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Graded index lenses for spin wave steering
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We use micromagnetic modeling to demonstrate the operation of graded index lenses designed to steer
forward-volume magnetostatic spin waves by 90 and 180 degrees. The graded index profiles require the refractive
index to diverge in the lens center, which, for spin waves, can be achieved by modulating the saturation
magnetization or external magnetic field in a ferromagnetic film by a small amount. We also show how the
90◦ lens may be used as a beam divider. Finally, we analyze the robustness of the lenses to deviations from their
ideal profiles.
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I. INTRODUCTION

Future wave-based computers will need to carry out cer-
tain functions to control propagating waves. One important
function is to steer a wave beam or a wave packet in a
controlled manner. Spin waves in ferromagnets—the slow
branch of the electromagnetic spectrum in gyrotropic media
[1]—are a promising contender for wave-based computing,
due to the reduced losses involved in chargeless spin transport
[2–4], their easy integration with spintronics systems [5], and
the great variety of possible spin wave regimes for different
geometries and frequencies [6].

The challenge of steering spin waves has primarily
been approached by confining waves along curved waveg-
uides [7–12]. However, these waveguides may suffer from
losses/scattering in bends, and usually have a large spatial
footprint. An alternative solution is to steer spin waves via
a graded refractive index [13–16], which smoothly alters the
wave trajectory with minimal reflections [17]. To achieve a
graded index for spin waves, one must gradually change a
magnonic parameter on a length scale much greater than the
wavelength.

In optics, wave steering via a graded index is a well-
established technique. One spatially efficient method of steer-
ing is via rotationally symmetric profiles (lenses), which are
specifically designed to steer light by a certain angle between
0◦ and 360◦, and can do so from any direction of incidence
[18–23]. Although these lenses are designed to work with
light, the same analysis applies to any other wave, supposing
that the dispersion relation is known.

A practical problem with these lenses is that they require a
singular refractive index in the center, while even a moderately
large refractive index is difficult to achieve in most areas
of wave physics. One technique to avoid this problem is
via transformation optics [24–26]. The profile can also be
truncated, but this often results in an incorrect trajectory [27].
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Here, we show that an extremely high refractive index
can quite easily be achieved for magnetostatic (dipolar) spin
waves in the forward-volume geometry. Although a singular
index is obviously still impossible, the refractive index can
become high enough to closely match the required refractive
index profile of these steering lenses. We use micromagnetic
modeling to demonstrate how two of these lenses can be
realized for spin waves in the dipolar regime, and analyze the
lenses’ robustness to profile deviations.

II. THEORY OF SPIN WAVE STEERING LENSES

We first explain the properties of the steering lenses, and
then show how they may be implemented for spin waves. We
will be using the 90◦ lens [19,21] and Eaton (180◦) lens [18].
Figure 1 compares their respective refractive index profiles,
defined as [23]

90◦ lens: (r/R)n4 − 2n + (r/R) = 0, (1)

180◦ (Eaton) lens: n(r) =
√

2

(r/R)
− 1, (2)

where r is the radial coordinate and R is the radius of the lens
in each case. Note that the profile for the 90◦ lens (1) is defined
implicitly here.

Defining a refractive index profile for spin waves is non-
trivial, since the dispersion relation is strongly dependent on
the geometry, and is always nonlinear. In some geometries
it is also highly anisotropic. The simplest way to implement
the rotationally symmetric profiles is via a geometry with an
isotropic dispersion relation, and design each lens for a fixed
incident wave frequency, although it should work also for a
wave packet with a small frequency spread. The refractive
index is defined as the ratio of the wave number inside the
lens, k(r), to that outside the lens, kref:

n(r) = k(r)

kref
. (3)

To change the wave number and thus the index for the given
wave frequency, we need to change the dispersion relation by
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FIG. 1. Images (a) and (c) show the ray paths, and images (b) and
(d) give the refractive index profile for the 90◦ and Eaton lenses (lens
radius R), respectively.

varying one of the bulk material parameters, or film thickness
[13–17].

We then need to choose an isotropic dispersion relation
that enables a large change in k, and thus n. This requirement
is satisfied in the dipolar-dominated regime, in the forward-
volume geometry, where the magnetization is directed normal
to the film plane. The dipole-dipole interaction dominates
the dispersion for spin wave wavelengths λ of millimeters to
micrometers. At the other end of the spectrum, the short-range
exchange interaction dominates, for wavelengths from tens to
hundreds of nanometers. In the crossover regime, the disper-
sion curve flattens out before the exchange interaction begins
to have a stronger influence. It is this shallow gradient in the
crossover regime that enables a large index to be obtained.
The forward-volume dipole-exchange dispersion relation can
be written for the angular frequency ω(k) as [28]

ω(k) =
√(

ωH + l2
exωMk2

)[
ωH + l2

exωMk2 + ωM f (k)
]
, (4)

where ωH = μ0γ (H − M ), ωM = μ0γ M, and f (k) = 1 −
1−exp(−ks)

ks . Here, μ0 is the permeability of free space, γ is the
gyromagnetic ratio, H is the applied external magnetic field,
M is the saturation magnetization, s is the film thickness, and

lex =
√

2Aex

μ0M2
0

is the exchange length, where Aex = 0.4 × 10−11

J/m is the exchange constant. In this paper, we will use the
following values outside of the lens for the magnetization,
applied magnetic field and thickness, respectively, character-
istic of yttrium-iron garnet (YIG): M0 = 140 kA/m, μ0H0 =
200 mT, and s0 = 10 μm. Also, we neglect any magnetocrys-
talline anisotropy. The resulting value of exchange length is
lex ≈ 18 nm. These values determine kref, and thus the index
will be 1 when M = M0, H = H0 and s = s0. We choose to
study a YIG-like material due to YIG’s low damping, but the
results here should be relevant for any other material (with
suitable choice of wave frequency), supposing that the waves
obey the dispersion relation (4).

Using the material parameters listed above, the dipole-
exchange dispersion relation is plotted in Fig. 2, where we
also show the effect of increasing M by 10%. This small

FIG. 2. Dispersion relation f (k) for dipole-exchange spin waves,
with a zoom of the dipolar-dominated region shown in the inset.
The curves use M = M0 = 140 kA/m (black) or M = 1.1M0 =
154 kA/m (blue). The green dashed line in the inset indicates how
much the wave number changes for a fixed frequency of 1 GHz.

change in M leads to a large change in k, and thus n,
due to the shallow gradient in the crossover region between
the dipolar-dominated and exchange-dominated regimes. The
corresponding change in the index is from 1 to 54 for a fixed
frequency of 1 GHz. The use of a thick film of 10 μm enables
a particularly large index to be achieved, because the shallow
gradient extends to larger k values. In comparison, a thinner
film of 2 μm leads to an index change from 1 to 28 for
the same 10% increase in M. Note that the value of f at
k = 0 marks the lower threshold of the spin wave “manifold,”
which corresponds to the ferromagnetic resonance frequency.
In Eq. (4), this occurs when H = M and thus ωH = 0.

In Fig. 3, we show how the index n depends on the three
parameters that can be varied in Eq. (4) (M, H and s), for dif-
ferent incident wave frequencies f . In Figs. 3(a)–3(c), we can
see the distinct dipole-dominated and exchange-dominated
regimes, for f � 1.9 GHz and f � 1.9 GHz, respectively.
The transition region between these two regimes is where the
dispersion curve flattens at around 1.9 GHz, as we saw in
Fig. 2. The white regions in panels (a) and (b) correspond to
values of M or H for which there are no spin wave solutions
for the given value of frequency, i.e., when the bottom of the
spin wave manifold is above the chosen value of frequency.
We have limited M/M0 in (a) and (d) and H/H0 in (b) and (e)
to ensure that M � H , i.e., to keep the internal magnetic field
positive and thus avoid any instability. In addition, we have
chosen the smallest value of f to correspond to a maximum
wavelength of 1 mm when the index is equal to 1.

Notice from Fig. 3 that an increase in the magnetization
or a decrease in the magnetic field or thickness is required to
increase the index. For the former case, this may be achieved
via cooling (as heating naturally reduces the magnetization
[29]) or doping [30]. Although we show the variation of the
index with thickness according to (4), a graded index profile
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FIG. 3. The dependence of the magnonic refractive index on (a,d) magnetization, (b,e) magnetic field, and (c,f) film thickness. In (d)–(f),
this dependence is shown for waves with frequencies of 1 GHz (green, dotted), 2 GHz (orange, dashed) and 3 GHz (blue). In (a)–(c), the color
scale is logarithmic, along with the n axis in (d)–(f) for clarity.

created in this way may induce complicated static or dynamic
demagnetizing fields [31–33], not accounted for here. How-
ever, these effects may be reduced by slowly changing the
thickness over a large distance.

Strikingly, Fig. 3 shows that just a relatively small change
in M or H is required to produce a dramatic change in the
index in the dipolar regime. This regime is therefore ideal
to create the extreme refractive index profiles required for
the steering lenses. In addition, refractive index profiles that
require only a small change in the index, such as the Luneburg
lens, may be created in this geometry by a tiny change in
the same parameters [17]. Exchange-dominated spin waves
require a large change in one of the parameters for a compar-
atively modest change in n, as we show for the 3 GHz wave
frequencies in Fig. 3.

Changing the saturation magnetization is more straightfor-
ward in micromagnetic modeling, so we will vary M in this
work to vary the index. Using the steering lens profiles (1)
and (2), along with the dipole-exchange dispersion relation
(4), we can establish numerically the magnetization profile
to create each lens. For the choice of material and incident
wave parameters listed below, we show the required magneti-
zation profiles in Fig. 4(a), and the corresponding wavelength
profiles in 4(b). For clarity, we show the profiles up to M =
1.1M0, which corresponds to values of r/R of 1 × 10−5 and
7 × 10−4 for the 90◦ and Eaton lenses, respectively. So, the
majority of the profile is shown except for the singular index
region in the very center.

III. MICROMAGNETIC MODELING

In order to verify the above analysis, we have performed
micromagnetic simulations using MUMAX3 software [34].
We model a YIG film with thickness s0 = 10 μm in the z
direction, and extent of around 6 mm × 6 mm in the x-y
plane. The x-y axes are defined in Fig. 5. As before, the
saturation magnetization outside each lens is set to M0 =
140 kA/m and the bias magnetic field is μ0H0 = 200 mT
in the z direction. We set the Gilbert damping parameter to
α = 1 × 10−4.
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FIG. 4. (a) Magnetization profiles and (b) value of the wave-
length along the radius of each lens, for the 90◦ (black) and Eaton
(red) lenses. This is valid for an incident wave frequency of 1 GHz,
and other parameters listed in the text.
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FIG. 5. Steady-state snapshot of beams traveling through the
(a) 90◦ and (b) Eaton lens, sized at r = 14λ. The inner dashed
circle indicates r/R = 0.1, and blue dotted guide lines are shown to
indicate the 90◦ and 180◦ angles. The black line on the lower left in
each image indicates the source region for the beam.

We use a cell size of 1.5 × 1.5 × 10 μm3 with 4096 ×
4096 × 1 cells in the (x, y, z) directions. This choice of cell
size is a compromise between resolving the smallest possible
wavelength, and being able to represent a large enough lens.
From Fig. 4(b), we can see that if we direct the incident waves
to avoid the region r/R < 0.1, then the smallest wavelength
should easily be greater than 15 μm, which is 10 times larger
than the cell size in the film plane. This approach is a necessity
for the modeling, but should not be a limitation for any future
experiments. If the profile in Fig. 4 can be created, this should
represent the refractive index profile almost exactly.

We now describe the form of the incident wave. The
lenses are primarily designed to steer a collimated beam,
and we create this with a magnetic field of the form [1 −
exp(−0.1ω0t )] sin(ω0t ) in time, where ω0 = 2π f0 and f0

is the excitation frequency. The prefactor ensures that the
beam is gradually ramped up to full amplitude, to maintain
the packet’s spectral purity. Spatially, this magnetic field is
Gaussian in y and has a step profile in x, 8 cells wide, similar to
the approach in Ref. [35]. The magnetic field is directed along
x, with an amplitude of 0.2 mT, and a frequency of f0 = 1
GHz. We also find that the lenses work well with a wave
packet, which we position to be partly steered by the lens and
partly unaffected by it, similar to the approach in Ref. [36].
We create the wave packet by amending the beam’s magnetic
field profile to be of the form G[x]G[y]G[t] sin(ω0t − k0x),
where G[x, y, t] is a Gaussian in x, y, or t , k0 = 2π/λ0, and
λ0 ≈ 170 μm is the spin wave wavelength outside of the lens
for excitation frequency f0. This wavelength is much shorter
than the wavelength of light at 1 GHz, justifying the use
of the magnetostatic approximation [1,37]. We also employ
absorbing boundary layers along the edges in the x and y
directions [38], created by increasing the damping constant
parabolically to 1 + α at the edge.

A perfectly graded index is not possible in finite-difference
simulations, but a stepped profile can work effectively if the
steps are much smaller than the wavelength. This also holds
true in experiments, as per the metamaterial approach [39].
In the model, we allocate 235 concentric circular regions to
the lens, where the radius of each region is sized to ensure
that M steps up by equal amounts each time, until reaching
1.1M0 as per Fig. 4. However, this profile will not be matched

(i) (ii)

(iv)(iii)

12 ns 35 ns

65 ns 105 ns

(i) (ii)

(iv)(iii)

12 ns 50 ns

85 ns 130 ns

(a) (b)

FIG. 6. Consecutive snapshots of the wave packet moving
through the (a) 90◦ and (b) Eaton lenses with R = 6λ, shown from (i)
to (iv). The mx component is shown, saturated for clarity. The inner
circle indicates r/R = 0.1. The black arrow in panels (i) indicates the
initial propagation direction of the wave packet.

exactly due to the cell size, especially where M is required to
change substantially on a length scale which is smaller than
the cell size. This means that the index will be changing in
large steps towards the center of the lens, which would lead
to strong scattering if the wave encounters these interfaces.
This is a limitation of the modeling, and the scattering should
be mitigated somewhat by avoiding the central region of
r/R < 0.1.

In Fig. 5, we show the beam’s trajectory through each lens,
after a long enough time has elapsed. Both lenses are sized
at R = 14λ0, to ensure the beam is mostly contained within
the lens. We can see that the 90◦ lens works particularly well
to bend the beam by the required angle, although there is
some expected spreading of the beam within and on exiting
the lens, making it difficult to see if the trajectory follows
the required angle exactly. The Eaton lens is quite sensitive
to the placement of the beam, as the beam tends to spread
into the central region, where the cell size limits how well we
can represent the refractive index profile. We have found that
positioning the beam towards the edge of the lens means the
central region is mostly avoided, and the trajectory is around
175◦. Note for both images that the absorbing boundaries
have absorbed the edge of the outgoing beam, so the actual
outgoing beam is a little wider than shown.

We show the results for the wave packet incident on the 90◦
and Eaton lenses in Fig. 6, and the corresponding videos are
provided in the Supplemental Material [40]. We can see that
in each case the portion of the wave packet that enters the lens
is steered approximately by the required angle, and remains
“connected” to the other portion of the packet that does not
enter the lens and hence continues on the original trajectory.
Interestingly, this implies that the part of the wave joining
these two portions of the wave packet experiences an effective
graded index, despite being in a homogeneous medium; its
wavefronts must be curved, to bridge the two diverging parts
of the wave packet [41]. The use of the lenses in this way is
similar to a beam divider, and may be a way to send different
portions of the same wave (beam or packet) to more than one
output, albeit with some loss en route.

In Fig. 7, we show another use for the 90◦ lens when the
beam is instead positioned to enter the lens symmetrically
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FIG. 7. (a) Steady state snapshot of the beam and (b) snapshots
in time of the wave packet moving through the 90◦ lens (R = 6λ) to
demonstrate its use as a beam divider. The mx component is shown,
saturated for clarity. The inner circle indicates r/R = 0.1.

about the center. In this case, the lens acts as a ±90◦ half-
power beam divider, proposed by Ref. [19]. This works well
for both a beam [Fig. 7(a)] and wave packet [Fig. 7(b)], albeit
with some scattering from the central region. Note that we
have broadened the excitation width across the y direction,
to ensure that the beam is exposed to as much of the lens as
possible, without having to reduce the lens size. In addition,
we have reduced the excitation amplitude to 1 mT in both
cases, to avoid a nonlinear response when the wave encounters
the high-index central region. The corresponding videos are
provided in the Supplemental Material [40].

So far, we have seen the results for each lens when the
refractive index profile is designed correctly for the incident
wave. However, we would now like to demonstrate that the
lenses still work reasonably well when the incident wave
frequency is slightly different from the optimal value. As we
will see, this is equivalent to designing a slightly incorrect
magnetization profile for a certain choice of frequency. In
Fig. 8, we change the frequency of the incident wave by ±10%
from f0 = 1 GHz, and these waves travel along the profile
designed to work for an incident wave frequency of f0, for the
90◦ lens in Fig. 8(a) and Eaton lens in Fig. 8(b). In panel (i),
we show the magnetization profiles that would be required to
make the lenses for each frequency. We then show the results
for the 0.9 GHz and the 1.1 GHz beams in panels (ii) and (iii),
respectively. Recall that these 0.9 GHz and 1.1 GHz beams
should rotate by 90◦ or 180◦ only when they encounter their
respective magnetization profiles in panel (i), but they are
instead traversing the profile designed for the 1 GHz wave.
As a result, we see that the 0.9 GHz beam rotates too much,
and the 1.1 GHz beam does not rotate enough in each case.
The angles are again difficult to quantify exactly due to the
beam spreading, but are around 10◦–20◦ away from the target
angle in each case. This suggests that if the wave trajectory is

FIG. 8. Demonstration of the effectiveness of the (a) 90◦ and
(b) Eaton lenses from Fig. 5, for different incident wave frequencies
(ii) f = 0.9 f0 and (iii) f = 1.1 f0, with f0 = 1 GHz. For comparison,
the magnetization profiles which would be required to make the
lenses for each frequency are shown in (i). The inner circle indicates
r/R = 0.1.

not quite right, then the correct trajectory may be recovered
by adjusting the wave frequency accordingly.

IV. CONCLUSIONS

In summary, we have demonstrated how steering lenses
with singular graded index profiles can be almost exactly
realized for spin waves with a 10% change in either the exter-
nal magnetic field or magnetization, in the dipole-dominated
regime. We have shown the operation of two such lenses in
micromagnetic modeling by changing the magnetization, but
the theory is applicable for rotation by any angle, from any
angle of incidence. As long as the index is smoothly graded,
the lenses should be robust to small deviations in the profile,
and small deviations in rotation angle may be corrected by
changing the incident wave frequency. Our results demon-
strate the potential of magnonics for realizing extreme ranges
of the refractive index, something that is far more difficult to
achieve in other areas of wave physics.
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