The Journal of Physiology

https://jp.msubmit.net

JP-RP-2019-278494R2

Title: Incubation with Sodium Nitrite Attenuates Fatigue Development in Intact Single Mouse Fibres at Physiological PO2

> Authors: Stephen Bailey Paulo Guimaraes Gandra Andrew Jones Michael Hogan Leonardo Nogueira

Author Conflict: No competing interests declared

Author Contribution: Stephen Bailey: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Paulo Guimaraes Gandra: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Andrew Jones: Conception or design of the work; Acquisition or analysis or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Michael Hogan: Conception or design of the work; Acquisition or analysis or interpretation of data for the work Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work Michael Hogan: Conception or design of the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work

Leonardo Nogueira: Conception or design of the work; Acquisition or analysis or

interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; Final approval of the version to be published; Agreement to be accountable for all aspects of the work

Running Title: Nitrite delays skeletal muscle fatigue at physiological PO2

Dual Publication: No

Funding: Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development): Leonardo Nogueira, 424527/2016-2; HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS): Michael C Hogan, AR-069577

1	
2	Incubation with Sodium Nitrite Attenuates Fatigue Development in Intact
3	Single Mouse Fibres at Physiological Po ₂
4	
5	
6	Stephen J. Bailey ^{1,2} , Paulo G. Gandra ^{3,4} , Andrew M. Jones ¹ , Michael C. Hogan ³ , and
7	Leonardo Nogueira ^{3,5†}
8	
9	¹ Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter,
10	Exeter, UK;
11	² School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK;
12	Section of Physiology; Division of Pulmonary, Critical Care & Sleep Medicine, Department of
13	Medicine, University of California, San Diego, CA, USA;
14	⁴ Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas
15	(Unicamp), Campinas, Brazil.
16	Instituto de Bioquímica Médica Leopoldo de Meis (Medical Biochemistry Institute Leopoldo de
1/	Meis), Federal University of Rio de Janeiro, RJ, Brazil.
18	
19	Punning title: Nitrite delays skeletel muscle fetigue at physiclogical Po
20	Kuming the: Withe delays skeletal muscle fatigue at physiological Po ₂ .
21	Key words: Skeletal muscle, muscle fatique, intracellular calcium, oxygen tension, nitrite
23	anion
24	
25	
26	
27	Table of Contents category: Skeletal muscle and exercise
28	
29	[†] Address correspondence to:
30	Leonardo Nogueira
31	University of California, San Diego, CA, USA
32	9500 Gilman Dr. #0623
33	La Jolla, CA 92093-0623
34	lnogueira@ucsd.edu

35	KEY POINTS SUMMARY
36	
37	• Dietary nitrate supplementation increases plasma nitrite concentration, which provides an
38	oxygen-independent source of nitric oxide and can delay skeletal muscle fatigue.
39	• Nitrate supplementation has been shown to increase myofibre calcium release and force
40	production in mouse skeletal muscle during contractions at a supra-physiological oxygen
41	tension, but it is unclear whether nitrite exposure can delay fatigue development and
42	improve myofibre calcium handling at a near-physiological oxygen tension.
43	• Single mouse muscle fibres acutely treated with nitrite had a lower force and cytosolic
44	calcium concentration during single non-fatiguing contractions at a near-physiological
45	oxygen tension.
46	• Nitrite treatment delayed fatigue development during repeated fatiguing isometric
47	contractions at near-physiological, but not at supra-physiological, oxygen tension in
48	combination with better maintenance of myofilament calcium sensitivity and
49	sarcoplasmic reticulum calcium pumping.
50	• These findings improve understanding of the mechanisms by which increased skeletal
51	muscle nitrite exposure might be ergogenic and imply that this is related to improved
52	calcium handling.
53	
54	

55 ABSTRACT

56

Dietary nitrate (NO_3) supplementation, which increases plasma nitrite (NO_2) concentration, has 57 been reported to attenuate skeletal muscle fatigue development. Sarcoplasmic reticulum (SR) 58 calcium (Ca²⁺) release is enhanced in isolated single skeletal muscle fibres following NO₃⁻ 59 supplementation or NO_2^- incubation at a supra-physiological PO_2 but it is unclear whether NO_2^- 60 incubation can alter Ca^{2+} handling and fatigue development at a near-physiological Po₂. We 61 hypothesised that NO₂⁻ treatment would improve Ca²⁺ handling and delay fatigue at a 62 physiological Po₂ in intact single mouse skeletal muscle fibres. Each muscle fibre was perfused 63 with Tyrode's solution pre-equilibrated with either 20% ($Po_2 \sim 150$ Torr) or 2% O_2 ($Po_2 = 15.6$ 64 Torr) in the absence and presence of 100 µM NaNO₂. At supra-physiological Po₂ (i.e., 20% O₂), 65 time to fatigue was lowered by 34% with NaNO₂ (control: 257 ± 94 vs. NaNO₂: 159 ± 46 s, 66 d=1.63, P<0.05), but extended by 21% with NaNO₂ at 2% O₂ (control: 308 ± 217 vs. NaNO₂: 67 368 ± 242 s, d=1.14, P<0.01). During the fatiguing contraction protocol completed with NaNO₂ 68 at 2% O₂, peak cytosolic Ca²⁺ concentration ($[Ca^{2+}]_c$) was not different (P>0.05) but $[Ca^{2+}]_c$ 69 accumulation between contractions was lower, concomitant with a greater SR Ca²⁺ pumping rate 70 (P < 0.05) compared to the control condition. These results demonstrate that increased exposure 71 to NO₂⁻ blunts fatigue development at near-physiological, but not at supra-physiological, Po₂ 72 through enhancing SR Ca^{2+} pumping rate in single skeletal muscle fibres. These findings extend 73 our understanding of the mechanisms by which increased NO2⁻ exposure can mitigate skeletal 74 muscle fatigue development. 75

76

77

78

80 INTRODUCTION

81

The gaseous signalling molecule, nitric oxide (NO), was first recognized as an endothelium-82 derived smooth muscle relaxant (Ignarro et al., 1987; Murad et al., 1978). However, it is now 83 appreciated that NO can also impact a wide array of physiological processes in skeletal muscle 84 (Stamler and Meissner, 2001; Suhr et al., 2013). It is well established that NO can be produced 85 by the NO synthase (NOS) enzymes, which catalyse the five-electron oxidation of L-arginine to 86 NO and L-citrulline (Moncada & Higgs, 1991). More recently, an alternative, O₂-independent 87 pathway for NO generation has been identified in which inorganic nitrate (NO₃⁻) can be 88 sequentially reduced to nitrite (NO₂) and then to NO (Clanton, 2019; Lundberg & Weitzberg, 89 2009, 2010). Importantly, dietary supplementation with NO₃, which increases circulating 90 91 plasma [NO₂], has been shown to improve skeletal muscle perfusion (Ferguson *et al.*, 2013, 2015), contractile and metabolic efficiency (Bailey et al., 2010; Fulford et al., 2013; Larsen et 92 al., 2011; Vanhatalo et al., 2011) and contractility (Coggan et al., 2015a; Haider & Folland, 93 2014; Hernández et al., 2012; Whitfield et al., 2017), and to blunt the development of skeletal 94 95 muscle fatigue (Bailey et al., 2009, 2010; Porcelli et al., 2015; Wylie et al., 2013).

96

97 The chemical reduction of NO₂⁻ to NO is increased as Po₂ (Castello et al., 2006) and pH (Modin et al., 2001) decline. There is evidence that dietary NO_3^- supplementation is more effective at 98 99 improving skeletal muscle oxygenation and metabolism and delaying fatigue in hypoxia compared to normoxia (Kelly et al., 2014; Vanhatalo et al. 2011). Moreover, NO_3^- 100 101 supplementation increases force production (Hernández et al., 2012) and perfusion (Ferguson et al., 2013) of fast-twitch (type II) skeletal muscle, which exhibits a lower pH (Tanaka et al., 102 103 2016) and Po₂ (McDonough et al., 2005) during contractions, compared to slow-twitch (type I) skeletal muscle. Therefore, the existing evidence suggests that the potential for NO_3^{-1} 104 supplementation to improve skeletal muscle function may depend on intramuscular pH and Po_2 . 105

106

Although several studies have reported improved exercise economy and/or performance after
short-term (3-7 days) (e.g., Bailey *et al.*, 2009, 2010; Larsen *et al.*, 2007, 2011; Porcelli *et al.*,
2015; Whitfield *et al.*, 2016) and acute (Wylie *et al.*, 2013) dietary NO₃⁻ supplementation, the
mechanisms that underlie these effects remain controversial. For example, short-term NO₃⁻

supplementation has been reported to improve exercise economy in association with (Larsen et 111 al., 2011), or independently of (Whitfield et al., 2016), improved efficiency of mitochondrial 112 oxidative phosphorylation (i.e., a higher P/O ratio). Alternatively, an attenuated high-energy 113 phosphate cost of sub-maximal (Bailey et al., 2010) and maximal (Fulford et al., 2013) skeletal 114 muscle force production has been observed following short-term NO_3^- supplementation. It is 115 well documented that a significant portion of the energy liberated from high-energy phosphate 116 metabolism is coupled to skeletal muscle Ca^{2+} handling (Barclay, 2015; Walsh et al., 2006). 117 Accordingly, alterations in skeletal muscle Ca²⁺ handling might play an important role in 118 improving skeletal muscle function after NO_3^- ingestion. In line with this postulate, increased 119 tetanic contractile force and cytosolic $[Ca^{2+}]$ ($[Ca^{2+}]_c$) have been observed in single mouse flexor 120 digitorum brevis (FDB) myocytes after short-term (i.e., 7 days) in vivo NaNO₃ supplementation 121 (Hernández et al., 2012). Moreover, NaNO₃ supplementation increased tetanic contractile force 122 (Hernández et al., 2012) and the content of the Ca²⁺ handling proteins, calsequestrin 1 (CASQ1) 123 and the dihydropyridine receptor (DHPR) in type II extensor digitorum longus muscle, but not in 124 type I soleus muscle (Hernández et al., 2012; Ivarsson et al., 2017; cf Whitfield et al., 2017). 125 Acute exposure to NO_2^{-1} has also been reported to increase $[Ca^{2+}]_c$ in isolated skeletal muscle 126 fibres during tetanic contractions (Andrade et al., 1998b). Therefore, alterations in skeletal 127 muscle Ca²⁺ handling appears to play an important role in the improvement in skeletal muscle 128 function after acute and short-term NO3⁻ supplementation. 129

130

Given that skeletal muscle fatigue and perturbations to Ca^{2+} handling appear to develop in 131 synchrony (Allen *et al.*, 2008; Westerblad & Allen, 1994), improved Ca²⁺ handling after NO₃⁻ or 132 NO₂⁻ treatment (Andrade et al., 1998b; Hernández et al., 2012) might be expected to delay 133 134 skeletal muscle fatigue. However, it has yet to be determined whether acutely exposing skeletal muscle fibres to NO_2^- can abate fatigue development, and to what extent this might be 135 attributable to alterations in Ca²⁺ handling, during repeated tetanic contractions. A limitation of 136 previous experiments assessing the effects of NO₃⁻ and NO₂⁻ administration on skeletal muscle 137 force production and Ca^{2+} dynamics is the high experimental Po₂ (95% O₂) of the perfusate 138 employed in these studies (Andrade et al., 1998b; Hernández et al., 2012). This is important 139 because the intracellular Po2 in muscle fibres during intense skeletal muscle contractions is 140 lowered from ~5% O₂ (~30 Torr) to ~ 0.5% O₂ (~2-5 Torr) (Hirai et al. 2018; Richardson et al., 141

142 1995), and there is evidence that the effects of NO on skeletal muscle contractility and $[Ca^{2+}]_c$ is 143 influenced by the Po₂ (Eu *et al.*, 2003). Accordingly, further research is required to assess the 144 effects of NO₂⁻ administration on skeletal muscle contractility, fatigue and $[Ca^{2+}]_c$ at a Po₂ that 145 better reflects that which is manifest *in vivo* during intense contractions.

146

The purpose of the present study was to assess the effects of acute NO_2^- administration on Ca^{2+} 147 handling, evoked force and fatigue resistance in single intact mouse FDB myocytes at both a 148 near-physiological Po₂ and the more commonly used supra-physiological Po₂. The single muscle 149 fibre model utilised in the current study also allowed us to isolate the effects of NO₂⁻ 150 administration on intramyocyte processes in the absence of altered extramyocyte processes such 151 as perfusion. We hypothesized that skeletal muscle Ca^{2+} handling and contractility would be 152 improved, and fatigue development would be delayed, in FDB fibres after NO₂⁻ incubation at a 153 physiological, but not a supra-physiological, Po₂. 154

155

157 METHODS

158

159 Ethical approval

All procedures were approved by the University of California, San Diego Institutional Animal 160 Care and Use Committee (UCSD-IACUC). The experiments in the present investigation comply 161 with The Journal of Physiology policy for animal studies, as described by Drummond (2009). 162 Adult male mice (12-16 weeks old; C57BL/6J; The Jackson Laboratory, Bar Harbor, ME; a total 163 164 of 22 mice were utilized in the present study) were allowed access to water and food *ad libitum*, and were euthanized by an intraperitoneal overdose of sodium pentobarbital (sleep-away; 150 165 mg/kg). Death was confirmed by absence of movement, heartbeat, and response to toe pinching 166 followed by rapid cervical dislocation to ensure euthanasia. 167

168

169 Single mouse fibre isolation

170 After euthanasia, the FDB muscles from both posterior feet were quickly excised and individual, intact single muscle fibres (total of 28 fibres used in this study) were microdissected from the 171 172 whole muscle and transferred to an intact muscle fibre system (model 1500A with force transducer model 403A, Aurora Scientific Inc., Aurora, ON, Canada), as described previously 173 174 (Nogueira et al., 2018). The intact muscle fibre system was placed on the stage of a Nikon inverted microscope with a 40x long distance Fluor objective. During the experimental 175 176 procedures, fibres were superfused with Tyrode's solution [in mM: 121 NaCl, 5 KCl, 1.8 CaCl₂, 0.5 MgCl₂, 0.4 NaH₂PO₄, 24 NaHCO₃, 5.5 glucose and 0.1 K₂EGTA, constantly bubbled with 177 178 5% CO₂ (for solution pH 7.4) and either 20% O₂ or 2% O₂ as described below]. All experimental procedures were performed at 22°C. 179

180

181 Isometric force measurements and experimental protocol

Isolated single mouse fibres were electrically stimulated using a Grass S88X stimulator (Quincy, MA) and signal was acquired and analysed as described previously (Gandra et al., 2018). Force development (in mN) was normalized to the cross-sectional area (in mm²) determined from the diameter of the fibre ($32.8 \pm 1.4 \mu m$ diameter; n=22 fibres, mean \pm SE). After being mounted into an experimental chamber, fibres were loaded or injected with the respective fluorescent probe (BCECF-AM or FURA-2) or not treated with any fluorescent probe (as described above). 188 All fibres underwent a 30 min of constant superperfusion with Tyrode's solution bubbled with 20% O₂, 5% CO₂ (for extracellular pH 7.4), and N₂ balance followed by electrical stimulations to 189 evoke contractions. Fibre length was then adjusted to achieve optimal isometric tetanic force at 190 191 100 Hz (350 ms trains, 0.5 ms pulses, 8 V; L_0). Thereafter, fibres rested for a further 30 min in constant superperfusion with Tyrode's solution bubbled with either 20% O₂ (for extracellular Po₂ 192 of ~156 Torr) or 2% O₂ (for extracellular Po₂ of 15.6 \pm 0.01 Torr, mean \pm SE). The chamber was 193 sealed with a glass cover slip in order to maintain the oxygen tension for the experimental 194 195 protocol. Oxygen tension of the solution was measured using a needle-type housing fibre optic oxygen microsensor (OXYMICRO, World Precision Instruments, Sarasota, FL) immersed in the 196 197 experimental chamber solution.

198

199 Initially, all fibres were electrically stimulated at different frequencies of pulse stimulation (force-frequency curve; FF; 1-150 Hz; 100 s rest between trains, FF#1). After 5 min of rest, 200 fibres completed a fatigue-inducing contraction protocol (Fatigue #1) comprising a series of 100 201 Hz trains with the stimulation frequency increased every 2 min (0.25, 0.3, 0.36, 0.43, 0.52, 0.62, 202 203 0.75, 0.9, 1.1 trains/s) until task failure, which was defined as the time required for force to decrease by 50%. Immediately following task failure (control), the fibre was superperfused with 204 a 100 µM NaNO₂ solution solubilized in Tyrode's (or modified Tyrode's when pH_i was 205 measured, see below) and allowed to recover for 60 min. Subsequently, the FF and fatiguing 206 207 contraction protocols described above were repeated (FF#2 and Fatigue #2, respectively). A schematic of the experimental protocol is presented in Figure 1. In experiments performed on 208 209 fibres microinjected with FURA-2, the chamber was switched to a Tyrode's solution containing 10 mM caffeine immediately following the last train of the FF curve and fatigue to evoke a 210 211 single 120 Hz train and 100 Hz trains, respectively. The concentration of NaNO₂ was chosen based on the study of Andrade et al., 1998b, who reported alterations in skeletal muscle force 212 and calcium handling in intact single mouse fibres at non-fatiguing conditions in hyperoxia. 213

214

215 Intracellular Ca²⁺ and pH assessment during contraction

Cytosolic calcium concentration ($[Ca^{2+}]_c$) and intracellular pH (pH_i) changes were obtained by fluorescence spectroscopy using a Photon Technology International illumination and detection system (DeltaScan model) (Nogueira *et al.*, 2018). 219

220 $[Ca^{2+}]_c$ measurements

Single muscle fibres (n=5) were pressure injected using a micropipette filled with the ratiometric compound, FURA-2 (Life technologies, Carlsbad, CA, USA; 12 mM, diluted in 150 mM KCl and 10 mM HEPES pH 7.0), followed by 1 h of rest, and subsequent measurement of $[Ca^{2+}]_c$ as described previously (Gandra et al., 2018). Fluorescence excitation ratio (340/380 nm; *R*) was converted to $[Ca^{2+}]_c$ according to equation 1.

226

$$[Ca^{2+}]_{c} = K_{D} \bullet \beta \bullet [(R - R_{min})/(R_{max} - R)]$$
 Eq.1

228

From equation 1, K_D is the dissociation constant for Ca²⁺-FURA-2, which was set to 224 nM (Westerblad & Allen, 1991); β (4.51 ± 0.64; n=5 fibres, mean ± SE) is the fluorescence ratio between high and no [Ca²⁺]_c at 380 nm and was determined for each of the contracting fibres as described previously (Bakker *et al.*, 1993; Andrade *et al.*, 1998a); R_{min} (0.24 ± 0.02; mean ± SE) and R_{max} (5.03 ± 0.84; mean ± SE) are the fluorescence ratios at no cytosolic Ca²⁺ and high Ca²⁺, respectively, and were determined using an internal *in vivo* calibration described by Gandra *et al.* (2018).

236

The contraction-induced $[Ca^{2+}]_c$ was calculated by averaging the $[Ca^{2+}]_c$ signal in the final 100 ms of stimulation and subsequently used to determine peak $[Ca^{2+}]_c$. The $[Ca^{2+}]_c$ before each contraction (i.e, basal $[Ca^{2+}]_c$) was calculated by averaging the signal in the 100 ms preceding each stimulation. To determine myofilament Ca^{2+} sensitivity, force development data at each peak $[Ca^{2+}]_c$ during the force-frequency (FF) curves were fitted with a sigmoidal equation (Gandra *et al.*, 2018) described in equation 2:

- 243
- 244
- 245

 $P = P_{min} + [(P_0 \bullet [Ca^{2+}]_c^n) / (Ca^{2+}_{50}^n + [Ca^{2+}]_c^n)]$ Eq.2

- From equation 2, P is the force developed at different $[Ca^{2+}]_c$, P_0 is the maximal force development, P_{min} is the minimum force developed, $Ca^{2+}{}_{50}$ is the midpoint of the force- $[Ca^{2+}]_c$ curve, and *n* is nH, the Hill coefficient.
- 249

To determine whether fatiguing contractions altered myofilament Ca^{2+} sensitivity, force development data during the fatigue-inducing contraction protocol were plotted at each peak [Ca^{2+}]_c and fitted with equation 2 to determine Ca^{2+}_{50} during fatigue. However, the first 40 s of contractions were not used to determine Ca^{2+}_{50} since they represent the phase 1 of fatigue (Westerblad & Allen, 1991).

255

During the contraction protocols, SR Ca²⁺ pumping was measured using the procedures described by (Nogueira et al. 2018). Briefly, a SR Ca²⁺ pumping curve was obtained by plotting the rate of $[Ca^{2+}]_c$ decline (-d $[Ca^{2+}]c/dt$) during the elevated long tail of $[Ca^{2+}]_c$ decay (from 100 ms – 3 s after the stimulation period) versus $[Ca^{2+}]_c$ (Equation 3).

260

261 $-d[Ca^{2+}]_c/dt = A \cdot [Ca^{2+}]_c^N - L$

262

From equation 3, A, N and L are three adjustable parameters representing the rate of SR Ca^{2+} 263 pumping (in $\mu M^{N-1} \cdot s^{-1}$), the power function, and the SR Ca²⁺ leak, respectively. In order to 264 directly compare SR Ca²⁺ pumping (in $\mu M^{-3} \cdot s^{-1}$) between the control and NaNO₂ conditions at 265 the same time-points of the fatigue protocols (first contraction, 80 s of contractions, and the point 266 of task failure), the curves were fitted with N and L fixed at 4 and 30, respectively. These values 267 were based on mean values of 4.4 ± 0.2 for N and 32 ± 4 and for L obtained in individual 268 269 experiments (n=5 fibres, mean \pm SE), with a maximum increase in least-square error of 15% (Nogueira et al., 2018). 270

271

272 pH_i measurements

Single muscle fibres (n=5) were loaded with 2', 7'-bis-(2-carboxyethyl)-5-(and -6)-273 carboxyfluorescein (BCECF-AM; Life technologies, Carlsbad, CA, USA; prepared as stock 274 275 solution of 10 mM in 100% ethanol and diluted in Tyrode's to final concentration of 10 µM BCECF-AM and 0.1% ethanol) for 30 min at room temperature. After the incubation period, 276 277 excess BCECF-AM was washed out twice with 10 ml Tyrode's, followed by a 30 min resting period with constant superperfusion with Tyrode's. Intracellular pH (pH_i) changes during 278 contractions were performed as described previously (Nogueira et al., 2013). After completing 279 the experimental protocol, each fibre loaded with BCECF-AM underwent an in vivo calibration 280

Eq.3

procedure, involving 20 min incubation in two different pH buffered solutions (175 mM KCl, 1.2 281 mM KH₂PO₄, 0.5 mM MgCl₂, 10 mM HEPES, 10 µM nigericin), previously titrated with KOH 282 to pH 5.0 and 9.0 as the fluorescence signal was detected. To determine the logarithmic 283 dissociation constant (pK_A) , another group of fibres (n=3) were loaded with BCECF-AM, 284 incubated for 20 min in each of the 12 different pH buffered solutions (ranging from pH 5.0 to 285 286 pH 9.0), and the fluorescence signal was detected (Nogueira et al., 2013). To convert the fluorescence signals to pH_i, fluorescence excitation ratio (440/490 nm; F) was then converted to 287 288 pH_i according to equation 4.

- 289
- 290

$$pH_i = pK_A - \log [(F - F_b)/(F_a - F)] - \log (S_b/S_a)$$
 Eq. 4

291

From equation 4, pK_A was set to 7.14 (7.14 ± 0.03, n=3 fibres; mean ± SE). S_b and S_a are the fluorescence signals from 440 nm excitation when BCECF is H⁺-free (reached at pH 9.0) and H⁺-bound (reached at pH 5.0), respectively. The fluorescence ratio of S_b/S_a was determined as 0.45 ± 0.10 (total of n=8 fibres; mean ± SE). F_a and F_b are the fluorescence ratios at H⁺-bound and H⁺-free states, respectively, and were determined as 2.56 ± 0.22 for F_a and 8.63 ± 0.35 for F_b (total of n=8 fibres; mean ± SE).

298

When pH_i was measured during the contractile protocols, a modified Tydore's solution was
applied where 20 mM NaCl was substituted with NaLactate (101 mM NaCl, 5mM KCl, 1.8 mM
CaCl₂, 0.5 mM MgCl₂, 0.4 mM NaH₂PO₄, 24 mM NaHCO₃, 5.5 mM glucose, 0.1 mM EGTA,
0.2% FBS and 20 mM NaLactate). This solution was applied in order to produce contractileinduced changes in intracellular pH in single mouse fibres (Westerblad & Allen, 1992).

304

305 Statistics

The experimental results are presented as mean \pm standard deviation (SD). For comparison between two groups, paired Student's *t*-test were used and effect size was calculated using Cohen's d. For multiple comparisons, a one-way ANOVA followed by the Tukey test or a twoway ANOVA followed by Bonferroni test was used, as indicated. All the analyses were conducted using GraphPad Prism® version 4.00 for Windows (San Diego, California, USA). Statistical significance was accepted when P < 0.05.

312 **RESULTS**

313

Influence of Po₂ and NaNO₂ administration on single fibre fatigue development

To assess the influence of NaNO₂ incubation on fatigue development and the potential Po₂-315 dependence of this effect, single muscle fibres were exposed to either a supra-physiological or a 316 near-physiological Po₂ [i.e., with 20% O₂ (~150 Torr) or 2% O₂ (~15.6Torr), respectively] in the 317 absence of any injection or loading with fluorescent probes. At 20% O₂, time to task failure 318 following NaNO₂ administration was $34 \pm 19\%$ shorter compared to standard Tyrode's solution 319 (control: 257 ± 94 vs. NaNO₂: 159 ± 46 s; d=1.63, P<0.05, Fig. 2A, n=4 fibres). There were no 320 differences in initial isometric force between the control and NaNO₂ fatigue runs at 20% O₂ 321 (control: 413 ± 63 vs. NaNO₂: 410 ± 69 kPa; P>0.05). However, when fibres were superfused 322 with 2% O₂, which was the smallest extracellular Po₂ that did not lower time to task failure 323 compared to 20% O_2 (data not shown), NaNO₂ treatment increased time to task failure by 19 ± 324 18% (control: 538 \pm 286 vs. NaNO₂: 607 \pm 304 s, d=1.83, P<0.05, Fig. 2B, n=4 fibres). There 325 was also no difference in initial isometric force between the control and NaNO₂ fatigue runs at 326 327 2% O₂ (control: 495 \pm 111 vs. NaNO₂: 477 \pm 98 kPa; P>0.05). There was no difference in time to task failure between the two fatigue runs at 2% O2 when NaNO2 was absent prior to and 328 329 during the second fatigue-inducing contraction protocols (first fatigue run: 330 ± 131 vs. second fatigue run: 288 ± 143 s; P>0.05, n=4 fibres). When single muscle fibres were microinjected 330 with FURA-2 to measure $[Ca^{2+}]_c$ responses during and between contractions, NaNO₂ treatment at 331 near-physiological Po₂ did not increase time to task failure compared to the control condition 332 333 (control: 142 ± 33 vs. NaNO₂: 165 ± 73 s, d=0.51, P>0.05, n=5 fibres). However, in fibres loaded with BCECF and perfused with a modified Tyrode's solution (i.e., with 20 mM 334 335 NaLactate) to measure pH_i, time to task failure was increased with NaNO₂ administration (control: 291 \pm 52 vs. NaNO₂: 379 \pm 82 s; 31 \pm 18% increase; d=1.62, P<0.05; n=5 fibres). 336 When the fibres from all experiments at near-physiological Po_2 were pooled, time to task failure 337 was enhanced by $21 \pm 22\%$ with NaNO₂ treatment compared to preceding control condition 338 (control: 308 ± 217 vs. NaNO₂: 368 ± 242 s; d=1.14, *P*<0.01, Fig. 2C, n=14 fibres). 339

340

341 Influence of NaNO₂ on force and intracellular Ca²⁺ responses during single non-fatiguing

342 contractions

During the single contraction non-fatiguing FF curves, maximal tetanic force was not different 343 (P>0.05), but sub-maximal force during 20-50 Hz contractions was lowered in the NaNO₂ 344 condition compared to the control condition (P < 0.01, n=5 fibres; Fig 3A). For example, evoked 345 force at 30 Hz was $42 \pm 20\%$ lower in the NaNO₂ condition (*P*<0.01). Peak [Ca²⁺]_c was lowered 346 in the NaNO₂ condition at sub-maximal (e.g., by $21 \pm 11\%$ at 30 Hz, P<0.01) and maximal (e.g., 347 by 22 \pm 15% at 150 Hz, P<0.05) force development, as well as during 120 Hz contractions 348 evoked in the presence of 10 mM caffeine (by $32 \pm 21\%$), compared to the control condition 349 (P<0.05). In fibres that were superfused with 2% O₂ but not treated with NaNO₂, maximal and 350 submaximal forces were not different between the first and the second FF curves (data not 351 shown, n=4, P>0.05). When isometric force development (shown in Fig 3A) was plotted against 352 $[Ca^{2+}]_c$ (shown in Fig. 3B) across the FF curve, there were no differences between the control 353 and NaNO₂ conditions (Fig. 3C). Indeed, the midpoints of the force- $[Ca^{2+}]_c$ curves were not 354 different between the control and NaNO₂ conditions (e.g., $Ca^{2+}{}_{50}$ was 474 ± 154 nM vs. 472 ± 355 122 nM for control and NaNO₂, respectively, *P*>0.05, n=5 fibres). 356

357

Influence of NaNO₂ on intracellular Ca²⁺ responses during repeated fatigue-inducing contractions

There was no difference in peak $[Ca^{2+}]_c$ achieved during the evoked contractions between the 360 control and NaNO₂ conditions throughout the fatigue-inducing contraction protocols (P>0.05, 361 Fig. 4A). However, after 100 s of the fatigue-inducing contraction protocol, basal $[Ca^{2+}]_c$ 362 following the evoked contractions was lower in the NaNO₂ condition (P<0.05). Moreover, basal 363 $[Ca^{2+}]_c$ at the point of task failure was also lower in the NaNO₂ condition (109 ± 20 nM) 364 compared to the control condition (136 \pm 28 nM, d=1.33, P<0.05, Fig. 4B). The midpoint of the 365 force- $[Ca^{2+}]_c$ curves (Ca^{2+}_{50}) , an index for predict the myofilament Ca^{2+} sensitivity, was 366 determined during the fatigue-inducing contractions and compared with the data obtained in the 367 FF curves. While the Ca²⁺₅₀ increased during the fatigue-inducing contraction protocol compared 368 to the value obtained from the FF curve in the control condition (from 474 ± 154 nM to $601 \pm$ 369 141 nM, P<0.05), the Ca²⁺₅₀ was not different between the fatigue-inducing contraction protocol 370 and the FF curve in the NaNO₂ condition (from 472 ± 122 nM to 566 ± 95 nM, P>0.05, Fig. 4C). 371 372

373 Influence of NaNO₂ on sarcoplasmic reticulum Ca²⁺ pumping during fatiguing contractions

There were no differences between the control and NaNO₂ conditions in the plot of $[Ca^{2+}]_c$ decay 374 rate for each $[Ca^{2+}]_c$ following the first contraction of the repeated fatigue-inducing contraction 375 protocol (Fig. 5A). Similarly, the rate of SR Ca^{2+} pumping following the first contraction was not 376 different between the control $(3323 \pm 2209 \ \mu M^{-3} \cdot s^{-1})$ and NaNO₂ $(3069 \pm 2276 \ \mu M^{-3} \cdot s^{-1})$ 377 conditions (P>0.05, Fig. 4D). During the fatigue-inducing contraction protocol, the rate of SR 378 Ca^{2+} pumping was slower after 80 s (534 ± 543 $\mu M^{-3} \cdot s^{-1}$) compared to the first contraction 379 (P<0.05) and slower at the time of task failure (200 \pm 217 μ M⁻³·s⁻¹) compared to both the first 380 contraction and after 80 s of the fatigue-inducing contraction protocol in the control condition 381 (P < 0.05). Likewise, the rate of SR Ca²⁺ pumping was progressively slowed from the first 382 contraction, after 80 s (955 \pm 854 μ M⁻³·s⁻¹) and at the time of task failure (486 \pm 380 μ M⁻³·s⁻¹) 383 during the fatigue-inducing contraction protocol in the NaNO₂ condition (P<0.05). After 80 s of 384 contractions (Fig. 5B) and at the time of task failure (Fig. 5C), the plots of $[Ca^{2+}]_c$ decay rate for 385 each $[Ca^{2+}]_c$ were left-shifted in the NaNO₂ condition compared to the control condition. 386 Moreover, compared to the control condition, the rate of SR Ca^{2+} pumping was 110 ± 78% 387 (d=0.63) and $212 \pm 105\%$ (d=0.97) higher with NaNO₂ treatment after 80 s of contractions (Fig. 388 5E) and at the time of task failure (Fig. 5F), respectively, during the fatigue-inducing contraction 389 protocol (*P*<0.05). 390

391

392 Intracellular pH changes during fatiguing contractions

Compared to the resting values, pH_i at task failure was lower in both the control (Pre: 7.46 \pm 0.23 vs. Post: 7.34 \pm 0.22) and NaNO₂ (Pre: 7.46 \pm 0.24 vs. Post: 7.25 \pm 0.21) conditions (*P*<0.0001, n=5 fibres, Fig. 6). There were no differences in pH_i between the control and NaNO₂ conditions over the first 300 s of the fatigue-inducing contraction protocol (*P*>0.05). However, the change in pH_i from the start to the end of the fatigue-inducing contraction protocol was greater in the NaNO₂ condition (-0.20 \pm 0.04) compared to the control condition (-0.12 \pm 0.05, *P*<0.05).

401 **DISCUSSION**

402

403 The important original findings from this study were that NaNO₂ exposure delayed fatigue development in single mammalian skeletal muscle fibres at a near-physiological Po2, but 404 expedited fatigue development at a supra-physiological Po₂, during a repeated tetanic contraction 405 protocol. Moreover, when single skeletal muscle fibres were incubated with NaLactate to 406 replicate the contraction-induced decline in pH_i that is manifest *in vivo*, the blunting of fatigue 407 development with NaNO₂ compared to the control condition at a physiological Po₂ was greater 408 than the same comparison without NaLactate coincubation. The delayed fatigue development 409 with NaNO₂ administration did not impact peak $[Ca^{2+}]_c$ during the fatiguing contraction protocol 410 but blunted the progressive decline in SR Ca²⁺ pumping rate and the associated increase in basal 411 $[Ca^{2+}]_c$ in the recovery period between contractions. Incubation with NaNO₂ also alleviated the 412 decline in myofilament Ca^{2+} sensitivity during the fatiguing contraction protocol. There was no 413 difference in pH_i between the NaNO₂ and control conditions over the first 300 s of the fatigue-414 inducing contraction protocol, but pHi was lower at task failure in the NaNO2 condition 415 compared to the control condition. These results suggest that, at a Po₂ comparable to that 416 observed in human skeletal muscle during fatigue-inducing contractions (Richardson et al., 417 1995), and in the absence of any alterations in perfusion, NO₂⁻ treatment can delay the 418 development of fatigue in single skeletal muscle fibres by improving SR Ca²⁺ pumping, 419 maintaining Ca²⁺ sensitivity, and permitting the attainment of a lower pH_i. These findings 420 421 extend our understanding of the mechanisms by which increased muscle NO_2^{-1} exposure, as 422 occurs following dietary NO₃⁻ supplementation (Gillard et al., 2018; Wylie et al., in press), can blunt skeletal muscle fatigue and suggest that the potential for NO₂⁻ administration to attenuate 423 424 fatigue development is Po₂- and pH-dependent.

425

426 Influence of NaNO₂ administration on time to task failure at a near-physiological Po₂

Incubation with NaNO₂ at a near-physiological Po₂ increased time to task failure by 19% compared to the control condition with no fluorophore loading. Although NaNO₂ administration at a near-physiological Po₂ did not increase time to task failure in fibres microinjected with FURA-2 to assess $[Ca^{2+}]_c$ dynamics, when these data were combined with data from fibres with no fluorophore loading, time to task failure was extended by 15%. The greatest increase (31% 432 compared to the respective control condition) in time to task failure with NaNO₂ incubation in 433 the current study was observed when skeletal muscle fibres were co-incubated with a near-434 physiological Po₂ and NaLactate to facilitate a decline in pH_i (Westerblad & Allen, 1992) and 435 thus better reflect the pH_i dynamics in human skeletal muscle *in vivo* (Vanhatalo *et al.*, 2011). 436 The mean improvement in time to task failure with NaNO₂ incubation compared to the respective 437 control conditions in the experiments completed with (FURA-2 and BCECF-AM) and without 438 fluorophores was 21% at a near-physiological Po₂ in the current study.

439

It has been reported that intracellular Po_2 in both rodent and human skeletal muscle fibres drops 440 from ~30 Torr at rest to ~3-4 Torr during intense exercise (Hirai et al., 2018; Richardson et al., 441 1995). The extracellular Po_2 was set at ~15 Torr (2% O_2) in the current study as preliminary 442 443 experiments revealed this to be the smallest extracellular Po₂ that did not lower time to fatigue in single skeletal muscle fibres compared to experiments conducted at 20% O₂, which suggest that 444 at 15 Torr fibres were not under hypoxic conditions during contractions. Furthermore, the 445 extracellular Po2 used in the present work closely reflects the Po2 in the interstitial space between 446 447 the capillaries and muscle fibres (Hirai et al., 2018), and was intended to replicate the intracellular Po2 during contractions in humans in vivo (Richardson et al., 1995). Although the 448 449 control fatigue-inducing protocol always preceded the NaNO₂ fatigue-inducing protocol, there was no difference in evoked isometric force in the first tetanic contraction of the control and 450 451 NaNO₂ fatigue-inducing protocols, and there was no difference in time to task failure between two fatigue-inducing protocols at 2% O₂ without NaNO₂ administration. Therefore, our results 452 453 suggest that, at a near physiological Po₂, the blunted rate of fatigue development in the second 454 fatigue-inducing protocol completed with NaNO₂ administration was not confounded by 455 differences in initial force production or fatigue development between the first and second fatigue-inducing contraction protocols. 456

457

458 Influence of NaNO₂ administration on time to fatigue at a supra-physiological Po₂

In contrast to the delayed rate of fatigue development with NaNO₂ administration at a near physiological Po₂, fatigue development was expedited when NaNO₂ was administered at a supraphysiological Po₂ of 20% O₂ (~150 Torr) in the present study. It has been reported that sarcomere shortening and $[Ca^{2+}]_c$ are greater in collagenase-digested single FDB muscle fibres 463 excised from wild-type mice and stimulated by single twitches at 1% O_2 compared to 20% O_2 , and that these effects are abolished in fibres excised from nNOS knock-out mice (Eu et al., 464 2003). These findings suggest that, at least in the unfatigued state, SR Ca²⁺ handling and skeletal 465 muscle contractility are improved by NO production at a physiological Po₂ compared to a supra-466 physiological Po₂. It has been suggested that the one-electron reduction of NO₂⁻ to NO is 467 inversely related to Po₂ and that the oxidation of NO₂⁻ and NO to NO₃⁻ is increased at a higher 468 Po₂ (Lundberg & Weitzberg, 2009, 2010). The greater production of superoxide in hyperoxia 469 (Clanton, 2007) will also act to scavenge NO generated from NO₂⁻ reduction (Sjöberg & Singer, 470 2013) leading to the formation of the potent oxidising agent, peroxynitrite (Radi, 2013). This 471 potential for increased peroxynitrite synthesis with NO_2^- administration at a supra-physiological 472 Po₂ might have contributed to the earlier attainment of task failure compared to the control 473 condition (Dutka et al., 2012; Supinski et al., 1999). There is also evidence that hydrogen 474 peroxide, which is generated through the dismutation of superoxide, can oxidise NO_2^- to NO_3^- 475 through the enzyme, catalase (Heppel & Porterfield, 1949). Therefore, the Po₂-dependent effects 476 of NO₂⁻ on fatigue development might be linked to the proportion of NO₂⁻ that is reduced to NO 477 478 and its interaction with reactive oxygen species. Collectively, our results suggest that the effect of NaNO₂ administration on fatigue development in single skeletal muscle fibres is Po₂- and pH-479 dependent with the greatest positive effect manifest when Po2 and pHi dynamics most closely 480 resemble those that are exhibited in human skeletal muscle in vivo. 481

482

483 Influence of NaNO₂ administration on skeletal muscle Ca^{2+} handling

In addition to measuring fatigue development, $[Ca^{2+}]_c$ transients were assessed during a series of 484 single non-fatiguing contractions and during subsequent repeated fatigue-inducing tetanic 485 486 contractions at a near physiological Po₂ in the absence and presence of NaNO₂. There were no differences in isometric force during a series of single contractions evoked prior to and 60 min 487 488 following the completion of a repeated contraction fatigue-inducing protocol suggesting that 60 min of recovery was sufficient to restore isometric force to baseline. Accordingly, any effect of 489 NO₂⁻ on contractility during the second series of single non-fatiguing contractions would not be 490 491 expected to be confounded by the preceding fatigue-inducing contraction protocol. During the series of single non-fatiguing contractions completed 60 min after the end of the first bout of 492 fatiguing contractions and with NaNO₂⁻ incubation, isometric force during single submaximal 493

(20-50 Hz) contractions was depressed compared to the initial control condition, but not at near-494 maximal or maximal (>50 Hz) contractions. $[Ca^{2+}]_c$ was lower with NO₂⁻ treatment during 495 496 single 30-150 Hz contractions and during a single 120 Hz contraction in the presence of 10 mM caffeine to evoke maximum SR Ca²⁺ release, but due to the sigmoidal nature of the force-Ca²⁺ 497 relationship, the decreased in peak $[Ca^{2+}]_c$ at high pulse-frequencies with NaNO₂ did not alter the 498 maximum force developed. Therefore, the suppression of isometric force development during 499 sub-maximal contractions with NO_2^- exposure was a function of lower SR Ca^{2+} release with no 500 change in Ca^{2+} sensitivity. In contrast, and despite administering the same NO_2^- dose as the 501 current study, [Ca²⁺]_c was increased, and isometric force was attenuated in single mouse skeletal 502 muscle fibres with NO_2^- treatment at 95% O_2 in a previous study by Andrade *et al.* (1998b). 503 Since this reduction in myofibrillar Ca²⁺ sensitivity with NO₂⁻ treatment was also observed 504 following the administration of different NO donors (Andrade et al., 1998b), these findings 505 suggest that the effects of NO_2^- on SR Ca^{2+} handling are NO-mediated or that NO_2^- and NO 506 impact SR Ca²⁺ handling through common signalling mechanisms. The disparate effect of NO₂⁻ 507 on SR Ca^{2+} handling and isometric force in the current study and the study by Andrade *et al.* 508 (1998b) is likely a function of the inter-study difference in the experimental Po₂ (Eu et al., 2003) 509 and its influence on the crosstalk between redox and nitroso signalling (Spencer & Posterino, 510 2009). While it is unclear why NO₂⁻ administration suppressed isometric force production and 511 peak [Ca²⁺]_c during 20-50 Hz submaximal contractions, and did not change isometric force 512 production during maximal/near-maximal contractions at 100 Hz, these observations are in line 513 514 with previous findings that NO donors are more likely to impair force production during unfused 515 tetanus compared to fused tetanus (Maréchal and Gailly, 1999; Murrant et al., 1997).

516

During the fatigue-inducing repeated tetanic contraction protocol, peak $[Ca^{2+}]_c$ during 517 contractions declined, basal $[Ca^{2+}]_c$ following contractions increased and myofibrillar Ca^{2+} 518 sensitivity was lowered as the fatigue protocol progressed. These perturbations to SR Ca2+ 519 520 handling are consistent with previous reports and are important contributors to the development 521 of skeletal muscle fatigue (Allen et al., 2008; Westerblad & Allen, 1994). There was no difference in peak $[Ca^{2+}]_c$ during contractions between the NaNO₂ and control conditions 522 throughout the fatigue run. However, after 80 s of the fatigue run, the slowing in SR Ca²⁺ 523 pumping and the resultant increase in basal $[Ca^{2+}]_c$ following contractions were attenuated with 524

 NO_2^- treatment. Therefore, the blunted fatigue development in the NO_2^- trial compared to the 525 control trial appears to be linked to a better maintenance of SR Ca²⁺ pumping. The pumping of 526 Ca^{2+} by the SR is an active process that is coupled to the function (Ca^{2+} affinity and the coupling 527 between ATP hydrolysis and Ca²⁺ transport) of the SR Ca²⁺-ATPase (SERCA). SERCA 528 529 function is regulated by the phosphorylation status of two proteins with similar structures, phospholamban, which is mostly expressed in cardiac myocytes and in slow-twitch muscle 530 531 fibres, and sarcolipin, which is mostly expressed in skeletal muscle fibres (Pant et al., 2016). Specifically, phosphorylated phospholamban and sarcolipin can improve SERCA function, 532 whereas dephosphorylated phospholamban and sarcolipin can compromise SERCA function 533 (Tupling, 2009). It has been reported that NO₂⁻ administration can increase the amount of 534 phosphorylated phospholamban in striated muscle through nitrite reductase dependent NO 535 production (Huang et al., 2013). Therefore, it is possible phosphorylation of phospholamban 536 and/or sarcolipin might have contributed to the improved maintenance of SR Ca²⁺ pumping 537 during the fatigue-inducing contraction protocol completed with NaNO₂ treatment at a low Po₂ 538 compared to the control trial in the current study. Moreover, since the rate of SR Ca²⁺ pumping 539 is inversely related to basal $[Ca^{2+}]_c$ accumulation during repetitive contractions (Nogueira *et al.*, 540 2013, 2018), the lower basal $[Ca^{2+}]_c$ accumulation during the fatigue-inducing contraction 541 protocol would also likely have contributed to the better maintenance of SR Ca²⁺ pumping 542 during the NO₂⁻ trial. Lowering the energy cost of actomyosin ATPase, through inhibiting cross-543 bridge cycling, has also been reported to abate the progressive slowing in SR Ca²⁺ pumping rate 544 during fatiguing contractions (Nogueira *et al.*, 2013). It has been reported that increasing NO₂⁻ 545 546 via short-term dietary NO_3^- supplementation can lower the high-energy phosphate cost of submaximal (Bailey et al., 2010) and maximal (Fulford et al., 2013) skeletal muscle force 547 548 production, which is compatible with findings from single intact skeletal muscle fibres that the energy cost of skeletal muscle contraction impacts SR Ca²⁺ pumping rate during fatiguing 549 550 contractions (Nogueira et al., 2013).

551

552 Compared to the single non-fatiguing contractions completed during the construction of the 553 force-frequency curve, myofilament Ca^{2+} sensitivity declined across the fatigue-inducing 554 contraction protocol in the control trial, but not the NaNO₂ trial. Therefore, improved 555 preservation of myofilament Ca^{2+} sensitivity might have contributed to the slower rate of fatigue 556 development in the NaNO₂ trial. It has been reported that treatment with NO donors can S-557 nitrosylate cysteine residues in the myosin heavy chain leading to slowed cross-bridge cycling 558 (Nogueira et al., 2009), but increased force per power stroke (Evangelista et al., 2010). Since NO₂⁻ administration has also been reported to promote S-nitrosylation in striated muscle (Kovács 559 et al., 2015), the improved maintenance of Ca^{2+} sensitivity with NaNO₂ administration in the 560 current study might therefore be a function of direct NO_2^- action on the myofilaments. 561 Alternatively, NO₂⁻ administration might have improved myofilament Ca²⁺ sensitivity indirectly 562 through attenuating ROS production (Yang et al., 2015), or thwarting ROS-mediated oxidation 563 of the myofilaments (Moonpanar & Allen, 2006). 564

565

566 Influence of NaNO₂ administration on skeletal muscle pH

Since a decline in muscle pH has been reported to compromise myofilament Ca²⁺ sensitivity 567 (Fabiato & Fabiato, 1978) and SERCA function (Wolosker et al., 1997), and since NO has been 568 reported to inhibit glycolysis via S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase 569 (Mohr et al., 1996), pH_i was assessed to provide insight into the potential mechanisms for 570 improved Ca^{2+} handling in the NaNO₂ trial. Since pH_i was not different between the NaNO₂ and 571 control trials over the first 300 s of the fatigue run, the results presented in this study suggest that 572 the improved maintenance of myofilament Ca^{2+} sensitivity and SR Ca^{2+} pumping rate in the 573 NaNO₂ trial extended time to task failure and permitted the attainment of a lower pH_i at task 574 575 failure compared to the control condition.

576

577 Limitations and areas for further research

We combined the time to task failure data from FURA-2 injected fibres and non-injected fibres 578 579 as time to task failure was not significantly different with NaNO₂ compared to the control condition in FURA-2 microinjected fibres. Therefore, it should be acknowledged that the 580 experiments in FURA-2 injected fibres to assess the effects of NaNO₂ administration on Ca²⁺ 581 handling and fatigue at a near-physiological Po₂ in the current study were underpowered. When 582 583 the data from FURA-2 injected fibres and non-injected fibres were combined, time to task failure was significantly extended in the NaNO₂ condition, consistent with the experiments where 584 NaNO₂ was co-incubated with NaLactate to facilitate a decline in pH_i. Therefore, this approach 585 does not undermine the conclusion that acute NaNO₂ administration can delay fatigue 586

587 development at a near-physiological Po_2 and we have based our conclusions on the effect of NaNO₂ administration on fatigue development when all fibres are pooled. Since acute NO_2^{-1} 588 exposure lowered $[Ca^{2+}]_c$ and force during 20-50 Hz isometric contractions in the current study, 589 but elevating plasma [NO₂⁻] via chronic NO₃⁻ supplementation increased these variables in the 590 same experimental model (Hernández et al., 2012), we cannot exclude the possibility that 591 skeletal muscle contractility, fatigue, and Ca²⁺ handling might be enhanced to a greater extent 592 after chronic NO₃ supplementation. It should be noted that since mammalian plasma nitrite is 593 significantly lower (i.e., at high nanomolar range) after NO₃⁻ ingestion (e.g., Wylie et al., 2013) 594 compared to the 100 µM NaNO₂⁻ that was used to perfuse the skeletal muscle fibres in the 595 present investigation, the dose of NO_2^- administered in the current study was supraphysiological. 596 Furthermore, since human skeletal muscles do not manifest the same changes in Ca²⁺-handling 597 598 proteins following a 7-day NO_3^- supplementation (Whitfield *et al.*, 2017) previously detected in rodent skeletal muscle (Hernández et al., 2012), the extent to which our findings translate to 599 humans is unclear and in need of further research. 600

601

While fatigue development was attenuated concomitant with improved Ca²⁺ handling following 602 NaNO₂ administration at a physiological Po₂, Ca²⁺ handling was not assessed during the 603 supraphysiological Po2 experiments in the current study. Therefore, the mechanisms for the 604 more rapid fatigue development with NaNO₂ administration at a supraphysiological Po₂ remains 605 606 to be determined. Moreover, although the contraction-induced pH_i changes observed in the present study were qualitatively similar to the contraction-induced pH_i changes in human skeletal 607 608 muscle in vivo, it should be acknowledged that the solution that all fibres were superfused with was bubbled with 5% CO_2 for an extracellular final pH ~7.4. Therefore, pH_i was higher in the 609 610 present study compared to human skeletal muscle completing fatiguing contractions in vivo. It is 611 also acknowledged that a limitation of our study is the lack of measurement of NO/ROS markers. 612 Since the NO fluorescent probes, DAF-FM and DAF-2, do not detect NO at low oxygen tensions 613 (Namin et al, 2013), these probes could not be employed to assess myofiber NO production from NO_2^- reduction in our study. Further research is required to assess the effects of increased 614 skeletal muscle NO₂⁻ exposure on NO and ROS signalling in skeletal muscle. 615

618 Over the past decade there has been significant interest in supplementing the diet with NO_3^{-1} to enhance exercise economy and performance (Jones, 2014), but the underpinning mechanisms for 619 620 these effects were unclear. The present study indicates that NaNO₂ administration can delay fatigue development, improve the maintenance of myofilament Ca²⁺ sensitivity and attenuate the 621 fatigue-induced slowing in SR Ca²⁺ reuptake during repeated tetanic contractions in *ex vivo* 622 skeletal muscle fibres at a near-physiological Po₂ of 2% O₂. These findings using a single 623 624 skeletal muscle fibre model also demonstrate that increased NO₂⁻ exposure can blunt skeletal muscle fatigue development independent of any alterations in skeletal muscle perfusion by 625 improving skeletal muscle Ca²⁺ handling. Therefore, our findings offer novel insights into some 626 of the mechanisms that might underpin the ergogenic effects of increased skeletal muscle NO_2^{-1} 627 exposure, which might have implications for improving understanding of how dietary NO_3^{-1} 628 supplementation is ergogenic in humans during high-intensity endurance exercise. 629

630

In addition to evoking positive effects in skeletal muscle, NO₃ supplementation or 631 administration of NO donors can improve Ca²⁺ handling and contractile function in 632 cardiomyocytes (Pironti et al., 2016; Tocchetti et al., 2007). There is also evidence to suggest 633 that NO₃⁻ supplementation can improve skeletal muscle (Coggan et al., 2015b) and cardiac 634 (Zamani et al., 2015) function, and exercise capacity (Coggan et al., 2018; Zamani et al., 2015) 635 in heart failure patients. Therefore, increased NO₂⁻ exposure following NO₃⁻ supplementation 636 637 might have important therapeutic application in patients with diseases of the cardiovascular system. 638

639

In conclusion, acute treatment with NaNO₂ delayed time to task failure in intact skeletal muscle 640 641 fibres at a physiological Po₂ during a repeated tetanic isometric contraction protocol. The greatest attenuation of fatigue development was observed when NaLactate was co-administered 642 with NaNO₂ at 2% O₂ to elicit similar pH_i response dynamics to those manifest in vivo. 643 Conversely, task failure was attained earlier following NaNO₂ administration when assessed at a 644 supra-physiological Po₂ equivalent to 20% O₂. The delay in fatigue development following 645 NaNO₂ administration at 2% O₂ was accompanied by improved maintenance of myofilament 646 Ca^{2+} sensitivity, increased SR Ca^{2+} pumping and a lower basal $[Ca^{2+}]_c$ in the recovery period 647 between contractions, and a greater decline of pH_i. Therefore, NaNO₂ administration can delay 648

fatigue development in intact, *ex vivo* skeletal muscle fibres at a near-physiological Po_2 , with this effect linked to improved myocyte Ca²⁺ handling. These results provide new insight into the mechanisms by which increased NO_2^- exposure can mitigate skeletal muscle fatigue development and the ergogenic potential of dietary NO_3^- ingestion.

653

655 **REFERENCES**

656

673

676

678

682

685

688

- Allen DG, Lamb GD & Westerblad H. (2008). Skeletal muscle fatigue: cellular mechanisms. *Physiol Rev*88, 287-332.
 Andrade FH, Reid MB, Allen DG & Westerblad H. (1998a). Effect of hydrogen peroxide and dithiothreitol
 on contractile function of single skeletal muscle fibres from the mouse. *J Physiol* 509, 565-575.
 Andrade FH, Reid MB, Allen DG & Westerblad H. (1998b). Effect of nitric oxide on single skeletal muscle
- 664 fibres from the mouse. *J Physiol* **509**, 577-586. 665
- Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones
 AM. (2010). Dietary nitrate supplementation enhances muscle contractile efficiency during
 knee-extensor exercise in humans. *J Appl Physiol* 109, 135-48.
- Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM
 (2009). Dietary nitrate supplementation reduces the O₂ cost of low-intensity exercise and
 enhances tolerance to high-intensity exercise in humans. J Appl Physiol 107, 1144-1155.
- Bakker AJ, Head SI, Williams DA & Stephenson DG. (1993). Ca²⁺ levels in myotubes grown from the
 skeletal muscle of dystrophic (mdx) and normal mice. *J Physiol* 460, 1-13.
- 677 Barclay CJ. (2015). Energetics of contraction. *Compr Physiol* **5**, 961-995.
- Castello PR, David PS, McClure T, Crook Z, Poyton RO. (2006). Mitochondrial cytochrome oxidase
 produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic
 signaling in eukaryotes. *Cell Metab.* **3**,277-87.
- Clanton TL. (2007). Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol.
 102, 2379-2388.
- Clanton TL. (2019). Managing the power grid: how myoglobin can regulate PO₂ and energy distribution
 in skeletal muscle. *J Appl Physiol*. **126**, 787-790.
- Coggan AR, Broadstreet SR, Mahmood K, Mikhalkova D, Madigan M, Bole I, Park S, Leibowitz JL,
 Kadkhodayan A, Thomas DP, Thies D, Peterson LR. (2018). Dietary Nitrate Increases VO₂peak and
 Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With
 Reduced Ejection Fraction. J Card Fail 24, 65-73.
- Coggan AR, Leibowitz JL, Kadkhodayan A, Thomas DP, Ramamurthy S, Spearie CA, Waller S, Farmer M,
 Peterson LR. (2015a). Effect of acute dietary nitrate intake on maximal knee extensor speed and
 power in healthy men and women. *Nitric Oxide* 48, 16-21.
- 697
 698 Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, Mahmood K, Park S,
 699 Waller S, Farmer M, Peterson LR. (2015b). Acute Dietary Nitrate Intake Improves Muscle
 700 Contractile Function in Patients With Heart Failure: A Double-Blind, Placebo-Controlled,
 701 Randomized Trial. *Circ Heart Fail* **8**, 914-920.

702	
703	Drummond GB. (2009). Reporting ethical matters in the Journal of Physiology: standards and advice. J
704	Physiol 587, 713-719.
705	
706	Dutka TL, Verburg E, Larkins N, Hortemo KH, Lunde PK, Sejersted OM, Lamb GD. (2012). ROS-mediated
707	decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in
708	vivo stimulation. <i>PLoS One</i> . 7(5):e35226.
709	
710	Eu JP. Hare JM. Hess DT. Skaf M. Sun J. Cardenas-Navina I. Sun OA. Dewhirst M. Meissner G. Stamler JS.
711	(2003). Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous
712	nitric oxide Proc Natl Acad Sci II S A 100 15229-15234
713	
714	Evangelista AM Rao VS Filo AR Marozkina NV Doctor A Jones DR Gaston B Guilford WH (2010)
715	Direct regulation of striated muscle myosins by nitric oxide and endogenous nitrosothiols. <i>PLoS</i>
715	One E/C) :e11200
710	<i>One</i> 5(6) .e11205.
710	Eablate A. Eablate E. (1078). Effects of pH on the musfilements and the carconlasmic reticulum of
718	Fabiato A, Fabiato F. (1978). Effects of pH off the myoniaments and the sarcopiasmic reticulum of
719	skinned cells from cardiace and skeletal muscles. J Physiol 276 , 233-255.
720	Forevege SK Uirei DNA Come SMA Holdowerth CT Allen ID Janes ANA Musch TI Doolo DC (2012) Januart
721	Ferguson SK, Hirai Divi, Copp SW, Holdsworth CT, Allen JD, Jones Alvi, Musch TT, Poole DC. (2013). Impact
722	of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in
723	rats. J Physiol 591 , 547-57.
724	
725	Ferguson SK, Holdsworth CT, Wright JL, Fees AJ, Allen JD, Jones AM, Musch TJ, Poole DC. (2015).
/26	Microvascular oxygen pressures in muscles comprised of different fiber types: Impact of dietary
/2/	nitrate supplementation. <i>Nitric Oxide</i> 48 , 38-43.
728	
729	Fulford J, Winyard PG, Vanhatalo A, Bailey SJ, Blackwell JR, Jones AM. (2013). Influence of dietary nitrate
730	supplementation on human skeletal muscle metabolism and force production during maximum
731	voluntary contractions. <i>Pflugers Archive</i> 465 , 517-528.
732	
733	Gandra PG, Shiah AA, Nogueira L, Hogan MC. (2018). A mitochondrial-targeted antioxidant improves
734	myofilament Ca ²⁺ sensitivity during prolonged low frequency force depression at low PO2. J
735	Physiol. 596 , 1079-1089.
736	
737	Gilliard CN, Lam JK, Cassel KS, Park JW, Schechter AN, Piknova B. (2018). Effect of dietary nitrate levels
738	on nitrate fluxes in rat skeletal muscle and liver. Nitric Oxide. 75, 1-7.
739	
740	Haider G, Folland JP. (2014). Nitrate supplementation enhances the contractile properties of human
741	skeletal muscle. <i>Med Sci Sports Exerc</i> 46 , 2234-2243.
742	
743	Heppel LA, Porterfield VT. (1949). Metabolism of inorganic nitrite and nitrate esters; the coupled
744	oxidation of nitrite by peroxide-forming systems and catalase. J Biol Chem 178, 549-556.
745	
746	Hernández A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, Weitzberg E, Westerblad H.
747	(2012). Dietary nitrate increases tetanic [Ca ²⁺]i and contractile force in mouse fast-twitch
748	muscle. <i>J Physiol</i> 590 , 3575-3583.
749	

750 751 752	Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Sexton WL, Musch TI, Poole DC. (2018). Skeletal muscle microvascular and interstitial PO2 from rest to contractions. <i>J Physiol</i> . 596 : 869-883.
753 754 755 756	Huang Y, He Q, Zhan L, Yang M. (2013). Sarcoplasmic phospholamban protein is involved in the mechanisms of postresuscitation myocardial dysfunction and the cardioprotective effect of nitrite during resuscitation. <i>PLoS One</i> . 8(12):e82552.
757 758 759 760	Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. <i>Proc Natl Acad Sci U S A</i> 84 , 9265-9269.
761 762 763	Ivarsson N, Schiffer TA, Hernández A, Lanner JT, Weitzberg E, Lundberg JO, Westerblad H. (2017). Dietary nitrate markedly improves voluntary running in mice. <i>Physiol Behav</i> . 168 , 55-61.
763 764 765	Jones AM. (2014). Dietary nitrate supplementation and exercise performance. Sports Med 44, 35-45.
766 767 768 769	Kelly J, Vanhatalo A, Bailey SJ, Wylie LJ, Tucker C, List S, Winyard PG, Jones AM. (2014). Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O ₂ uptake dynamics during exercise in hypoxia and normoxia. <i>Am J Physiol Regul Integr Comp Physiol</i> 307 , 920-930.
770 771 772	Klein MG, Kovacs L, Simon BJ & Schneider MF. (1991). Decline of myoplasmic Ca2+, recovery of calcium release and sarcoplasmic Ca ²⁺ pump properties in frog skeletal muscle. <i>J Physiol</i> 441, 639-671.
773 774 775	Kovács M, Kiss A, Gönczi M, Miskolczi G, Seprényi G, Kaszaki J, Kohr MJ, Murphy E, Végh Á. (2015). Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved? <i>PLoS One</i> 10(4) :e0122243.
777 778 778	Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. <i>Cell Metab</i> 13 , 149-59.
780 781 782	Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. (2007). Effects of dietary nitrate on oxygen cost during exercise. <i>Acta Physiol (Oxf)</i> 191 , 59-66.
782 783 784 785	Lundberg JO, Weitzberg E. (2010). NO-synthase independent NO generation in mammals. <i>Biochem Biophys Res Commun</i> 396 , 39-45.
786 787 788	Lundberg JO, Weitzberg E. (2009). NO generation from inorganic nitrate and nitrite: Role in physiology, nutrition and therapeutics. <i>Arch Pharm Res</i> 32 , 1119-1126.
789 790 791	McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC. (2005). Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. <i>J Physiol</i> 563 , 903-913.
792 793 794	Maréchal G, Gailly P. (1999). Effects of nitric oxide on the contraction of skeletal muscle. <i>Cell Mol Life Sci.</i> 55 , 1088-1102.
795 796 797	Modin A, Björne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. (2001). Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. <i>Acta Physiol Scand</i> 171 , 9-16.

798 799	Mohr S, Stamler JS, Brüne B. (1996). Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. <i>J Biol Chem</i> 271 , 4209-
800 801	4214.
802	Moncada S, Higgs EA. (1991). Endogenous nitric oxide: physiology, pathology and clinical relevance. <i>Eur J</i>
803 804	Clin Invest 21 , 361-374.
805 806	Moopanar TR, Allen DG. (2006). The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. <i>J Physiol</i> 571 , 191-200.
807 808	Murad F. Mittal CK. Arnold WP. Katsuki S. Kimura H (1978). Guanylate cyclase: activation by azide, nitro
809 810	compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. <i>Adv Cyclic Nucleotide Res</i> 9 , 145-158.
811	
812 813 814	contractility changes when stimulation is altered. <i>Can J Physiol Pharmacol.</i> 75 , 414-22.
815 816	Namin SM, Nofallah S, Joshi MS, Kavallieratos K, Tsoukias NM. (2013). Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye. <i>Nitric Oxide</i> 28 , 39-46.
817	
818 819 820	Nogueira L & Hogan MC. (2010). Phenol increases intracellular [Ca2+] during twitch contractions in intact Xenopus skeletal myofibers. <i>J Appl Physiol</i> 109, 1384-1393.
820 821	Nogueira L. Figueiredo-Freitas C. Casimiro-Lopes G. Magdesian MH. Assreux L. Sorenson MM. (2009)
822 823	Myosin is reversibly inhibited by S-nitrosylation. <i>Biochem J.</i> 424 , 221-231.
824 825 826	Nogueira L, Shiah AA, Gandra PG & Hogan MC. (2013). Ca(2)(+)-pumping impairment during repetitive fatiguing contractions in single myofibers: role of cross-bridge cycling. <i>Am J Physiol Regul Integr Comp Physiol</i> 305 , 118-125.
827	Negucine L. Tricke DNA Lines Deep EL Lectron L. Lund Delay L. Vemegychi M. Brook EC (2010) Cigaratte
828 829 830	smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice. <i>J Physiol</i> . 596 , 2901-2916.
831	
832 833	Pant M, Bal NC, Periasamy M. (2016). Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle. <i>Trends Endocrinol Metab.</i> 27 , 881-892.
834	Deventis C. Deventis M. Dellistri C. Develices L. Merterei M. Desige L. Mertereti M. (2015). Acrehia
835 836 837	Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. <i>Med Sci Sports</i> <i>Exerc</i> 47 , 1643-1651.
838 839 840	Radi R. (2013). Peroxynitrite, a stealthy biological oxidant. <i>J Biol Chem.</i> 288, 26464-26472.
841 842 843	Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS & Wagner PD. (1995). Myoglobin O ₂ desaturation during exercise. Evidence of limited O2 transport. <i>J Clin Invest</i> 96, 1916-1926.
844 845	Sjöberg F, Singer M. (2013). The medical use of oxygen: a time for critical reappraisal. <i>J Intern Med</i> 274 , 505-28.

846	
847	Spencer T, Posterino GS. (2009). Sequential effects of GSNO and H_2O_2 on the Ca ²⁺ sensitivity of the
848	contractile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat. Am J Physiol
849	Cell Physiol 296 , 1015-1023.
850	
851	Stamler JS, Meissner G. (2001). Physiology of nitric oxide in skeletal muscle. <i>Physiol Rev</i> 81, 209-237.
852	
853	Suhr F, Gehlert S, Grau M, Bloch W (2013). Skeletal muscle function during exercise-fine-tuning of
854	diverse subsystems by nitric oxide. <i>Int J Mol Sci</i> 14 , 7109-7139.
855	
856	Supinski G, Stofan D, Callahan LA, Nethery D, Nosek TM, DiMarco A. (1999). Peroxynitrite induces
857	contractile dysfunction and lipid peroxidation in the diaphragm. J Appl Physiol. 87, 783-791.
858	
859	Tanaka Y, Poole DC, Kano Y. (2016). pH Homeostasis in Contracting and Recovering Skeletal Muscle:
860	Integrated Function of the Microcirculation with the Interstitium and Intramyocyte Milieu. Curr
861	Top Med Chem 16 , 2656-2563.
862	
863	Tupling AR. (2009). The decay phase of Ca^{2+} transients in skeletal muscle: regulation and physiology.
864	Appl Physiol Nutr Metab 34, 373-376.
865	
866	Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM. (2011). Dietary nitrate reduces
867	muscle metabolic perturbation and improves exercise tolerance in hypoxia. <i>J Physiol</i> 589 , 5517-
868	5528.
869	
870	Walsh B, Stary CM, Howlett RA, Kelley KM & Hogan MC. (2008). Glycolytic activation at the onset of
871	contractions in isolated Xenopus laevis single myofibres. <i>Exp Physiol</i> 93 , 1076-1084.
872	
873	Walsh B, Howlett RA, Stary CM, Kindig CA, Hogan MC. (2006). Measurement of activation energy and
874	oxidative phosphorylation onset kinetics in isolated muscle fibers in the absence of cross-bridge
875	cycling, Am J Physiol Regul Integr Comp Physiol. 290, 1707-1713.
876	
877	Westerblad H & Allen DG. (1991). Changes of myoplasmic calcium concentration during fatigue in single
878	mouse muscle fibers. J Gen Physiol 98. 615-635.
879	
880	Westerblad H & Allen DG. (1992). Changes of intracellular pH due to repetitive stimulation of single
881	fibres from mouse skeletal muscle. J Physiol 449 , 49-71.
882	
883	Westerblad H & Allen DG. (1994). The role of sarcoplasmic reticulum in relaxation of mouse muscle:
884	effects of 2.5-di(tert-butyl)-1.4-benzohydroquinone / Physiol 474 , 291-301
885	
886	Whitfield J. Gamu D. Heigenhauser GJF. VAN Loon LJC. Spriet LL. Tupling AR. Holloway GP. (2017).
887	Beetroot Juice Increases Human Muscle Force without Changing Ca ²⁺ -Handling Proteins. <i>Med Sci</i>
888	Sports Exerc. 49, 2016-2024
889	
890	Whitfield J. Ludzki A. Heigenhauser GJ. Senden JM. Verdiik I.B. van Loon I.J. Spriet I.L. Holloway GP.
891	(2016). Beetroot juice supplementation reduces whole body oxygen consumption but does not
892	improve indices of mitochondrial efficiency in human skeletal muscle <i>I Physiol</i> 594 421-435
893	

894 895	Wolosker H, Rocha JB, Engelender S, Panizzutti R, De Miranda J, de Meis L. (1997). Sarco/endoplasmic reticulum Ca ²⁺ -ATPase isoforms: diverse responses to acidosis. <i>Biochem J</i> . 321 , 545-50.
896	
897	Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, Jeukendrup AE, Vanhatalo A, Jones AM,
898	(2013). Beetroot juice and exercise: pharmacodynamic and dose-response relationships. <i>J Appl</i>
899	<i>Physiol</i> 115 . 325-336.
900	
901	Wylie LJ, Park JW, Vanhatalo A, Kadach S, Black MI, Stoyanov Z, Schechter AN, Jones AM, Piknova B. (in
902	press). Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and
903	exercise. J Physiol. doi: 10.1113/JP278076.
904	
905	Yang T, Peleli M, Zollbrecht C, Giulietti A, Terrando N, Lundberg JO, Weitzberg E, Carlström M. (2015).
906	Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated
907	macrophages via a nitric oxide-dependent mechanism. Free Radic Biol Med 83, 159-166.
908	
909	Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, Doulias PT, Ischiropoulos H, Townsend
910	RR, Margulies KB, Cappola TP, Poole DC, Chirinos JA. (2015). Effect of inorganic nitrate on
911	exercise capacity in heart failure with preserved ejection fraction. Circulation 131, 371-80.
912	
913	Zhu X, Heunks LM, Versteeg EM, van der Heijden HF, Ennen L, van Kuppevelt TH, Vina J, Dekhuijzen PN.
914	(2005). Hypoxia-induced dysfunction of rat diaphragm: role of peroxynitrite. Am J Physiol Lung
915	Cell Mol Physiol 288 , 16-26.
916	

- 917 Competing interests: No conflicts of interest, financial or otherwise, are declared by the918 author(s).
- 919
- 920 Author contributions: S.J.B., P.G.G., A.M.J., M.C.H, and L.N. contributed to the conception,
- design and interpretation of the data. S.J.B., P.G.G., and L.N. performed the experimental work.
- 922 S.J.B. and L.N. analysed the data. S.J.B., A.M.J., M.C.H. and L.N. wrote the manuscript. All
- authors approved the final version of the manuscript.
- 924
- **Funding:** This research was supported by the National Institute of Arthritis and Musculoskeletal
- and Skin Diseases Grant AR-069577 (to M.C.H), the University of Exeter Outward Mobility
- 927 Academic Fellowship (to S.J.B.), and the Conselho Nacional de Desenvolvimento Científico e
- 928 Tecnológico (CNPq–Universal no. 424527/2016-2; to L.N.).
- 929

931 FIGURE LEGENDS

932

Figure 1. Schematic of the experimental protocol.

934

Figure 2. Effect of sodium nitrite (NaNO₂) incubation on fatigue development at supra-935 physiological (20% O₂, ~156 Torr; Panel A) and near-physiological oxygen tensions (2% 936 O2, ~15 Torr; Panels B and C) in single skeletal muscle fibres. Panel A illustrates time to task 937 failure during repeated tetanic contractions performed in fibres not loaded with fluorescent 938 probes at a supra-physiological Po₂ in the absence (fatigue #1; control) or presence of 100 µM 939 NaNO₂ (fatigue #2; n= 4 fibres). Panel B illustrates time to task failure in fibres not loaded with 940 fluorescent probes performed at near-physiological Po2 in the absence and presence of 100 µM 941 NaNO₂ (n= 4 fibres). Panel C illustrates time to task failure in all fibres from this study (not 942 loaded and loaded with fluorescent probes) that were performed at near-physiological Po₂ in the 943 absence (fatigue #1; control) or presence of 100 µM NaNO₂ (fatigue #2; n= 14 fibres). The bars 944 represent group mean data with the lines representing responses in individual muscle fibres. 945 Data are presented as mean \pm SD. *P<0.05 vs. fatigue #1. 946

947

948 Figure 3. Sodium nitrite (NaNO₂) incubation at a near-physiological oxygen tension (2%O₂, ~15 Torr) does not alter myofibrillar calcium (Ca²⁺) sensitivity during single evoked 949 950 **non-fatiguing contractions.** Panel A illustrates isometric force development in single skeletal muscle fibres evoked by different frequencies of pulse stimulation before fatigue #1 (FF#1) and 951 952 before fatigue #2 (FF#2; after 1 h incubation with 100 µM NaNO₂). Panel B illustrates intracellular cytosolic Ca^{2+} concentration ($[Ca^{2+}]_c$) at rest, contractions at different pulse-953 954 frequencies, and at 120 Hz stimulation in the presence of 10 mM caffeine. Panel C plots force development against $[Ca^{2+}]_c$ at each pulse-frequency. *P<0.05 vs. Control. Data (n=5 fibres) are 955 956 presented as mean \pm SD.

957

958 Figure 4. Isometric force development and intracellular cytosolic calcium concentration

- 959 $([Ca^{2+}]_c)$ responses during a repeated fatigue-inducing contraction protocol competed in
- 960 the absence and presence of sodium nitrite (NaNO₂) at a near-physiological oxygen tension
- 961 (2% O₂, ~15 Torr). Panel A illustrates the peak $[Ca^{2+}]_c$ responses up to the time of task failure.

Panel B illustrates basal $[Ca^{2+}]_c$ data, obtained from the 100 ms period before each contraction, up to the time of task failure (*P<0.05 vs. Control). Note the blunted increase in basal $[Ca^{2+}]_c$ in the NaNO₂ condition. Panel C illustrates the change (Δ) in basal $[Ca^{2+}]_c$ from rest to task failure. The Ca²⁺₅₀ before and during fatiguing contractions are illustrated in Panel D with group mean responses as bars and individual responses as lines (*P<0.05 vs. FF#1). Data (n=5 fibres) are presented as mean ± SD.

968

969 Figure 5. Analysis of sarcoplasmic reticulum calcium (Ca²⁺) pumping at different time-

970 points during the fatigue-inducing contraction protocols run in the absence and presence of

971 sodium nitrite (NaNO₂) at a near-physiological oxygen tension (2% O₂, ~15 Torr). The

972 intracellular cytosolic Ca^{2+} concentration ($[Ca^{2+}]_c$) dependence of the rate of $[Ca^{2+}]_c$ decay (-

973 $d[Ca^{2+}]_c/dt$ during the "tail" of $[Ca^{2+}]_c$ decay is illustrated after the first contraction (Panel A),

after 80 s of contractions (Panel B) and the contraction at the time of task failure (Panel C).

Note the left shifting of the NaNO₂ curve compared to the control curve after 80 s of contractions

and at the time of task failure, but not after the first contraction. The changes in SR Ca^{2+}

pumping rate at these time-points are presented in Panels D (first contraction), E (after 80 s of

contractions), and F (time of task failure). *P<0.05 vs. control. Data (n=5 fibres) are presented as mean \pm SD.

980

981 Figure 6. Intracellular pH (pH_i) responses during the fatigue-inducing contraction

982 protocols run in the absence and presence of sodium nitrite (NaNO₂) at a near-

983 **physiological oxygen tension** (2% O₂, ~15 Torr). pH_i changes during the repeated fatiguing

984 contractions. *P<0.05 vs. control. † P<0.05 vs initial contraction. Data (n=5 fibres) are presented

985 as mean \pm SD.

- - - - - Control (Fatigue #1)
 - - - - - 100 μM NaNO₂ (Fatigue #2)

Fatigue #1 (Control)

Fatigue #2
(100 μM NaNO₂)

