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ABSTRACT

Context. The study of linear waves and instabilities is necessary to understand the physical evolution of an atmosphere, and can
provide physical interpretation of the complex flows found in simulations performed using global circulation models (GCMs). In
particular, the acceleration of superrotating flow at the equator of hot Jupiters has mostly been studied under several simplifying
assumptions, the relaxing of which may impact final results.
Aims. We develop and benchmark a publicly available algorithm to identify the eigenmodes of an atmosphere around any initial steady
state. We also solve for linear steady states indicated to be essential in existing theories of the acceleration of hot Jupiter superrotation.
Methods. We linearise the hydrodynamical equations of a planetary atmosphere in a steady state with arbitrary velocities and thermal
profile. We then discretise the linearised equations on an appropriate staggered grid, and solve for eigenvectors and linear steady
solutions with the use of a parallel library for linear algebra: ScaLAPACK. We also implement a posteriori calculation of an energy
equation in order to obtain more information on the underlying physics of the mode.
Results. Our code is tested using classical wave and instability test cases in multiple geometries (2D, 3D, two-layer equivalent
depth). The steady linear circulation calculations also reproduce expected results for the atmosphere of hot Jupiters. We finally show
the robustness of our energy equation, and its power to obtain physical insight into the modes.
Conclusions. We developed and tested a code for the study of linear processes in planetary atmospheres with an arbitrary steady
state. The calculation of an a posteriori energy equation provides both increased robustness and physical meaning to the obtained
eigenmodes. This code can be applied to various problems, and notably used to further study the initial spin up of superrotation of
GCM simulations of hot Jupiters.
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1. Introduction

The study of the influence and propagation of waves in planetary
atmospheres is often performed using models with several sim-
plifications, most notably the assumption of a zero or zonally–
symmetric and constant initial zonal flow (e.g. Kasahara & Qian
2000), or restriction to a beta–plane solution (e.g. Lindzen 1967).
Such simplifications allow analytical prediction of the key wave
mechanisms, and in some cases a complete understanding of
their structure (even in the mathematical sense; see Matsuno
1966).

Despite the simplifications, such studies have provided sig-
nificant insight into atmospheric dynamics. Wheeler & Kiladis
(1999) for example demonstrate that the propagation of waves
can be linked to convective motions in the atmosphere of the
Earth, and the resulting description matches analytical theories
(e.g. Vallis 2006; Holton 1992) remarkably well. Baroclinic and
barotropic instabilities are also known to have an impact on the
circulations of planetary atmospheres (see Williams 2003).

However, for more complex mean flows or situations where
individual terms in the hydrodynamical equations are not clearly
dominant, analytical treatments rapidly become impractical.
Additionally, some wave structures, or modes, are only sup-
ported by the full equations, being effectively “filtered out” by

the simplifications. Notably, Wang & Mitchell (2014) numer-
ically identify a Rossby–Kelvin wave mode for a planetary
atmosphere that cannot be recovered in the quasi–geostrophic
equations (see Gill 1980 or Vallis 2006 for further details).

The detection and characterisation of a specific class of exo-
planets, hot Jupiters, has provided impetus to the study of non-
axisymmetrically forced planetary atmospheres. Hot Jupiters are
Jovian planets in short-period orbits close to their host star, and
likely have synchronised rotational and orbital speeds such that a
single hemisphere or day side faces the host star at all times (see
Baraffe et al. 2010). The slow rotation (periods of ∼4 days) and
Jovian radii suggest such atmospheres exist in a regime where
the Rossby number is of order unity Ro = U

L f , where U is the
characteristic flow velocity, L a characteristic length scale, and
f the Coriolis parameter, meaning rotation is neither dominant
nor negligible. Observational evidence has indicated the pres-
ence of fast zonal “jets” (zonally coherent flows) of a few km s−1

(Louden & Wheatley 2015). The mechanism for accelerating
these zonal flows has been explored by Showman & Polvani
(2011), building on the linear studies of Matsuno (1966) and Gill
(1980) and using a two-layer equivalent depth approach.

To further study the linear waves and instabilities
present in these atmospheres, we developed a public code,
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ECLIPS3D1 (Eigenvectors, Circulation and Linear Instabilities
for Planetary Science in 3 Dimensions), which we benchmark in
this work. More globally, this code can be used in the study of
linear stable or unstable modes within any planetary atmosphere
from an arbitrary initial steady state.

We expand upon Thuburn et al. (2002), who studied prop-
agating wave modes in an axisymmetric atmosphere at rest to
include linear modes in an atmosphere with a steady background
flow in three-dimensional spherical coordinates. We detail the
structure of ECLIPS3D including the equations solved and the
process of obtaining a solution. We detail the different sets of
equations implemented (axisymmetric 2D, 3D, two-layer equiv-
alent depth) as well as the time-dependent or independent solu-
tions (waves, instabilities, and standing circulation). Finally, we
implemented a posteriori calculation of an energy equation for a
given solution. These semi-analytical results allow the verifica-
tion of the frequency of the modes (and the growth and damping
rate for instabilities), as well as isolation of the dominant mech-
anism providing insight into the physical phenomena driving the
instability.

In Sect. 2, we outline the equations implemented in
ECLIPS3D (with the full equations detailed in Appendix A), and
the procedure for solving them, alongside the method of cal-
culating the energy equation. We then benchmark ECLIPS3D
against a range of classical calculations of waves, instabil-
ities, and circulations in Sect. 3, including a setup similar
to Showman & Polvani (2011). Finally, we draw conclusions
and comment on future developments and applications for
ECLIPS3D in Sect. 4.

2. The algorithm

2.1. Linearised equations

Thuburn et al. (2002) show that even the simplest atmospheric
waves exhibit behaviour that cannot be accurately expressed by
separating variables (requiring a height-dependent shift in lat-
itude; see Thuburn et al. 2002, for details). Therefore, in the
general case, no assumption can be made on the mathemati-
cal expression of the wave regarding spatial coordinates. As our
steady state is arbitrary, we linearise the full equations with no
simplification. However, to more easily describe the main capa-
bilities of ECLIPS3D we detail how ECLIPS3D solves the Euler
equations, omitting diffusion or viscosity, although dissipative
processes have been implemented (and discussed in the steady
circulation case in Sect. 3.5 and Appendix A.5). The basic equa-
tion set is as follows.

Du
Dt
− 2Ωv sin(φ) + 2Ωw cos(φ) +

1
ρr cos(φ)

∂p
∂λ

+
uw
r
−

uv tan(φ)
r

= 0 (1a)
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1 https://github.com/fdebras/ECLIPS3D
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p = ρRT (1f)

θ = T
(

p0

p

) R
cp

, (1g)

where u, v, and w are the components of velocity in the longitudi-
nal (λ), latitudinal (φ), and vertical (r) directions, ρ is the density,
p the pressure, T the temperature, θ the potential temperature, p0
a reference pressure, R the gas constant divided by mean molec-
ular weight, cp the heat capacity, g the gravitational acceleration
(and is a function of r, see Appendix A.1), Ω the rotation rate
of the planet, r the radial distance from the centre of the planet,
λ the longitude, φ the latitude, and finally Q is the heating rate
(if present). Equations (1a)–(1c) represent momentum conserva-
tion, (1d) mass conservation, (1e) conservation of energy, (1f) is
the equation of state (here an ideal gas), and (1g) defines poten-
tial temperature, closing the set. Thuburn et al. (2002) showed
that potential temperature is more appropriate than normal tem-
perature for studies of the linear modes. Finally, D/Dt is the
Lagrangian or material derivative and t is time.

Solving for waves or instabilities then requires these equa-
tions to be linearised. We follow the definitions of Thuburn et al.
(2002) for the perturbed variables (this scaling comes from
Daley 1988), which greatly simplify the equations when the
steady state is axisymmetric and at rest. This choice was made
for easier comparison and benchmarking with Thuburn et al.
(2002), but a user of the code can change the implemented equa-
tions easily without affecting the method of solution. Namely,
we write

u′ = ρi (u − ui) (2a)
v′ = ρi (v − vi) (2b)
w′ = ρi (w − wi) (2c)
p′ = (p − pi) (2d)

θ′ =
gρi

θi
(θ − θi) , (2e)

where a prime denotes a linearised variable and an i subscript the
initial steady state.

If the heating rate Q is non-zero, it has to be properly
included in the linearised equations. When solving for waves and
instabilities, we simply linearise Q and include it in the left-hand
side of the equations. This is detailed in Appendix A.4. When
looking for steady, linear circulation (and not free or forced
waves) Q(r, φ, λ) is specified and considered small enough to
only trigger a linear response. A dissipative mechanism must
also be added in order to reach a linear steady state. This setup
is similar to that of Showman & Polvani (2011), which is one of
our benchmark cases, and is detailed further in Appendix A.5.

Thuburn et al. (2002) considered the linearised equations for
the case where the initial atmospheric state is axisymmetric,
in hydrostatic balance and at rest. In the more general case,
linearisation of each of the terms from Eqs. (1a)–(1g) must
be completed as shown in Appendix A, alongside the result-
ing final equation set, Eqs. (A.2)–(A.5). These final, linearised
equations are then discretised and solved within ECLIPS3D
as detailed in Sect. 2.4. Additionally, we implemented a two-
layer model following Showman & Polvani (2011), based on
their Eqs. (9) and (10) (linearised versions of which are given in
Appendix A.3). Other equation sets (e.g. shallow water, anelas-
tic, and so on) and geometries could be implemented within
ECLIPS3D with relative ease if required.
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2.2. Boundary conditions

For inviscid flows, there must be no normal flow at the lim-
its of the domain in order to obtain a well posed problem with
complete boundary conditions. Namely, we impose that v′ cos(φ)
tends to zero at the poles, and w′ is zero at the top of the atmo-
sphere as a no escape condition. At the inner boundary, we
impose a solid boundary with w′ equal to zero. For hot Jupiters,
this requires the modelled domain to extend to high-enough pres-
sures for the atmosphere to reach a quiescent region not involved
in the acceleration of superrotation. This inner boundary con-
dition can be easily changed if mass flows or energy transfer
with the deep atmosphere need to be considered. If the density
of the upper atmosphere is too low, unphysical velocities might
arise. In the physical applications of ECLIPS3D so far, we have
solved this problem by reducing the extent of the atmosphere but
a smoothing of the higher atmosphere could be implemented (as
done for example in GCMs, see Mayne et al. 2014a,b).

With the above choice of boundary conditions and imple-
mented equations, the code will only recover standing waves
in the vertical direction. However, Wu et al. (2001) expressed
the importance of vertical wave propagation in the context of
Matsuno-Gill structures (Matsuno 1966; Gill 1980), relevant for
understanding the climate of Earth (see notably Sarachik & Cane
2010) but also regarding the spin-up of superrotation in hot
Jupiters (Showman & Polvani 2011). Additionally, a numeri-
cal way to mimic evanescent waves is to impose a damping
region at the top of the atmosphere, as is done for exam-
ple for GCM studies of hot Jupiters (see Mayne et al. 2014a),
which prevents the wave from reflecting but allows it to
propagate.

In this paper, the boundary conditions have been chosen
to enable comparison with previous studies, but any user of
the code can easily apply different boundary conditions. Addi-
tionally, adapting the equations to include a damping layer
in ECLIPS3D poses no theoretical or numerical issue. Ver-
tically propagating waves can therefore be recovered with
ECLIPS3D.

2.3. Energy equation

Following the method of Thuburn et al. (2002), we calculated an
energy equation by combining the linearised Euler equations and
integrating them over the whole atmospheric volume with appro-
priate boundary conditions. We derive this equation in the same
context as Thuburn et al. (2002), with an initially axisymmetric,
hydrostatically balanced atmosphere at rest. The general case is
shown in Appendix B. We assume that the linearised variables
X′ can be expressed as X′(r, φ, λ, t) = X(r, φ)e−i(σt+mλ), where the
real part of σ is the mode frequency and its imaginary part the
growth rate (if non-zero), X(r, φ) ∈ C, as explained in Sect. 2.4,
and m ∈ Z:∫ 2π

0
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where the star symbol ? denotes the complex conjugate,
with f = 2Ω cos(φ), F = 2Ω sin(φ), a the radius of the
planet, H the height of the top of the atmosphere, and E =

1/2
(
(|u|2 + |v|2 + |w|2)/ρi + |θ|2/ρiN2

i + |p|2/(ρic2
i )
)

the sum of
the kinetic, thermobaric, and elastic energies of the perturbation,
with N2

i and c2
i the initial buoyancy frequency and sound speed,

respectively. Using integration by parts we can express:
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with V the volume. This is possible only if
∫ ∫ ∫

V Er2 cos(φ)
drdφdλ , 0 which is the case where N2

i > 0. For this work,
we assume a stably stratified atmosphere (N2

i > 0). As stated by
Thuburn et al. (2002), Eq. (4) shows thatσ can only be real in this
case and no instability can grow around an atmosphere at rest with
no heating and the boundary conditions we have described.

Once the variables u′, v′, . . . are known Eq. (4) can then be
integrated numerically in ECLIPS3D and be used to verify the
obtained frequency and identify the dominant physical processes
(e.g. in Sect. 3.1 we show that an acoustic wave is largely dom-
inated by the terms involving the pressure, whereas a Rossby
wave is dominated by the f and F terms).

When using the code, the use of this a posteriori energy
equation is therefore a powerful tool both for diagnosis of
the dominant physical mechanism, as well as a validation of
the numerical results. It requires an interpolation of the output
variables and their derivative on a common grid, which in the
current version is performed with linear interpolation, but the
consistency of the results with the energy equation confirm that
a more sophisticated interpolation would not change the physi-
cal interpretation provided by this energy equation (see notably
Sect. 3.2).

2.4. Method of solution

The derived linearised equations of motion can be expressed as:

D


u′
v′

w′

p′
θ′

 = 0, (5)

where D is a differential linear operator. If we introduce the oper-
ator A being:

A =



∂

∂t
0 0 0 0

0
∂

∂t
0 0 0

0 0
∂

∂t
0 0

0 0 0
∂

∂t
0

0 0 0 0
∂

∂t


, (6)

it is clear that A commutes with D as the latter is only time-
dependent through the ∂/∂t terms. Therefore, the vector sub-
spaces of D remain stable upon application of A. As A is diagonal
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the kernel of D can be decomposed on the eigenvectors eσ of A.
Such eigenvectors are well known: eσ ∝ e−iσt where σ ∈ C (the
−i term is simply the convention we choose; the real part of σ is
therefore the frequency and the imaginary part the growth rate).
Therefore, coupled with appropriate boundary conditions, we can
then solve Eq. (5) by decomposing them as:

u′(t, r, φ, λ)
v′(t, r, φ, λ)
w′(t, r, φ, λ)
p′(t, r, φ, λ)
θ′(t, r, φ, λ)

 =
∑
σ


û(r, φ, λ)
v̂(r, φ, λ)
ŵ(r, φ, λ)
p̂(r, φ, λ)
θ̂(r, φ, λ)

 exp−iσt, (7)

with û, v̂, ŵ, p̂, θ̂ ∈ C and remembering that the evolution of the
perturbed quantity is then the real part of the above expression.
The actual solution is an infinite sum over all σ but the eigen-
modes, and therefore the waves, are the individual projections
to a single value. It is worth noting that, a priori, σ could take
continuous values. For an atmosphere initially at rest, Matsuno
(1966) show that only discrete values are solutions, but on the
other hand baroclinic waves exhibit a continuous range of fre-
quencies (see e.g. Charney 1947)

2.4.1. Time-dependent solution

From the discussion above, we can re-write our equations as a
complex eigenvalue–eigenvector problem:

B


u′
v′

w′

p′
θ′

 = iσ


u′
v′

w′

p′
θ′

 . (8)

(with B = D − A).
Equation (8) can become difficult or even impossible to

solve analytically. However, Thuburn et al. (2002) discretise this
equation using a staggered grid of points, turning the analyti-
cal matrix B into a finite numerical matrix. This allows spatial
derivatives to be calculated using finite differences. The stag-
gered grid was selected carefully for precision and stability by
Thuburn et al. (2002), where the 2D axisymmetric version is
presented. We adopt a staggered grid in ECLIPS3D, shown in
Fig. 1, which resembles the one used in Thuburn et al. (2002)
but adapted to 3D and with different staggering of the u and v
variables at the poles to simplify the boundary condition.

We have Ntot = Nλ(2NφNr + (Nφ + 1)Nr + 2Nφ(Nr + 1)) points
in our grid, with Nλ, Nφ, and Nr being the number of points in
each coordinate, meaning the matrix B will be of size (5 ∗ Ntot)2

as there are five inter-dependent variables. However, each variable
at a given point only depends on the values of all variables over
the closest points in the grid. Therefore, B is an extremely sparse
matrix.

Once the matrix B is filled with discretised values from
Eq. (8), at the staggered grid points we must find the eigenvec-
tors of this matrix. ECLIPS3D uses the ScaLAPACK2 library
for parallel linear algebra (Blackford et al. 1997). To express the
eigenvectors of a complex matrix we first calculate the upper
Hessenberg form of the matrix, then find the Schur decomposi-
tion before identifying the eigenvectors themselves3. Finally, the
eigenvectors are returned to their original form via multiplication
with the matrix of transformation.
2 http://www.netlib.org/scalapack/
3 Handled by ScaLAPACK routines PZGEHRD, PZLAHQR and
PZTREVC, respectively.

p(i,j,k)
v(i,j-1,k) v(i,j,k)

λ

φ

r

u(i,j,k)

u(i+1,j,k)

w(i,j,k-1)θ(i,j,k-1)

w(i,j,k)
θ(i,j,k)

Fig. 1. Example cell of the 3D staggered grid adopted in ECLIPS3D,
based on Thuburn et al. (2002). i discretises the longitudinal variable λ,
j the latitude φ, and k the radial variable r. Here, u and v are staggered in
latitude, with v running from the south to north pole and thereby having
an additional latitude point. Also, p is staggered in height with w and θ
with the latter two variables running from the bottom to the top of the
atmosphere resulting in an additional height point.

However, this process of solving for the eigenvectors yields
an eigenvector for each row in the matrix. From this set we must
select those of interest, representative of physical modes in the
atmosphere in question. To identify the interesting eigenvectors
we employ two methods. Firstly, for instabilities with positive
exponential growth rates, we assume that the modes that will
lead the dynamical instability have the highest growth rate, and
only select the fastest-growing modes. For the case of no insta-
bility we first filter out modes arising from numerical errors (e.g.
extreme values at the poles), and then manually select modes
from the solution set. Analytical expectations then determine the
modes of interest. Globally, this selection process needs to be
performed thoroughly and be based on analytical expectations
of the modes to look for. In the current version of the code, the
selection is performed independently of the matrix calculation,
and therefore allows different eigenvectors to be isolated in a
single ECLIPS3D run.

2.4.2. Time-independent solution

For the case of a steady circulation, without time-dependence
and with constant heating rate, Eq. (5) can be expressed as:

C ∗


u′
v′

w′

p′
θ′

 =



0
0
0

γRρi
Qi

cp
gρi

Ti

Qi

cp


, (9)
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Table 1. Comparison between the frequencies obtained for a sample of different types of waves (see Sect. 3.1) presented in Thuburn et al. (2002)
and those identified in this work using ECLIPS3D.

Mode Acoustic Acoustic Gravity Rossby Rossby Kelvin

Thuburn 3.27 × 10−2 2.87 × 10−4 1.88 × 10−4 −1.46 × 10−5 −3.07 × 10−6 3.14 × 10−5

ECLIPS3D 3.28 × 10−2 2.87 × 10−4 1.88 × 10−4 −1.46 × 10−5 −3.02 × 10−6 3.08 × 10−5

Energy equation 3.37 × 10−2 2.86 × 10−4 1.88 × 10−4 −1.46 × 10−5 −3.08 × 10−6 3.00 × 10−5

Notes. The semi-analytical values from the a posteriori energy equation are also given. All these modes have a longitudinal wavenumber m = 1.

where C is similar to B in Eq. (5) with the inclusion of a drag
term if required (see Appendix A.5). Solving this problem is
much easier than the time-dependent case, as we simply need to
express C on the staggered grid and invert it to obtain the unique
solution to these equations.

2.5. ECLIPS3D resolution

In order to achieve the highest possible resolution, we imple-
mented two versions of ECLIPS3D: one that solves for the whole
eigenvector spectrum and another one dedicated to solving a
reduced number of selected eigenvectors.

For the case of numerically solving for all potential eigen-
vectors, the computational expense (both in computation time
and memory) increases steeply with the number of points in
the matrix, and can rapidly become inhibitive, limiting the
resolution. Specifically, within our computational framework,
ECLIPS3D can be used to solve 2D problems (axisymmetric,
two layer, or barotropic equations; see following section) in
cases with up to 100 × 100 points within a day of real time.
The efficient parallelisation of eigenvector calculations is still an
active area of research in the computer science community, and
increasing the number of processors does not significantly accel-
erate calculations of this type. Higher-resolution problems there-
fore take much longer, with our benchmarking tests suggesting
the time taken scales with the number of points as roughly N2

tot
or N3

tot. Additionally, eventually with increasing numbers of pro-
cessors, the communication between the processors becomes the
primary overhead or limitation in the calculation, whereas using
too few processors leads to saturation of the available memory
(see the ScaLAPACK documentation for details). These com-
putational limitations are amplified in 3D, where calculations at
resolutions of 25×20×20 points on 64 processors require around
four days. We are currently working on adapting ECLIPS3D to
employ sparse matrix libraries (as discussed, the matrix we are
solving is sparse) and are following the developments in com-
puter science research regarding eigenvector calculations.

However, by solving for a reduce set of selected eigenvectors
we can commensurately increase the resolution of the ECLIPS3D
setup, whilst retaining a similar computational expense to the
case where the target eigenvectors are not restricted. This
approach can be taken when there are some existing or prior con-
straints on the frequency and/or growth rate of the eigenvectors,
for example in the case of an instability where one requires the
fastest growing mode. Solving for ten eigenvectors with a reso-
lution of 25×20×20 points takes less than two hours to converge
on 64 processors, although these calculations are still limited by
the physical memory available on the processors. As mentioned,
we are working on implementing sparse matrix-solving libraries
in ECLIPS3D which will overcome this limitation.

Globally, the search for particular waves can be optimised by
the combination of both a complete eigenvector, and specified

or restricted eigenvector setup of ECLIPS3D. First, one would
calculate a whole spectrum of low-resolution eigenvectors and
identify the most interesting ones, before studying them in much
higher resolution with the faster version of the code. However,
for the time-independent solution, hence matrix inversion, the
resolution can be much higher because inverting a matrix is a
well parallelised and efficient process,. For example, for 25 ×
25× 25 points the matrix inversion takes less than an hour on 16
processors.

Finally, we stress that the symmetries of the problem can
allow us to restrict our study to only one hemisphere, doubling
the effective resolution with the same number of points. In this
paper for example, the modes we present are always symmetric
about the equator, but ECLIPS3D can solve for both symmetric
and antisymmetric modes at the equator.

3. Benchmarking

We have applied ECLIPS3D to five well-studied cases from the
literature to benchmark the code. These tests are explained in this
section. First we reproduce the results of Thuburn et al. (2002)
for a simple, hydrostatically balanced, and zonally symmetric
atmosphere at rest (Sect. 3.1). This is followed by the case of an
unstable jet providing a steady initial circulation as introduced
by Wang & Mitchell (2014) (Sect. 3.2). We also present results
for the baroclinic instability test of Jablonowski & Williamson
(2006) and Ullrich et al. (2014) (Sect. 3.3). In order to imple-
ment longitudinal variation in the steady state, we study the sta-
bility of Rossby–Haurwitz waves (Haurwitz 1940), as done in
Thuburn & Li (2000). Finally, ECLIPS3D is applied to the case
of a linear steady-state circulation with atmospheric drag follow-
ing Komacek & Showman (2016) (Sect. 3.5).

3.1. Initial atmospheric rest state

We first apply the 2D, axisymmetric version of ECLIPS3D
to solve for the eigenmodes of an initially axisymmetric,
isothermal, and hydrostatically balanced atmosphere at rest
following Thuburn et al. (2002). Namely, the atmosphere is
80 km high with the bottom boundary at the Earth radius
a = 6371 km, and the temperature is T = 250 K correspond-
ing to N2 = 3.83 × 10−4 s−2. The value of the other parameters
are R = 287.05 J kg−1 K−1, cp = 1005.0 J kg−1 K−1, Ω = 7.292 ×
10−5 s−1, and g= 9.8062 m s−2. This version of ECLIPS3D
needs to assume an integer wavenumber m in longitude, as
in Thuburn et al. (2002). Table 1 shows the frequencies of the
modes from both this study and that of Thuburn et al. (2002)
revealing agreement better than 3%; the discrepancies are due
to slightly different initialisations and grid staggering. When
matching their setup exactly we return matching results to within
machine precision. Additionally, our resulting eigenfunctions
have the same shape in height and latitude and global values
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Fig. 2. Values of the five perturbed vari-
ables u′,v′,p′,w′, and θ′ obtained with
ECLIPS3D for an acoustic wave with
longitudinal wave number 1, with units
proportional to their influence on the
energy of the wave (as our solutions are
from linear theory, all values are defined
relative to an unknown proportionality
value). This mode is to be compared to
Fig. 2 of Thuburn et al. (2002).

as those found in Thuburn et al. (2002). For example, we iso-
late and present both an acoustic and Rossby wave recovered by
ECLIPS3D in Figs. 2 and 3, to be compared to Figs. 1 and 2
of Thuburn et al. (2002). The acoustic mode shows a vertical
compression mode, with little energy in the horizontal velocities
and an opposite phase between the pressure and vertical velocity
perturbations. The tilt in the zonal velocities close to the pole
confirms the impossibility of obtaining solutions with separate
functions in the latitudinal and vertical directions in spherical
geometry, as noted by Thuburn et al. (2002). The Rossby modes
on the other hand are dominated by pressure and horizontal
velocity perturbation, and if projected on a latitude-longitude
plane we would recover the rotating winds around pressure max-
ima or minima in the mid-latitudes. Once again the shape of the
waves clearly confirms the impossibility to separate variables.

The difference in the forcing mechanisms between acoustic
and Rossby waves, namely the pressure gradient and Coriolis
force, respectively, mean we expect their global features to dif-
fer. The calculations from our energy equation, shown in Table 1,
are in excellent agreement with the obtained numerical frequen-
cies. These calculations also allow one to investigate the restor-
ing force. For example, for the Rossby waves the f and F f terms
of Eq. (4) account for 90% of the value of σ, whereas they are
negligible compared to the terms involving the pressure, and its
derivative, for the acoustic waves.

Although this problem is axisymmetric, it can be used to test
the 3D version of ECLIPS3D. In Fig. 4 we present a single mode

from the 3D case, to be compared to Fig. 2. For this mode (and
the other modes not presented explicitly here) we obtain the
same height and latitude behaviour. For the additional dimen-
sion, longitude, we recover oscillatory modes with an arbitrary
integer number, 2m, of zeros in longitude (corresponding to a
wavenumber m). The frequency of the obtained modes again, as
with the 2D version of ECLIPS3D, match those of Thuburn et al.
(2002) to better than ∼3% (in this case errors are also introduced
by the discretisation in longitude).

3.2. Unstable jet

The next benchmark case is an initial state which includes an
initial velocity field. Here we follow Wang & Mitchell (2014)
who identified an exponentially growing linear mode, bring-
ing eastward momentum to the equator under axisymmetric
forcing. This study essentially identifies unstable modes in an
atmosphere similar to Thuburn et al. (2002) but including a
mid–latitude unstable jet. Namely, the initial velocity is con-
trolled by a given latitude φ0 through:

ui(φ) =
Ωa sin2(φ)

cos(φ)
for |φ| ≤ φ0,

ui(φ) =
Ωa sin2(φ)

cos(φ)
e−α(|φ|−φ0)2

for |φ| > φ0, (10)
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Fig. 3. Same as Fig. 2 but for a Rossby
wave, to be compared with Fig. 1 of
Thuburn et al. (2002).
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Fig. 4. Same as Fig. 2 but from the 3D
version.
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Fig. 5. Pressure (colour scale) and wind (vector arrows) for the
most unstable mode obtained with ECLIPS3D from the setup of
Wang & Mitchell (2014), which is to be compared with their Fig. 1a.

where α controls the decay of the velocity field towards the pole.
The value of α is not given in Wang & Mitchell (2014); here we
chose α = 50 which mimics the shape of their initial velocity
field in their Fig. 1.

Wang & Mitchell (2014) identify two instabilities, firstly a
well–known baroclinic instability (such as studied in Sect. 3.3),
and secondly a new instability not captured by analytical treat-
ments under the β–plane approximation. This new mode results
in the convergence of eastward momentum at the equator, and
is related to the Rossby and Froude numbers. Wang & Mitchell
(2014) term this new instability the Rossby–Kelvin instability
as it emerges from interaction between the mid-latitude Rossby
waves and the Kelvin wave (an equatorially confined gravity
wave with zero meridional velocity). In Fig. 5 we show the char-
acteristics of the mode identified by our own study using the 2D
axisymmetric ECLIPS3D, which is to be compared with Fig. 1a
of Wang & Mitchell (2014). Figure 5 demonstrates the excel-
lent agreement of the structure of the mode found using both
ECLIPS3D and that of Wang & Mitchell (2014).

Following Wang & Mitchell (2014) we explore the effect on
the most unstable mode of varying the planetary parameters.
Figure 6 shows results for different φ0, a characteristic latitude of
the initial flow (see Wang & Mitchell 2014, for definitions), and
the Burger number Bu = ((NiH)/(2Ωa))2 where H is a character-
istic height, revealing a change in the growth rate as H is altered
(see Wang & Mitchell 2014, for more details). Figures 6a and
b therefore represent the most unstable mode for a broad inital
jet in latitude, up to 50◦, the growth rate of which is about Ω/5
and the characteristic height a third of the total height. On the
other hand, Figs. 6c and d represent the most unstable mode for
a narrower inital jet, with φ0 = 35◦, the growth rate of which is
about Ω/20 and characteristic height a fifth of the total height.
The obtained growth rates are consistent with those presented in
Fig. 2a of Wang & Mitchell (2014).

3.3. Baroclinic instability

Jablonowski & Williamson (2006) detail a baroclinic instability
test for GCMs using pressure as a vertical coordinate. Ullrich et al.
(2014) adapted this test for height-based GCMs. In this test a
perturbation to a steady longitudinal wind at mid-latitudes leads
to a dynamical instability growing in a few days (for Earth-like
conditions). In full 3D GCM simulations many phenomena act

simultaneously, meaning that reproducing an instability with the
exact same behaviour and time evolution is unlikely. However,
we can expect to reproduce the most unstable modes, which will
drive the evolution of the atmosphere in the simulations.

We implemented the initial state prescribed in Ullrich et al.
(2014) in both the axisymmetric 2D and 3D versions of
ECLIPS3D (without the prescribed perturbation of Ullrich et al.
2014, as ECLIPS3D intrinsically perturbs steady states). We
only show the 2D results as, similarly to the first test case, 2D
and 3D are in excellent agreement. In this test, ECLIPS3D iden-
tifies the stable modes of Thuburn et al. (2002), slightly modi-
fied by the mean flow and the angular dependency of pressure
and temperature. For the unstable modes, a continuum in fre-
quency is returned (discretised by the numerical precision of the
algorithm, controlled by the number of points in the matrix B),
as expected from analytical treatment. ECLIPS3D identifies the
most unstable mode at m = 5 with a growth rate of 6.4×10−6 s−1

(∼2 days) which is presented in Fig. 7. Figures 4 and 5 of
Ullrich et al. (2014) demonstrate that the instability dominates
the flow after 8 days, consistent with our growth rate. Addition-
ally, the shape of our instability has similar features to the ther-
modynamic state of the atmosphere in Ullrich et al. (2014) after
8 days. Our instability indeed exhibits a tilt in the plot of height
versus latitude (Fig. 7b) as can be seen in Fig. 6 of Ullrich et al.
(2014). The pressure also exhibits a similar sharp decrease just
above the surface. One must note here that our results include an
uncontrolled phase in longitude coming from the axisymmetry
of our setup.

The only difference between 2D and 3D is the precision due
to discretisation. In 3D, ECLIPS3D is limited as the size of the
matrix to invert is much bigger than in 2D. Due to the shape of
the staggered grid (Fig. 1), the first point in pressure is not the
surface pressure and the sharp decrease is less obvious than in
2D (not shown).

Comparison between the semi-analytical calculation from
our a posteriori energy equation and the numerical eigenvalue
obtained for this mode reveals close agreement, on the real
and imaginary part of σ, within a few percent. As explained in
Appendix B, we can decompose this energy equation into three
components (five in the case with meridional and vertical veloc-
ities) comprising the terms coming from the equations at rest
with no angular dependency on the thermodynamic variables,
the terms arising from the angular dependency of the steady
state, or the terms coming from the initial zonal velocity. From
analytical considerations, we expect the frequency to be domi-
nated by the velocity terms, where the global mean flow excites
the modes at specific phase velocity. However, the growth rate
should be controlled by the angular-dependent terms as the baro-
clinic instability arises from horizontal gradients in the pressure
and temperature (see e.g. Vallis 2006).

Our energy-based calculation gives a frequency of 1.09 ×
10−5 s−1 where ECLIPS3D finds 9.93 × 10−6 s−1. In the calcu-
lation, the velocity terms account for more than 80% of the
frequency, confirming the analytical predictions. The calculated
growth rate is 6.63 × 10−6 s−1, close to the ECLIPS3D value
of 6.39 × 10−6 s−1, with the angular terms accounting for 96%.
These results show that our a posteriori energy equation can be
a powerful tool to obtain insight into the physics of numerical
eigenvectors.

3.4. Rossby–Haurwitz waves

The previous steady states we studied are axisymmetric and
include no background velocity (Sect. 3.1) or only a zonal
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Fig. 6. Pressure perturbations (colour scale) and wind vectors (arrows, panels b and d only) for the case of a planet with the same radius and
rotation rate as the Earth but an isothermal temperature pressure profile set at 500 K. Panels a and c: latitude against height at a longitude of 200◦;
panels b and d: longitude against latitude at a height of 25 000 m. We report the values of φ0 and Bu as defined in Wang & Mitchell (2014) and the

growth rate σgrowth: (a) and (b): φ0 = 50◦, Bu ∼ 0.2 and
σgrowth

2Ω
= 0.12, and (c) and (d): φ0 = 35◦, Bu ∼ 0.05 and

σgrowth

2Ω
= 0.026. These results

indicate that the growth rate of the most unstable mode is dependent on the characteristic height of the wave as found in Wang & Mitchell (2014).
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Fig. 7. Pressure (colour scale, pascals) and horizontal winds (arrows panel a only) produced using ECLIPS3D, for the baroclinic instability setup
of Ullrich et al. (2014). Panel a: near-surface pressure as a function of longitude and latitude. Panel b: pressure as a function of longitude and
height at 50◦ latitude.
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velocity (Sects. 3.2 and 3.3). Ideally, we would also benchmark
ECLIPS3D using a test including meridional velocities as well
as a dependency on longitude. Unfortunately, there are no such
non-linear steady states in 3D, in which the analytical theory can
provide us with predictions to compare with. We therefore con-
sider a 2D non-axisymmetric problem, with steady zonal and
meridional winds: Rossby–Haurwitz waves. Here we identify
the most unstable modes around two steady configurations of
this setup which we detail below.

Rossby–Haurwitz waves are analytical solutions of the non-
linear barotropic vorticity equations. They were discovered by
Haurwitz (1940) by perturbing the non-divergent equations and
solving them non-linearly. If the flow remains incompressible
at all times, these waves remain analytical solutions of the full
equations and propagate without changing their form at constant
speed. With an appropriate choice of parameters, this speed can
be zero, and these waves become a stationary, steady solution of
the non-divergent barotropic vorticity equations, hence another
test case for ECLIPS3D.

The non-divergent barotropic equations are simply Eqs. (1a)
and (1b) with w = 0 with an imposed null divergence:

∂u
∂λ

+
∂

∂φ
(v cos φ) = 0. (11)

This latter equation does not involve any time derivative, and
therefore we have to slightly adapt the structure of the code for
this setup. Instead of solving an eigenvector problem, we solve a
generalised eigenvector problem where

Bx = iσCx, (12)

where x is an eigenvector, B the linearised matrix of equations,
and C a diagonal matrix with some zeros in the diagonal. The
linearisation is straightforward, as the equations are similar to
the full set of equations and the divergence equation is already
linear.

The interest of this test lies in the stability analysis of these
waves. Hoskins (1973) showed that Rossby–Haurwitz waves
are stable for longitudinal wave number R < 5 and unstable
for higher wave numbers. However, in the analysis of Hoskins
some triad interactions were missing, as simplifications were
required to treat the problem analytically. Inspired by Baines
(1976), Thuburn & Li (2000) resolved the issue by showing that
a Rossby–Haurwitz wave of wavenumber 4 is unstable, because
of an interaction with wave numbers 1, 3, and 5 (see also Lynch
2009).

ECLIPS3D does not make any assumption on the shape of
the perturbation needed to trigger an instability, nor on the insta-
bility itself. We therefore expect to obtain unstable modes around
a steady R = 4 wave. Our setup is similar to the classical
benchmarking test of Williamson et al. (1992) and Thuburn & Li
(2000), with a vorticity ψ being:

ψ = −aω2 sin φ + a2K cosR φ sin φ cosR λ, (13)

where K and ω are constants and R is the longitudinal wavenum-
ber. In order to obtain a steady, stationary wave we must also
impose (see Haurwitz 1940):

2R(Ω + ω)
(R + 1)(R + 2)

= ωR. (14)

With R = 4 and Ω = 7.29 × 10−5 s−1, the Earth rotation
rate, this leads to ω ≈ 5 × 10−6, close to the value chosen by
Williamson et al. (1992) and Thuburn & Li (2000) ω ≈ 7.8 ×

10−6. With R = 2, ω ≈ 1.5 × 10−5. In accordance to their setup,
we impose arbitrarily K = ω.

We present the initial steady states for R = 4 and R = 2
in Figs. 8a and c. As expected from Thuburn & Li (2000), we
obtain a linear instability for the R = 4 setup, displayed in
Fig. 8b. This instability oscillates with a period of ≈3 days, with
an exponential growth timescale of 6 days. The timescale for
instability is globally coherent with the results of Thuburn & Li
(2000), which find that the flow becomes significantly altered
after day 20. For R = 2, we also find an instability with strik-
ing resemblance to the R = 4 instability in shape, a period of just
under a day, and growth timescale of 4 days. This mode is shown
in Fig. 8d, and this result is in contradiction with Hoskins (1973)
but in accordance with Baines (1976) who shows analytically
that all the R ≥ 2 (n ≥ 3 in their study, where we have R = n − 1
here) Rossby–Haurwitz waves can be unstable. Interestingly, we
also found an instability for a R = 3 Haurwitz wave but with a
growth timescale of more than a hundred days. Such an instabil-
ity would probably be smoothed out by any source of dissipation
or diffusion in a GCM. Globally, our code agrees well with the
theoretical study of Rossby–Haurwitz waves, and demonstrates
the proper treatment of longitudinal-dependent steady state and
meridional velocities in ECLIPS3D.

3.5. Linear steady circulation with drag

As discussed in the introduction, our development of ECLIPS3D
was largely driven by studies of the acceleration of zonal
flows in hot Jupiter atmospheres. For these planets, analytical
studies have shown linear steady states to be of vital impor-
tance (see Showman & Polvani 2011). Therefore, we have also
implemented the capability to calculate linear steady states in
ECLIPS3D (see Sect. 2), which is a much simpler process com-
pared to the identification of eigen modes. To benchmark this
section of the code, we compare our results to those obtained
in the study of Komacek & Showman (2016), in particular the
case they present in their Fig. 5 where they solve the full
Navier-Stokes equations, but with such a low heating rate that
only the linear terms contribute. This requires the addition of
a linear drag in the linearised equations following the depth-
dependent behaviour of that adopted by Komacek & Showman
(2016). Additionally, the heating is performed via a Newto-
nian relaxation with a height-dependent radiative constant. The
resulting equation set is shown in Appendix A.5. Figure 9
then presents the resulting linear circulations obtained using
ECLIPS3D which show excellent qualitative agreement with
the results of Komacek & Showman (2016; see their Fig. 5).
Komacek & Showman (2016) do not present the vertical struc-
ture of their circulation.

4. Conclusion

In this paper, we introduce and benchmark ECLIPS3D: a parallel
code for identifying linear instabilities, waves, and circulations
around a steady state of the Navier–Stokes equations in plane-
tary atmospheres. The linearised equations only omit viscosity
and an a posteriori energy equation is used to identify contri-
butions from each component. The time-dependent eigenvector
solution or time-independent matrix inversion calculations are
performed through discretisation onto a staggered grid and sub-
sequently ScaLAPACK routines.

The benchmarks cover various well-studied wave and insta-
bility tests, namely a simple atmosphere at rest (Thuburn et al.
2002), a Rossby–Kelvin unstable jet (Wang & Mitchell 2014),
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Fig. 8. Pressure (colour scale, a and c in pascals and arbitrary units for b and d) and horizontal winds (arrows) for Rossby–Haurwitz waves and
most unstable modes. Panels a and c: initial steady states for R = 4 and R = 2, respectively (see text). Panels b and d are the most unstable mode
obtained with ECLIPS3D for the R = 4 and R = 2 setup, respectively.

a baroclinically unstable jet (Ullrich et al. 2014), an unstable
Rossby–Haurwitz wave (Thuburn & Li 2000), and a linear circu-
lation with atmospheric drag (Komacek & Showman 2016). For
all these setups, ECLIPS3D is able to produce excellent qualita-
tive agreement with the previous works. We demonstrate that our
a posteriori energy equation is a viable tool to verify the results
and identify the dominant terms. We are currently preparing a
follow-up study to explore the momentum transfer in hot Jupiter
atmospheres and explore the stability of the initial conditions for
GCMs using ECLIPS3D (Debras et al., in prep.).

ECLIPS3D currently has several limitations, primarily its
computational efficiency, leading to limitations on resolution,
particularly for 3D cases. We are working on several methods to
improve this issue for example using libraries adapted to sparse
matrices, or splitting the eigenvector solution into several sub-
matrices as opposed to a single large matrix (potentially use-
ful as the time taken to solve this type of problem increases
faster than linearly with matrix size). This splitting of the matrix
may be particularly well suited to a spectral decomposition as
we are searching for the most unstable mode, and are not nec-
essarily trying to capture the entire “shape” of the mode. This
could be done through spherical harmonics in the horizontal or
Chebyshev’s spectral decomposition in the radial direction.

Despite its limitations, ECLIPS3D in its current version still
represents a powerful resource which can be used to study insta-
bilities in 2D situations under axisymmetry or cases where a
two–layer model is applicable, or for low-resolution 3D prob-
lems. The code itself can easily be adapted to different situations,
in spherical coordinates, with additional physics or alterna-
tive boundary conditions. As the structure of the code is inde-
pendent of the underlying equations, meaning alternatives can
easily be implemented in terms of symmetries and coordinate
systems.

Finally, ECLIPS3D could be applied to a wide range of astro-
physical problems. The most obvious one, for which ECLIPS3D
was designed, is the study of instabilities and linear circula-
tions for planetary atmospheres, but the range of applicability is
greater. Asteroseismology for example requires the need to lin-
earise the equations of motion and identify the leading modes,
sometimes with complicated circulation or thermodynamic state
inside the star. Adapted to cylindrical geometry, ECLIPS3D
could be a powerful tool to identify the possible instabilities in
protoplanetary disks, where instabilities creating pressure traps
are proposed to be an efficient way of making planets through
core accretion. The addition of a magnetic field in the equa-
tions implemented in the code would not pose any theoretical
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Fig. 9. Pressure (colour scale, Pascals) and horizontal winds (arrows) as a function of latitude and longitude at a height of 5 × 106 m, for a
steady-state circulation with a forcing of ∆T = 100 K (see Komacek & Showman 2016, for definition). Results to be compared to Fig. 5 of
Komacek & Showman (2016). (a) τdrag = 105 s and τrad = 104 s. (b) τdrag = 103 s and τrad = 103 s. (c) τdrag = 106 s and τrad = 104 s. (d) τdrag = 104 s
and τrad = 106 s.

challenge either, which could provide a significant amount of
information on the linear behaviour of astrophysical fluids in
more general cases.
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Appendix A: Equations in ECLIPS3D

A.1. General 3D case

In this appendix we detail the derivation of the full linearised
equations for the longitudinal component of the momentum
equation, and in the interests of brevity provide only the final
expressions for the remaining components. These equations
assume a dependence of g on r as g ∝ 1/r2, and every other
quantity is dependent on the three spatial variables, longitude,
latitude, and radial distance from the centre of the planet. Here,
we consider that Q is equal to zero for simplicity, and relax this
assumption in Appendix A.4.

The longitudinal equation of momentum is as follows.

∂u
∂t

+
u

r cos φ
∂u
∂λ

+
v

r
∂u
∂φ

+ w
∂u
∂r

+ 2Ωw cos φ

− 2Ωv sin φ +
1

ρr cos φ
∂p
∂λ

+
uw
r
−

uv tan φ
r

= 0. (A.1)

Term by term we obtain (refer to Eq. (2a) for definition of
perturbed variables)(
∂u
∂t

)′
=

1
ρi

∂u′

∂t(
u

r cos φ
∂u
∂λ

)′
=

u′

ρir cos φ
∂ui

∂λ

+
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r cos φ

 1
ρi

∂u′

∂λ
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ρ2
i

∂ρi

∂λ

(
v

r
∂u
∂φ

)′
=

v′

ρir
∂ui

∂φ
+
vi

r

 1
ρi

∂u′

∂φ
−

u′

ρ2
i

∂ρi

∂φ

(
w
∂u
∂r

)′
=
w′

ρi

∂ui

∂r
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 1
ρi

∂u′

∂r
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u′

ρ2
i

∂ρi

∂r


(2Ωw cos φ)′ = 2Ω

w′

ρi
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(2Ωv sin φ)′ = 2Ω
v′

ρi
sin φ(

1
ρr cos φ

∂p
∂λ

)′
=

1
ρir cos φ

∂p′

∂λ
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1
ρi

∂pi

∂λ
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g
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p′
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i
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r
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=

1
ρir

(
u′wi + uiw

′)
(uv tan φ

r

)′
=

tan φ
ρir

(
u′vi + uiv

′) .
Therefore, the final five perturbed equations are

∂u′

∂t
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(
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∂ρi
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= 0, (A.2)
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∂ρi

∂φ
−
wi

ρi

∂ρi

∂r
+
wi

r

)
+
∂v′

∂λ

(
ui

r cos φ

)
+
∂v′

∂φ

(
vi

r

)
+
∂v′

∂r
(wi) + w′

(
∂vi

∂r
+
vi

r

)
+ p′

 −1
c2

i ρir
∂pi

∂φ

 +
∂p′

∂φ

(
1
r

)
+ θ′

(
1
gρir

∂pi

∂φ

)
= 0, (A.3)
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∂r
(wi) = 0, (A.6)

with ∂X′/∂t = iσX′.

A.2. Two-dimensional axisymmetric case

For the axisymmetric case, the equations are directly obtained
from the 3D case by choosing a longitudinal wavenumber m such
that X′(t, r, φ, λ) = X′(r, φ)eiσtei(m/2π)λ.

A.3. Two-layer equivalent depth

The reference for this particular case can be found in
Showman & Polvani (2011) or Vallis (2006). We consider a
dynamic layer above a quiescent layer, reservoir of mass or
energy, and study the horizontal winds u and v as well as
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the height of the layer h, depending on both x and y, the
cartesian horizontal coordinates. We follow the definitions of
Showman & Polvani (2011) for the variables, hence consider
adimensional equations. There is consequently only three equa-
tions to be implemented:

∂u′

∂t
+ u′

(
∂ui

∂x

)
+
∂u′

∂x
(ui) +

∂u′

∂y
(vi) + v′

(
∂ui

∂y
− y

)
+
∂h′

∂x
= 0,

(A.7)

∂v′

∂t
+ u′

(
∂vi

∂x
+ y

)
+ v′

(
∂vi

∂y

)
+
∂v′

∂x
(ui) +

∂v′

∂y
(vi) +

∂h′

∂y
= 0,

(A.8)

∂h′

∂t
+ u′

(
∂H
∂x

)
+
∂u′

∂x
(H) + v′

(
∂H
∂y

)
+
∂v′

∂y
(H) + h′

(
∂ui

∂x
+
∂vi

∂y

)
+
∂h′

∂x
(ui) +

∂h′

∂y
(vi) = 0, (A.9)

where H = H(x, y) is the initial steady height.

A.4. Heating rate

Particular care must be taken when dealing with the heating rate.
If we call the heating rate Qi, as the initial state is steady the
zeroth order term will cancel the terms involving Qi in Eq. (1e).
However, two situations must be considered: the θ/T factor in
Eq. (1e) has to be linearised, and will be a source of additional
terms. Additionally, if Qi depends on the atmospheric state (for
example with Newtonian heating, see next appendix), a pertur-
bation in the atmosphere will be associated with a change Q′ in
Qi. Therefore, if we write equation Eq. (A.6) as

gρi

θi

(Dθ
Dt

)′
= 0, (A.10)

where the gρi/θi factor arises from the definition of θ′, the final
equation involving the heating rate is

gρi

θi

(Dθ
Dt

)′
+ p′

 gκ

RT 2
i

Qi

cp

 − Q′

cp

(
gρi

Ti

)
= 0, (A.11)

where Q′, if it exists, depends linearly on the linearised atmo-
spheric variables.

Moreover, obtaining Eq. (A.5) implies to use Eq. (1e), and
therefore additional terms also have to be included. More pre-
cisely, one could show that Eq. (A.5) can be written as(Dp

Dt
+ γp∇ · u

)′
= 0. (A.12)

With the Q terms we obtain(Dp
Dt

+ γp∇ · u
)′

+ γR
Qi

cp

θ′
g
−

p′

c2
i

 +
Q′

cp
(−γRρi) = 0. (A.13)

These new terms in Eqs. (A.5) and (A.6) have to be imple-
mented in the matrix from which we solve for eigenvectors, but
do not lead to a change in the way of finding the eigenvectors.

A.5. Steady linear circulation

Following Showman & Polvani (2011) and subsequently
Komacek & Showman (2016), we have implemented the
possibility to solve for linear steady states instead of waves
and instabilities. We therefore have to impose a heating of the

atmosphere, associated to dissipative processes in order to reach
a steady state.

This heating function is extremely different from the heating
of Appendix A.4. In Appendix A.4, we linearised the heating
term coming from the initial steady solution of Navier Stokes
equations. Here, we prescribe a small forcing of the atmosphere
that causes it to depart from its initial steady state, and seek
the new steady state that the atmosphere will reach at the linear
order (because the heating has a small amplitude). For simplic-
ity reasons, we consider that the initial steady state was obtained
without forcing of the atmosphere (hence Q in Eqs. (1e), (A.11)
and (A.13) is identically null), and use Ql to refer to the low-
amplitude linear forcing we impose.

In that case, the perturbed variables are assumed to be con-
stant with time (σ is taken to be zero). The dissipative effects will
simply be linear drags in Eqs. (1a)–(1c) expressed as −u/τdrag
where τdrag is a characteristic time for the drag, eventually depen-
dent on the space coordinates (see Showman & Polvani 2011).

If Ql is constant, then we simply have to modify Eqs. (A.5)
and (A.6) in a similar way to in Appendix A.4:

gρi

θi

(Dθ
Dt

)′
=
gρi

Ti

Ql

cp(Dp
Dt

+ γp∇ · u
)′

= γRρi
Ql

cp

which, as Ql is order 1, simply consist in neglecting the second-
order terms in Eqs. (A.13) and (A.11) and moving the constant
heating terms to the right-hand side. A dissipative or diffusive
process could also be added in the energy equation.

Additionally, a special case must be discussed: Newtonian
Heating (see e.g. Mayne et al. 2014b). In that case, Ql is not con-
stant but depends on the thermodynamic state of the atmosphere.
More precisely, using QN to denote the Newtonian heating rate:

QN

cp
=

Teq − T
τrad

, (A.14)

where Teq is a prescribed equilibrium temperature and τrad a
characteristic radiative time, both depending on space variables.

For the linear forcing approximation to remain correct, Teq
must be sufficiently close to the initial temperature Ti, but then a
small change in Ti will have an impact on QN of the same order
of QN itself. With our choice of perturbed variables, it is easy to
show that

T ′ = Ti

(
p′
κ

pi
+ θ′

1
gρi

)
, (A.15)

and subsequently

QN

cp
=

Teq − Ti

τrad
−

T ′

τrad
≡

QN,i

cp
−

Ti

τrad

(
p′
κ

pi
+ θ′

1
gρi

)
· (A.16)

Finally Eqs. (A.5) and (A.6) can be rewritten as (using γRTi =
c2

i )(Dp
Dt

+ γp∇ · u
)′

+
c2

i ρi

τrad

(
p′
κ

pi
+ θ′

1
gρi

)
=

QN,i

cp
(γRρi) (A.17)

gρi

θi

(Dθ
Dt

)′
+
gρi

τrad

(
p′
κ

pi
+ θ′

1
gρi

)
=

QN,i

cp

(
gρi

Ti

)
· (A.18)

To summarise, when looking for a steady linear circulation with
Newtonian heating, we need to invert the matrix C as advertised
in Sect. 2.4.2, where C arises from Eqs. (A.2)–(A.6) and includes
the heating rates and dissipations expressed in the text of this
appendix, and in Eqs. (A.17) and (A.18).
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Appendix B: A posteriori energy equation

In order to obtain a semi analytical verification for the frequency,
we integrate the energy of the modes over the whole volume,
and express it as an a posteriori condition on the frequency σ.
In this part, we assume that the bottom boundary condition is
a no-escape condition (w′ = 0) and that the initial state is in

the hydrostatic balance:
∂pi

∂r
= −ρig, with no initial heating

(see Appendix A.4). These assumptions could be relaxed, but
would be sources of numerous additional terms whereas they are
always verified in our setups.

In the 2D axisymmetric case at rest with no angular depen-
dency in the initial variables, Thuburn et al. (2002) used as vari-
ables u′, −iv′, −iw′, p′ and θ′ because this simplifies greatly the
calculation. In order to allow for easier verification of our equa-
tions, we adopt the same definition for the perturbed variables.
However, for simplicity reason, we drop the primes in the follow-
ing equation and use v and w, not iv′ and iw′. Therefore, one has
to remember that the v and w expressed in the following equa-
tions are actually −iv′ and −iw′ where v′ and w′ are the solutions
of Eq. (8). The other variables are not affected.

Denoting a complex conjugate by a star, we express the inte-
gral of energy as$

Ω

1
ρi

(
iu∗(A.2) + v∗(A.3) + w∗(A.4)

+ i
p∗

c2
i

(A.5) + i
θ∗

N2
i

(A.6)
)
dV = 0, (B.1)

where Ω is the whole volume, dV = r2 cos φdrdφdλ, which is
the infinitesimal volume, and (A.2) is the left-hand side of the
complete Eq. (A.2) and so on.

The calculations are highly cumbersome, but present no par-
ticular difficulty. In order to have a physical insight in the lead-
ing mechanism from this a posteriori energy equation, we have
decided to separate this integral into five parts:

– The first part involves only the thermodynamic initial state
(no velocities) with a dependency on the radial variable r
solely. An initial atmosphere at rest with no angular depen-
dency would have contributions to the energy only from this
part.

– The second part involves the terms coming from the angular
dependency in the thermodynamic steady variables only.

– The third part comes from the steady zonal velocity ui.
– The fourth part is generated by the steady meridional veloc-

ity vi.
– And finally the last part is due to the initial steady vertical

velocity wi.
Denoting this decomposition of the energy integral as [1]−[5],
and remembering ∂/∂t = −iσ we obtain an a posteriori equation
on σ:

σ = −

$
Ω

1
ρi

([1] + [2] + [3] + [4] + [5]) dV#
Ω

EdV
· (B.2)

This is similar to Eq. (4). The 1/ρi factor might seem useless as
it is already in Eq. (B.1) but is a necessary density weighting to
obtain the appropriate equations. E is unchanged:

E =
1

2ρi

(|u|2 + |v|2 + |w|2 +
|θ|2

N2
i

+
|p|2

c2
i

 · (B.3)

After sorting (real component, then imaginary then com-
plex), the calculation gives

[1] = <

(
f (u∗v) − F(u∗w) +

i
r cos φ

u∗
∂p
∂λ

+
1
r
v∗
∂p
∂φ

+
g

c2
i

w∗p + w∗
∂p
∂r
− w∗θ

)
, (B.4)
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