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Abstract—Recent work on multi-resolution optimisation (vary-
ing the fidelity of a design during a search) has developed
approaches for automated resolution change depending on the
population characteristics. This used the standard deviation of
the population, or the marginal probability density estimation
per variable, to automatically determine the resolution to apply
to a design in the next generation. Here we build on this
methodology in a number of new directions. We investigate
the use of a complete estimated probability density function
for resolution determination, enabling the dependencies between
variables to be represented. We also explore the use of the
multi-resolution transformation to assign a surrogate fitness to
population members, but without modifying their location, and
discuss the fitness landscape implications of this approach. Re-
sults are presented on a range of popular uni-objective continuous
test-functions. These demonstrate the performance improvements
that can be gained using an automated multi-resolution approach,
and surprisingly indicate the simplest resolution indicator is often
the most effective, but that relative performance is often problem
dependant. We also observe how population duplicates grow in
multi-resolution approaches, and discuss the implications of this
when comparing algorithms (and efficiently implementing them).

Index Terms—evolutionary computation; genetic algorithms,
multi-modal optimisation; multi-resolution; multi-scale

I. INTRODUCTION

The search space in a traditional genetic algorithm (GA)
optimisation of a problem is limited since the chromosome
length is fixed a priori and usually unaltered during the
optimisation process. One effect of this is the best fitness
achievable is restricted to that in the fitness image of the subset
of the domain that the particular resolution maps to. We may
end up with solutions which are very close to the optimal,
but most of the time due to the chromosome representation
limitation, the optimum is unobtainable [1]. However, an
obvious advantage of a chromosome representation rather than
a real-coded representation is the search domain is greatly
reduced, simplifying the optimisation process (especially for
expensive optimisation problems). There is an obvious balance
to be struck therefore between granularity of a representation
(and therefore size of problem), and the quality attainable of
the eventual solution. Multi-resolution algorithms, popular in
many engineering design applications of genetic algorithms
(see e.g. [2], [3]), tackle this issue by varying the resolution
during an optimisation run. Variation of resolution is typically

on a fixed schedule, or guided by the practitioner. However,
recent work has begun to explore automated approaches to
multi-resolution, which we investigate and extend here.

The main contributions of this work are:
1) Investigating the use of a full estimated probability

density function when conducting automated multi-
resolution search.

2) Exploring the use of automated multi-resolution to as-
sign surrogate values to population members to encour-
age diversity maintenance.

3) Compensating for duplicate bias in assessment.
4) Empirical comparison of a range of automated multi-

resolution approaches.
The paper proceeds as follows. In Section II we review some

of the previous literature on multi-resolution optimisation,
leading up to recent advances in automated multi-resolution.
We follow this by discussing our extension to the approach,
and additionally propose their use as surrogate fitness method
in Section III. In Section IV we detail the experimental work
and results, and the paper concludes with Section V.

II. MULTI-RESOLUTION

Multi-resolution (also refereed to as multi-scale, or in
some contexts multi-fidelity optimisation) is most regularly
employed in engineering design optimisation problems, where
tackling a problem immediately at the highest design resolu-
tion is infeasible due to the resultant search space size [4]–[8].

Figure 1 illustrates in a 2D domain how a resolution may
change depending on the bit-string length used to represent
two real values. Here the same bit-string length is used for
both x1 and x2, however it is quite possible to use different
resolutions for different design variables. Attainable designs
lie on the vertices of the grid at the different resolutions —
any designs on the interior of a cell being unobtainable as they
cannot be represented at the displayed resolution.

The effect is for the search landscape to be discretised, with
the position of minima/maxima (modes) shifting depending on
the resolution used. In the illustration in Figure 1 at 21 and
22 resolutions there is an optima at (1.0, 0.0). At 24 this has
shifted to (0.06̇, 0.93̇). Additionally a mode at (0.66̇, 0.66̇)
is observed at 22 and 24, but is unobservable at 21. The
granularity gi imposed by a resolution (the length of one grid



mo
de3

mo
de3

mo
de2

new
mo
de

mo
de1

−Resolution(21)

−Resolution22

−Resolution24

mode(1, 0)

mode(1, 0)
mode(0.6667, 0.6667)

mode(0.6667, 0.6667)
mode(0.0667, 0.9333)

(1, 0)

(0, 0)

(0, 1)

Fig. 1: Illustration of multiple resolutions in same domain (us-
ing bit-strings). Optima locations under different resolutions
indicated with filled circles.

cell along one dimension) is determined, for the ith dimension,
as:

gi =
upper boundi − lower boundi

baseresolutioni − 1
. (1)

Although bit-strings (i.e. base = 2) are often used to
represent variables in standard GAs, there is an issue using this
representation in the multi-resolution context. Using a larger
resolution with a base 2 does not guarantee the new domain
is a superset of the lower resolution domain (meaning high
quality solutions in a lower resolution may be unobtainable
at some higher resolutions). In the binary context the higher
resolution power must be an integer multiple of the lower
resolution power to guarantee all values represented by the
lower resolution are present in the higher resolution (e.g.
21, 22, 24, 28, 216, . . .). As such, base 10 representations are
more attractive for variable resolutions, as on each resolution
increment (increasing ri by 1), the search domain induced by
the new resolution contains all designs representable by the
previous resolution.

A. Prior work on adaptive multi-resolution genetic algorithms

Typically in multi-resolution optimisation the optimiser will
start from a coarse resolution, and over time the scale will
become finer, so that by the end of the optimisation process
the search population will converge to high-fidelity design.
Examples of work where improved GA performance has been
demonstrated by varying the resolution during a search include
[2], [3], [9]–[12].

In [2], [9] (semi-)independent island sub-populations are
used, which after working independently for a few generations
exchange their best solutions with each other. These sub-
populations can be connected by using different topologies
such as bi-directional rings, unidirectional rings, hypercube,
tree structure, etc. In [9] three sub-populations where used,
one employing a high resolution (fine grid) while the other
two investigated a low resolution (coarse grid). In [2] each of

the three populations where initialised separately, but rather
than having distinct resolutions, each population began from
low resolution with a defined percentage of the best solutions
to be evaluated on the high resolution. They then exchanged
their best solution at the fine grid after a number of generations
by replacing the worst solutions, using the approach developed
in [3].

Lopez Jaimes and Coello Coello proposed a novel multi-
objective evolutionary algorithm based on the island model
with heterogeneous nodes to obtain a run-time performance
advantage from parallelisation [11]. Here each island (sub-
population) had a different resolution and worked indepen-
dently. They started from a coarse resolution, and gradually
increase the resolution employed each generation until con-
vergence.

Kim and Weck investigated how the computational run time
of an optimisation process may be reduced by employing a
variable length chromosome GA. The progressive refinement
in topology proposed is effectively also a multi-resolution
approach [10].

In [13] a control variable was used to set the length of the
genes in their GA (the Multi-Scale Algorithm), for optimising
the power flow in a power system network. The algorithm
commences searching the entire feasible space with a large-
scale search parameter (coarse resolution), with the resolution
growing finer as the variable range decreases (as the population
converges). Conversely, if a variable range in the population
widens, the corresponding resolution coarsens

Most recently, research has been conducted on adaptive
(automatic) multi-resolution, for multi-objective optimisation,
using a single search population [14]. Here each solution’s
resolution on each variable can differ, via discretisation, with
every other population member. This is achieved by using one
of two different indicators which specify the resolution for
any variable location at a particular generation (by discretising
real-coded design-vectors). The two indicators investigated
were the standard deviation (SD) and estimated probability
density function (ePDF) — using kernel density estimation.

An algorithm describing the process is provided in Al-
gorithm 1. On lines 2 and 7 designs are discretised before
they are subsequently evaluated. The resolution used for this
discretisation is either based on the standard deviation of each
variable in the discretised set, or on an estimated probability
density function.

In the first case, all designs have the same discretisation,
determined by the decimal place di which is calculated as:

di =

⌈(
1− σi

σmax

)
(dmax − dmin) + dmin

⌉
(2)

where dmax and dmin denote the highest and lowest resolu-
tions to be considered, σi is the standard deviation of the ith
variable, and σmax is the standard deviation of the uniform
distribution in the same space. When the values of the ith
design variable are well spread out in the population, the di
will be near its minimum, and as it becomes more tightly
distributed the di will correspondingly increase.



Algorithm 1 Automated discretisation method of Kondo &
Tatsukawa [14].

1: P0 ← initialise() . Get the initial population
2: P0 ← discretise(P0) . Discretise P0 using its

distribution
3: EP

0 ← evaluate(P0) . Evaluate discretised designs
4: for each t← 0, ..., tmax do
5: Parentst ← tournament(Pt, E

P
t ) . Tournament

selection
6: Qt ← evolve(Parentst) . Conduct crossover

(SBX) and mutation (polynomial mutation)
7: Qt ← discretise(Qt) . Discretise Qt using its

distribution
8: EQ

t ← evaluate(Qt) . Evaluate discretised
9: Rt ← Pt ∪Qt

10: ER
t ← EP

t ∪ E
Q
t

11: {Pt+1, E
P
t+1} ← select(Rt, E

R
t )

return Final population

The discretisation using the ePDF in [14] enables the
resolution to vary across designs, not just variables. Given the
(marginal) estimated probability density value of individual
j on design variable i, f̂(xi,j), the discretisation di,j is
calculated as:

di =

⌈(
f̂(xi,j)

maxx∈[loweri,upperi] f̂(x)

)
(dmax − dmin) + dmin

⌉
(3)

given the range of the ith variable being loweri to upperi.1

III. EXTENSIONS TO ADAPTIVE MULTI-RESOLUTION

We now outline our proposed extensions to the previous
work on adaptive multi-resolution GAs, which we evaluate
empirically in later sections.

A. Using a full ePDF for discretisation

Previous work has employed the (marginal) standard devi-
ation of a variable across a population to fix its resolution for
a particular individual, and also used the marginal estimated
PDF [14].

Here we investigate using the full (complete) estimated PDF,
and, as in [14], we employ a kernel density estimator for this.
We are interested in using a full ePDF here as using a marginal
variation measure obliterates any relationships between vari-
ables in a population. Consider the simple 2D illustration in
Figure 2. The top panel shows a population denoted with black
dots. The marginal ePDF approach would result in a design
proposed around (-0.5,-0.5) having a high resolution applied,
as both the marginal ePDFs (shown in the middle two panels)
have high density for the corresponding values. However, a full

1Reported as
⌈(

1− f̂(xi,j)/maxx∈[loweri,upperi]
f̂(x)

)
(dmax−

dmin) + dmax

⌉
in [14]. However, this appears to be an error, as when

f̂(xi,j)/maxx∈[loweri,upperi]
f̂(x) is maximised the authors’ infer the

highest resolution occurs.
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Fig. 2: Illustration of problems with marginal densities for
automatic multi-resolution. Top-left: designs in 2D space.
Right panels: marginal densities. Bottom-left: full ePDF.
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ePDF (shown in the bottom-left panel) would assign it a very
low resolution, as it is far from existing population members.
The full ePDF has the benefit therefore of representing the
density of combinations of variables, however, unlike the
marginal ePDF approach it results in the same resolution being
applied to all variables of a particular proposed design, rather
than being able to vary the resolution for each design variable
of a particular individual.

The discretisation of the jth set member using the complete
ePDF is calculated as:

dj =

⌈(
f̂(xj)

maxx∈X f̂(x)

)
(dmax − dmin) + dmin

⌉
(4)

Where X is the search domain.

B. Using multi-resolution mappings for surrogate fitnesses

One potential issue with using multi-resolution approaches
is that diversity can be quickly lost when discretisation is
applied, as solutions can only lie on the vertices on the grid
induced by a discretisation. We now confront this problem
using a surrogate fitness value.

Figures 3–4 illustrates the two main causes for diversity loss
in a population. In Figure 3 this is due to the resolution change
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Fig. 5: Proportion of the parent population which is unique
with respect to the other current parents (red line) and with
respect to all previous parents (dashed red line). Proportion of
the child population which is unique with respect to previous
children (dotted blue line).

from high to low and the discretisation applied. In Figure 4
real-valued crossover and mutation may vary child solutions
from their parents, but the subsequent discretisation can shift
them to duplicated locations. If this isn’t compensated for, a
steady growth of duplicates in the population can additionally
incur a wasted cost of duplicated solution evaluations.

Figure 5, shows the proportion of unique solutions that
exist with respect to a population itself, and with respect to
designs evaluated over time (search population (|P | = 100),
using (2) when optimising the Schwefel function). Clearly
the proportion of revisited child solutions will lead to wasted
computation if a separate map is not maintained. We discuss
this further in Section III-C.

As an alternative approach, we also propose to use adaptive
multi-resolution to assign a surrogate fitness to designs. In this
case the domain size is unchanged (and continuous) however
the landscape observed by the optimiser varies according to
the resolution induced by the surrogate discretisation. As such,
diversity is maintained in the population between generations,
and duplicated parents in the same population are avoided,
however each location has an alternative inferred location,
which depends on the resolution that it was evaluated un-

Algorithm 2 Surrogate multi-resolution optimisation

1: P0 ← initialise()
2: P ′0 ← discretise(P0) . Temporary discretised copy

of the population
3: EP ′

0 ← evaluate(P ′0)
4: EP

0 ← EP ′

0 . Assign fitness from discretised locations
to population

5: for each t← 0, ..., tmax do
6: Parentst ← tournament(Pt, E

P
t ) . Tournament

selection
7: Qt ← evolve(Parentst) . Conduct crossover

(SBX) and mutation (polynomial mutation)
8: Q′t ← discretise(Qt) . Temporary discretised
Qt using Qt’s distribution

9: EQ′

t ← evaluate(Q′t)

10: EQ
t ← EQ′

t . Assign fitness from discretised
locations to children

11: Rt ← Pt ∪Qt

12: ER
t ← EP

t ∪ E
Q
t

13: {Pt+1, E
P
t+1} ← select(Rt, E

R
t )

return Final population

der for each design variable. This approach is detailed in
Algorithm 2. The key differences with Algorithm 1 occurs
at the discretisation and fitness assignment stages, where a
temporary discretised copy of a set is made (lines 2 and 8),
whose evaluation is subsequently used as a surrogate for the
non-discretised locations (lines 4 and 10).

C. Duplicates over time

Often the major cost in optimisation is querying the quality
function for a design. As we identified in section III-B there
tends to be an increased amount of duplication of proposed de-
signs in the multi-resolution GA case. This is not just between
parents selected at each generation, it is also for proposed
children, in comparison to previously evaluated designs. As
such, we may leverage this and run an optimiser for a maxi-
mum number of unique designs evaluated, rather than a fixed
generation length, and exploit a map of previously evaluated
designs to quality value when a duplicate design is proposed
during the search. There is a risk if a population converges to
a single point that all children would be duplicates repeatedly
(as the map saturates with all possible mutations from this
point). As such we also employ a heuristic where no new
unique designs are proposed for n generations in a row search
also terminates.

IV. EMPIRICAL RESULTS

We now conduct a set of experiments, comparing Algorithm
1 using the previously proposed (2) and (3) to a variant em-
ploying (4), and also our proposed surrogate multi-resolution
Algorithm 2, using (2), (3) and (4) for discretisation. 2

2Python code will be made available at the first author’s GitHub repository.
https://github.com/azeezx/ssciga



TABLE I: The benchmark problems used in this study.

Problem Range [min,max] Dimensionality
Schwefel [-500,500] 2,5,10,50
Ackley [-5.12,5.12] 2,5,10,50

Rastrigin [-5.12,5.12] 2,5,10,50
Griewank [-600,600] 2,5,10,50

CF1 1 [-5,5] 2,5,10,50
CF2 2 [-5,5] 2,5,10,50

We use a range of well-known uni-objective test problems
[15]–[20], detailed in Table I. We utilise the test function
implementations from the DEAP framework [21]. All six
problems are assessed on four different design dimensions,
|x| = {2, 5, 10, 50}. The first four are minimisation problems,
and the last two maximisation problems.

We apply the different variants of the genetic algorithm to
each of the test problems 30 times, using the parameter setting
based on the suggestions from previous work [14], specifically:
• Population size: 100.
• Termination condition: 50, 000 evaluation.
• Parent selection: tournament selection.
• Crossover: simulated binary crossover (SBX) η = 30.

Probability of 1.
• Mutation: polynomial mutation η = 20. Probability of

1/(|x|).
• dmin: 2 (base 10).
• dmax: 8 (base 10).
• Kernel function (KDE): Gaussian, bandwidth value h =

0.05.
• σmax: σ(lower bound, upper bound).
In each run all the methods start with the same population

(i.e. are paired), so we used a non-parametric statistical
hypothesis test (Wilcoxon signed-rank test) to assess if there
is a significant difference between the results, with the Holm-
Bonferronoi correction to compensate for multiple hypothesis
being tested.

Figure 6 shows shows the average proportion of the op-
timisation run length that an algorithm is the median best
performing, or not significantly different than the median
best performing across all problems and problem dimensions.
Broadly this appears to show that SD, SD with surrogate
value and no multi-resolution are all fairly similar (within
5% performance), the eDPF variants being markedly lower.
However, when we pull apart performance across problems
and dimensions we see much larger variations, suggesting the
interplay of problem type, problem dimension and algorithm
are all important.

Figure 7 shows the proportion of run size that each algo-
rithm is either the best, or not significantly different from the
best, for each problem and problem size individually (first six
rows and four columns) and averages across dimensions (final
column), and across problems for a particular dimension size
(bottom row). Interesting trends are readily apparent. Although
in general not well-performing, the Full ePDF approach is
consistently the best approach to take for the Schwefel func-
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Fig. 6: Proportion of run-length that each optimiser is not
significantly worse than the median best performing — av-
eraged across all problems and problem sizes. SDS – SD with
surrogate; ePS – ePDF with surrogate; FeP – Full ePDF; FePS
– Full ePDF with surrogate; Sta. – standard (real valued with
no multi-resolution).

tion, with a 100% score on all dimension sizes (though at
50D many approaches become statistically indistinguishable).
For the other problems SD (Ackley, Griewank, CF2) or SD
with surrogates (Rastrigin, CF1) tend to be the best, although
for CF2 ePDF tends to do better for the lower dimensional
variants. Not using a multi-resolution approach is also a good
choice for Rastrigin and Griewak, and across problems at 50D.
However, if we look at the convergence plots in Figure 8 we
see this latter property is may be simply because many of the
problems are still poorly converged at this large problem size
even after 50 000 function evaluations.

Table II summarises the results across problems and prob-
lem dimensions at the run end. Interesting the simple stan-
dard deviation-based update mechanism is consistently well-
performing across problems and dimensions on all bar Schwe-
fel, having the lowest median, or performance not significantly
different from the algorithm with the lowest median, on 16
out of the 24 problem instances, with the surrogate version a
marginally better 17 out of 24. Using a real-encoding with no
multi-resolution scores 11 out of 24 on this measure.

Perhaps the most surprising result is the performance of the
standard deviation-based approach on the composite functions
1 and 2, which we believed a priori it would find most taxing.
However, as the basins of attraction for the maxima can vary
considerably in scale on these problems, our conjecture is that
it simply does not locate the narrow optima and the population
drawn into a larger basin where it can the increase its fidelity
and still achieve near optimal results. Indeed, the Schewfel
function where the basins of attraction are all of similar size is
the only problem where the standard deviation-based approach
does struggle compared to the estimated PDF approach.

On the whole the marginal and full estimated PDF ap-
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Fig. 7: Proportion of run that each optimiser is not significantly worse than the median best performing.

proaches perform less well, and certainly in terms of consistent
good performance across dimensionality only the marginal
estimated PDF appears to warrant attention on Schewfel,
composite function 1 and composite function 2.

The diversity supplied by using surrogate value versions
seems to have a marginal effect in general, though on par-
ticular problems there appears to be a consistent advan-
tage/disadvantage to use the surrogate version of an algorithm
(across dimension sizes) which indicates there is some inter-
play between the dimension-independent landscape features
and this approach within in algorithm, which is worthy of

further study.

V. CONCLUSIONS

We present extensions to recent work on multi-resolution
GAs using automatic discretisation of real-valued decision
variables. We explore the utility of a complete estimated PDF
(rather than a marginal estimated PDF) in determining the
resolution to use for a solution, and we also investigate the
use of multi-resolution for surrogate fitness assignment.

We found on the uni-objective test problems employed
(ranging from two to 50 design dimensions) a simple standard
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Fig. 8: Number of evaluations against median fitness value (log scale), for each problem and problem size (CF1&2 results are
×− 1).

deviation-based resolution determination was almost always
the most effective, only consistently being troubled by a
problem with multiple modes with similar basin sizes. Some
form of on-line landscape analysis when using multi-resolution
approaches would appear to be vital if performance is to be
maximised in such instances.

The use of surrogate values seems to improve performance

only marginally in general, but relative performance was seen
to vary considerably from problem to problem compared to not
using a surrogate. We have also identified that multi-resolution
approaches can lead to a high level of duplicate designs, which
should lead to significant performance improvements if this
property is accounted for in an algorithm implementation.
It is worth noting therefore that many studies in this area



TABLE II: The median of the best solutions in the last generation of 30 runs with each indicator (SD, SD-S, ePDF, ePDF-S,
Full-ePDF and Full-ePDF-S). Best medians are in bold underlined. Medians from results sets where samples are not statistically
worse in performance than the algorithm with the best-performing median are also highlighted in bold. (Significance level of
5% used in the Wilcoxon signed-rank test.) The fist four are minimisation problems, the remainder are maximisation problems.

Problem Var. SD SD-S ePDF ePDF-S Full-ePdf Full-ePdf-S Standard
Schwefel 2 5.36E-07 1.59E-06 4.48E-09 5.42E-08 6.04E-09 5.42E-08 6.14E-07

5 9.66E-05 3.86E-05 7.16E-05 1.08E-04 1.30E-05 1.44E-03 8.19E-05
10 1.01E-03 1.15E-03 1.07E-03 2.99E-03 5.27E-05 2.89E-03 1.51E-03
50 5.93E+02 5.93E+02 4.77E+02 5.94E+02 5.93E+02 7.71E+02 5.93E+02

Ackley 2 6.79E-05 8.89E-05 1.24E-04 1.07E-04 1.67E-04 4.34E-04 5.78E-05
5 3.98E-04 5.50E-04 9.50E-04 9.71E-04 3.56E-03 3.43E-03 4.76E-04

10 1.39E-03 1.17E-03 3.42E-03 2.76E-03 7.75E-03 6.89E-03 1.58E-03
50 1.85E-02 1.96E-02 3.93E-02 3.14E-02 2.65E-02 2.48E-02 1.86E-02

Rastrigin 2 1.34E-07 1.30E-07 2.48E-07 4.78E-07 3.32E-06 3.15E-06 3.69E-07
5 1.28E-05 8.10E-06 4.96E-05 2.67E-05 6.93E-04 8.09E-04 1.36E-05

10 2.40E-04 2.26E-04 7.92E-04 1.02E-03 7.25E-03 6.46E-03 2.20E-04
50 2.62E-01 2.35E-01 9.10E-01 6.04E-01 3.94E-01 4.57E-01 2.50E-01

Griewank 2 4.14E-06 1.15E-05 7.40E-06 4.64E-05 7.40E-03 1.59E-05 1.45E-05
5 1.50E-02 2.35E-02 2.24E-02 1.26E-02 1.73E-02 1.53E-02 1.85E-02

10 3.40E-02 4.98E-02 5.78E-02 4.91E-02 4.37E-02 4.95E-02 3.24E-02
50 3.75E-01 4.29E-01 8.51E-01 7.88E-01 4.13E-01 3.60E-01 3.57E-01

CF1 2 -7.28E-07 -1.20E-07 -1.54E-07 -1.30E-07 -3.71E-06 -2.39E-06 -7.42E-07
5 -8.48E-07 -1.84E-06 -2.38E-06 -3.81E-06 -5.36E-05 -9.67E-05 -3.41E-06

10 -2.85E-05 -2.27E-05 -5.55E-05 -7.13E-05 -6.05E-04 -7.81E-04 -2.60E-05
50 -2.67E-03 -2.41E-03 -4.02E-03 -4.55E-03 -3.70E-03 -3.29E-03 -2.48E-03

CF2 2 -8.94E-07 -3.34E-06 -4.53E-08 -1.02E-07 -1.78E-05 -7.14E-06 -1.14E-06
5 -2.17E-06 -1.79E-06 -8.89E-07 -3.65E-06 -7.39E-05 -8.84E-05 -5.09E-06

10 -1.56E-05 -1.48E-05 -3.48E-05 -4.12E-05 -4.17E-04 -5.02E-04 -3.01E-05
50 -1.94E-01 -2.34E-01 -3.90E-01 -5.07E-01 -3.87E-01 -3.64E-01 -2.02E-01

could be under-reporting the performance of multi-resolution
approaches if they did not take this property into account.
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