides a comparison of the two models,
providing full details of how the original model has
been adapted.

Patients will go the through the queuing loop until
the maximum waiting time for their patient type. At
the end of this time, they will be transferred else-
where. In reality, patients would be transferred earlier

Table 1. Summary of differences between the models.
Feature Generic ward model Generic ICU model

Time represented Daily Hourly – as the lengths of stay are shorter and waiting time more
crucial

Arrival process Single distribution Time-dependent; as fewer patients arrive at night
Waiting times All patients loop until they enter ward or no

longer need it
Different max waiting times for different groups assigned on
entering the system

Time between admission
attempts

The same for all patients Short for emergencies, several days for surgical patients to allow for
rebooking.

Bed types Bays to be single gender Only level of care considered, with limit added on number with
highest care level

Input data Divided by age and gender Divided by level of care required

Decision 

to admit 

to ICU

Queue for 

bed
Assign bed ICU

Discharge 

from ICU

Transfer 

If no bed available send back to 

Queue (set shorter min wait)

If patient is 

going to wait too 

long transfer out

Within ICU patients are 

assigned level of care –

this can change

For non-emergency 

surgery assign day to 

return 

Patients either 

discharged 

home or to 

another ward

Length of stay at 

each level and 

acceptable  wait 

set on arrival 

Consider level of 

care required and 

staffing case mix

Includes death

Figure 2. The model structure adaptions for ICU.
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if it seemed unlikely that a bed would become avail-
able, however, the important result for decision-
making is the number transferred. We, therefore, do
not model the transfer process in detail.

3.3.3. Simul8 implementation
The ICU model is an incremental adaption of the
archetype model. As for the archetype ward model
the data input is using empirical distributions based
on hospital data, along with settings to control
experimentation. All of these are entered via an
Excel interface. They are then read into the adapted
version of the original Simul8 model.

This version of the Simul8 model does not need to
include the same gender assignment algorithm given
in section 3.2.5, however the routing back of those
patients who cannot be assigned beds in the ward
straight away is more complex. The model was ver-
ified using the applied example given in Section 4.2, it
was validated by comparison with the data analysis
and the opinion of those working in the system.

Both the Excel user interface and Simul8 model
are available online at DOI 10.5281/zenodo.1468314
(Penn, Monks, Kazmierska, & Alkoheji, 2018) the full
STRESS-DES documentation is also included in the
online appendix.

4. Applied examples

4.1. Designing a new community rehabilitation
ward

4.1.1. Background
An NHS clinical commissioning group (CCG) and
community trust approached us for analytical sup-
port for the business case for combining two rehabi-
litation wards. The two wards were part of
a community trust and cared for patients that were
transferred from a separate large acute hospital.
There were substantial waiting times (in the UK,
delayed transfers of care) for these wards and the
creation of a new-combined ward provided an oppor-
tunity to review capacity requirements. We worked
with the local commissioning manager and the nurse
responsible for coordinating the rehabilitation beds.
The former was responsible for the business case
overall and was able to provide the required data,
while the later works in the existing wards and was
therefore invaluable in validating the model.

4.1.2. Data sources
Anonymised data from the two existing wards
including empirical distributions for the arrival rate
of patients and their lengths of stay, by age group and
gender have been brought together to create a patient
profile for the new ward. A distribution for the
lengths of stay with that part of the stay considered

“excess bed days” removed has been set-up, to allow
scenarios considering removing part of this aspect of
patients stay to be created. Public data on population
projections, by age and gender, allows us to consider
the potential increase in demand as the numbers
using the ward increases.

4.1.3. Illustrative model results
In the study the archetype model was used for large-
scale search experimentation (see Hoad, Monks, &
O’Brien, 2017). The solution space for total numbers
of beds and configurations of those beds into bays,
proportions of the population change by age group
affecting demand and reducing the excess bed days
was explored. In total, we conducted 280 simulation
experiments.

Table 2 is an example of the results for different
bed configurations, with the model run for 1 year
(approximately 650 arrivals) following a 1 year warm-
up period for 100 replications. The number of repli-
cations was selected so that the half width of the
confidence intervals for all performance measures
would be less than 5% of the mean using Simul8’s
inbuilt facility for selecting the number of replica-
tions, which is based on research by Hoad,
Robinson, and Davis (2010). This set of results
shows the impact of changing the mix of single
rooms and bays of four beds. As the number of single
beds increases to around 10 the average waiting time
and queue length for entering the ward go down, but
the number of transfers occurring increases. As the
number of single beds increases beyond 14 the num-
ber of transfers drops, as single rooms create greater
flexibility in finding suitable accommodation for
patients.

Similar sets of scenarios were run with different
bay sizes and also with possible changes to the case
mix. The later were developed based on input from
the charge nurse responsible for the current wards,
based on groups of patients who cannot usually be
accommodated in the wards but who would be
expected to benefit from such care.

Table 2. Sample results for a range of 50-bed configurations.
Experiment Input Experiment Results

Size
of
Bays

Number
of Bays

Number
of

Singles

Avg.
Wait
(days)

Avg.
Queue

Avg. %
Occupancy

Number
of

Transfers

0 0 50 0.6 1 87.5 0
4 12 2 2.4 5 87.4 48
4 11 6 1.5 3 87.5 97
4 10 10 1.0 2 87.5 117
4 9 14 0.7 1 87.5 123
4 8 18 0.6 1 87.5 115
4 7 22 0.6 1 87.5 101
4 6 26 0.6 1 87.5 87
4 5 30 0.6 1 87.5 71
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4.1.4. Use of the results in practice
The results of the model demonstrated that creating
a new ward with the combined bed numbers of the
two original wards would not be sustainable. This is
due to the increasing elderly population in the region,
which will increase demand. The NHS used the
model results as the basis for a £16m ($21m; €18m)
business case development of the wards. The CCG
have estimated that by 2022 the saving to the local
health economy of the redesigned wards at £3.2m per
annum.

The search experimentation demonstrated that
were multiple “optimal” splits of single and multi-
bay options. The model suggested that similar waiting
times and numbers of transfers could be achieved
with fewer single beds and larger bays, than is being
put forward in the business case. The NHS opted for
the same proportion of single beds as the existing
wards and with bays of three beds, as they know
that this works well from a clinical perspective.

We note that the reporting of the results from the
simple model was not as straightforward as we
expected. After the results of the study were reported
we were contacted by a senior manager at the com-
munity hospital with a query over the model’s valid-
ity. The issue related to a forecasting component of
the study where we examined queue lengths given
different projections of the adult population. Our
analysis demonstrated the classic queuing versus traf-
fic intensity trade-off: in scenarios where ward occu-
pancy was very high, small increases in the number of
beds led to large reductions in queues. However, the
mental model of the health-care manager (and his
team) led to the expectation that if you add five more
beds to a ward then the queue for the ward would
reduce by five patients. This is the so-called fallacy of
planning capacity by average and failing to account
for stochasticity. It is also worth noting that it was
not a straightforward process to correct this misper-
ception. We conducted a series of educational inter-
ventions including demonstrations of even simpler
simulation models with and without stochastic beha-
viour; detailed written explanations and additional
analysis of the model to generate probabilities of
different queues lengths.

4.2. The effect of delayed discharges on ICU
capacity requirements

4.2.1. Background
A regional adult critical care network approached us
regarding the possibility of creating a generic model
that could be used to explore changes to the number
of beds, lengths of stay or arrival rates for any of its
ICUs. For this modelling, we worked predominantly
with the network manager, but ICU visits were also

conducted, and sample results were presented to
a selection of those working across the network.

4.2.2. Data sources
Anonymised data from all the ICUs in the network
have been used to generate empirical distributions for
the arrival rate of patients and their lengths of stay,
for each of the levels of need. A distribution for the
lengths of stay with that part of the duration consid-
ered “discharge delays” removed has been set-up, to
allow scenarios considering removing part of this
aspect of patients stay to be created. Public data on
population projections, by age and gender, allows us
to consider the potential increase in demand as the
numbers using the ward increases.

4.2.3. Illustrative model results
The specialised model was again used for search
experimentation (see Hoad et al., 2017). Factors con-
sidered were, reducing discharge delays, increasing
population and changes to bed numbers. Table 3
provides a sample of the results when considering
removing the part of a patient’s stay that is consid-
ered a “delayed discharge” for one of the 18 hospitals
in the network.

This illustrates how reducing the delay in dischar-
ging patients could allow the number of beds to be
reduced. Given the significant cost of running a single
ICU bed, this allows comparison of the costs and
benefits of reducing delayed discharges.

The decision to consider removing delays over
24 h and over 4 h is based on these being important
cut-offs in the data recording. The adjustments are
made in the data processing so other time periods
could be considered without any changes to the model.

These results are a small sample from the scenarios
explored, which included consideration of a range of
numbers of beds available for each of the periods of
delay being removed. Removing different proportions
of the delays were also considered, giving an indica-
tion of the impact of different levels of success in
reducing delayed discharges. Comparing these results
for different hospitals in the network can assist in
identifying where to target resources to make the
biggest improvements.

Table 3. Sample results for reducing delayed discharges.

Base
Remove delays
over 24 hours

Remove delays
over 4 hours

Number of beds
available

25 24 23

Occupancy of unit
(average percentage)

76.4% 76.7% 76.7%

Emergency Transfers
(average number)

30 31 31

Electives cancelled
(average percentage)

20.7% 20.1% 21.2%
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4.2.4. Use of the results in practice
The original analysis considered two units from the
ICU network. The network manager is continuing to
use the model to conduct similar analysis for the
other units and is using the results in ongoing dis-
cussions about reducing the delay in discharging
patients.

Other ICU networks are aware of the model and are
considering using it with their data. The network man-
ager for whom this analysis was originally undertaken
has a copy of Simul8 Professional and the Excel inter-
face is allowing him to use the model with very limited
support. However, lack of access to Simul8 is limiting
the ability of other networks to access the model.

5. Discussion

5.1. Summary

Our study has designed an archetype setting-specific
generic model of a hospital ward that can be used in
capacity planning. We grounded this model in a real
and pressing problem facing health-care planners in
the UK. Although simple, the model was highly effec-
tive in supporting decisions and has real tangible
benefits for the NHS. We tested the limits of the
archetype model and its ease of adaptation through
a second team of (novice) modellers who reused the
original model in a more specialised ICU setting. We
found that most of the flexibility offered by the arche-
type was needed when reused in the ICU setting.
However, there were some key differences. The
most prominent was the need to include a more
detailed arrival and admission processes.

Redeveloping the archetype model rather than start-
ing from scratch, saved time particularly in terms of
planning how to operate a user interface to allow
scenarios to be generated outside of the Simul8 soft-
ware. It has also reduced the time taken to validate the
model, as part of this process had already been under-
taken. As the second model was worked on by
a different team, there was some time required for
understanding the original model and how it needed
to be adapted to the new problem. This process was
assisted by documentation of the first model and
access to the original modeller when required. Thus,
demonstrating that modifying a sufficiently documen-
ted generic model can have significant advantages over
creating a bespoke model. In deciding whether to
modify a generic model or create a bespoke model
the extent of the differences between the modelling
requirements and therefore the changes required will
remain a significant consideration.

The second model could in itself be considered
a generic model for an ICU setting and be reused
for similar problems, rather than going back to the
more basic model.

5.2. Implications for generic modelling

We found that reuse of our original model led to new
learning about what flexibility might be incorporated
into an archetype model. The adaptations that
the second team of modellers made could arguably
have been incorporated into the original model’s
flexibility. For example, the model could accept
inputs for multiple time-dependent arrival distribu-
tions. We justified our decision for a single arrival
input to navigate the simplicity and flexibility trade-
off (Günal, 2012). Our aim was to allow novice simu-
lation users, perhaps with limited data, to more easily
reuse the model and reduce the potential for mistakes
in its use. We also note that to reduce the complexity
of the ICU model to only that which was needed, the
ability to consider gender has been removed from it,
so future users will need to select which of the models
most closely fits the problem that they are
considering.

Fletcher and Worthington (2009) argued that users
of generic models should not be required to invest in
specific software. There are several popular open-
source DES tools and programming languages now
available (Dagkakis & Heavey, 2016). For example,
there are Python-based open source DES tools avail-
able Ciw (Palmer, Knight, Harper, & Hawa, 2018)
and SimPy (Team SimPy, 2018). However, the cur-
rent drawback of open science simulation tools is that
setup and deployment of models requires the right
programming and simulation expertise (Dagkakis &
Heavey, 2016). Although not insurmountable, at this
time this poses a significant barrier for an organisa-
tion such as the NHS to quickly pick up and use the
models. Our computer implementation of the models
reported here use Simul8 Professional: a relatively
low-cost commercial simulation package with
a strong ethos of usability. Our decision was based
on our positive experience of working with novice
simulation users, both students and within the NHS,
using the software. We demonstrated that it was
successful when reused with the regional critical
care network (who held a Simul8 license), but spread
to the national network, who would need to invest in
licenses, now seems unlikely in a financially strug-
gling NHS.

5.3. Evidence of simulation improving healthcare
planning

Although a full implementation study was out of the
scope of our work, we can point to several contribu-
tions that our work has made to the limited evidence
of simulation improving health service delivery.
Firstly, the enthusiastic adoption of the model by
health-care planners and care providers in the
region. Second, the predicted multi-million-pound
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saving to the regions health economy over the next 5
years. Lastly, the education we provided to the leaders
of these health systems about the dynamics of queu-
ing systems.

The educational impact of the model was not an
original aim of the study. We, therefore, did not have
a substantive educational intervention to hand such
as that from SimLean (Robinson, Radnor, Burgess, &
Worthington, 2012); however, we did have simple
queuing models that could be deployed from working
in acute hospitals on similar problems (Monks &
Meskarian, 2017). It is interesting to note that the
queuing education we provided was to explain the
results of the (simple) archetype simulation model.
Our experience agrees with rigorous implementation
research conducted outside a simulation context, but
still within an Operational Research study (Crowe
et al., 2017); namely that to be implemented results
need to be accessible to policymakers and practi-
tioners. Given the reuse emphasis of such studies,
this may suggest that the design of generic models
should include a significant education package.

5.4. Future work

The open approach of our work means that both
models are freely available. They can be accessed by
researchers or health-care planners who wish to use
them with different data, or to redevelop them for
other similar problems. We will keep track of the
number of times that they are accessed and would be
very interested in hearing from anyone who is making
use of them, in full or as inspiration for new models.

We have discussed the limitations of software
availability for the use of simulation models in the
NHS. We are actively exploring open-source simula-
tion software to increase the flexibility of our future
generic models and encourage other modellers to
consider this issue. There is scope to explore the use
of generic modelling in a wide range of applications.
While our research has focused on the healthcare
context, there is no reason why such generic model-
ling should not bring similar benefits in a range other
domains. We hope our incremental approach to
development, reuse of our own model, and the pub-
lication of our coded models, will assist others in
creating and implementing generic models in other
areas of simulation.

As the creation and publication of generic models
increases it would be beneficial to develop a metric to
define the level of generality of models in
a standardised manner. This might also include stan-
dardisation of documentation of models in a similar
way to the STRESS-DES guidelines (Monks et al.,
2018), specifically focussed on the scope of the
model to adapt to different system features and per-
formance measures.
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Appendix

Strengthening the Reporting of Empirical Simulation Studies (STRESS)
This table reports the models against the STRESS-DES guidelines, indicating where information is given in the paper
or providing the details.

Section/Subsection Item Ward Model ICU Model

1. Objectives
Purpose of the model 1.1 See sections 3.2.1 and 4.1.1 See sections 3.3.1 and 4.2.1

Model Outputs 1.2 Data recorded for each patient/day during the model
run and totals/averages reported at the end of the
run:

Data recorded for each patient/day during the model
run and totals/averages reported at the end of the
run:

• Average waiting time – all patients and for those who
wait for a bed

• Percentage of Beds Occupied
• Average Length of Stay

• Maximum waiting time • Total Patients Treated

• Average time spent on the ward • Total Patients Admitted
• Average number on the ward • Total Patients who waited

• Maximum number on the ward • Total Patients Transferred to another hospital
• Percentage occupancy of ward • Total Cancelled Surgeries

• Number of transfers between bays/single beds • Percentage Cancelled Surgeries
• Number who leave without getting into the ward • Percentage of time at full capacity

• Maximum number of beds used

• The percentage of the time that each possible number
of beds are in use.

• The percentages are calculated at the end of each run
using summations that are added to for each relevant
patient through a simulation run.

Experimentation Aims 1.3 See section 4.1.3 See section 4.2.3
2. Logic
Base model overview
diagram

2.1 See Figure 1 See Figure 2

Base model logic 2.2 See sections 3.2.3 and 3.2.5 See sections 3.3.2 and 3.3.3 for adaptions to Ward Model
Scenario logic 2.3 Scenarios are created by changing the input data not

the model.
Scenarios are created by changing the input data not
the model.

Algorithms 2.4 See section 3.2.5 No additional
Components 2.5 The entities within the model are the patients who move

through the system the attributes recorded for them
are:

The entities within the model are the patients who move
through the system the attributes recorded for them
are:

• Gender • Group (for groupings within patients
• Group (for age groupings or other groupings) • LoopRoute (for waiting routing)

• Length of Stay • Length of Stay
• Max wait (now long they can wait for) • Mixed (for label based routing)

• Start wait (simulation time at start of waiting
period)

• NewElec (if they are an elective patient)
• New EM (if they are an emergency patient)

• To Ward (for label based routing) • QValue (used in calculations)
• Bay No (when they are assigned to a bay) • Space (for label based routing)

• Wait for assignment • Space (for label based routing)
• Waiting time • Start_wait (simulation time at start of waiting period)

• Type (for the type of care needed)

• Weight (used to assess staffing levels)
Assign to ward, see section 3.2.5 Assign bed see section 3.3.2

The beds in the ward. The beds in the ICU. Nurse numbers are considered
implicitly in the limit on the number of level 3
patients.

Patients who have completed their minimum waiting
time are considered for entry to the ward in order of
arrival to the queue.

See section 3.2.3

Patients who have completed their minimum waiting
time are considered for entry to the ward in order of
arrival to the queue.

See section 3.3.2
Patients enter at the point where a decision is made that
they should transfer to the ward. Patients are sampled
from the empirical distribution of patient arrivals.

Patients exit when either they have waited too long or
they have completed their stay in the ward.

Patients enter at the point where a decision is made that
they should transfer to ICU. Patients arrivals are
sampled from the empirical distribution of patient
arrivals.

Patients exit when either they are transferred out of the
system because they have waited too long or they
have completed their stay in the ICU.

3. Data
Data sources 3.1 • Interviews with stakeholders • Interviews with stakeholders

(Continued)
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(Continued).

Section/Subsection Item Ward Model ICU Model

• Samples of routinely collected data – 21 months of
data; 970 patients using the existing wards including
admissions, excess bed days, length of stay, gender
and age

• Samples of routinely collected data – 2 years of data
covering 25,000 patients across the test network,
including admission and discharge dates, delay in
discharge, level of care (with dates of transfers
between levels), type of patient (emergency/elective)
and patient demographics

• Population projections provided by Hampshire County
Council see:

• Population projections provided by Hampshire County
Council see:

http://www3.hants.gov.uk/factsandfigures/population-
statistics/pop-estimates.htm

http://www3.hants.gov.uk/factsandfigures/population-
statistics/pop-estimates.htm

Pre-processing 3.2 Empirical distributions are used. Empirical distributions are used.

Input parameters 3.3 Empirical distributions used throughout see section 3.2.4
and data input file available online for full list of input
variables.

Empirical distributions used throughout see section 3.2.4
and data input file available online for full list of input
variables.

Assumptions 3.4 That the patients arriving will follow the same arrival
and LoS patterns for patients of each age group and
the same proportion of patients will use the ward in
relation to the age groups in the general population.

Seasonal variations are not considered.

That the patients arriving will follow the same arrival
and LoS patterns for patients of each age group and
the same proportion of patients will use the ward in
relation to the age groups in the general population.

Seasonal variations are not considered.
4. Experimentation
Initialisation 4.1 The model is empty on initialisation. A warm up period

of 1 year is used. After 1 year the occupancy of the
ward has stabilised.

Model is non-terminating.

The model is empty on initialisation. A warm up period
of 1 month is used. After 1 month the occupancy of
the unit has stabilised

Model is non-terminating.
Run length 4.2 See 4.1.3 1 year run length, time units modelled are hours

Estimation approach 4.3 See 4.1.3 –100 independent replications were used. This
number was based on the advice of Simul8’s trial
calculator for a precision of 5% on the reported
performance measures.

680 independent replications were used. This number
was based on the advice of Simul8’s trial calculator for
a precision of 5% on the reported performance
measures. This high number of reps was needed for
the number of transfers, which was generally a low
number.

5. Implementation
Software or
programming
language

5.1 Simul8 Professional 2018 was used. Simul8 Professional 2018 was used, this model has been
run on a number of different computers.

Random sampling 5.2 Commercial software was used see 5.1. Commercial software was used see 5.1.

Model execution 5.3 Commercial software was used see 5.1.
Patients who have completed their minimum waiting

time are considered for entry to the ward in order of
arrival to the queue.

Commercial software was used see 5.1.
Patients who have completed their minimum waiting

time are considered for entry to the ward in order of
arrival to the queue.

System Specification 5.4 Simul8 Professional 2018 was used.
Run on a Dell Latitude E7440 with an Intel(R) Core™ i7-

4600U CPU @2.10G Hz 2.70 GHz processor, 16.0 GB of
RAM and a 64-bit operating system.

The running time varied considerably depending on the
scenario that was being run.

Simul8 Professional 2018 was used, this model has been
run on a number of different computers including a
Dell Latitude E7440 with an Intel(R) Core™ i7-4600U
CPU @2.10 GHz 2.70 GHz processor, 16.0 GB of RAM
and a 64-bit operating system.

The running time varied considerably depending on the
scenario that was being run.

6. Code Access
Computer Model Sharing
Statement

6.1 The model is available from: DOI 10.5281/
zenodo.1468287

The model is available from: DOI 10.5281/
zenodo.1468314
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