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Abstract
A number of realizations of one or more numerical weather prediction (NWP) mod-

els, initialised at a variety of initial conditions, compose an ensemble forecast. These

forecasts exhibit systematic errors and biases that can be corrected by statistical

post-processing. Post-processing yields calibrated forecasts by analysing the statis-

tical relationship between historical forecasts and their corresponding observations.

This article aims to extend post-processing methodology to incorporate atmospheric

circulation. The circulation, or flow, is largely responsible for the weather that

we experience and it is hypothesized here that relationships between the NWP

model and the atmosphere depend upon the prevailing flow. Numerous studies have

focussed on the tendency of this flow to reduce to a set of recognisable arrange-

ments, known as regimes, which recur and persist at fixed geographical locations.

This dynamical phenomenon allows the circulation to be categorized into a small

number of regime states. In a highly idealized model of the atmosphere, the Lorenz

‘96 system, ensemble forecasts are subjected to well-known post-processing tech-

niques conditional on the system's underlying regime. Two different variables, one

of the state variables and one related to the energy of the system, are forecasted

and considerable improvements in forecast skill upon standard post-processing are

seen when the distribution of the predictand varies depending on the regime. Advan-

tages of this approach and its inherent challenges are discussed, along with potential

extensions for operational forecasters.

K E Y W O R D S
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post-processing, weather regimes

1 INTRODUCTION

The atmosphere is a chaotic dynamical system. Hence,

weather forecasts are heavily reliant on a perfect measure

of their initial conditions, something that is never achieved

in practice. To address this, dynamical numerical weather

prediction (NWP) models are run from a variety of initial con-

ditions to obtain a sample of distinct forecasts (Leith, 1974).

In addition to error in the initial state, the models themselves

are imperfect. The result is a biased, typically underdispersed
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and thus overconfident ensemble forecast. To calibrate the

ensemble forecasts, they are often subjected to statistical

post-processing. These statistical methods serve as a way of

issuing a well-calibrated probabilistic forecast in observation

space given NWP realizations in the model's phase-space

(Stephenson et al., 2005).

Statistical post-processing removes systematic errors

present in the NWP models by detecting and correcting

relationships between past forecasts and the resulting obser-

vations. However, these relationships are not necessarily

stationary. Hamill et al. (2017) remarks that biases in NWP

output may vary with season, spatial location and other fac-

tors that systematically influence the model error. That is,

the relationship between the NWP model and the atmosphere

may change under different circumstances. If such circum-

stances can be identified then it may be possible to incorporate

this additional information into established post-processing

methods.

We postulate that the relationship between the NWP

model and the atmosphere changes depending on the concur-

rent behaviour of the atmospheric circulation. This nonlinear,

chaotic flow falls into recognisable, large-scale structures

called regimes, regarded as metastable equilibria of the

flow's phase-space. These atmospheric, or weather, regimes

characterize the low-frequency variability of the circulation,

which at these equilibria exhibits noticeably regimented

behaviour; the flow patterns persist and recur at fixed geo-

graphical locations. Examples of this dynamical behaviour

include persistent anomalies in geopotential height fields

(Dole and Gordon, 1983), such as blocking, and teleconnec-

tion patterns – highly negatively correlated variables situated

at widely separated spatial locations (Wallace and Gutzler,

1981).

There exist ample studies exploring the nature of

low-frequency variability in the atmosphere and this article

provides only a basic introduction to the regime paradigm,

highlighting relevant results and focussing on their statistical

representation. For a considerably more thorough review of

the extant literature, readers are diverted to Hannachi et al.
(2017) and references therein. The fundamental concept is

that the atmospheric circulation can be decomposed into just a

few metastable equilibrium states and that transitions between

these regimes can thus be used to describe the continuous

evolution of the atmosphere (Franzke et al., 2011).

The circulation is primarily responsible for the weather

that we experience and further justification for its inclusion

in statistical post-processing can be found in past literature.

Robertson and Ghil (1999) conclude that weather regimes

affect the frequency and magnitude of temperature and pre-

cipitation events, while Neal et al. (2016) proposes that more

extreme weather events have a higher probability of occur-

ring in certain circulation types, suggesting the predictability

of the atmosphere may vary for different regimes.

Messner et al. (2017) highlights the potential improve-

ments to post-processing when a variety of atmospheric vari-

ables are included in the statistical models, rather than relying

solely on the forecasts issued by the ensemble members.

Weather regimes implicitly incorporate the behaviour of other

atmospheric variables without suffering from challenges such

as overfitting and variable selection that are induced by using

a large number of possible predictors.

Perhaps the most promising reason for believing that there

exists a different relationship between the model and the

atmosphere in different weather regimes can be found in

Ferranti et al. (2015). The paper assesses the performance

of raw ensemble forecasts when the atmosphere resides

in four atmospheric regimes – the positive and negative

phases of the North Atlantic Oscillation (NAO), an Atlantic

Ridge and European Blocking – concluding that the skill of

medium-range weather forecasts changes when initialised in

certain regimes.

The remainder of the article is organized as follows.

A discussion of the general problem and the choice of

methodology to investigate is provided in section 2. Section

3 introduces a highly idealized model of the atmosphere,

the Lorenz (1996) system, in which this methodology will

be tested. The post-processing methods and forecast ver-

ification techniques are presented in section 4, with the

corresponding results for the simulation study displayed

in section 5. Section 6 discusses the practicalities of the

method and extensions to operational forecasts, while also

concluding.

2 METHODOLOGY

The focus of this work is to extend current methods of

statistically post-processing ensembles of weather forecasts,

which generate forecasts in the form of predictive proba-

bility distributions, G(𝑣 | f , 𝜽). Here, f = (f 1, f 2, … , f M) is

an ensemble forecast comprising M ensemble members, 𝜽

is a vector of parameters and G is a parametric distribution

chosen for the weather variable of interest. We consider the

case where the response, or verification, 𝑣 is univariate; how-

ever, the method could easily be extended for multivariate

post-processing.

Although there has been some debate on the irrefutable

presence of weather regimes, they are a useful feature in this

framework. Defining regimes to exhibit persistence renders

the time spent transitioning between states negligible com-

pared to time spent in the regimes. The regime states thus

form a mutually exclusive, collectively exhaustive (MECE)

partition of the atmosphere's phase-space.

This provides a helpful reduction but it is possible to pro-

ceed without it. If the circulation can be quantified by some

continuous metric, 𝜌, then the predictive distributions could

simply be extended to include this metric as an additional
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variable in the recalibration:

𝐺(𝑣 | f ,𝜽, 𝜌).

Using a continuous measure allows the flow to be rep-

resented on a spectrum and, rather than harshly binning the

circulation into a finite number of regimes, it permits a degree

of membership to several states to be quantified. In reality,

although indices exist that measure how much the atmosphere

resembles commonly recognized weather regimes such as the

NAO, the Arctic Oscillation and the Pacific–North American

pattern, there is no recognized method of objectively condens-

ing the flow over some spatial domain into a single continuous

metric.

Suppose instead that a finite number, R, of regimes in the

atmosphere are identified. If an underlying regime can accu-

rately be attributed to a forecast, then recalibration can be

performed conditional on this atmospheric state. For example,

when forecasting in each regime, the post-processing methods

could use a separate set of model parameters:

𝐺(𝑣 | f ,𝜽𝑟),

or even specify a distinct distribution:

𝐺𝑟(𝑣 | f ,𝜽𝑟),

for r = 1, … , R.

More generally, the forecast distribution can be written as a

mixture of predictive distributions that depend on the regime:

𝐺(𝑣 | f ,𝜽) =
𝑅∑
𝑟=1

𝑤𝑟𝐺𝑟(𝑣 | f ,𝜽𝑟),

where the weight wr represents the probability of the atmo-

sphere residing in regime r, allowing the model to account for

uncertainty present when attributing the forecast to a regime.

This article focusses on these regime-based extensions; the

idea of introducing a continuous metric to measure circula-

tion is not investigated. Discretizing the flow like this places

fewer restrictions on any model parameters, allowing for more

flexibility in the statistical recalibration models.

Although we focus here on weather regimes, this approach

is suitable for any grouping of the forecasts in which differ-

ent model biases might be expected. Similar extensions to

statistical post-processing have been implemented previously

in the hope of attaining more skilful forecasts of extreme

wind-speed events. Lerch and Thorarinsdottir (2013) and

Baran and Lerch (2015) apply a regime-switching approach

that issues a separate predictive distribution depending on

whether or not the ensemble median lies above some thresh-

old, suggesting that biases in the forecasts depend on the

predicted values themselves.

Rather than using a fixed threshold, Baran and Lerch

(2016) extend this idea further by utilizing a mixture of

the predictive distributions, with weight parameters that

are estimated simultaneously with the coefficients of the

component distributions. Although the regime-switching

approaches implicitly assume that biases differ between

two or more distinct configurations of the atmosphere,

they do not necessarily refer to weather regimes. Gneiting

et al. (2006), however, finds that skilful short-range fore-

casts of wind speed are obtained when separate statistical

models are fitted depending on the local prevailing wind

direction.

Statistical post-processing corrects systematic errors in

the raw ensemble by exploiting relationships between

archived forecasts and their corresponding verifications.

Thus, a training dataset of historical forecasts and observa-

tions – forecast–observation pairs – is required, from which

relationships can be identified and parameters can be esti-

mated. Continual adjustments to NWP models often limit the

training data available to operational forecasters. The flow, on

the other hand, is a product of the atmosphere only and is not

dependent on the forecast. Therefore the regimes need not be

estimated from the training data, they can be discerned from

a much larger set of observations.

However, regimes are hidden and must be inferred from

other, observable, variables. This can be circumvented by

converting these dynamical phenomena to statistical arte-

facts. A variety of statistical approaches have been used to

detect atmospheric equilibria including pattern correlation

analysis (Horel, 1985), probability density analysis (Kimoto

and Ghil, 1993), clustering algorithms (Cheng and Wallace,

1993; Smyth et al., 1999; Kondrashov et al., 2004) and hid-

den Markov models (Majda et al., 2006). Unfortunately, the

regimes identified are not always robust to the method used;

a number of these studies have considered wintertime geopo-

tential height anomalies in the Northern Hemisphere, yet have

yielded contrasting regime-like behaviour.

There has been extensive work on regime detection and

this framework assumes only that the statistical representa-

tions are reasonable approximations of their dynamical coun-

terparts – beyond this, the choice among methods is arbitrary.

The regimes are hereafter assumed to be known.

The regime-dependent approaches rely on the ascribing

of forecasts to an underlying state. Thus, a method is required

that condenses information regarding the atmosphere into

just one of a number of predetermined regimes. Since each

NWP forecast represents a simulated trajectory of the atmo-

sphere, this method should also be able to predict a regime

given the NWP output. Therefore, provided forecasts are of

the same spatial scale as the regimes, each ensemble member

provides an estimate of the atmospheric state; members can

be matched with the regime that is statistically the closest

(Neal et al., 2016).
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If this method accurately assigns an ensemble forecast–

observation pair to a regime then the training dataset, in acting

as a sample of the system's phase-space, can be stratified into

R MECE subsets. Relationships can be identified between

the ensemble forecasts and the observations from each of the

separate subsets, including the estimation of a new set of

parameters. However, the regime of a forecast is not unique;

the underlying regime may change throughout the forecast

and thus a time at which to define the regime must be chosen.

We seek the time at which the disparities between the

model–atmosphere relationships are largest. There are two

intuitive options: the state of the atmosphere at the forecast's

initialisation time or at its validation time. In order to exploit

past regime-dependent relationships, the regime of a new

forecast should be defined in the same way as those in the

training data. If the regime is defined at the initialisation time

then it can be deduced (or estimated at least) from observed

data, and thus does not rely on the NWP model being able to

capture the regime structure present in the atmosphere.

In this case, the training data can be stratified into sub-

sets depending on the regime of the forecast at its initiali-

sation time and separate post-processing parameters can be

estimated for each subset. Any new forecast would then be

assigned to a regime in the same way and post-processed

using the parameters estimated from the corresponding train-

ing subset. This assumes that all ensemble members estimate

the same regime at the initialisation time and that a small per-

turbation to the analysis is not sufficient to alter the large-scale

state of the atmosphere.

However, since the length of a medium-range weather

forecast may exceed the average duration of a weather regime,

the atmospheric state will often change throughout the fore-

casting period. Therefore, conditioning on the regime at the

initialisation time may result in losing some information

regarding the occurrence of different weather events in differ-

ent regimes, contradicting some of the reasons for believing

this method may be successful, such as extreme events occur-

ring more frequently in certain regimes.

Using the regime of the atmosphere at the forecast's vali-

dation time does not suffer from these problems and therefore

may be expected to yield more heterogeneous relationships

between the model and the atmosphere. However, the regime

at the validation time is not known and hence the forecast

could not be assigned to exactly one regime in the same way

that those in the training data were.

The regime of a forecast at its validation time could

instead be estimated using the regimes approximated from

the ensemble members. This yields M regime estimates for

each ensemble forecast and a sensible approach might be to

use the proportion of ensemble members predicting a regime

as the probability of the atmosphere residing in that regime.

From this, ensembles could, for example, be calibrated using

a mixture of post-processing models with corresponding

weights. Here, since every forecast–observation pair would

not necessarily be assigned to exactly one regime, rather than

stratifying the training data into subsets for each regime and

estimating a separate set of parameters from each subset,

a model averaging technique could be applied in which all

parameters are estimated simultaneously.

This extension would be particularly well-suited to

methods such as member-by-member post-processing (Van

Schaeybroeck and Vannitsem, 2015) which corrects each

ensemble member individually to yield forecasts in the form

of a calibrated ensemble rather than a predictive distribution.

In this setting, each ensemble member produces an estimate

of a regime and so could be post-processed conditional on its

own regime prediction.

In reality, it would be possible to use the state of the atmo-

sphere at any intermediate time of the forecast, or even at

any time prior to forecasting if such information were avail-

able, but these are yet more sensitive to the assumptions and

challenges described above.

Section 4 reintroduces Non-homogeneous Gaussian

Regression (NGR), also commonly referred to as Ensemble

Model Output Statistics (EMOS), and Bayesian Model Aver-

aging (BMA), and offers examples of possible extensions

to these familiar statistical post-processing methods using

the regime paradigm. A separate extension is considered

when defining the regime at the initialisation time and at the

validation time.

3 LORENZ ‘96 SYSTEM

The methodology described in the previous section is imple-

mented in a highly idealized model of the atmosphere, the

Lorenz (1996) system. Its chaotic nature lends itself to sim-

ulations of weather forecasts and the trialling of statistical

post-processing methods (Roulston and Smith, 2003; Wilks,

2006; Williams et al., 2014). A coupled system containing

both larger-scale variables, Xk, and subgrid-scale variables

Yj, k is used to emulate the atmosphere:

𝑑𝑋𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 −𝑋𝑘+1) −𝑋𝑘 + 𝐹 − ℎ𝑐

𝑏

𝐽∑
𝑗=1

𝑌𝑗,𝑘;

𝑑𝑌 𝑗,𝑘

𝑑𝑡
= −𝑐𝑏𝑌 𝑗+1,𝑘(𝑌𝑗+2,𝑘 − 𝑌𝑗−1,𝑘) − 𝑐𝑌 𝑗,𝑘 +

ℎ𝑐

𝑏
𝑋𝑘, (1)

for k = 1, … , K and j = 1, … J. The system exhibits

cyclic boundary conditions, Xk = Xk+K , Yj, k = Yj, k+K and

Yj+ J, k = Yj, k+ 1.

The parameter values used are K = 8, J = 32, F = 20,

h = 1, b = 10 and c = 10, and the system is numerically

integrated forward in time using a fourth-order Runge–Kutta

scheme with a time step of dt = 0.001. Christensen et al.
(2015) showed that with these parameters the system

exhibits regime-like behaviour, transitioning between two
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distinct states. The regimes are defined using a pre-specified

diagnostic:
𝐾

2∑
𝑘=1

cov
(
𝑋𝑘,𝑋𝑘+ 𝐾

2

)
, (2)

where cov(Xi, Xj) denotes the covariance between the ith and

jth components of the vector of state variables X, calculated

over a time series of length one model time unit (MTU; cor-

responding to 5 days) directly preceding the time of interest.

The system resides in regime A if this covariance diagnostic

is positive and regime B if it is negative. As such, regime A

is characterized by high amplitudes of wave-number 2, and

regime B is dominated by wave-number 1.

Whereas in reality there is uncertainty regarding the

regime, this diagnostic allows a regime to be known with

certainty, and thus removes the need to account for any

uncertainty regarding the state of the system.

The NWP model can be represented by equations that

resolve only the large scales, since this is a common simplifi-

cation of dynamical weather models:

dX𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 −𝑋𝑘+1) −𝑋𝑘 + 𝐹 . (3)

In an effort analogous to improving the NWP model, this

equation can be extended by including a quartic polynomial of

the resolved variable, which acts as a kind of sub-grid model

to account for the effect of the neglected variables Yj, k:

dX𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 −𝑋𝑘+1) −𝑋𝑘 + 𝐹

−(𝛽0 + 𝛽1𝑋𝑘 + 𝛽2𝑋
2
𝑘
+ 𝛽3𝑋

3
𝑘
+ 𝛽4𝑋

4
𝑘
). (4)

The parameters 𝛽0, 𝛽1, … , 𝛽4 are estimated by min-

imizing the mean squared difference between true and

parametrized tendencies (Wilks, 2005; Kwasniok, 2012). The

resulting coefficient estimates are shown in Table 1. This

model is also numerically integrated through time using a

fourth-order Runge–Kutta scheme, this time with a time step

of dt = 0.005.

To trial the regime-dependent statistical post-processing

approach, a training dataset is generated, comprising forecasts

initialised at points 0.15 MTU apart, from which parame-

ters are estimated. The resulting post-processing models are

assessed using a test dataset, with forecasts initialised at inter-

vals of 50 MTU akin to Wilks (2006). A fixed training dataset

is used throughout, consisting of 20,000 forecast–observation

T A B L E 1 Parameter estimates for the quartic polynomial in the

NWP model

Parameter 𝜷0 𝜷1 𝜷2 𝜷3 𝜷4

Estimate 0.209 1.45 −0.0127 −0.00728 0.000312

T A B L E 2 Average duration (MTU) of regimes A and B and the

proportion of time the systems spend in each regime

Mean duration % of time

Reg. A Reg. B Reg. A Reg. B

True system 6.23 1.60 80 20

NWP model 12.13 1.61 88 12

pairs, and trajectories up to a lead time of 3 MTU (15 days)

are considered. The statistical post-processing methods are

evaluated over 50,000 ensemble forecasts and verifications.

Along each margin, k, ensembles are generated by adding

a stochastic perturbation to the initialisation points, governed

by a N(0, 0.12) distribution, and integrating the NWP model

through time starting at these perturbed points. Ensembles of

size 20 are used throughout, though the results were found

not to depend on the ensemble size. To allow for interchange-

able members, these ensembles do not contain a control, or

analysis, forecast.

There are now two different processes, the true system

imitating the atmosphere (Equation 1) and a deterministic

NWP model with which ensemble forecasts can be gener-

ated (Equation 4). Table 2 shows the average persistence

time of the regimes, along with the corresponding propor-

tion of time the system spends residing in each regime. In

the true system, regime A persists for 6.23 MTU (31 days) on

average, and regime B only 1.60 MTU (8 days). The NWP

model captures the mean persistence time of regime B but

severely overestimates the persistence of regime A. Therefore

the model spends a larger proportion of time in this state than

the atmosphere.

Two different quantities are to be predicted. The system

is invariant under translation and hence all margins of X are

statistically identical. Therefore, since we are interested in

univariate post-processing approaches, only X1 is considered.

Secondly, the mean squared value of all Xk variables is also

forecasted. This quantity is labelled E since it is proportional

to the total energy of the system:

𝐸 = 1

𝐾

𝐾∑
𝑘=1

𝑋2
𝑘
. (5)

To visualize the regime-like behaviour, Figure 1 shows a

year-long time-period (73 MTU) of the predictands, X1 and E,

along with the covariance diagnostic and the corresponding

regime. Large spells in regime A with intermittent periods in

regime B reinforce the features displayed in Table 2. There

is no obvious disparity in the behaviour of X1 depending on

the regime of the system and this is confirmed by a plot of

the empirical distributions of the observations in Figure 2. E,

on the other hand, does appear to vary with the regime, with

lower values coinciding with the occurrence of regime B.
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F I G U R E 1 Time series of the observed predictands, along with the concurrent regime and the associated value of the covariance diagnostic,

for a year-long time period
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F I G U R E 2 Empirical distribution of X1 (left) and E (right) when the system resides in each regime

The similarity in the distributions of X1 might appear dis-

heartening since the method relies on discrepancies between

the regimes; however, nothing can be deduced about the

behaviour of the forecasts nor the predictability of the system

in each regime. One particularly interesting attribute is that

during prolonged spells in regime B the covariance diagnos-

tic appears a lot less erratic, perhaps implying the system is

more settled in this regime.
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F I G U R E 3 Quantiles of a random sample of 1,000 standardized residuals from an NGR forecast plotted against the quantiles of a standard

normal distribution. Shown when predicting X1 (left) and E (right) at a lead time of 3 days. Similar plots are found for forecasts from the two

regimes, and also at other lead times

4 STATISTICAL
POST-PROCESSING

Consider a raw ensemble forecast f comprising M members

f 1, f 2, … , f M . Numerous techniques exist to statistically

post-process the ensemble but we choose here to implement

only the two most eminent methods, Bayesian Model Aver-

aging (BMA) and Non-homogeneous Gaussian Regression

(NGR). Whereas each ensemble member issues a point fore-

cast – an instantaneous realization of phase-space – BMA

and NGR generate probabilistic forecasts in the form of pre-

dictive distributions. These methods both assume that each

verification, v, is a realization of a random variable, V ,

that follows a proposed statistical distribution conditional

on the M point predictions obtained from the raw ensemble

members.

Despite deviations from Gaussianity in the marginal dis-

tributions of the observed values, suitable diagnostic checks,

such as the quantile–quantile plots of the standardized resid-

uals in Figure 3, show that the Normal distribution is an

appropriate choice for the predictive distribution for both

V = X1 and V = E. E, by construction, is a positive quantity

and using a Normal predictive distribution issues a non-zero

probability of seeing a negative response. In this case, how-

ever, this probability is always negligibly small. A Gamma

EMOS model was also implemented when forecasting E,

but was found to perform worse than a Gaussian forecast

distribution (not shown).

4.1 Bayesian model averaging
BMA entails specifying a mixture of weighted component

distributions that are centred around a linear adjustment

of each ensemble member (Raftery et al., 2005). Here we

assume all members are interchangeable and hence equally

weighted:

𝑉 ∣ f ∼ 1

𝑀

𝑀∑
𝑚=1

𝑁(𝛼 + 𝛽𝑓𝑚, 𝜎
2). (6)

The individual component distributions are Gaussian and

the parameters (𝛼, 𝛽, 𝜎2) are estimated by numerically max-

imizing the likelihood function or, equivalently, minimizing

the negative log-likelihood (NLL) score. The NLL score for

a mixture distribution with weights wm and Gaussian compo-

nent distributions 𝑁(𝜇𝑚, 𝜎
2
𝑚) is

nll = − log

[
𝑀∑
𝑚=1

𝑤𝑚𝜙

(
𝑣 − 𝜇𝑚

𝜎𝑚

)]
, (7)

where 𝜙(⋅) is the standard Gaussian probability density func-

tion and v is the corresponding observation. This score is then

averaged over all i = 1, … , N forecasts in the training data to

obtain the average NLL score, which in this case reduces to

NLL = − 1

𝑁

𝑁∑
𝑖=1

log

[
1

𝑀

𝑀∑
𝑚=1

𝜙

(
𝑣𝑖 − 𝛼 − 𝛽𝑓𝑚,𝑖

𝜎

)]
. (8)

In the regime paradigm we propose two different exten-

sions to the model depending on when the regime of the

forecast is defined. If the state of the atmosphere is defined

at the intialisation time then the training data can be divided

into subsets based upon the regime of the atmosphere at the

forecast's initialisation time, and a separate set of parameters

can be estimated for each regime (𝛼𝑟, 𝛽𝑟, 𝜎
2
𝑟 for r = 1, … , R)

by minimizing the NLL score over each training subset:

NLL = − 1

𝑁𝑟

𝑁𝑟∑
𝑖=1

log

[
1

𝑀

𝑀∑
𝑚=1

𝜙

(
𝑣𝑖 − 𝛼𝑟 − 𝛽𝑟𝑓𝑚,𝑖

𝜎𝑟

)]
, (9)
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where Nr is the number of forecast–observation pairs in the

learning data defined to be in regime r. A new forecast could

then simply be conditioned on one regime:

𝑉 ∣ f , 𝑟 ∼ 1

𝑀

𝑀∑
𝑚=1

𝑁(𝛼𝑟 + 𝛽𝑟𝑓𝑚, 𝜎
2
𝑟 ). (10)

This method is referred to as RDBMA-init.

Alternatively, if the regime is defined at the validation

time then since BMA specifies a separate distribution around

each ensemble member, every member can be post-processed

conditional on its own regime prediction. Members corre-

sponding to the same regime are assumed to be statistically

indistinguishable and hence an extension of BMA to include

groups of exchangeable ensemble members is implemented

(Fraley et al., 2010):

𝑉 ∣ f ∼
𝑅∑
𝑟=1

𝑤𝑟

𝑀𝑟∑
𝑚=1

𝑁(𝛼𝑟 + 𝛽𝑟𝑓𝑚, 𝜎
2
𝑟 ). (11)

Mr denotes the number of ensemble members that predict

regime r, and wr is the probability of being in that regime

at the validation time, with
∑𝑅

𝑟=1 𝑤𝑟 = 1. Fraley et al. (2010)

estimates this probability using maximum-likelihood via the

Expectation-Maximization (EM) algorithm (Dempster et al.,
1977), but here the groups of exchangeable ensemble mem-

bers are determined by the outputs of the NWP model and

hence are not known prior to forecasting. As a result, Mr
changes for each ensemble.

Using 𝑤𝑟 =
𝑀𝑟

𝑀
thus allows the probability to vary for each

forecast, providing a more flexible estimate that was found to

produce more skilful predictions.

In this case, forecast–observation pairs cannot be

assigned to exactly one regime and therefore the parameters

must be estimated simultaneously. This method is termed

RDBMA-val and the corresponding objective function is

NLL = − 1

𝑁

𝑁∑
𝑖=1

log

[
1

𝑀

𝑅∑
𝑟=1

𝑀𝑟∑
𝑚=1

𝜙

(
𝑣𝑖 − 𝛼𝑟 − 𝛽𝑟𝑓𝑚,𝑖

𝜎𝑟

)]
.

(12)

4.2 Non-homogeneous Gaussian
regression
Recognising the presence of a spread-skill relationship,

Gneiting et al. (2005) introduced Non-homogeneous Gaus-

sian Regression to extend the Normal linear regression model

to include a variance which is dependent on the spread of the

ensemble members. The mean and variance of the predictive

distribution are linear functions of the ensemble mean, 𝑓 ,

and variance, s2, respectively. The result is a heteroscedastic

distribution of the form

𝑉 ∣ f ∼ 𝑁(𝛼 + 𝛽𝑓 , 𝛾 + 𝛿𝑠2). (13)

To estimate the parameters (𝛼, 𝛽, 𝛾 , 𝛿; with 𝛾 and 𝛿

constrained to be positive) in the regression equations, the

paper acknowledges that the coefficients should be those that

minimize a proper score and therefore propose minimum con-

tinuous ranked probability score (CRPS) estimation. Gneiting

et al. (2005) showed the CRPS for a forecast in the form of a

Gaussian predictive distribution to be

crps[𝑁(𝜇, 𝜎2), 𝑣] = 𝜎

{
𝑣 − 𝜇

𝜎

[
2Φ

(
𝑣 − 𝜇

𝜎

)
− 1

]
+

2𝜙
(
𝑣 − 𝜇

𝜎

)
− 1√

𝜋

}
, (14)

where Φ(⋅) is the standard Gaussian cumulative distribution

function and v again represents the observed value. The total

CRPS is then the average of this score computed over all

forecasts in the training data:

CRPS = 1

𝑁

𝑁∑
𝑖=1

crps[𝑁(𝜇𝑖, 𝜎
2
𝑖 ), 𝑣𝑖]. (15)

Similarly to BMA, if the regime is defined at the initiali-

sation time then each forecast is in either regime A or regime

B and the model (labelled RDNGR-init) becomes

𝑉 ∣ f , 𝑟 ∼ 𝑁(𝛼𝑟 + 𝛽𝑟𝑓 , 𝛾𝑟 + 𝛿𝑟𝑠
2) (16)

for r = 1, … , R. Again, parameters are estimated by strati-

fying the training dataset using the regime of the atmosphere

at the forecast's initialisation time and minimizing the CRPS

separately for each training subset.

However, if the regime is defined at the forecast valida-

tion time then it cannot be determined with certainty and

hence a probabilistic approach is applied. Let pr denote

the proportion of ensemble members that predict regime r.

Then a mixture model of R separate distributions could be

implemented, with weights determined by pr. The predictive

distribution is of the form

𝑉 ∣ f ∼
𝑅∑
𝑟=1

𝑝𝑟𝑁(𝛼𝑟 + 𝛽𝑟𝑓 , 𝛾𝑟 + 𝛿𝑟𝑠
2). (17)

This is essentially a model averaging technique that

exploits the regime predictions of the ensemble members to

calculate the model weights. The CRPS for a forecast in the

form of a mixture distribution with J Gaussian component

distributions and weights wj is

crps

[
𝐽∑

𝑗=1

𝑤𝑗𝑁(𝜇𝑗,𝑖, 𝜎
2
𝑗,𝑖), 𝑣𝑖

]

=
𝐽∑

𝑗=1

𝑤𝑗𝐴(𝑣𝑖 − 𝜇𝑗,𝑖, 𝜎
2
𝑗,𝑖)
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−1

2

𝐽∑
𝑗=1

𝐽∑
𝑘=1

𝑤𝑗𝑤𝑘𝐴(𝜇𝑗,𝑖 − 𝜇𝑘,𝑖, 𝜎
2
𝑗,𝑖 + 𝜎2

𝑘,𝑖
), (18)

where

𝐴(𝜆, 𝜉2) = 2𝜉𝜙

(
𝜆

𝜉

)
+ 𝜆

[
2Φ

(
𝜆

𝜉

)
− 1

]
(Grimit et al., 2006). For the conditional distribution in

Equation 17 there is a component distribution for each regime.

Therefore, in this case, J in Equation 18 is equal to the num-

ber of regimes R, and the weights wj are given by pr. This

approach is referred to as RDNGR-val.

4.3 Forecast verification
These statistical post-processing methods are applied to a

sample of point forecasts to obtain a predictive distribution

conditional on the ensemble output. Forecasters have come

to seek predictive distributions that are sharp subject to being

calibrated and both of these qualities can be assessed by

verifying forecasts using proper scoring rules (Gneiting and

Raftery, 2007). In the following section the CRPS is used to

verify forecasts. NGR forecasts are assessed using the same

loss function with which parameters were optimized in the

training data, and Equation 18 can also be used to evaluate

BMA forecasts.

Although this might appear to favour NGR since parame-

ters are estimated using the same score that is used to verify

the forecasts, similar results are obtained when using the NLL

score to assess forecasts, and also when BMA parameters are

optimized using minimum CRPS estimation.

These scores outline the overall forecast performance but

concern lies more on the improvement gained from the new

methodology than on the raw scores themselves. Therefore

the continuous ranked probability skill-score (CRPSS) is also

applied. Whereas skill-scores are typically implemented with

a simple benchmark such as climatology, the reference fore-

cast is taken here to be the equivalent forecast obtained

via NGR or BMA at the same lead time. For example, if

we let H denote the predictive distribution obtained from

regime-dependent post-processing, G denote that obtained

from standard post-processing and v the corresponding obser-

vation, then for a proper score S(⋅, ⋅), the skill-score Ss is

𝑆𝑠 =
⟨𝑆(𝐺, 𝑣)⟩ − ⟨𝑆(𝐻, 𝑣)⟩⟨𝑆(𝐺, 𝑣)⟩ = 1 −

⟨𝑆(𝐻, 𝑣)⟩⟨𝑆(𝐺, 𝑣)⟩ , (19)

with ⟨⋅⟩ denoting the average score over forecasts in the

test dataset (Wilks, 2019). The skill-score can thus be inter-

preted as the percentage improvement in score upon current

post-processing methods, gained from regime-dependent

post-processing.

5 RESULTS

Defining regimes using the covariance diagnostic (Equation

2) allows the regime of the system to be issued with cer-

tainty given that the observations 1 MTU preceding the time

of interest are known. Therefore, characteristics of forecasts

can be compared for those defined to be in each regime at the

initialisation time.

The statistical properties of the forecasts indicate that there

are in fact disparities in the forecast behaviour between the

two regimes. Figure 4 shows that the ensemble variance, com-

puted from forecasts in the training data, is much smaller on

average when the system resides in regime B than in regime

A. This is true when predicting X1 or E, and is particularly

apparent when the regime is defined at the initialisation time.

Such differences in the variance suggest that weather events

are more predictable, and that the ensemble forecasts suffer

more from overconfidence, when in regime B.

Results are now shown separately when forecasting X1

and E.

5.1 Forecasting X1

Ensemble forecasts assume that the ensemble members arise

from the same generation mechanism as the observation and

hence the rank of the verification when pooled with the

ensemble members should be uniformly distributed. This

assumption can be evaluated by using verification rank his-

tograms to visualize the distribution of the ranks across

all forecasts in the test data (Anderson, 1996; Hamill and

Colucci, 1997; Talagrand, 1997). Rank histograms displayed

in Figure 5 indicate that the raw forecasts are highly over-

confident, with observations falling outside of the range of

ensemble members for the majority of forecasts. This is yet

more prevalent for those initialised in regime B.

Figure 5 also displays Probability Integral Transform

(PIT) histograms for the predictive distributions issued by

NGR and RDNGR-init for the same lead time. PIT histograms

record the frequency with which values of the forecast cumu-

lative distribution function, evaluated at the verification,

p = G(v), fall into a finite number of equally-sized bins. In

order to ensure comparability between the rank and PIT his-

tograms, 21 bins between 0 and 1 were chosen. Likewise, a

uniform PIT histogram implies calibrated forecasts.

The PIT histograms show that post-processing the

forecasts using NGR yields considerably more uniform his-

tograms, and hence considerably better-calibrated forecasts,

than the raw ensembles. However, Hamill (2001) demon-

strates how uniform rank histograms can be obtained from

a combination of poorly-calibrated forecasts, emphasis-

ing that the uniformity of rank histograms is a necessary

but not sufficient condition for reliable predictions. In this

case, the PIT histogram for forecasts in regime B becomes
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F I G U R E 4 Average ensemble variance for forecasts for X1 (left) and E (right), when initialised in each regime (top) and for those in each

regime at the validation time (bottom)

largely overdispersed as a result of post-processing, indi-

cating the forecasts are not calibrated conditional on the

regime. Estimating a new set of parameters for forecasts ini-

tialised in regime B, as in RDNGR-init, helps to reduce the

underconfidence of these forecasts.

Table 3 presents parameter estimates at a lead time of

7 days for both NGR and BMA, and all regime-dependent

extensions. Regardless of the time at which the regime of the

forecast is defined, the parameters, and in particular the vari-

ance coefficients, are noticeably different for the two regimes.

For BMA, the parameter controlling the variance decreases

dramatically when forecasting an event in regime B, sup-

porting the belief that the system is more predictable in this

regime. The regime A parameters, on the other hand, are gen-

erally similar to those obtained via standard post-processing.

This is not surprising given that the system spends 80% of

its time in regime A (Table 2) and hence the vast majority of

forecasts in the training data are defined to be in regime A.

The regime-dependent NGR methods appear to adjust

the variance of their predictive distribution differently for

the two regimes. The modest ensemble spread in regime B

forecasts is augmented by a larger scaling factor 𝛿, whereas

the variance of regime A forecasts is increased by a larger

additive, or nudging, parameter 𝛾 , thus implying the presence

of a stronger spread-skill relationship in regime B. There are

also slight differences between the parameters dictating the

forecast mean. Reinforcing the results in Figure 4, such a

pronounced difference in the variance parameters supports

our theory that the forecast–observation relationship changes

depending on the system's regime.

There do not appear to be large discrepancies between the

regime-dependent approaches and it is difficult to deduce the

time at which the forecast–observation relationships are most

varied. The average ensemble variance displayed in Figure 4

is more contrasting when the regime is defined at the initial-

isation time yet the 𝜎2
𝑟 estimates in Table 3 are more diverse

for RDBMA-val than RDBMA-init, suggesting the validation

time may produce slightly more heterogeneous relationships.

Having seen how the models are behaving in the dif-

ferent regimes, attention is turned to formally assessing the

forecasts. Figure 6 exhibits the CRPS against lead time for

the raw ensembles and for NGR, RDNGR-init, BMA and

RDBMA-init forecasts, along with the breakdown of those

defined to be in regime A and B at initialisation time. The

scores are much lower for forecasts initialised in regime B

than they are for regime A but since only 20% of forecasts are

in regime B, the score calculated across all forecasts is more

similar to that for forecasts in regime A. The post-processed

forecasts unsurprisingly yield scores much lower than those

for the raw ensemble forecasts and the improvements gained
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F I G U R E 5 Rank histograms for the raw ensemble forecasts and PIT histograms for NGR and RDNGR-init forecasts at a lead time of 7 days.

Histograms are displayed for forecasts in each regime at initialisation time. The red line displays perfect uniformity and can hence be used as a

comparison

from regime-dependent post-processing are noticeable in

regime B but appear negligible for forecasts initialised

in regime A, rendering the overall improvement relatively

unpronounced. The CRPS for all methods at a lead time of

7 days is displayed in Table 4.

Equivalently, using the regime at the initialisation time

allows the breakdown of skill-scores into regimes A and

B. Figure 7 further reinforces what has already been seen:

regime B forecasts improve by as much as 6% upon standard

post-processing, while those initialised in regime A experi-

ence little improvement and even become marginally worse in

cases. Regime B forecasts are thus responsible for the major-

ity of improvement but the dominance of regime A means

the relatively large improvements seen in regime B forecasts

account for only 20% of the total improvement. Therefore, the

maximum overall percentage improvement is little over 1%.

5.2 Forecasting E
Figure 8 displays the evolution of BMA and RDBMA-init

parameters over forecast lead time, when E is the predictand.

The variance coefficients exhibit similar behaviour to before,

with 𝜎2 significantly lower for regime B forecasts than regime

A forecasts.

However, as seen in Figure 2, the location of the distribu-

tion of observed values of E in regime A is different to those in
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T A B L E 3 Post-processing parameters for NGR and BMA, and

for both of the regime-dependent extensions at a lead time of 7 days,

when forecasting X1

X1 𝜶r 𝜷r 𝜸r 𝜹r

NGR 0.301 0.884 4.476 2.713

RDNGR-init r = A 0.411 0.855 6.028 2.202

r = B −0.004 0.966 1.510 6.639

RDNGR-val r = A 0.437 0.857 6.071 2.232

r = B −0.140 0.976 1.212 4.414

X1 𝜶r 𝜷r 𝝈2
r

BMA 0.450 0.861 8.260

RDBMA-init r = A 0.569 0.831 9.499

r = B 0.091 0.961 4.065

RDBMA-val r = A 0.603 0.829 9.583

r = B −0.106 0.985 2.831

regime B, which is not the case for verifications of X1. There

are now much larger distinctions in the location parameters,

𝛼 and 𝛽, between the regimes, indicating the NWP model

exhibits both spread and location biases that vary with the

regime.

As a result, much larger improvements are gained from

regime-dependent post-processing, as can be seen from the

scores displayed in Figure 9. The scores for the raw ensem-

bles are slightly lower than for forecasts of X1. Nonetheless,

the scores for RDNGR-val and RDBMA-val are considerably

better than those for NGR and BMA respectively, particu-

larly in regime B. This improvement is also maintained for

forecasts at longer lead times.

Initially it was believed that RDBMA-val would have

a slight advantage over its NGR counterpart since it

post-processes each ensemble member separately, not

compressing all the information into a single weight. NGR

appears to yield more skilful forecasts than BMA overall

but Figure 9 suggests the improvements are very similar for

the two methods. When using the regime at the initialisation

time, if the verification scores were smaller for BMA when

the system resided in one regime but smaller for NGR when

in the other, then it would be possible to calibrate subsets of

forecasts using separate post-processing methods depending

on the regime. i.e. apply NGR to all forecasts in regime A

and BMA to all forecasts in regime B, for example.

The corresponding skill-scores are displayed in Figure 10.

When the regime is defined at the validation time, forecasts

in regime B can improve by almost as much as 20% on NGR

and BMA forecasts, with overall improvements close to 7% at

lead times between 6 and 9 days.

Given that regime A dominates the upper tail of the

response distribution of E (Figure 2) and regime B the lower,
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F I G U R E 6 CRPS for the raw ensemble forecasts of X1 and for

NGR and BMA (solid), and RDNGR-init and RDBMA-init (dashed)

against lead time when the forecast is initialised in each regime

we might also expect regime-dependent post-processing to

produce more informative predictions of extreme weather

events. The Brier score, or mean squared error of a probabil-

ity forecast for a binary response (Brier, 1950), can be used to

assess the probability of the response falling above or below

some threshold of the data.

Table 5 displays the Brier score, at lead times of 3, 5

and 10 days, for the predicted probability of the verification

falling below the first percentile of all observations in the
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T A B L E 4 CRPS for all forecasts of X1 and the breakdown

between those identified to be in regime A and regime B at

initialisation time

X1 Total Regime A Regime B

Raw 2.072 (0.007) 2.241 (0.008) 1.429 (0.011)

NGR 1.779 (0.005) 1.921 (0.006) 1.238 (0.008)

RDNGR-init 1.768 (0.005) 1.916 (0.006) 1.202 (0.009)

RDNGR-val 1.766 (0.005) 1.914 (0.006) 1.202 (0.008)

BMA 1.796 (0.005) 1.926 (0.006) 1.301 (0.008)

RDBMA-init 1.782 (0.005) 1.927 (0.006) 1.227 (0.009)

RDBMA-val 1.779 (0.005) 1.922 (0.006) 1.232 (0.008)

The scores are shown for the raw ensembles and for NGR, BMA post-processed

forecasts, and all regime-dependent extensions, at a lead time 7 days. The

corresponding standard errors are displayed in brackets next to the score.

training data. This is hence a measure of the forecasts' perfor-

mance when predicting the occurrence of extremely low val-

ues of E. Again, when the regime is defined at the validation

time regime-dependent statistical post-processing noticeably

improves upon current post-processing approaches. Since the

marginal distribution of X1 varies less between the regimes,

similar forecasts of extremely low values of X1 exhibit less

improvement, comparable to results seen for all forecasts in

Figures 6 and 7.

6 DISCUSSION AND
CONCLUSIONS

This article acknowledges that the inability to distinguish

between distinct relationships linking the NWP model and the

atmosphere is a potential weakness of statistical techniques

of calibrating ensemble forecasts. In particular, it is proposed

that under certain circumstances the relationship between the

model and atmosphere changes, and if such circumstances are

identified then post-processing forecasts conditional on this

extra information could yield more informative prognoses.

Although the methodology presented here extends to other

appropriate and justifiable conditions, past literature suggests

that the atmospheric circulation and, in particular, weather

regimes are such circumstances. Section 2 discusses the rela-

tive merits of proposed ways of dealing with these new data.

The continuous flow of the atmosphere can be represented

by a comparatively small number of regime states and dis-

tinct post-processing parameters or methods can be used to

calibrate forecasts for each regime separately.

This would suggest that different relationships arise from

different subsets of the training data. The associated meth-

ods involve a simple division of the training data into relevant

subsets from which separate parameters can be estimated.

Although this may cause a problem if very few data are
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F I G U R E 7 CRPSS against lead time for both regime-dependent NGR and both regime-dependent BMA approaches using NGR and BMA,

respectively, as a reference forecast when predicting X1
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F I G U R E 8 Parameters for BMA forecasts of E against lead

time. RDBMA-init coefficients are also shown when the forecast is

initialised in each regime

available for one of the subsets, defining regimes to exhibit

persistence and recurrence renders this unlikely.

These subsets are constructed by defining the regime at

the forecast's initialisation time and using observations to

estimate the concurrent state of the atmosphere. This also

allows forecasts in each regime to be evaluated separately.

Establishing the regime at a time different to that at which the

forecasts are being verified may not yield optimal improve-

ments. It would be possible to use the regime at the forecast's

validation time instead.

However, when issuing a new forecast, the regime at the

validation time is not known and thus it is more appropri-

ate to account for uncertainty in the regime using the state of
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F I G U R E 9 CRPS for the raw ensemble forecasts of E and for

NGR and BMA (solid), and RDNGR-val and RDBMA-val (dashed)

against lead time when the forecast is initialised in each

regime

the atmosphere predicted by the different ensemble members.

There are a number of ways to utilize these regime predic-

tions and they are used here to calculate weights for a mixture

model forecast.

In this setting, a forecast–observation pair in the training

data cannot be attributed to exactly one regime and hence

rather than stratifying the data into MECE training subsets,

all coefficients should be estimated simultaneously.

Defining the regimes at the validation time yields slightly

larger improvements than when the initialisation time is used,
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F I G U R E 10 CRPSS against lead time for both regime-dependent NGR and both regime-dependent BMA approaches using NGR and BMA,

respectively, as a reference forecast when predicting E

T A B L E 5 Brier score for forecasts of the occurrence of

extremely low values of E, for NGR, BMA and both

regime-dependent extensions

E 3 days 5 days 10 days

Raw 4.59 (0.23) 7.14 (0.32) 12.25 (0.42)

NGR 4.08 (0.20) 6.52 (0.28) 11.44 (0.44)

NGR-init 3.46 (0.18) 5.79 (0.26) 11.34 (0.44)

NGR-val 3.30 (0.17) 4.95 (0.22) 10.94 (0.40)

BMA 4.09 (0.20) 6.52 (0.27) 11.42 (0.44)

RDBMA-init 3.49 (0.18) 5.61 (0.24) 11.34 (0.44)

RDBMA-val 3.31 (0.18) 4.91 (0.22) 10.92 (0.40)

Extremely low values correspond to values below 29.1, the first percentile

of the observations. Scores are shown at lead times of 3, 5 and 10 days,

with the associated standard errors in brackets alongside. All values have

been scaled by 103.

although estimating all regime-dependent parameters simul-

taneously can be significantly more computationally demand-

ing than estimating BMA and NGR coefficients. On the other

hand, despite the statistical models being more elaborate,

implementing RDBMA-init and RDNGR-init was no more

computationally expensive than the standard post-processing

approaches in this study. The computational times for

T A B L E 6 Average time taken in

seconds to estimate parameters at each

forecast lead time for the different

post-processing approaches, as

implemented in MATLAB

X1 E

NGR 0.09 0.12

RDNGR-init 0.12 0.16

RDNGR-val 2.33 4.27

BMA 0.67 0.68

RDBMA-init 0.71 0.68

RDBMA-val 6.65 7.17

the different methods are shown in Table 6. Given that

post-processing is typically done off-line, after integrating the

forecast model, these regime-dependent approaches should

not be prohibitively expensive.

These methods are trialled in the Lorenz (1996) system,

a highly idealized model of the atmosphere involving only

nonlinear advection, internal dissipation, external forcing and

interactions between small- and large-scale variables. This

system favours two states: regime A and regime B.
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The results were compared for forecasts of two differ-

ent variables, X1 and E. These were chosen as predictands

since the distribution of X1 does not change much in the two

regimes, whereas the opposite is true for E, yet in both cases

the ensemble variance of forecasts in regime B is, on average,

noticeably smaller than in regime A. Therefore, in both cases

regime-dependent post-processing would be expected to cal-

ibrate forecasts differently in the regimes, and hence improve

upon current post-processing approaches.

The fact that large improvements are seen for forecasts of E
but not for X1 raises two questions. Firstly, why are improve-

ments restricted when the response distribution does not

change between the regimes, despite clear differences in the

behaviour of the forecasts? Or alternatively, why does a vary-

ing response distribution contribute so much to improvements

in forecast performance? And secondly, given the results pre-

sented here, how could regime-dependent post-processing be

implemented in operational forecasting centres in the hope of

attaining better forecasts of atmospheric variables?

Operational forecasters often suffer from a lack of histor-

ical data available, so persuading them to stratify these data

further would be challenging. Furthermore, it has become

common to use a sliding training window to estimate param-

eters. These windows consist of forecast–observation pairs

from a relatively short number of days directly preceding the

time of forecasting. The choice of the length of this window

is a compromise between using enough data from which reli-

able parameter estimates can be obtained and using a length

that is small enough for the training window to reflect the

seasonality and recent behaviour of the weather.

The regime-dependent approaches estimate more param-

eters and hence require larger amounts of training data in

order to attain reliable parameter estimates. Methods that

can account for parameter uncertainty in the post-processing

models (Siegert et al., 2016) or augment the training data

(Hamill et al., 2017) are thus particularly desirable in the

regime paradigm. An excessively large amount of training

data was used in this simulation study to remove the necessity

of such methods, although smaller archives of data drew the

same conclusions.

It could be argued that knowing how the model behaves

in different regimes is more valuable when estimating model

coefficients than knowing how forecasts behaved more

recently in potentially very different atmospheric conditions.

For example, if the atmosphere resides in an anticyclonic

regime then the model biases will likely be similar to occa-

sions in previous years when this pattern has occurred, rather

than to the errors, say, 20 days prior to forecasting when a

different regime was present.

The method may thus be better suited to retrospective

forecasting (reforecasting) approaches, that run current oper-

ational NWP models from historical analyses to generate

a large number of hindcasts (Hamill et al., 2004). This

augmented dataset could then be used to estimate parameters.

Although this could initially be computationally expensive, it

reduces the need to estimate new post-processing parameters

daily, and hence computational resources could be allocated

to increasing the model resolution or complexity.

The results here suggest that if regimes can be iden-

tified such that the marginal distribution of the response

changes, then regime-dependent post-processing can signifi-

cantly improve weather forecasts. Moreover, if severe weather

events occur more frequently in some regimes than oth-

ers, such as extreme temperatures during prolonged blocking

episodes, then incorporating this regime-dependency when

calibrating forecasts could lead to refined predictions of these

extreme events.

Results have only been presented for an NWP model

that shows markedly different regime-like behaviour to that

of the system it is modelling. The primary goal of Chris-

tensen et al. (2015) was to study the effects that stochastic

parametrizations have on capturing the regime structure of the

Lorenz (1996) system. The result was that the introduction

of a red-noise stochastic parameter to the deterministic NWP

model (Equation 4) provides a good estimation of the regimes.

We repeated this study using the additive red-noise model

used in Christensen et al. (2015), rather than a deterministic

model, but chose to emphasize the method and its associated

challenges rather than the characteristics of the model, and as

such have not included these results.

It was found that similar patterns emerged to those iden-

tified here, but the improvements were slightly more pro-

nounced using the deterministic model; the method was better

at correcting poor forecasts than improving the higher-quality

model, contradicting the idea that the method is reliant on the

NWP model displaying similar regime-like characteristics to

the true system. This behaviour is intuitive for atmospheric

data; the circulation dictates the weather so the distribution of

the observations would be expected to vary between regimes,

and hence we would anticipate more improvement if the NWP

model output did not do the same.
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