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H I G H L I G H T S

• The location of the city with the highest PM2.5 concentration is unknown.

• Most countries have no PM2.5 monitoring.

• The global mean population distance to PM2.5 monitor is 220 km.

• A harmonized PM2.5 monitoring network covering multiple spatial scales is needed.
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A B S T R A C T

Exposure to ambient fine particulate matter (PM2.5) is the leading global environmental risk factor for mortality
and disease burden, with associated annual global welfare costs of trillions of dollars. Examined within is the
ability of current data to answer a basic question about PM2.5, namely the location of the city with the highest
PM2.5 concentration. The ability to answer this basic question serves as an indicator of scientific progress to
assess global human exposure to air pollution and as an important component of efforts to reduce its impacts.
Despite the importance of PM2.5, we find that insufficient monitoring data exist to answer this basic question
about the spatial pattern of PM2.5 at the global scale. Only 24 of 234 countries have more than 3 monitors per
million inhabitants, while density is an order of magnitude lower in the vast majority of the world's countries,
with 141 having no regular PM2.5 monitoring at all. The global mean population distance to nearest PM2.5

monitor is 220 km, too large for exposure assessment. Efforts to fill in monitoring gaps with estimates from
satellite remote sensing, chemical transport modeling, and statistical models have biases at individual monitor
locations that can exceed 50 μgm−3. Progress in advancing knowledge about the global distribution of PM2.5

will require a harmonized network that integrates different types of monitoring equipment (regulatory networks,
low-cost monitors, satellite remote sensing, and research-grade instrumentation) with atmospheric and statis-
tical models. Realization of such an integrated framework will facilitate accurate identification of the location of
the city with the highest PM2.5 concentration and play a key role in tracking the progress of efforts to reduce the
global impacts of air pollution.
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Introduction

Exposure to ambient fine particulate matter (PM2.5) is a major
global health concern (Landrigan et al., 2018). Exposure to PM2.5 is a
leading global mortality risk factor, with an estimated three (Stanaway
et al., 2018) to nine (Burnett et al., 2018) million attributable deaths in
ca. 2017. Annual global welfare costs associated with premature deaths
attributable to PM2.5 are projected to rise from US$3 trillion in 2015 to
US$18–25 trillion in 2060 (OECD, 2016). The United Nations Sustain-
able Development Goals include targets to reduce annual mean PM2.5

concentrations as part of Goal 3, on healthy lives, and Goal 11 on
sustainable cities. Combustion sources of fine particulate matter also
affect climate (IPCC, 2013). Knowledge about the global distribution of
PM2.5 has improved dramatically over the last decade (West et al.,
2016). Networks of ground-based monitors are growing across the
world; for example monitor density in China has dramatically increased
in the last several years and the U.S. State Department is increasingly
deploying monitors at its embassies and consulates. Initiatives such as
OpenAQ (openaq.org) have increased data availability. These advances
have made important contributions to improving awareness of air
quality locally and globally. Nonetheless, despite the broad implica-
tions of PM2.5, and recent growth in PM2.5 monitoring, we find that
insufficient monitoring exists for air quality management in most re-
gions of the world.

Insufficient ground-based monitoring

Ground-based monitors have been at the forefront of PM2.5 exposure
and epidemiological research (Hoek et al., 2013). We analyze mea-
surement data collected by the World Health Organization (WHO,
2018) and as used in the Global Burden of Disease and WHO exposure
estimates for PM2.5. We focus on these annual data since they are the
most extensive. We aggregate these data by country, and combine with
population data to assess monitor density. Country population totals are
from the 2015 revision of the World Population Prospectus, United
Nations Population Division (United Nations, 2017). Where within-
country population distribution is needed, population estimates are
based on the Gridded Population of the World (GPW v4) database
(CEISIN, 2017).

Fig. 1 shows the number of PM2.5 monitors per million inhabitants
by country. Only 24 of 234 countries, comprising less than 9% of the
world's population, have more than 3 monitors per million inhabitants.
Monitor density is an order of magnitude lower in the vast majority of
the world's countries. Sixty percent of countries, accounting for 1.3

billion people (18% of the global population), have no PM2.5 mon-
itoring at all. Monitor density is particularly low in Africa, with an
average monitor density of 0.03 per million inhabitants, far too low for
air quality management for these 1.2 billion people. The public media
often present discussion of the most polluted cities in the world (e.g.
Scott, 2017). But the low monitor density implies that many cities do
not have ground-based measurements. To put this in perspective, for
the 1,700 cities with at least 300,000 inhabitants globally, there are
only about 5,500 PM2.5 monitors, with more than half of these in China
or the United States (United Nations, 2016). Many cities with high
PM2.5 may be unmonitored and thus lack essential information to
manage their air quality.

Alternative PM2.5 information sources

Given the paucity of ground-based PM2.5 monitoring in many
countries, other exposure assessment methods warrant consideration.
Global atmospheric models (informed by emission inventories, me-
teorological data sets, and equations that represent atmospheric pro-
cesses) are widely used for exposure assessment (Anenberg et al., 2010;
Brauer et al., 2016; Lelieveld et al., 2015; OECD, 2016; Shindell et al.,
2012). But such modeled exposure estimates are impaired by coarse
spatial resolution and uncertainty that is difficult to quantify, in large
part due to ambiguity about emission sources and intensity for many of
the same countries where PM2.5 monitor density is low. In 2010 the first
global observational estimate of long-term PM2.5 concentrations was
derived from satellite observations interpreted with a chemical trans-
port model (van Donkelaar et al., 2010). Current methods to estimate
concentrations throughout the world include a combination of satellite
remote sensing data, chemical transport models, and ground-based
monitors, with promising accuracy (Shaddick et al., 2018a, 2018b; van
Donkelaar et al., 2016). We examine current global estimates of annual
PM2.5 concentrations as used in the most recent Global Burden of Dis-
ease Assessment (Shaddick et al., 2018b), and their relation with po-
pulation-distance to PM2.5 monitor.

The background greyscale in Fig. 2 shows these global PM2.5 esti-
mates, with the color of country borders indicating population-
weighted distance to the nearest PM2.5 monitor. Many developed
countries with relatively low PM2.5 concentrations have population-
weighted average distances to the nearest monitor of 10–50 km, with
the average distance to nearest monitor for Canada and the United
States of 22 km, for Western Europe of 25 km, and for Central Europe of
34 km. However, many of developing countries with high PM2.5 con-
centrations have population-weighted distances to the nearest monitor

Fig. 1. Number of PM2.5 monitors per million inhabitants by country for any of the years 2010–2016.
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that exceed 100 km. The average distance to the nearest monitor is
about 500 km in Central Asia as well as in eastern and western sub-
Saharan Africa, is 690 km in Eastern Europe, and exceeds 1000 km in
central Africa. Globally, the population-weighted mean distance to the
nearest monitor is 220 km, far too large a distance to represent local air
quality.

Fig. 3 evaluates the quality of the global PM2.5 estimates versus
ground-based monitors, indicating an overall high degree of con-
sistency, with an overall out-of-sample population weighted root-mean-
square-error of 12 μgm−3. However, the bias at individual monitors
often exceeds 10 μgm−3 and can exceed 50 μgm−3, far too high for air
quality management. It is possible that some of this mismatch arises
from monitor placement and spatial representativeness, but insufficient
monitoring or available site information exists to assess that possibility.
Furthermore, several major cities have estimates of high PM2.5 con-
centrations (Table 1), but lack ground-based monitors, providing evi-
dence that insufficient ground-based monitoring exists for air quality
management. Indeed, the city with the highest PM2.5 concentration
may be unmonitored. The ability to answer basic questions about air
quality, such as identifying the city with the highest PM2.5 concentra-
tion, serves as an indicator of scientific progress to assess the impacts of
human actions on air quality, to reduce the dramatic welfare costs of
PM2.5 exposure, and to track progress of policies and interventions
designed to reduce the impacts of PM2.5.

Harmonized network

Progress in advancing knowledge about the global distribution of
PM2.5 and its chemical composition will require a harmonized network
that integrates different types of monitoring equipment (regulatory
networks, low-cost monitors, satellite remote sensing, and research-

grade instrumentation) with atmospheric and statistical models.
National regulatory networks serve as the foundation for air quality
measurement and management with precise, local, real-time informa-
tion that is readily communicated to the public. In addition, advanced
monitors can provide information on PM2.5 chemical composition
which can be used to evaluate and improve chemical transport models
and provide critical information on source contributions to inform air
quality management.

Despite laudable recent increases in PM2.5 monitoring in several
countries, we calculate that thousands of new monitors would be
needed to achieve even a basic global goal of one monitor per million
inhabitants. For example, more than 1,300 monitors would be needed
in India with an additional 1,000 monitors in Bangladesh, Pakistan,
Indonesia, and Brazil, whereas there are currently less than 275 in total
in these five of the world's ten most populated countries. Even more
resources would be needed to reach the monitoring levels of more
densely monitored countries with several monitors per million persons
(Fig. 1). Barriers to coverage have been the high cost of purchasing and
operating monitors, and technical capacity to operate and maintain
monitoring networks. Low-cost monitors are emerging with exciting
prospects to augment regulatory monitoring networks and to support
citizen science, but outstanding questions remain about their reliability,
durability, and accuracy, especially for sensor networks that are not
integrated with traditional regulatory monitoring networks (Snyder
et al., 2013; Jiao et al., 2016). Satellite observations currently are the
only observational approach able to provide global coverage with suf-
ficient spatial resolution. However, these observations measure an at-
mospheric column for cloud-free conditions during daytime and require
additional information from chemical transport models to infer global
annually-representative ground-level concentrations (van Donkelaar
et al., 2010). Ground-based measurements that also measure aerosol

Fig. 2. Country-mean population-weighted distance to nearest PM2.5 monitor as indicated by the colors of country borders, and by the colored dots at PM2.5 monitor
locations. Background greyscale indicates global estimates of PM2.5 concentrations (Shaddick et al., 2018b). Thin within-country contours indicate regional po-
pulation density. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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abundance throughout the atmospheric column are needed to connect
columnar satellite observations with the ground-level concentrations of
relevance for human health (Snider et al., 2015). These ground-based
measurements could also serve as anchor points to dense low-cost
monitoring networks (Gao et al., 2015), mobile monitoring approaches
(Apte et al., 2017), or hybrid models (Beckerman et al., 2013) to assess
exposure at fine spatial resolution in the surrounding area. Ground-
based monitoring is critical for air quality forecasting (Kumar et al.,
2018). Additionally, targeted research grade measurements of the at-
mospheric vertical profile (e.g. by aircraft (i.e. Crawford et al., 2014) or
lidar (i.e. Welton et al., 2001)) can offer information to develop and
improve estimates based on atmospheric models. Readily available data
in near-real-time such as being facilitated by OpenAQ is another im-
portant component of air quality management. Interpretation of mea-
surements from such harmonized, but complex networks will require
increased coordination amongst local, national, and international in-
stitutions, and for atmospheric and health scientists to work increas-
ingly closely together (West et al., 2016).

Case study for India

As described in Brauer et al. (submitted), ambient air pollution is a
leading risk factor for disease burden in India with ambient PM2.5 es-
timated as a leading risk factor for mortality, with one million attri-
butable deaths in 2017 (Stanaway et al., 2018). The national popula-
tion-weighted annual average PM2.5 level in India of 76 μgm−3 is more
than double the World Health Organization Interim-Target 1
(35 μgm−3) with approximately 90% of the population living in areas
above this level and 99.9% living in areas above the WHO Guideline.
Based on the measurements of PM2.5 collected as part of the World
Health Organization Global Ambient Air Quality Database (WHO,
2018), about 40 cities contained PM2.5 measurements in India in the
2010–2016 period. The population-weighted average distance to the
nearest monitor is over 70 km. This monitor density is only ∼0.14
monitors/million persons (1 monitor for every 6.8 million people).
Substantial time and resources would be needed to reach basic levels of
monitoring (e.g. 1 monitor per million persons).

A hybrid monitoring approach could accelerate the availability and
quality of information about PM2.5 within India. Such an approach
could build upon recent advancement in satellite-based assessment of
air quality, and the emergence of strategically located ground-based
monitoring stations that combine measurements of PM2.5 chemical
composition with sun-photometer measurements of aerosol optical
depth to improve the accuracy of satellite-based estimates from both
global and regional perspectives (Snider et al., 2015). Such strategic
measurement nodes can also provide important evaluation data for
chemical transport model simulations and provide necessary inputs for
receptor modeling source apportionment. This information on source
contributions could inform forecasting and evaluation of air quality
management options and initiatives.

Fig. 3. Performance of current global estimates of PM2.5. Scatter plot of annual mean ground-based monitor PM2.5 concentrations versus recent global estimates
(Shaddick et al., 2018b). The 1:1 line is solid.

Table 1
Example major cities with high estimates of PM2.5 con-
centrations, but without ground-based PM2.5 monitors.

City, Country PM2.5 (μg/m3)

Allahabad, India 137
Riyadh, Saudi Arabia 137
Lucknow, India 120
Asyut, Egypt 112
Ahvaz, Iran 97
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Ideally, each strategic monitoring station would be located in each
of the 11 distinct airsheds within India identified by Brauer et al.
(submitted). Linking of these strategic monitoring stations with new or
existing traditional air quality monitoring stations within each airshed
would provide additional information on spatial variability in pollutant
concentrations at high temporal resolution, and would link the network
directly to satellite-based estimates. Monitor density could be weighted
towards areas with higher population density and towards areas with
greater variability in satellite-based estimates.

A path forward

Despite the implications of PM2.5 and recent growth in PM2.5

monitoring, we find that insufficient information exists for air quality
management, or even to identify a basic question such as the location of
the city with the highest PM2.5 concentration. The ability to answer this
basic question serves as an indicator of scientific progress to assess
global human exposure to air pollution and as an important component
of efforts to reduce its impacts. Reliable global estimates of the spatial
and temporal distribution of PM2.5 concentrations will help raise
awareness about the severity of the problem, help identify hot spots,
track progress, and inform local air quality management planning.
While PM2.5 is the most important pollutant from a global health per-
spective, and its mass is most widely monitored, monitoring of its
chemical composition and of additional pollutants will be needed to
support air quality management and should also be integrated into such
a hybrid framework. Exciting prospects exist for aspects of this network
including advances in low-cost monitors, planned satellite missions,
and targeted field campaigns. Further development of this harmonized
network has the potential to advance global exposure estimates that are
needed for major assessments such as the Global Burden of Disease and
the United Nations Sustainable Development Goals.
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