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GELFAND-ZETLIN POLYTOPES AND THE GEOMETRY OF FLAG

VARIETIES

Elise Villella, PhD

University of Pittsburgh, 2019

Gelfand-Zetlin polytopes are important in the finite dimensional representation theory of

SLn(C) and the symplectic geometry of coadjoint orbits of the unitary group. We examine

the combinatorics of Gelfand-Zetlin polytopes in relation to the geometry of the flag variety

of SLn(C). The two main contributions of the thesis are as follows: (1) we describe virtual

Gelfand-Zetlin polytopes associated to non-dominant weights and (2) we identify the coho-

mology ring of the flag variety with a quotient of the subalgebra of the Chow cohomology

ring of the Gelfand-Zetlin toric variety generated in degree one. More precisely, we take the

largest quotient of this subalgebra that satisfies Poincarè duality.
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1.0 INTRODUCTION

To each finite dimensional irreducible representation Vλ of SLn(C) one associates a Gelfand-

Zetlin1 (GZ) polytope ∆λ ⊂ Rn(n−1)/2. The lattice points in ∆λ parametrize a natural basis 

for the irreducible representation Vλ [GZ50]. The geometry of the flag variety F`n(C) is 

intimately connected to the representation theory of SLn(C), and it plays an important 

role in displaying interactions between representation theory, algebraic geometry, symplectic 

geometry, and combinatorics. In this thesis we investigate the combinatorics of GZ polytopes

in connection to the geometry of F`n(C). Our three main results can be described as follows. 

First, we prove that the collection of GZ polytopes of a given dimension have the same normal 

fan ΣGZ and any polytope normal to this fan is a translation of a GZ polytope. Second, we 

describe the virtual GZ polytopes in terms of convex chains in the vector space of virtual 

polytopes following [PK93]. Finally, we identify the cohomology ring of the flag variety as a 

quotient of the subring of the operational Chow ring of the toric variety of the GZ fan ΣGZ 

generated in degree one.

We recall that a fan Σ is a finite collection of convex rational polyhedral cones closed under 

intersection and such that any face of a cone in Σ is also in Σ. The normal fan to a polytope P 

contains all rays normal to the facets of P , as well as a cone σF for each face F which is 

generated by the rays corresponding to the facets containing F . We consider the normal fan to 

a      GZ      polytope.      Let      λ ∈ Rn with λ = (λ1 ≤ λ2 . . . ≤ λn).      The   GZ      polytope      ∆λ

1Note that in the literature, Zetlin is sometimes spelled Cetlin or Tsetlin.
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is the set of (xij) ∈ Rn(n−1)/2 satisfying the array of inequalities (2.1) below.

λ1 λ2 λ3 . . . λn

x12 x23 . . . x(n−1)n

x13 x24 . . .

⋱ ⋰
x1n

Each small triangle in this array
a b

c
corresponds to the inequalities a ≤ c ≤ b. See

Section 2.3 for more details.

In Section 3.1, we prove the following propositions about the normal fan of GZ polytopes

(for fixed n).

Proposition (3.1.1). The normal fan Σλ for a GZ polytope ∆λ is independent of λ for

λ = (λ1 < λ2 < . . . < λn) dominant regular.

This enables us to talk about the GZ fan ΣGZ , rather than the normal fan of a specific

∆λ, which is important for our later results. The second proposition which we prove in

Section 3.1 describes the rest of the polytopes normal to ΣGZ .

Proposition (3.1.2). Let P be a full dimensional polytope normal to ΣGZ, then P = c +∆λ

for some dominant regular λ and c ∈ RN . Moreover, if P is a lattice polytope then both c and

λ are integral.

With these foundational facts about the GZ polytopes established, we next expand the

definition of ∆λ to arbitrary λ ∈ Rn. Such a ∆λ is a virtual GZ polytope.

1.1 VIRTUAL GELFAND-ZETLIN POLYTOPES

We can extend the set of convex polytopes to the vector space of virtual polytopes. A

virtual polytope is a formal difference P1 − P2 where P1 and P2 are convex polytopes. As

we show in 2.3.2, the map λ ↦ ∆λ is additive, i.e. for λ,µ ∈ Rn the polytope ∆λ+µ is the

2



Minkowski sum of ∆λ and ∆µ. Thus the definition of ∆λ can be extended to all λ ∈ Rn:

for λ = µ − γ let ∆λ ∶= ∆µ − ∆γ. One may naturally ask: can we describe the virtual GZ

polytopes in a similar fashion as the usual GZ polytopes? We recall the construction from

[PK93] of the representation of a virtual polytope as a linear combination of characteristic

functions of convex polyhedra. We apply this to the collection of polytopes normal to the GZ

fan ΣGZ and describe virtual GZ polytopes in terms of linear combinations of characteristic

functions of convex polyhedra. Note that virtual polytopes may consist of multiple, possibly

unbounded, convex regions.

To develop an intuition for virtual polytopes, we consider twisted cubes in Section 3.2.4.

A twisted cube is a virtual polytope combinatorially equivalent to a hypercube together with

a density function. Moreover, we prove the following.

Theorem (3.2.5). For λ dominant regular, the GZ polytope ∆λ is a translation of a twisted

cube.

We review the Khovanskii-Pukhlikov theory of convex chains [PK93] in Section 3.2.2. A

convex chain is a linear combination of characteristic functions of convex polytopes. The

convex chain χP associated to a convex polytope P is the characteristic function of the set

P . Khovanskii and Pukhlikov show in [PK93] that there is a convolution operation ⋆ on

convex chains such that χP ⋆ χQ = χP+Q where P +Q is the Minkowski sum of polytopes P

and Q. They prove formulas for the convex chain of the interior of a polytope as well as

the inverse χ−1
P with respect to ⋆ which we record in Theorem 3.2.1. We describe the convex

chain of virtual GZ polytopes. More specifically, we determine the value of the convex chain

on each region of a virtual GZ polytope.

The Brianchon-Gram Theorem is required to compute the value of a convex chain. We

record this in Theorem 3.3. This describes χP in terms of characteristic functions of cones

at faces of P . Khovanskii and Pukhlikov extend this to the case of convex chains in [PK93,

Section 4 Proposition 2, p. 352].

GZ polytopes are not simple polytopes (except when n = 1 or n = 2) which complicates

the study of corresponding toric varieties. An N -dimensional polytope is called simple if

every vertex lies in exactly N facets. The non-simplicity of GZ polytopes can be observed

3



even in the case n = 3 where N = n(n−1)/2 = 3. See Example 2.3.1. We explore the relations

in the normal fan ΣGZ coming from the fact that ∆λ is not simple in Section 3.2.5. In Section

3.2.6 we carefully consider the virtual GZ polytopes in the case n = 2, and in Section 3.2.7

we examine a particular example of a virtual GZ polytope in three dimensions. Finally, in

Section 3.2.8 we prove our result about general virtual GZ polytopes.

Theorem (Summary, see Theorem 2.2.1). A virtual Gelfand-Zetlin polytope corresponds to

a convex chain supported on finitely many bounded convex regions. The convex chain takes

either the value 1 or -1 on each full-dimensional region. From the GZ array, we determine

the inequalities defining each convex region as well as the value of the convex chain on that

region.

We recall that the usual GZ polytope ∆λ for λ strictly increasing is associated with an

irreducible representation Vλ of SLn(C). We review the relevant representation theory in

Section 2.2. In Section 2.4.1 we recall the Borel-Weil-Bott Theorem 2.4.2 which relates the

irreducible representation Vλ with the space of sections of line bundle Lλ on the flag variety

G/B. We review these definitions in Section 2.4. In Section 2.2.2 we recall the decomposition

of Vλ which leads to Theorem 2.2.1 by Gelfand and Zetlin [GZ50] identifying the GZ basis

of Vλ. These basis vectors correspond to lattice points in ∆λ.

1.2 COHOMOLOGY OF G/B AND CHOW COHOMOLOGY OF XGZ

How does the geometry of G/B relate to that of the toric variety XGZ constructed from ∆λ?

In this section we summarize our results relating the cohomology of G/B with the Chow

ring of XGZ .

In Section 2.1 we review the construction of a toric variety from a polytope ∆λ or

equivalently from a fan ΣGZ . Either of these constructions can be used to define the GZ toric

variety XGZ . To understand the cohomology of this variety, we first recall the construction of

Chow cohomology for smooth toric varieties in Section 3.3. The variety XGZ is not smooth

because ∆λ is not simple, or equivalently because ΣGZ is not simplicial. Thus we need to

4



use operational Chow cohomology instead, which is identified in [FS97] with the ring of

Minkowski weights that we describe in Section 3.3.3. We include a very detailed example of

the ring of Minkowski weights for XGZ in Section 3.3.3.1.

The flag variety G/B is a smooth projective variety via the Plücker embedding with

cellular decomposition given by the Bruhat cells, so Proposition 3.3.6 states that the Chow

ring A∗(G/B) ≅ H∗(G/B) where the isomorphism doubles degree. The Borel description

gives a concrete description of this graded ring as a quotient of the ring of polynomials, see

Equation (3.6).

Our main result relating the cohomology of the flag variety and Chow cohomology of

XGZ requires the following terminology. The Lefschetz subalgebra of a graded algebra is the

subalgebra generated by its degree one piece. The Gorenstein quotient of a graded algebra is

the largest quotient of the algebra satisfying Poincaré duality. See Section 3.3.1 for details.

Theorem (3.3.9). The Chow ring A∗(G/B) can be identified with the Gorenstein quotient

of the Lefschetz subalgebra of A∗(XGZ).

To prove Theorem 3.3.9, we first establish two general lemmas about graded algebras, as

well as recall an algebra lemma from [Kav11]. Our first lemma characterizes the Gorenstein

quotient of a graded ring.

Lemma (3.3.1). Let A =⊕n
i=0A

i with A0 ≅ Z ≅ An. There exists a homogeneous ideal I ⊂ A
which is minimal with respect to inclusion such that A/I has Poincarè duality. We call this

ring A/I the Gorenstein quotient Gor(A) of A.

Our second lemma provides the essential machinery for the proof of Theorem 3.3.9.

Lemma (3.3.3). Suppose A = ⊕n
i=0A

i and B = ⊕n
i=0B

i both have degree zero and degree

n pieces isomorphic to Z, are generated in degree one, and ring A has Poincarè duality.

Suppose additionally that

• there exists isomorphism ϕ ∶ A1 → B1 and

• for all a1, . . . , an ∈ A1 we have

a1 ⋅ . . . ⋅ an = ϕ(a1) ⋅ . . . ⋅ ϕ(an)

using fixed isomorphisms An ≅ Z ≅ Bn.

5



Then ϕ extends to give an isomorphism of A with the Gorenstein quotient of B, i.e.,

ϕ̃ ∶ A ≅→ Gor(B).

Utilizing these results as well as Theorem 3.3.2, we identify both A∗(G/B) and the

Gorenstein quotient of the Lefschetz subalgebra of A∗(XGZ) with quotients of polynomial

rings. Upon inspection, the polynomial rings are isomorphic, and the ideals annihilated in

the quotients are isomorphic yielding our result.

The organization of the paper is as follows. Chapter 2 establishes background useful

for multiple results organized by section. Chapter 3 is divided into three sections, each

developing the more specialized background necessary only for the results in that section.

Results about the Gelfand-Zetlin fan are in Section 3.1, virtual GZ polytopes are described

in Section 3.2 and the geometry of G/B and XGZ are described and related in Section 3.3.

6



2.0 PRELIMINARIES

In this chapter we review the necessary background from toric varieties, representation the-

ory, flag varieties, and GZ polytopes.

2.1 TORIC VARIETIES

A toric variety is a variety V containing a torus T ≅ (C∗)n as an open dense subset such

that the natural action of T on itself extends to an action of T on V . The existence of such

a torus action causes toric varieties to have many combinatorial features, some of which we

explain below. More details about toric varieties can be found in [CLS11] or [Ful93].

Recall that a character of T is a group homomorphism χm ∶ T → C∗ with χm(t) =
tm1
1 tm2

2 ⋯tmnn for some m = (m1, . . . ,mn) ∈ Zn. Hence the group M of characters of T (the

character lattice of T ) can be identified with Zn.

Dual to this picture, we consider one-parameter subgroups of T which are given by

homomorphisms C∗ → T . These are of the form t ↦ (tu1 , . . . , tun) for integers (u1, . . . , un) ∈
Zn. The group N of one-parameter subgroups of T can be identified with Zn. The lattice N

is dual to M as the composition

C∗ → T → C∗

is given in coordinates by

t↦ (tu1 , . . . , tun)↦ tu1m1⋯tunmn = tu⋅m.

7



2.1.1 Constructing Toric Varieties

From a finite subset A of a lattice M we construct a toric variety in the following manner.

Suppose A = {m1, . . . ,mr} is a finite collection of characters of T and consider the map

T → Cr given by

t↦ (tm1 , . . . , tmr).

The variety YA is the closure of the image of this map inside Cr. As this space is constructed

from characters of the torus, it inherits an action of T . Because each component of the map

is given by a monomial, it is algebraic.

Another way to construct a toric variety is to start with an affine semigroup S. An affine

semigroup S is a semigroup in Zn generated by a finite subset A = {m1, . . . ,mr}, that is,

S = NA = {
r

∑
i=1

nimi ∶ ni ∈ N,mi ∈ A} .

To construct an affine toric variety from S, we consider the semigroup algebra

C[S] = {∑
m∈S

cmχ
m∣ all but finitely many cm are zero}

where the multiplicative structure of C[S] is induced by the semigroup structure of S. Since

S is finitely generated, say by A = {m1, . . . ,mr}, the semigroup algebra will also be finitely

generated by characters {χm1 , . . . , χmr} of T . Also, C[S] is an integral domain, and the

variety Spec(C[S]) is toric. Every affine toric variety is of the form YS = Spec(C[S]) for

some affine semigroup S.

2.1.2 Cones and Affine Toric Varieties

In addition to the lattices M and N , we will need to consider also the vector spaces MR =
M ⊗Z R and NR = N ⊗Z R. For a finite set S ⊂ NR, the convex polyhedral cone generated by

S is

σ = Cone(S) = {∑
s∈S

λss ∣ λs ≥ 0} .

8



This cone is convex because it is closed under addition and positive scalar multiplication. It

is called polyhedral because it is can be realized as the intersection of finitely many half-spaces

H+
a = {u ∈ NR∣⟨u, a⟩ ≥ 0}.

We are interested in cones σ which are also rational, meaning elements of S are in N rather

than just NR, and strongly convex, meaning {0} is a face of σ, or equivalently, σ does not

contain any whole lines.

We have defined the cone σ to be in the vector space NR, while the semigroup S was

constructed from elements of MR, the vector space dual to NR. To define a toric variety from

the cone σ, we first take its dual

σ∨ = {m ∈MR∣⟨m,s⟩ ≥ 0 for all s ∈ σ} .

If σ∨ is generated by {m1, . . . ,mr}, that is, σ∨ = Cone({m1, . . . ,mr}), then the r half-spaces

H+
mi

will be exactly the ones which cut out the cone σ ⊂ NR, and for any other m ∈ σ∨ the

cone σ will lie in the half-space H+
m.

Considering intersecting the cone σ with hyperplane

Hm = {u ∈ NR ∶ ⟨u,m⟩ = 0}

for m ∈ σ∨, this will give us a face of σ, that is,

τ = σ ∩Hm.

Of particular interest are facets (faces of codimension 1) and rays (faces of dimension 1). For

a strongly convex rational polyhedral cone σ, there is a particularly nice generating set. For

each ray ρ of σ let uρ be the smallest nonzero element of the semigroup ρ ∩N . Because the

cone is rational this intersection ρ ∩N must be nonempty. We call uρ the ray generator for

ray ρ, and then the cone σ is generated by the set S = {uρ}ρ ray. The facets τ are important

faces of σ because, when our cone is full dimensional, τ∨ will be one dimensional and hence

lead to a generator for σ∨.

9



Finally, we construct a toric variety. From a rational convex polyhedral cone σ we obtain

a finitely generated affine semigroup Sσ = σ∨ ∩M which lies in the proper vector space. We

can then define the toric variety Uσ = Spec(C[Sσ]).

A face τ of the cone σ is itself a rational convex polyhedral cone, so it is natural to wonder

how the two toric varieties Uτ and Uσ relate. Suppose Hm for some m ∈ σ∨ is the hyperplane

whose intersection with σ yields τ , then we have σ∨ ⊂ τ∨ and in particular mR ⊂ τ∨. It turns

out Sτ = Sσ +mZ and so C[Sτ ] = C[Sσ]χm . Thus Uτ is an affine open subset of Uσ. This can

be used to glue together two affine toric varieties Uσ and Uσ′ along an affine open subset Uτ

so long as τ is a face of both cones σ and σ′.

2.1.3 Projective Toric Varieties and Polytopes

For a finite set A ⊂ M we constructed YA as the closure of the image of t ↦ (tm1 , . . . , tmr)
inside Cr. In a similar way, we can construct a projective toric variety from a finite set A
by composing the above map with the projection (C∗)r → Pr−1.

From the same finite set A we can define a polytope P = Conv(A). There is an open

cover of XA parametrized by vertices of P . A vertex m ∈ P corresponds to the affine open

subset XA∩Um where Um is the standard affine open subset of Pr−1 given by non-vanishing of

the coordinate corresponding to m. One shows that XA ∩Um is isomorphic to Spec(C[Sm])
where Sm is the semigroup N(A −m), that is, generated by translates of elements of A by

m. We are interested in the case where P is a very ample lattice polytope because each open

subset XA ∩Um can be realized as the toric variety of a cone. Recall that a lattice polytope

is the convex hull of finitely many lattice points. A polytope P is very ample if for every

vertex m, the semigroup N(P ∩M −m) is saturated in M . A semigroup S is saturated in M

if for any k ∈ N,m ∈M we have km ∈ S implies m ∈ S.

Suppose P ⊂MR is a very ample lattice polytope of full dimension, then we can associate

the projective toric varietyXA to P , whereA = P∩M is the finite set used in the construction.

This projective variety has a nice affine cover corresponding to vertices of P . The affine

variety associated to vertex mi is Spec(C[σ∨i ∩M]) where σ∨i is the cone Cone(A − mi).
These cones σ∨i fit together into the normal fan for the polytope P .
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A fan Σ is a collection of cones where each face of σ ∈ Σ is contained in the collection

and if two cones σ and σ′ have non-empty intersection, then τ = σ ∩ σ′ is a face of each of

the original cones (and hence also contained in Σ). The fan Σ coming from the polytope

P is called a normal fan because it can be built from the normal vectors to facets of P . In

general, one constructs a toric variety XΣ from a fan Σ by gluing the affine toric varieties

{Uσ}σ∈Σ as described in the previous section.

2.2 REPRESENTATION THEORY

We review some fundamentals of the representation theory of SLn in order to motivate the

definition of Gelfand-Zetlin polytopes.

We recall that a representation of a group G is a homomorphism

G↦ GL(V )

for a vector space V , or equivalently, a representation is a vector space V regarded as a

G-module where each g ∈ G acts linearly. For G-modules V and W , there is a natural rep-

resentation V ⊕W where g ⋅ (v,w) = (g ⋅ v, g ⋅ w), so the philosophy is to first understand

irreducible representations which do not contain any proper subrepresentations. In general

a representation may be indecomposable (not decompose into a direct sum of two represen-

tations) but still contain a proper subrepresentation. This does not happen, however, for

the group G = SLn(C) as it is a reductive group. Every finite dimensional representation of

SLn(C) decomposes into a direct sum of irreducible representations.

2.2.1 Irreducible Representations

In order to study the irreducible representations for SLn, we first want to recall some infor-

mation about representations of tori, since representations of a maximal torus T ⊂ SLn will

help us to understand the irreducible representations of SLn.
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A one-dimensional representation of a torus T ≅ (C∗)n is an algebraic homomorphism

T → C∗ = GL1(C)

and thus given in coordinates by

z = (z1, . . . , zn)↦ za11 ⋯zann = za

where a ∈ Zn. For an arbitrary finite dimensional algebraic representation V of T , we can

consider the subspace Va ⊂ V defined by

Va = {v ∈ V ∶ z ⋅ v = zav}

and then we will have the decomposition

V = ⊕
a∈Zn

Va

where only finitely many of the Va are nontrivial. In other words, any representation for T

decomposes completely into components Va. We call a ∈ Zn the weight of the representation

and Va the weight space. This decomposition of an arbitrary finite dimensional representation

of T into one-dimensional weight spaces enables much of what follows.

Since representations of tori decompose completely, it is useful to consider a maximal

torus T ⊂ SLn. In coordinates, T is the set of diagonal matrices with determinant equal to

one. There are many maximal tori in SLn all conjugate to each other. Another important

subgroup of SLn is a Borel subgroup B. We consider the subgroup of upper triangular

matrices with determinant one as it contains our maximal torus. There are many Borel

subgroups all conjugate to each other, each containing a maximal torus.

To understand an irreducible representation V of SLn(C), we first consider it as a rep-

resentation of T ⊂ SLn(C). Then V decomposes into a direct sum of Va for finitely many

a ∈ Zn. We do this for the adjoint representation.

Recall that in the adjoint representation G→ GL(g), g ∈ G acts on the Lie algebra g by

g ⋅X = gXg−1 for X ∈ g. For G = SLn(C), the Lie algebra sln(C) is a vector space with basis

given by the matrices Eij for i ≠ j with zero in every position except for (i, j) where the

entry is 1. The Borel subgroup B chosen above has Lie algebra b with basis Eij where i < j.
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We examine the action of T on b. The eigenvalues of this representation are the positive

roots of sln. Simple roots are positive roots of the form Li = (0,⋯,0,−1,1,0,⋯) with the

entry -1 occurring in the ith position. The choice of positive roots determines the positive

Weyl chamber, that is, the set

{x ∣ ⟨x,α⟩ ≥ 0 for each positive root α}.

For the simple roots Li defined above, a vector x = (x1, . . . , xn) is in the positive Weyl

chamber exactly when −xi + xi+1 ≥ 0 for all i, that is, when components of x are increasing

x1 ≤ x2 ≤ . . . ≤ xn.

We recall that irreducible representations of SLn correspond to lattice points in the

positive Weyl chamber, so to irreducible representation V we associate the highest weight

vector λ = (λ1, . . . , λn) where λ1 ≤ λ2 ≤ . . . ≤ λn. We consider V as a representation of

T ⊂ SLn, then V decomposes into a direct sum of simple representations of T which we

know are all one-dimensional, say V =⊕µ Vµ. Then λ is the maximal µ which occurs in the

sum, where the order is induced by the choice of positive roots. All information about V

can be recovered from λ, so we now refer to irreducible representations of SLn(C) as Vλ.

A weight vector λ = (λ1, . . . , λn) is dominant if λ1 ≤ λ2 ≤ ⋯ ≤ λn, and regular if all values

λi are distinct. We denote the lattice of all weights by Λ.

2.2.2 Decomposition of Vλ

We consider an irreducible representation Vλ for SLn(C) and determine a basis for this

vector space. Of course, counting the size of this basis will tell us the dimension of Vλ. To

do this, we consider the action of SLn−1(C) on Vλ. From the branching laws for SLn(C) (see

for example [GW09]), we know how Vλ decomposes as a representation of SLn−1(C). An

irreducible representation Vµ for SLn−1(C) occurs in the decomposition of Vλ exactly when

the (n−1)-dimensional weight vector µ = (µ1, . . . , µn−1) interlaces with n-dimensional weight

vector λ, meaning,

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ λn−1 ≤ µn−1 ≤ λn.
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Moreover, the multiplicity of Vµ in Vλ is 1. We continue this process for SLn−2(C), SLn−3(C),
etc. until we get to SL1(C). This last group is a one-dimensional torus, so all of its irreducible

representations are one-dimensional. Counting these one-dimensional vector subspaces of Vλ

determines dimVλ, and in fact will determine a useful basis for Vλ. Consider the following

array of inequalities:

λ1 λ2 λ3 . . . λn

x12 x23 . . . x(n−1)n

x13 x24 . . .

⋱ ⋰
x1n

(2.1)

where each small triangle
a b

c
corresponds to the inequalities a ≤ c ≤ b. This inductive

construction was originally introduced by Gelfand and Zetlin [GZ50], so we refer to Equation

(2.1) as a GZ array. The set of solutions (xij) to the above system of inequalities for λ =
(λ1 ≤ . . . ≤ λn) is called a Gelfand-Zetlin (GZ) polytope and denoted ∆λ. Let N = n(n−1)/2;

this is dim ∆λ when λ is regular. The basis for Vλ described above is parametrized by integer

solutions to the system (2.1), hence by integer points inside the polytope ∆λ; this is called

the Gelfand-Zetlin basis for Vλ.

Theorem 2.2.1 (Gelfand-Zetlin). For a dominant integral weight λ, the number of integer

points of ∆λ is equal to the dimension of the irreducible representation Vλ.

2.3 GELFAND-ZETLIN POLYTOPES

Gelfand-Zetlin (GZ) polytopes, defined by the GZ array (2.1), were originally defined in

[GZ50] and have since been studied by many people including [Kav11] and [Kir09].

Example 2.3.1. Let λ = (−1,0,1), then the GZ polytope ∆λ is given by the following

inequalities:

−1 ≤ x ≤ 0, 0 ≤ y ≤ 1, x ≤ z ≤ y.
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See Figure 2.1. This polytope ∆(−1,0,1) has 6 facets, 11 faces of dimension 1, 7 vertices. See

Figure 2.1: GZ Polytope for λ = (−1,0,1)

Figure 2.2.

2.3.1 Minkowski Addition

We recall that for polytopes P and Q, we can define the Minkowski sum P +Q to be the

polytope

P +Q = {x + y ∣x ∈ P, y ∈ Q}.

The collection of GZ polytopes for fixed n behaves well with respect to Minkowski addition,

we see in the following proposition.

Proposition 2.3.2 (Additivity). For λ,µ ∈ Zn both strictly increasing, the assignment λ ↦
∆λ is additive. That is,

∆λ+µ = ∆λ +∆µ

where the addition on the right is Minkowski addition of polytopes.

Proof. One inclusion is clear: ∆λ + ∆µ ⊂ ∆λ+µ. Suppose x ∈ ∆λ and y ∈ ∆µ. Then looking

at the top line of inequalities, we have λ1 ≤ x11 ≤ λ2 ≤ x12 ≤ . . . ≤ λn and similarly for the
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Figure 2.2: Labeled Facets of ∆(−1,0,1)

components of y with µ. Then clearly

λ1 + µ1 ≤ x11 + y11 ≤ λ2 + µ2 ≤ x12 + y12 ≤ . . . .

The lower lines of inequalities follow similarly.

For the other inclusion, let x ∈ ∆λ+µ then our goal is to write x = x′ + x′′ with x′ ∈ ∆λ

and x′′ ∈ ∆µ. We begin with the top line of inequalities, λ1 + µ1 ≤ x11 ≤ λ2 + µ2 ≤ . . .. This

can be reduced to a number of inequalities of the form

0 ≤ y ≤ a + b

for appropriate y, a, b. We first show that in this situation we can separate y = y′ + y′′ where

0 ≤ y′ ≤ a, 0 ≤ y′′ ≤ b.

For this, we let

y = y a

a + b + y
b

a + b, y′ = y a

a + b, y′′ = y b

a + b.
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By assumption y, a, b are all positive, so clearly y′, y′′ ≥ 0. We just need to show y′ ≤ a and

y′′ ≤ b. We have y ≤ a + b so

y′ = y a

a + b ≤ (a + b) a

a + b = a

and similarly y′′ ≤ b as desired.

In this top line of inequalities in our Gelfand-Zetlin array, we convert each λi +µi ≤ x1i ≤
λi+1 + µi+1 into 0 ≤ y ≤ a + b by taking

y = x1i − λi − µi, a = λi+1 − λi, b = µi+1 − µi.

These quantities are all positive and satisfy the desired inequality following directly from

our assumption. Therefore, we can separate the top line of inequalities involving x into

inequalities involving x′ and x′′, where

x′1i = y′ + λi, x′′1i = y′′ + µi.

We then continue inductively on the lower rows of the array.

Thus the assignment λ↦∆λ is in fact additive for dominant λ.

Finally, since the definition of a GZ polytope does not require that λ be integral, we can

consider λ ∈ Rn with λ1 < λ2 . . ., in which case the collection of GZ polytopes is closed under

multiplication by positive scalars, i.e., t∆λ = ∆tλ for t > 0. This is apparent from the GZ

array (2.1); multiplying all λi and xij by t preserves all inequalities. This gives the set of

GZ polytopes the structure of a cone.

GZ polytopes also have strong connections with symplectic geometry. See Guillemin

and Sternberg [GS83]. For this, we consider the unitary group U(n), the maximal compact

subgroup of GLn(C). We consider the coadjoint action U(n)↷ u(n)∗, which is conjugation

of matrices. Each orbit is the collection of matrices with the same eigenvalues. Let the orbit

corresponding to integral λ be denoted Oλ. This orbit Oλ has a canonical (Kirillov-Kostant)

symplectic form. This action is Hamiltonian, and for this case the associated moment map

is the inclusion Oλ ↪ u(n)∗. The goal is to find f1, . . . , fN that Poisson commute, meaning

the associated vector fields Xf commute. Recall that the vector field Xf associated to f
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satisfies ω(⋅,Xf) = df . To do this, Guillemin and Sternberg obtain eigenfunctions f1, . . . , fN ,

N = n(n − 1)/2 from eigenvalues of successively smaller submatrices of X ∈ Oλ. Since X is

hermitian, these eigenfunctions are real and by a min-max argument, they interlace just like

the GZ array. These eigenfunctions are smooth only on a dense subset corresponding to the

interior of the polytope defined by the GZ array.

2.4 FLAG VARIETIES

We begin with the Grassmannian, Gr(k,n), which is the set of k-dimensional linear subspaces

of Cn. This is a projective variety embedded in projective space via the Plücker map

ϕ ∶ Gr(k,n)→ P(ΛkCn)

defined as follows. For a k-dimensional vector space V ∈ Gr(k,n) with basis {v1, . . . , vk}, we

let

ϕ(V ) = [v1 ∧ . . . ∧ vk] ∈ P(ΛkCn).

This map is well defined, since any other basis {w1, . . . ,wk} for V can be obtained from

{v1, . . . , vk} by a change of base matrix B, i.e., wi = Bvi for all i, then w1 ∧ . . . ∧ wk =
(detB)v1 ∧ . . . ∧ vk so the two are linear multiples of each other and hence in the same

equivalence class in P(ΛkCn).
Next, we consider a slight generalization of the Grassmannian: nested sequences of sub-

spaces V1 ⊊ V2 ⊊ . . . Vk ⊊ Cn. Such a nested collection of subspaces is called a flag, and the

sequence of dimensions (dimV1,dimV2, . . . ,dimVk) is called the signature of the flag. If a

flag has the signature (1,2,3, . . . , n) then it is called a full flag. Just as the Grassmannian

has the structure of a projective variety, we want to be able to use the tools of algebraic

geometry to study these flags. To do this, we define

F(a1, . . . , ak) = {flags with signature (a1, . . . , ak)}.

This set can be embedded in the variety Gr(a1, n)×Gr(a2, n)× . . .×Gr(ak, n) and is called

a flag variety.
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Flag varieties are perhaps best understood using the language of algebraic groups. An 

algebraic group G is both an algebraic variety and a group where the multiplication and 

inversion operations of the group are algebraic maps. To study flag varieties, we will examine 

SLn(C) as an algebraic group. There is a natural action of SLn(C) on a flag F ∶ V1 ⊊ V2 ⊊ . . . ⊊ 

Cn as SLn(C) acts on each of the vector spaces Vi individually. This action is algebraic, as it is 

linear, and so we can view the action SLn(C)×F →F as morphism of varieties. Then SLn(C) 

acts (algebraically) on the entire flag variety F(a1, . . . , ak). This action is transitive. For the 

standard basis {e1, . . . , en} of Cn, we call the flag E ∶  ⟨e1⟩ ⊊ ⟨e1, e2⟩ ⊊ ⟨e1, e2, e3⟩ ⊊ . . . the 

standard full flag. We can similarly construct the standard flag of signature (a1, . . . , ak). To 

see that SLn(C) will take the standard flag E to an arbitrary F ∈ F(a1, . . . , ak), we choose a 

basis of Cn subject to the flag F , that is, so that Vi = ⟨v1, v2, . . . , vai ⟩. Consider the matrix 

where the ith column is the vector vi. This is a change of base matrix from the standard basis 

to the basis subject to F . This matrix is an element of SLn(C) that takes the standard flag E 

to the flag F .

Since we have established that the action of SLn(C) on F(a1, . . . , ak) is transitive, we 

want to understand the stabilizer of a point. First let us examine the kernel of the map

SLn(C) → F(1, 2, . . . , n) given by g ↦ g ⋅E. For g to be in the kernel of this map, we need 

ge1 = e1, so the first column of g needs to be [⋆, 0, . . . , 0]t. For the next vector space ⟨e1, e2⟩ 
to be preserved, we need ge2 ∈ ⟨e1, e2⟩ as well (ge1 is already in this space). This means the 

second column of g is of the form [⋆, ⋆, 0, . . . , 0]. The other columns follow similarly, and we 

see that g must be an upper triangular matrix with respect to the standard basis. This tells us

that the flag variety F(1, 2, . . . , n) ≅ SLn(C)/B where B is a Borel subgroup of SLn(C), that

is, the group of upper triangular matrices. Next, we return our attention to the flag variety 

F(a1, . . . , ak). The kernel of the action on the standard flag of this signature will be the set of 

block upper triangular matrices with blocks of size a1, a2−a1, a3−a2, . . .. Subgroups of SLn(C) 

consisting of block upper triangular matrices are called parabolic subgroups. Thus we see that

this induces a bijection F(a1, . . . , ak) ≅ SLn(C)/P , and we can study quotients of SLn(C) by 

parabolic or Borel subgroups rather than partial or complete flag varieties themselves. Every 

parabolic subgroup P contains a unique Borel B, so there is a natural inclusion B → P which 

induces a surjection G/B → G/P . All quotients by parabolic subgroups, i.e., all partial flag
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varieties, arise as quotients of the complete flag variety F`n(C) ≅ G/B. Thus, it is sufficient

to study the complete flag variety.

2.4.1 Line Bundles on Flag Varieties

To a dominant integral weight λ, we associate a line bundle Lλ on F`n = SLn(C)/B. We

consider the character λ ∶ B → C∗ induced from the character λ of T . Let Cλ = C be given

the structure of a B-module where b ⋅ z = λ(b)z for b ∈ B, z ∈ C. Then we define

G ×B C−λ = (G ×C−λ)/ ∼

where (g, z) ∼ (gb−1, b ⋅ z). The image of projection onto the first factor π ∶ G ×B C−λ → G/B
is the flag variety, and we show this is a line bundle Lλ. We first show that π is well-defined.

For (gb−1, b ⋅ z) ∼ (g, z) we have π((gb−1, b ⋅ z)) = gb−1 ∈ gB so the entire equivalence class

[(g, z)] maps to gB ∈ G/B. Finally, we verify that π ∶ (G ×B C−λ) → G/B is a line bundle.

With g ∈ G fixed, we consider

π−1(gB) = {[(g, z)]∣z ∈ C}

which is a line, so we have a line bundle Lλ on the flag variety F`n.

The Borel-Weil theorem relates the space of sections H0(F`n, Lλ) of Lλ to an irreducible

representation of SLn(C).

Theorem 2.4.1 (Borel-Weil). As SLn(C)-modules, we have

H0(F`n, Lλ) ≅ (Vλ)∗.

The space of sections is given by

H0(F`n, Lλ) = {s ∶ G/B → G ×B C−λ such that π ○ s = IdG/B}

which has the structure of a G-module by (g ⋅ s)(g′B) = gs(g−1(g′B)). The Borel-Weil-Bott

theorem extends the above theorem for arbitrary integral weights w ⋅ λ for w in the Weyl

group W . For SLn(C), the Weyl group is W = Sn, the symmetric group. The action of W

on λ ∈ Λ in the Borel-Weil-Bott Theorem is given by w ⋅ λ = w(λ + ρ) − ρ where ρ is half of

the sum of positive roots.
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Theorem 2.4.2 (Borel-Weil-Bott). As G-modules, we have

Hp(G/B,Lw⋅λ) ≅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Vλ)∗ p = `(w)

0 otherwise

where `(w) is the length of w in the Weyl group.

We recall that Theorem 2.2.1 equates the number of lattice points of ∆λ and the di-

mension of Vλ. By Theorem 2.4.2, the number of lattice points of ∆λ is also equal to the

dimension of the space of sections Hp(G/B,Lw⋅λ) for the line bundle Lw⋅λ on flag variety

F`n.

2.5 DIVISORS

Here, we review divisors in general, on flag varieties and on toric varieties. A divisor on the

variety X is a codimension one subvariety D. Let {D} be the set of prime divisors on X and

define a corresponding collection of valuations {νD} where νD(f) is the order of vanishing

of f along D. The divisor of a rational function f on X is defined by

div(f) =∑
D

νD(f)D.

Recall that a discrete valuation ν on field K is a group homomorphism K∗ → Z satisfying

ν(xy) = ν(x)+ν(y) and ν(x+y) ≥ min{ν(x), ν(y)}. The abelian group Div(X) is generated

by the collection of prime divisors. An element of this group is called a Weil divisor. A Weil

divisor is effective if all coefficients are non-negative. Clearly, div(f) is a Weil divisor. A

divisor of this form is called principal and the set of principal divisors is Div0(X).
We are interested in the class group of a variety, that is,

Cl(X) = Div(X)/Div0(X)

where divisors D,E ∈ Div(X) are equivalent if D − E = div(f) for some f ∈ C(X)∗. Such

divisors are called linearly equivalent. Another useful group of divisors is CDiv(X), the

group of Cartier divisors. These are locally principal, meaning there is an open cover {Ui}
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of X such that the restriction of D to Ui is given by div(fi) for some fi ∈ C(Ui)∗. The group

CDiv(X)/Div0(X) = Pic(X), the Picard group of X.

Next, we recall divisors on projective varieties. This includes the case of flag varieties.

2.5.1 Divisors on Flag Varieties

For a projective variety X of dimension d embedded into PN ,

deg(X) = #(X ∩H1 ∩ . . . ∩Hd)

where the Hi are generic hyperplanes in PN . As the Picard group Pic(PN) ≅ Z, we can

choose a single hyperplane H corresponding to the generator of Pic(PN) and compute the

size of the intersection #(X ∩H ∩ . . .∩H) in PN . Alternatively, let H ′ be the pullback of H

to X via the embedding, then H ′ is a divisor on X and

deg(X) = (H ′)d

where (H ′)d is the self-intersection of the divisor H ′.

If the embedding X ↪ PN is given by sections of a very ample line bundle L, that is,

X ↪ P(H0(X,L)∗), then Hilbert’s Theorem, or the Asymptotic Riemann-Roch Theorem,

gives a way to compute the degree of the line bundle.

Theorem 2.5.1 (Asymptotic Riemann-Roch). For a very ample line bundle L on a projec-

tive variety X,

deg(X) = d! lim
m→∞

dimH0(X,L⊗m)
md

.

We recall the line bundle Lλ on F`n defined in Section 2.4.1. This line bundle has the

property L⊗mλ = Lmλ, and we recall also from Theorem 2.4.1 that H0(F`n, Lλ) ≅ V ∗
λ . Finally,

we recall from Theorem 2.2.1 that #(∆λ∩ZN) = dimH0(G/B,Lλ). Combining these results,

we compute the degree of this embedding; see for example [Kav11] Remark 2.4.

Proposition 2.5.2. For flag variety F`n and λ dominant regular,

deg(F`n, Lλ) = N !VolN(∆λ),

where ∆λ is the corresponding GZ polytope of dimension N = n(n − 1)/2.
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2.5.2 Divisors on Toric Varieties

We consider divisors on a toric variety XΣ. The torus action on XΣ leads to a correspondence

between torus orbits in XΣ and cones in the fan Σ. The orbit-cone correspondence relates k-

dimensional cones in Σ to codimension k orbits of the torus. Rather than consider all prime

divisors on our toric variety XΣ, it is enough to consider torus-invariant prime divisors. A

torus-invariant prime divisor is an irreducible codimension 1 subvariety, and therefore we are

interested in codimension 1 orbits which correspond to 1-dimensional cones or rays of our

fan. We denote rays in the fan Σ by Σ(1), and similarly k-dimensional cones by Σ(k).
Let ρ ∈ Σ(1), Dρ the corresponding torus-invariant divisor, and νρ the associated valua-

tion. Then

νρ(χm) = ⟨m,uρ⟩

where uρ is the ray generator corresponding to ρ. Then the divisor corresponding to the

character χm is

div(χm) = ∑
ρ∈Σ(1)

νρ(f)Dρ = ∑
ρ∈Σ(1)

⟨m,uρ⟩Dρ.

We can also construct a polyhedron (not necessarily bounded) from a divisor D =

∑ρ aρDρ. This polytope describes which characters χm have the property that adding

div(χm) to D yields an effective divisor, that is, for which m the divisor

∑
ρ

⟨m,uρ⟩Dρ +∑
ρ

aρDρ =∑
ρ

(⟨m,uρ⟩ + aρ)Dρ

is effective. We call this polyhedron PD, and it is defined by

PD = {x ∣ ⟨x,uρ⟩ ≥ −aρ}.

When the divisor D = ∑ρ aρDρ is Cartier, the Cartier data {mσ}σ∈Σ satisfies ⟨mσ, uρ⟩ =
−aρ for ρ ∈ Σ(1). In this case, PD is a full-dimensional lattice polytope, so we can construct

the toric variety XA, and also the divisor of the polytope DPD = D = ∑ρ aρDρ, the same

divisor with which we started.

It can be useful to describe a Cartier divisor in terms of support functions. For a fan

Σ ⊂ NR, the support of Σ, denoted ∣Σ∣, is ∣Σ∣ = ∪σ∈Σσ ⊂ NR. A support function is a piecewise

linear function ϕ ∶ ∣Σ∣ → R which is linear on each cone σ ∈ Σ. We are interested in the
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support functions that behave nicely with respect to our lattice N . We say ϕ is integral

with respect to N if ϕ(N ∩ ∣Σ∣) ⊂ Z, that is, lattice points map to integers under ϕ. Given a

Cartier divisor with Cartier data {mσ}σ∈Σ we can construct a support function integral with

respect to N by taking ϕ(u) = ⟨u,mσ⟩ whenever u ∈ σ. If we start with a support function

ϕ on Σ integral with respect to N then we can determine the coefficients aρ of Dρ for the

corresponding divisor by taking −aρ = ϕ(uρ), then D = ∑ρ aρDρ.

Finally, we consider the sheaf OX(D) for a Cartier divisor D defined by

OX(D) = {f ∈ C(X)∣div(f) +D ≥ 0}.

This is a sheaf as it is defined locally on open sets (as D is Cartier, and hence locally given by

some div(fi) on Ui) where the local definition is compatible with restriction to smaller open

sets and also with gluing open sets together into a larger open set. When D is Cartier and

X is normal, OX(D) is the sheaf of sections of a line bundle LD. In this case, the dimension

of H0(X,LD) is equal to the number of lattice points in the polytope PD. If we do this for

the divisor DP obtained from a polytope P , then PDP = P . When a divisor D comes from

a polytope, it is ample. Therefore the space of sections of LkP defines an embedding into

projective space for k ∈ N large enough.

Proposition 2.5.3. The degree of XΣ under the embedding given by polytope P is

deg(XΣ) = d! lim
m→∞

dimH0(XΣ,O(mP ))
md

= d! lim
m→∞

#(mP ∩Zd)
md

= d!Vold(P ).

24



3.0 MAIN RESULTS

In this chapter, we establish some facts about the GZ fan in order to define the GZ toric

variety XGZ . We then use convex chains to extend the relation between dominant weight λ

and GZ polytope ∆λ to non-dominant weights. These are so-called virtual GZ polytopes. In

the final section, we identify the cohomology ring of the flag variety G/B with a quotient of

a subalgebra of the Chow cohomology ring of the toric variety XGZ .

3.1 GELFAND-ZETLIN FAN RESULTS

In this section we prove two results about normal fans of GZ polytopes. Let N = n(n − 1)/2
be the dimension of ∆λ for λ dominant regular, and consider the normal fan Σλ to polytope

∆λ. Our first result justifies the terminology “Gelfand-Zetlin fan”.

Proposition 3.1.1. The normal fan Σλ is independent of λ for λ dominant regular.

Proof. We recall the coordinates given in the GZ array (2.1). A facet of the polytope ∆λ

is determined by changing a single inequality to an equality in the GZ array, and a lower

dimensional face is determined by changing multiple inequalities to equalities. We distinguish

between two types of equality: those of the form x1i = λj and those of the form xij = x(i−1)k.

Fix a face of F of ∆λ, that is, fix a collection of equalities in the array. The second type

of inequality is clearly independent of λ, and the first type depends on λ but only changes

by translation when λ is varied. Then the cone at that face as λ varies is simply translated

based on how many equalities of the first type appear in the array. When we examine the

corresponding cone in the fan Σλ, we translate the cone at the face F to the origin then take
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the dual cone. Thus the fan Σλ does not actually depend on λ, and we will now refer to the

fan normal to any ∆λ as ΣGZ .

Next, we show that the only polytopes normal to the fan ΣGZ are GZ polytopes up to

shifting.

Proposition 3.1.2. Let P be a full dimensional polytope normal to ΣGZ, then P = c + ∆λ

for some dominant regular λ and c ∈ RN . Moreover, if P is a lattice polytope then both c and

λ are integral.

Proof. Let P be normal to ΣGZ , then the hyperplanes defining P are parallel to those defining

any ∆λ because the fan is independent of λ. Recall that there are two types of equations

defining ∆λ, x1i = λj and xij = x(i−1)k. We will use variables yij for P and reserve xij for a

GZ polytope. Now, because the supporting hyperplanes of P are parallel to those for ∆λ,

there are two forms of equation defining P as well: y1i = a and yij = y(i−1)k for appropriate

i, j, k. The polytope P is the set of solutions to the following system of inequalities:

ai ≤ y1i ≤ bi 1 ≤ i ≤ n − 1 (3.1)

y(i−1)j + aij ≤ yij ≤ y(i−1)(j+1) + bij i ∈ {2, . . . , n},1 ≤ j ≤ n − i + 1.

If P is a lattice polytope, then all ai and bi must be integers.

Our goal is to translate y = (y11, y12, . . . , yn1) to

x = y + c

such that the inequalities (3.1) fit into a GZ array (2.1). The inequalities ai ≤ y1i ≤ bi will

determine λ up to a choice of λ1. We first shift y so that the first type of inequality for P

will interlace as the top two lines of a GZ array.

Let λ1 = a1, λ2 = b1 and x11 = y11, then λ1 ≤ x11 ≤ λ2 and it is clear that we need to shift

y12 to

x12 = y12 + λ2 − a2

so that λ1 ≤ x12. Similarly, we must have

x1i = y1i + λi − ai
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for 2 ≤ i ≤ n − 1. Once we have x1i, we determine λi+1 to be

λi+1 = bi + λi − ai.

Thus, we have determined λ and shifted y so that the first kind of inequalities lace

together as in a GZ array. If P is a lattice polytope, λ must have integer entries and the

components (λi − ai) of the shift are integral because all ai and bi are integers.

In order to translate the rest of the variables yij so that they fit in a GZ array, we first

need to examine relations occurring in each small diamond

a

b c

d

in the GZ array (2.1).

When we have equalities b = a and c = a, then since b ≤ d ≤ c we must have d = a. This

gives us linear relations among ray generators in the fan Σ which yields relations between

the constants aij, bij for P .

Suppose for induction that the first (i − 1) rows of variables, and the first (j − 1) entries

of the ith row have been translated to fit in the GZ array. We want to determine the shift

xij = yij + cij such that xij fits into the array. Note that in the argument below, some of the

constants aij, bij have also been shifted, but only those below the variable in question. The

relevant diamond is

x(i−2)(j+1)

x(i−1)j x(i−1)(j+1)

xij

except in the case i = 2 where we have λj+1 instead of x(i−2)(j+1). We consider the face of

P where x(i−1)j = x(i−2)(j+1) and x(i−1)(j+1) = x(i−2)(j+1). The diamond relation implies that

xij = x(i−1)j = x(i−1)(j+1) as well. In terms of yij, we have the inequalities

x(i−1)j + aij ≤ yij ≤ x(i−1)(j+1) + bij, (3.2)

which, when we consider the face of P , become equalities

x(i−2)(j+1) + aij = x(i−2)(j+1) + bij thus aij = bij.

Then,

xij = yij + aij
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is the translation required to fill in the next position of the GZ array. Note again that if P is

a lattice polytope with aij, bij integers then this shift will also be integral. At this point, we

also substitute xij into any remaining inequalities involving yij and variables not yet shifted.

We rename the relevant shifted constants a(i+1)k, b(i+1)k.

In this way, we shift all variables for the polytope P so that the defining inequalities fit

into a GZ array. Therefore P = c+∆λ where c encodes the translations and λ = (λ1, . . . , λn) is

constructed above. As indicated in the proof, when P is a lattice polytope the corresponding

c and λ are both integral.

Remark 3.1.3. Observe that there are n + n(n − 1)/2 parameters present in c +∆λ, but a

GZ polytope is cut out by n(n − 1) facets, one for each ray in Σ(1). The dimension of the

space of polytopes normal to ΣGZ is therefore much smaller than the number of rays in the

fan due to the fact that ∆λ is not a simple polytope, or equivalently, because the fan ΣGZ is

not simplicial.

Remark 3.1.4. We see that the collection of all polytopes normal to ΣGZ is an example of

a linear family, see [KV18].

3.2 VIRTUAL GELFAND-ZETLIN POLYTOPES

In this section we recall the construction of a vector space of virtual polytopes from Kho-

vanskii and Pukhlikov, [PK93], as well as their use of convex chains to understand virtual

polytopes. We examine the extra relations occurring because the GZ fan ΣGZ is not simpli-

cial. Finally, after exploring some small-dimensional examples of virtual GZ polytopes, we

prove that virtual GZ polytopes are bounded unions of convex regions on which the value

of the associated convex chain is ±1.

3.2.1 Vector Space of Virtual Polytopes

In order to establish later results on virtual GZ polytopes, we follow the construction of

“virtual polytopes” by Khovanskii and Pukhlikov, [PK93]. For fixed n, let P(ΣGZ) be the
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collection of polytopes normal to ΣGZ . Recall that all GZ polytopes have the same normal

fan, Prop 3.1.2, and that any polytope normal to ΣGZ is a translation of a GZ polytope. This

means the polytopes in P(ΣGZ) are all translations of GZ polytopes. Next recall Proposition

2.3.2 where we prove that the assignment λ ↦ ∆λ is additive, thus the Minkowski sum of

two GZ polytopes is again a GZ polytope. In P(ΣGZ) we consider all polytopes, not only

those with lattice vertices, so P(ΣGZ) is closed under positive scalar multiplication as well.

This gives P(ΣGZ) the structure of a cone.

Because P(ΣGZ) is a cone, we can consider the Grothendieck group P∗(ΣGZ) obtained

by taking formal inverses of elements of P(ΣGZ). A typical element of P∗(ΣGZ) is of the

form

∑∆i −∑∆j,

a formal difference of GZ polytopes. We call such an element a virtual polytope, or more

specifically, a virtual GZ polytope.

3.2.2 Convex Chains

Next, we recall from Khovanskii and Pukhlikov, [PK93], the notion of convex chains. For a

polytope P we consider instead the characteristic function χP defined as

χP (x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x ∈ P

0 x ∉ P
.

A convex chain is finite linear combination of characteristic functions of polytopes. In their

work [PK93], Khovanskii and Pukhlikov describe a convolution operation ⋆ which has the

property that, for polytopes P and Q,

χP+Q = χP ⋆ χQ.

This gives the collection of convex chains the structure of an algebra since it is also clearly

closed under addition and scalar multiplication of functions.

This convolution operation is defined by

χP ⋆ χQ(x) = ∫ χP (x − y)χQ(y)dµ = µ({y ∶ y ∈ Q and x − y ∈ P}) = µ(Q ∩ x + (−P )).
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Here µ is a finitely additive measure coming from the Euler characteristic. To verify χP ⋆χQ =
χP+Q, where P +Q is the Minkowski sum of the two polytopes, we observe:

x ∈ P +Q⇔ Q ∩ x + (−P ) ≠ ∅

⇔ there existsy ∈ Q with x − y ∈ P.

For a polytope P let Γ(P ) denote the set of all (proper and improper) faces of P and let

P ○ denote the interior of P with respect to the span of P . Then Khovanskii and Pukhlikov

prove the following:

Theorem 3.2.1. 1. The interior of polytope P corresponds to the convex chain

χP ○ = (−1)dimP ∑
∆∈Γ(P )

(−1)dim ∆χ∆.

2. The inverse of a characteristic function with respect to the convolution ⋆ can be computed

and is given by

χ−1
P = (−1)dimPχ(−P )○ .

This inverse then satisfies χ−1
P ⋆χP = χ{0}, that is, χ{0} is the identity of this convolution

as {0} is the identity for Minkowski addition.

The second part of Theorem 3.2.1 implies Ehrhart reciprocity. See [BLD+05].

3.2.3 Brianchon-Gram Theorem

In this section we recall the Brianchon-Gram Theorem as well as its extension to virtual

polytopes.

Let P ⊂ RN be a polytope and consider a facet F of P . Recall that each facet lies in a

hyperplane which divides Rn into two regions, one containing P and one disjoint from P .

The region containing P together with the hyperplane is called a supporting half-space for

P , and is denoted HF .

Let {Fi} denote the collection of all facets of P . Any face F of P is an intersection of

some of the facets; suppose F = ∩ki=1Fi. We define the tangent cone at face F to be

CF =
k

⋂
i=1

HFi ,
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that is, the cone at face F is the intersection of all of the half-spaces for facets Fi where

F ⊂ Fi.

The Brianchon-Gram theorem decomposes the convex chain for P into a sum of charac-

teristic functions of tangent cones at faces of P . See for example [BS15].

Theorem 3.2.2 (Brianchon-Gram). For polytope P ,

χP = ∑
F ∈Γ(P )

(−1)dimFχCF . (3.3)

A virtual polytope P − Q corresponds to the convex chain χP − χQ. The convolution

operation defined in [PK93], where χP+Q = χP ⋆ χQ, extends to χ−1
P in Theorem 3.2.1 which

gives the convex chain corresponding to the virtual polytope −P . This shows that the algebra

of convex chains is equivalent to the algebra of virtual polytopes. Khovanskii and Pukhlikov

examine this algebra for virtual polytopes; we are interested in the special case of virtual

GZ polytopes.

Khovanskii and Pukhlikov extend the Brianchon-Gram Theorem, Equation (3.3), to

virtual polytopes. See Proposition 2 of [PK93]. Therefore the convex chain of a virtual

polytope decomposes into a sum of convex chains of cones at faces of that polytope. As a

virtual polytope can be a union of several convex regions, we first fix a convex region then

use the faces of that region to determine the value of the convex chain on that fixed region.

3.2.4 Twisted Cubes

In this section we recall the definition of a twisted cube then explore GZ polytopes as a

special case.

We recall the definition of a twisted cube from [GK94].
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Definition 3.2.3. A standard twisted cube for integers {aij} and real numbers {`k} is the

set of solutions (x1, . . . , xn) to the following inequalities:

−`n ≤ xn ≤ 0 or 0 < xn < −`n (3.4)

−(`n−1 + an−1,nxn) ≤ xn−1 ≤ 0 or 0 < xn−1 < −(`n−1 + an−1,nxn)

⋮

−(`i + ∑
n≥k>i

ai,kxk) ≤ xi ≤ 0 or 0 < xi < −(`i + ∑
n≥k>i

ai,kxk)

and a density function ρ supported on the twisted cube is defined by ρ(x) = (−1)n∏ sgn(xi)
where sgn(xi) = −1 for xi ≤ 0, otherwise sgn(xi) = 1. Other twisted cubes are obtained by

affine isomorphism. A twisted cube is untwisted if none of the right hand side inequalities

are involved in describing a region.

Example 3.2.4. Consider the twisted cube where x = x1, y = x2, `2 = 5, `1 = 2, a12 = 1:

−5 ≤ y ≤ 0 OR 0 < y < −5 (does not occur)

−(2 + y) ≤ x ≤ 0 OR 0 < x < −(2 + y).

The lighter region in the fourth quadrant indicates where the associated convex chain asso-

ciated has value +1. This region is “untwisted”. The darker region is where the associated

convex chain has the value −1; some of the right hand side inequalities are involved in defining

this region.

Figure 3.1: Example of a Twisted Cube
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Since GZ polytopes are similarly defined by a collection of affine inequalities, and virtual

GZ polytopes generalize to the case where the opposite inequalities are also allowed, virtual

GZ polytopes together with their convex chains are special cases of twisted cubes. We prove

the following.

Theorem 3.2.5. For λ dominant regular, the GZ polytope ∆λ is a translation of a twisted

cube.

Proof. First, we translate ∆λ so that the inequalities defining the polytope are of the form

xi ≥ 0 or xi ≤ 0. We then determine the appropriate affine isomorphism. Finally, we identify

all defining constants `i and aij.

The polytope ∆λ is not virtual, so it should correspond to a twisted cube which is not

twisted, that is, where the density function is non-negative. Thus we need to translate ∆λ

so that xi ≤ 0 for each i. In the GZ array (2.1), we consider variable xij. We have the string

of inequalities from xij in the upper right direction,

xij ≤ x(i−1)(j+1) ≤ . . . ≤ x1(j+i−1) ≤ λi+j,

which suggests that each variable xij should be shifted by λi+j so that

yij = xij − λi+j ≤ 0.

This shifted GZ polytopes is defined by the inequalities

λi − λi+1 ≤ y1i ≤ 0 for 1 ≤ i ≤ n − 1 (3.5)

y(i−1)j + λi+j−1 − λi+j ≤ yij ≤ y(i−1)(j+1) for i > 1.

Note that when i = n this expression involves λn+1, which is not defined. Hence, let λn+1 = 0.

The next step is to determine an affine isomorphism which will take the shifted GZ

polytope defined in (3.5) to a standard twisted cube. It is clear that the desired shift will

take

yij ↦ yij − y(i−1)(j+1)
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(for i > 1) so that the defining inequalities will be of the form

−(`i + ∑
n≥k>i

ai,kxk) ≤ xi ≤ 0.

We must relabel our variables yij to have a single subscript for this. We relabel as follows:

xN xN−1 ⋯ ⋯
⋮

x6 x5 x4

x3 x2

x1

In terms of these new variables, the top row of variables are constrained by inequalities of

the form

λk+1 − λk+2 ≤ xN−k ≤ 0

for k = 0, . . . , n − 2. The inequalities in the lower rows are more difficult to translate as they

depend on both indices i and j, but we will discern the pattern below.

We begin with x1 = yn1 from before, which is involved in the inequalities

yn−1,1 + λn − λn+1 ≤ yn1 ≤ yn−1,2.

Recall that λn+1 = 0, so in terms of the variables {xi}, this becomes:

λn + x3 ≤ x1 ≤ x2.

We apply another transformation, x′1 = x1 − x2 so that the right hand side is zero. We now

have

λn + x3 − x2 ≤ x′1 ≤ 0.

We next consider the inequalities involving x2 = yn−1,2, and in the same way we translate

the inequalities from (3.5) to our single subscript variables:

x5 + λn ≤ x2 ≤ x4.
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Then we transform x2 to x′2 = x2 − x4 so that the above inequality transforms to the desired

form. Notice that this will affect the inequality for x1, but only by adding linear terms to

the left hand side.

We continue this process for each variable in order, and at each stage the transformation

may affect the left hand side of previous inequalities, but will only be adding linear terms

with larger subscripts. Following this pattern, we collect the transformation data into a

matrix. The pattern we observe is that each variable is shifted by the variable above right

in the array (2.1).

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . .

0 1 0 −1 0 . . .

⋮ 0 1 0 −1 0 . . .

0 1 0 0 −1 0 . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Observe that this matrix is upper triangular with 1’s on the diagonal, so it has determinant

1 and is therefore invertible in SLN(Z). Hence this transformation is an affine isomorphism.

We shifted and then applied an affine isomorphism to our initial GZ polytope, which

resulted in inequalities of the form present in the definition of a twisted cube. Note that for

x′i we will have x′i ≤ 0 by construction and x′i ≥ `(x′i+1, . . . , x
′
N) where ` is some linear function

of variables with greater subscripts. Thus we have proved a GZ polytope is in fact a twisted

cube.

Example 3.2.6. We examine the case of GZ polytopes in R3. Up to translation, such a

polytope is given by λ = (−a,0, b) for some a, b > 0. We show more concretely how the above

proof identifies ∆(−a,0,b) with the twisted cube:

−a ≤ x ≤ 0 OR 0 < x < −a

−b ≤ y ≤ 0 OR 0 < y < −b

−(b + y − x) ≤ z ≤ 0 OR 0 < z < −(b + y − x).
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First, the GZ array for this polytope is below.

−a 0 b

x y

z

The inequalities −a ≤ x ≤ 0 are already in the correct form. We shift the other two variables

y ↦ y + b, z ↦ z + b and obtain

−b ≤ y ≤ 0

x − b ≤ z ≤ y.

Finally, we apply the affine isomorphism z ↦ z + y to obtain the twisted cube

−a ≤ x ≤ 0

−b ≤ y ≤ 0

−b − y + x ≤ z ≤ 0.

3.2.5 Faces and Relations for Gelfand-Zetlin Polytopes

With the intuition of virtual polytopes established in Section 3.2.4, we turn our attention to

the faces of GZ polytopes. This is necessary in order to compute the value of the associated

convex chain on various convex regions of the polytope, but it is complicated because the

fan ΣGZ is not simplicial.

Faces of GZ polytopes correspond to choices of equalities rather than inequalities in the

GZ array (2.1). This is also true for “faces” of the virtual GZ polytopes. Recall that a

virtual polytope is made up of multiple convex regions, so it is not clear what a “face” is for

a virtual polytope. To overcome this, we will fix a convex region then discuss faces of that

region. To do this, we first introduce notation.

Just as a polytope is the intersection of its supporting half-spaces, a virtual polytope

normal to a fan is also defined by the hyperplanes normal to the rays in the fan. One

important difference is that a virtual polytope may consist of convex regions located on

both sides of a given hyperplane. We let a solid line denote an inequality agreeing with the

36



standard GZ polytope, and a dashed line denote an opposite inequality. In Figure 3.2 we

see the four possibilities for inequalities which agree or disagree with the standard GZ array

for a single variable.

Figure 3.2: Types of Inequality in GZ Array

A GZ array decorated with a solid or dashed line between every pair of diagonally

adjacent variables indicates a convex region of ∆λ by intersecting corresponding half-spaces.

For solid lines, we intersect the usual side of the half-space, and for a dashed line we use the

opposite side. The philosophy is to consider every possible combination of solid and dashed

lines and compute the values of the corresponding convex chains. Then, the virtual polytope

consists of any regions where the convex chain is non-zero.

Now that we have notation to designate a particular convex region as an intersection of

half-spaces, we can discuss the issues coming from the fact that ΣGZ is not simplicial. To

designate a face of a convex region, we include equalities in the GZ array in addition to the

solid and dashed lines. Figure 3.3 illustrates the diamond relation.

We temporarily use xi, xk, etc for ease of notation rather than unnecessarily using xi,j

and xk,j+1 while we discuss faces. Regardless of whether µ = λi or µ = x`, such a diamond

gives a relation. Consider the face where xi = µ = xi+1 in Figure 3.4.

Since xi ≤ xk+1 ≤ xi+1 we must also have xk+1 = µ. Thus two equalities decrease the

dimension of this face by 3, so it seems we cannot simply count the number of equalities

defining a face in order to know its dimension. We need to know the dimension of the face

for the coefficient (−1)dimF appearing in the Brianchon-Gram Theorem, Theorem 3.3.

The other complication from this diamond relation is that the same face is represented

by multiple diagrams. The two diagrams in Figure 3.5 both represent the same face as the
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Figure 3.3: Diamonds in GZ Array Yield Relations

diagram in Figure 3.4. We will later show that naively counting faces with a coefficient of

(−1)# equalities yields the correct number after cancellation. Notice also that each variable

xk+1 has at most one equality above it, and we think of each equality as being associated

with the variable in the lower line. This will help us to count faces and equalities later.

3.2.6 Virtual Gelfand-Zetlin Polytopes in One Dimension

Before stating and proving our main result about virtual GZ polytopes, we explore examples

for n = 2 and n = 3 dimensions to develop intuition. We begin with the case n = 2, where GZ

polytopes are of the form λ1 < x < λ2. In this section we represent such a polytope by the

interval [λ1, λ2]. The interior of this polytope is (λ1, λ2), and we use the formula in Theorem

3.2.1 to compute the convex chain of (λ1, λ2).

χ(λ1,λ2) = (−1)dim[λ1,λ2] ∑
∆∈Γ([λ1,λ2])

(−1)dim ∆χ∆

= (−1) [(−1)dim[λ1,λ2]χ[λ1,λ2] + (−1)dim{λ1}χ{λ1} + (−1)dim{λ2}χ{λ2}]

= (−1) [(−1)χ[λ1,λ2] + χ{λ1} + χ{λ2}]

= χ[λ1,λ2] − χ{λ1} − χ{λ2}.

This shows the value of the convex chain is compatible with the usual notation for intervals,

that is, the convex chain of the interior of an interval is the characteristic function of that

open interval.
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Figure 3.4: Diamond Relation

We next compute χ−1
[λ1,λ2]

. We combine the formula in Theorem 3.2.1 with the above

computation of χ(λ1,λ2).

χ−1
[λ1,λ2]

= (−1)dim[λ1,λ2]χ(−[λ1,λ2])○

= (−1)χ(−λ2,−λ1)

= (−1) [χ[−λ2,−λ1] − χ{−λ2} − χ{−λ1}]

= −χ[−λ2,−λ1] + χ{−λ2} + χ{−λ1}

Thus we see that the inverse to χ[λ1,λ2] is the convex chain with value −1 on the open interval

(−λ2,−λ1).
We next compute χ[λ1,λ2] ⋆ χ−1

[λ1,λ2]
to illustrate this convolution operation as well as to

verify that the inverse convex chain computed above is correct. We have:

χ[λ1,λ2] ⋆ χ−1
[λ1,λ2]

= χ[λ1,λ2] ⋆ (−χ[−λ2,−λ1] + χ{−λ2} + χ{−λ1})

= −χ[λ1,λ2]+[−λ2,−λ1] + χ[λ1,λ2]+{−λ2} + χ[λ1,λ2]+{−λ1}

= −χ[λ1−λ2,λ2−λ1] + χ[λ1−λ2,0] + χ[0,λ2−λ1]

= χ{0}.

Note that we are able to compute this convolution of convex chains merely using the

correspondence between ⋆ and the Minkowski sum of polytopes. For intervals, we have

[a, b] + [c, d] = [a + c, b + d], as well as [a, b] + {c} = [a + c, b + c].
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Figure 3.5: Equivalent Faces

In the case n = 2 there are only two Weyl chambers. In the positive chamber λ1 < λ2,

and in the opposite chamber λ1 > λ2. On the boundary between the Weyl chambers, we have

λ1 = λ2, which gives the inequality

λ1 ≤ x ≤ λ1,

hence the polytope is just the point {λ1} ∈ R.

We examine the convex chain associated to a virtual GZ polytope for λ in the opposite

Weyl chamber. Let λ1 > λ2. The half-spaces cut out three regions of R on which we need

to examine the values of the convex chain. The polytope [λ1, λ2] has three faces: the entire

polytope, and the endpoints {λ1} and {λ2}. From the extended Brianchon-Gram theorem,

we need to understand the characteristic functions of cones at these faces. For the interval,

we have χR, and for the endpoints we have χ[λ1,∞) and χ(−∞,λ2] respectively. We thus obtain:

χ[λ1,λ2] = (−1)χR + χ[λ1,∞) + χ(−∞,λ2]

= −χ(λ2,λ2).

We recall Theorem 3.2.1 which shows χ−1
[−λ1,−λ2]

is also supported on the interval (λ2, λ1) with

value −1, hence this is the convex chain associated to this virtual polytope.

Remark 3.2.7. We observe that convex chains of virtual polytopes in the case n = 2 take

either the value 1 or −1. We will later use this to prove our main result.
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3.2.7 Virtual Gelfand-Zetlin Polytopes in Three Dimensions

The next simplest case to examine is n = 3. We will study the particular virtual GZ polytope

∆(−1,1,0), then generalize to the rest of the virtual GZ polytopes in this dimension. Recall

that the virtual GZ polytopes correspond to λ not dominant (not increasing), but we will

restrict our attention to those which are regular.

Example 3.2.8. Recall that in Example 2.3.1 we examined the GZ polytope ∆(−1,0,1). We

permute the entries of that dominant weight, and examine ∆(−1,1,0). This virtual polytope

has x-coordinate ranging between −1 and 1, y-coordinate ranging between 1 and 0, and

z-coordinate ranging between x and y. The inequalities may be the opposite of those found

in the standard GZ array, but we will just change them as needed.

We first observe that the x and y coordinates form a rectangle (and similarly, when n > 3

the top line of variables will define a region which is a product of intervals).

Since the inequalities involving y are opposite of the corresponding inequalities in the

GZ array, there are two different convex regions for ∆λ: one region where x > z > y and

one where x < z < y. These two regions meet at the line y = x. Because of this, we can

understand this 3-dimensional object by projecting to the xy-plane. See Figure 3.6. The

2D view of ∆(−1,1,0) View 1 of ∆(−1,1,0) View 2 of ∆(−1,1,0)

Figure 3.6: ∆(−1,1,0) from Various Angles

lighter region is where x < y and hence x < z < y for the 3-dimensional images whereas the

darker region is where y > x, and thus y > z > x. The line y = x is where the two polytopes

meet.

For both regions, x satisfies the standard inequalities and y satisfies the opposite inequal-
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ities. In the lighter region, z also satisfies the typical inequalities so the value of the convex

chain is −1. In the darker region the value is (−1)(−1) = 1 since the inequalities for z are

opposite.

Using the notation defined above with a solid line corresponding to an inequality agreeing

with the standard GZ array and a dashed line corresponding to an inequality opposite of the

usual, these two regions could be represented by the diagrams in Figure 3.7.

Figure 3.7: Two Convex Regions of ∆(−1,1,0)

Recall the construction of the cone CF at a face F of a convex polytope. Suppose

F = ⋂ki=1Fi for facets {Fi} of the polytope, then CF is the intersection of the half-spaces

corresponding to the facets Fi which contain F . In the convex case, each half-space contains

the polytope. For virtual polytopes we first fix a convex region, then do the analogous

intersection of half-spaces. The half-space for a facet Fi is the hyperplane spanned by Fi

together with the the side which would contain a standard GZ polytope.

Consider the facet F ∶ x = z, see View 2 in Figure 3.6. This is the bottom face of the

lighter region and the top face of the darker region, and is one of two hyperplanes separating

the two convex regions of ∆(−1,1,0). The inequality relating x and z in the standard GZ array

is x ≤ z, meaning the cone CF contains the lighter region and does not contain the darker
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region.

To relate this face cone back to the solid and dashed line diagrams, consider Figure 3.7.

The cone CF contains Region A and the diagram for Region A has a solid line between x

and z, whereas CF does not contain Region B, and the diagram for Region B has a dashed

line between x and z. This suggests that the tangent cone to a face will contain a convex

region exactly when the lines in the diagram which define the face are all solid.

In the Brianchon-Gram theorem, we add up χCF so if a cone CF does not contain the

convex region of interest, the value of this function is zero. We add the values corresponding

to all possible faces which can be made from only solid lines in the diagram.

We summarize the virtual GZ polytopes for the rest of the orbit of λ = (−1,0,1) under

the action of the Weyl group. See Figure 3.8.

3.2.8 Virtual Gelfand-Zetlin Polytopes as Convex Chains

To state our main result about virtual GZ polytopes, we first fix a regular λ ∈ Zn as well

as a convex region of ∆λ, that is, a choice of solid or dashed line for each inequality in the

GZ array. We consider an inductive sequence ∆k
λ of polytopes. Let εk denote the value of

the convex chain associated to ∆k
λ. The result below describes εk+1 in terms of εk. More

specifically, let ∆k
λ be the polytope defined using only the first k variables in the fixed GZ

array. For this we must relabel the variables in the array so that they have a single subscript.

Let x1 = x11 and let the indices increase across the row then continue in the leftmost position

of the following row. Clearly, ∆k+1
λ is obtained from ∆k

λ by taking the product ∆k
λ×R, where

xk+1 is the coordinate on R, and intersecting this with the two half-spaces defined by the

two inequalities involving xk+1. Note that for the given choice of solid and dashed lines it is

possible for the resulting polytope to be empty. This inductive sequence of polytopes will

enable us to count the number of faces of ∆k+1
λ of a given dimension in terms of faces of ∆k

λ.

We saw in Example 3.2.8 that the top line of inequalities were determined by λ but that

the lower line, z, could be given solid lines or dashed lines. We will show that for a region

where variable xk has one solid line and one dashed line above it the value of the associated

convex chain is zero, so for each variable xk we only need to consider the cases where both
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(-1,0,1)

(1,0,-1)

(0,-1,1)

(12) in S
3

(23) in S
3

(-1,1,0)

(0,1,-1)

(1,-1,0)

Figure 3.8: Virtual GZ Polytopes for Orbit of λ = (−1,0,1) under Weyl Group
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inequalities agree or both inequalities disagree. This simplifies the process of counting faces

required to compute the value of the convex chain.

Theorem 3.2.9.

1. If the inequalities for variable xk+1 both agree with the standard case then εk+1 = εk. This

case corresponds to a diagram where both lines above xk+1 are solid.

2. If the inequalities for variable xk+1 both disagree with the standard case then εk+1 = −εk.
This case corresponds to a diagram where both lines above xk+1 are dashed.

3. If exactly one of the inequalities for variable xk+1 agrees with the standard case then

εk+1 = 0. This case corresponds to a diagram where one line above xk+1 is solid and the

other is dashed.

Proof. Our strategy is to use the inductively defined sequence ∆k
λ to determine the number

of j-dimensional faces of ∆k+1
λ with tangent cone containing the fixed convex region in terms

of the numbers of relevant faces of ∆k
λ. These are exactly the cones with the fixed region in

the support of the corresponding characteristic functions in the Brianchon-Gram theorem.

Let cj denote the number of j-dimensional faces of ∆k
λ with tangent cone containing the

fixed region. Then the value of the convex chain for ∆k
λ is given by

εk =
k

∑
j=0

(−1)jcj.

In each case below, we determine an expression for the number of relevant j-dimensional

faces of ∆k+1
λ in terms of {cj} and examine the corresponding sum to determine the value

of εk+1. The base case was established in Section 3.2.6 where we showed ε1 = 1 when both

inequalities agree, ε1 = −1 when both inequalities disagree, and ε = 0 when exactly one

inequality agrees.

We next consider separately the three cases.

Case 1: Suppose the inequalities involving xk+1 in the diagram agree with the standard

case (are both solid lines). We will show that the diamond constraint does not pose a problem

to naively counting the codimension of each face as the number of equalities defining it.

Consider a face with GZ array diagram containing one of the three equivalent diamonds in

Figure 3.9, as well as the other two representations of that face. If we naively compute the
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Figure 3.9: Equivalent Diagrams for a Face

dimension based on the number of constrained variables, that is, with the codimension of the

face equal to the number of constraints, we will be wrong for the first diamond but correct

for the second and third. This will cause the first copy of our face, from the first diamond, to

be counted with the wrong sign as the two constraints lower the dimension by three rather

than two. However, the second and third figures will cause this face to be double counted,

so the first and second copies of this face effectively cancel out and we end up counting

only the third copy. This happens for every diamond, so though it is difficult to count the

number of faces of dimension j for a (virtual) GZ polytope, we need the count only for the

Brianchon-Gram theorem, and hence the naive count is sufficient. We now count the number

of relevant j-dimensional faces of ∆k+1
λ . This is the number ways to choose (k + 1) − j solid

lines from our fixed partial diagram.

Since the new variable xk+1 comes with two solid lines in this case, there are 2cj faces

of dimension j coming from j-dimensional faces of ∆k
λ. We must also add the number of

j-dimensional faces of ∆k+1
λ in which the variable xk+1 is unconstrained. There are cj−1 of

these. Thus the number of relevant j-dimensional faces of ∆k+1
λ is:

2cj + cj−1.

For ease of notation let ck+1 = 0 = c−1, then the value of the convex chain for ∆k+1
λ on the
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Figure 3.10: Inequalities for xk+1 Disagree with Standard Case

fixed convex region satisfies

εk+1 =
k+1

∑
j=0

(−1)j (2cj + cj−1)

= 2
k+1

∑
j=0

(−1)jcj +
k+1

∑
j=0

(−1)jcj−1

= 2
k

∑
j=0

(−1)jcj −
k

∑
j=0

(−1)jcj

=
k

∑
j=0

(−1)jcj

= εk

as desired.

Case 2: Suppose the inequalities involving xk+1 in the diagram both disagree with the

standard case (are both dashed lines). We do not need to worry about our diamond constraint

in this case because the diagram in Figure 3.10 encodes inequalities

xi ≤ µ ≤ xi+1 and xi ≥ xk+1 ≥ xi+1

that are inconsistent because xk+1 ≤ xi ≤ µ but also xk+1 ≥ xi+1 ≥ µ. We have already

excluded the case where xk+1 = xi = µ and xk+1 = xi+1 = µ by considering only full-dimensional

polytopes.
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Figure 3.11: Exactly One Inequality Agrees

We count the number of relevant faces of ∆k+1
λ . Since xk+1 is added with two dashed

lines, neither line will be counted when we count subsets of solid lines. Hence the relevant

j-dimensional faces all come from j − 1 dimensional faces of ∆k
λ, so the value of the convex

chain on the indicated region of ∆k+1
λ is

εk+1 =
k+1

∑
j=0

(−1)jcj−1

= −
k

∑
j=0

(−1)jcj

= −εk

as desired.

Case 3: Suppose exactly one of the inequalities involving xk+1 in the diagram agrees with

the standard case (one solid line, one dashed). We do not need to worry about the diamond

constraint, see Figure 3.11, because if we have xi = µ = xi+1 then xk+1 ≥ µ. Hence a diamond

no longer implies constraint when there is one dashed line and one solid line. We see that

the fixed convex region is unbounded, but we will show that the value of εk+1 is zero.

The relevant j-dimensional faces for ∆k+1
λ will come from j-dimensional faces of ∆k

λ with

variable xk+1 constrained, or from j − 1-dimensional faces with xk+1 free. In this case there

is only one solid line, and hence one way to constrain xk+1, so the number of j-dimensional
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faces coming from j-dimensional faces of ∆k
λ is equal to cj. There are cj−1 faces with xk+1

free, so the total number of relevant j-dimensional faces of ∆k+1
λ is

cj−1 + cj.

Again we let c−1 = 0 = ck+1, then we see that

εk+1 =
k+1

∑
j=0

(−1)j (cj−1 + cj)

=
k

∑
j=0

(−1)jcj −
k

∑
j=0

(−1)jcj

= 0.

The above arguments imply that the only values of a convex chain corresponding to a

virtual GZ polytope ∆λ are 0,1, or −1, and in particular, the convex chain is supported only

on finitely many bounded regions.

3.3 CHOW RING OF XGZ AND COHOMOLOGY OF G/B

We begin this section with some algebra lemmas. We use these to relate the cohomology ring

of G/B with the operational Chow ring of XGZ . We recall the intersection theory of the flag

variety as well as the operational Chow cohomology for (singular) toric varieties. This Chow

ring is isomorphic to the ring of Minkowski weights, which is a more computationally friendly

combinatorial object. Finally, we identify the cohomology ring of G/B with a quotient of

the subring of the Chow cohomology ring of XGZ generated in degree one.
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3.3.1 Algebra Results

Let A = ⊕n
i=0A

i be a graded ring with A0 ≅ Z ≅ An. Then following [HW17], the Lefschetz

subalgebra LA is the graded subalgebra of A generated by A1. We recall that A has Poincarè

duality if the multiplication maps

Ai ×An−i → An ≅ Z

are non-degenerate for all i. Since our goal is to compare A∗(G/B) ≅ H∗(G/B), which

has Poincarè duality, with the ring A∗(XGZ), which may not, we are interested in how an

abstract graded ring might be related to one with Poincarè duality.

Lemma 3.3.1. Let A = ⊕n
i=0A

i with A0 ≅ Z ≅ An. There exists a homogeneous ideal I ⊂ A
which is minimal with respect to inclusion such that A/I has Poincarè duality. We call this

ring A/I the Gorenstein quotient Gor(A) of A.

Proof. Consider the ideal I generated by all homogeneous elements x ∈ A such that

x ⋅An−deg(x) = 0.

We first show that A/I has Poincarè duality. Suppose for contradiction that A/I does not

have Poincarè duality. Then, there is some x ∈ A which we can take to be homogeneous, say

x ∈ Ai, such that for all y ∈ An−i we have xy ∈ I. As the degrees of x and y are complementary,

degxy = n, so these products lie in the nth graded piece of the ideal I. Observe, however,

that for any z ∈ I with deg z = n, we must have z = ∑i cixi where {xi} are generators of I

with degxi = di. It is sufficient to consider only terms with degree n, so assume deg ci = n−di.
Since the xi generate I, by assumption they satisfy xiAn−di = 0, so cixi = 0 for all i and hence

z = 0. We have shown that the degree n part of I is trivial, and hence xy ∈ I with degxy = n
implies that xy = 0. This implies that x ∈ I, contradicting our assumption that it is not.

Thus A/I does have Poincarè duality.

We next show that I is the minimal such homogeneous ideal. Suppose not, then there

exists homogeneous ideal J such that A/J has Poincarè duality. Let x ∈ (I ∖ J). As both

ideals are homogeneous, we can take x to be homogeneous say of degree i. Since x ∈ I we

must have x ⋅An−i = 0. Since x ∉ J , it corresponds to a non-trivial coset x̄ in A/J . However,

this x̄ satisfies x̄ ⋅ (A/J)n−i = 0, contradicting Poincarè duality for A/J .
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We next recall an algebra result required to prove our main result. (See [Kav11, Theorem

1.1] and [Eis95, Exercise 21.7].)

Theorem 3.3.2. Let A = ⊕n
i=0A

i be a finite dimensional graded algebra which is generated

by A1, satisfies A0 ≅ Z ≅ An, and has Poincarè duality.

Fix a basis {a1, . . . , ar} for A1, and consider the polynomial P ∶ Zr → Z defined by

P (x1, . . . , xr) = (x1a1 +⋯ + xrar)n ∈ An ≅ Z.

Then we obtain an isomorphism of graded algebras

A ≅ Z[∂1, . . . , ∂r]/I

where ∂i = ∂
∂xi

, and I is the ideal of polynomials in the operators ∂1, . . . , ∂r which annihilate

P .

Proof. We follow the sketch outlined in [Kav11]. Consider the evaluation homomorphism

Φ ∶ Z[t1, . . . , tr]→ A

under which ti ↦ ai. Since A is generated by A1, this map is clearly surjective. We aim to

show that ker Φ = I, so that we will have A ≅ Z[t1, . . . , tr]/I. Since Φ respects the degree

one grading, and both rings are generated in degree one it is a graded morphism, and hence

ker Φ is a graded ideal, i.e., is generated by homogeneous elements.

We now consider f ∈ Z[t1, . . . , tr] homogeneous of degree n, say

f(t1, . . . , tr) = ∑
β1+...+βr=n

cβ1,...,βrt
β1
1 ⋯tβrr .
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Then

f(∂1, . . . , ∂r) ⋅ P =
⎛
⎝ ∑
β1+...+βr=n

cβ1,...,βr∂
β1
1 ⋯∂βrr

⎞
⎠
⋅ (x1a1 + . . . + xrar)n

=
⎛
⎝ ∑
β1+...+βr=n

cβ1,...,βr∂
β1
1 ⋯∂βrr

⎞
⎠
⋅ ( ∑

α1+...+αr=n

( n

α1, . . . , αr
)aα1

1 ⋯aαrr xα1
1 ⋯xαrr )

= ∑
β1+...+βr=n

∑
α1+...+αr=n

cβ1,...,βra
α1
1 ⋯aαrr ( n

α1, . . . , αr
)∂β11 ⋯∂βrr ⋅ (xα1

1 ⋯xαrr )

= ∑
β1+...+βr=n

cβ1,...,βra
β1
1 ⋯aβrr ( n

β1, . . . , βr
)∂β11 ⋯∂βrr ⋅ (xβ11 ⋯xβrr )

= ∑
β1+...+βr=n

cβ1,...,βra
β1
1 ⋯aβrr

n!

β1!⋯βr!
β1!⋯βr!

= n!f(a1, . . . , ar).

From this we see that f(a1, . . . , ar) = 0, i.e. f ∈ ker Φ, if and only if f annihilates P so f ∈ I.

It remains to show that the same holds for f homogeneous of degree m < n. Let

f(t1, . . . , tr) = ∑
β1+...+βr=m

cβ1,...,βrt
β1
1 ⋯tβrr .

Suppose first that f is not in ker Φ, then f(a1, . . . , ar) ≠ 0. Since A has Poincarè duality

and f(a1, . . . , ar) ∈ Am there must be some a′ ∈ An−m such that a′f(a1, . . . , ar) ≠ 0. As A is

generated in degree one, there is a homogeneous polynomial g of degree n −m which gives

this element a′. Then gf is a nonzero homogeneous polynomial of degree n, and the above

computation shows that (gf)(∂1, . . . , ∂r) ⋅P must not be zero. Then f(∂1, . . . , ∂r) ⋅P cannot

be zero, so f is not in I. Thus we have showed that f in I implies f in ker Φ.

Suppose now that f(a1, . . . , ar) = 0, so f is in ker Φ. Then

f(∂1, . . . , ∂r) ⋅ P

= ∑
β1+...+βr=m

∑
α1+...+αr=n

cβ1,...,βra
α1
1 ⋯aαrr ( n

α1, . . . , αr
)∂β11 ⋯∂βrr ⋅ (xα1

1 ⋯xαrr )

= ∑
β1+...+βr=m
α1+...+αr=n

βi≤αi for i=1,...,r

cβ1,...,βra
α1
1 ⋯aαrr ( n

α1, . . . , αr
) α1!

(α1 − β1)!
⋯ αr!

(αr − βr)!
(xα1−β1

1 ⋯xαr−βrr )
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Substituting γi = αi − βi, notice that ∑γi = ∑αi −∑βi = n −m and so we obtain:

= ∑
γ1+...+γr=n−m

∑
β1+...+βr=m

cβ1,...,βra
β1
1 ⋯aβrr aγ11 ⋯aγrr ( n

γ1, . . . , γr
) (xγ11 ⋯xγrr )

=
⎛
⎝ ∑
β1+...+βr=m

cβ1,...,βra
β1
1 ⋯aβrr

⎞
⎠
( ∑
γ1+...+γr=n−m

aγ11 ⋯aγrr ( n

γ1, . . . , γr
) (xγ11 ⋯xγrr ))

=f(a1, . . . , ar)( ∑
γ1+...+γr=n−m

aγ11 ⋯aγrr ( n

γ1, . . . , γr
) (xγ11 ⋯xγrr ))

=0

thus f is in the ideal I.

We now use Theorem 3.3.2 to prove the following main lemma required for our result.

Lemma 3.3.3. Suppose A = ⊕n
i=0A

i and B = ⊕n
i=0B

i both have degree zero and degree

n pieces isomorphic to Z, are generated in degree one, and ring A has Poincarè duality.

Suppose additionally that

• there exists isomorphism ϕ ∶ A1 → B1 and

• for all a1, . . . , an ∈ A1 we have

a1 ⋅ . . . ⋅ an = ϕ(a1) ⋅ . . . ⋅ ϕ(an)

using fixed isomorphisms An ≅ Z ≅ Bn.

Then ϕ extends to give an isomorphism of A with the Gorenstein quotient of B, i.e.,

ϕ̃ ∶ A ≅→ Gor(B).

Proof. We apply Theorem 3.3.2 to A and to the Gorenstein quotient Gor(B). It is clear that

A already satisfies the conditions of Theorem 3.3.2, so A ≅ Z[∂1, . . . , ∂r]/I where r is the

rank of A1 and ideal I is the annihilator of the power map P described in Theorem 3.3.2.

We need to show that Gor(B) also satisfies these conditions. First note that B0 ≅ Z ≅ Bn

so the multiplication B0 ×Bn → Bn ≅ Z is already non-degenerate, therefore Gor(B)0 ≅ Z ≅
Gor(B)n. Also, by construction, Gor(B) has Poincarè duality. Finally, we consider the map

on degree one pieces:

A1 ϕ→ B1 q→ Gor(B)1,
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where q is the map in the construction of the Gorenstein quotient. Call this composition

ϕ̃ ∶ A1 → Gor(B)1. We claim this composition is an isomorphism. Since ϕ is an isomorphism

and q is surjective, ϕ̃ is surjective and we only need to verify injectivity. Suppose for con-

tradiction that some nonzero a ∈ A1 has image ϕ̃(a) = q(ϕ(a)) = 0 in Gor(B)1. Since ϕ is

an isomorphism, ϕ(a) = b for some nonzero b ∈ B1. Then b is in the ideal in Lemma 3.3.1,

so it is a linear combination of xi satisfying xi ⋅ Bn−deg(xi) = 0. Since b ∈ B1, xi’s generat-

ing it must be in degree zero or one. We argued above that B0 is not annihilated in this

construction, so we can only have xi ∈ B1. Any linear combination of elements annihilating

Bn−1 must also annihilate Bn−1 so we must have b ⋅ Bn−1 = 0. This gives a contradiction

because A has Poincarè duality, but the element a pairs with An−1 to give 0 via the fact

a1⋯an = ϕ(a1)⋯ϕ(an) with a1 = a and b = ϕ(a1).

Thus Gor(B) satisfies the conditions in Theorem 3.3.2, and hence Gor(B) ≅ Z[∂1, . . . , ∂r]/I.

We already know that A is isomorphic to this operator algebra, thus A ≅ Gor(B).

3.3.2 Intersection Theory

We now recall the definitions of Chow groups and, for the case of smooth toric varieties,

Chow cohomology.

Definition 3.3.4. For a toric variety XΣ, the Chow group Ak(XΣ) is generated by orbit

closures V (σ) for σ ∈ Σ of codimension k.

When the variety XΣ is smooth, we define Ak(XΣ) = An−k(XΣ). There is an intersection

product on A∗(XΣ) which respects the grading. When XΣ is smooth and projective, we

have the following description of the Chow ring; see [Ful93].

Proposition 3.3.5. For XΣ a smooth projective toric variety, A∗(XΣ) ≅H∗(XΣ) ≅ Z[D1, . . . ,Dd]/I
where the Di are T -invariant divisors on XΣ corresponding to ray generators vi and I is the

ideal generated by the following types of relation:

• Di1⋯Dik for vi1 , . . . , vik not contained in any cone of Σ and

• ∑d
i=1⟨u, vi⟩Di for u ∈M .

54



Unfortunately, neither of the two varieties we are interested in, XGZ and G/B, are smooth

projective toric varieties.

More generally, one can define Chow groups for an arbitrary variety; see [Ful13]. Let

Ak(X) be the group of algebraic k-cycles, formal sums of irreducible subvarieties of X

of dimension k modulo rational equivalence. These rational equivalences are generated as

divisors of rational functions on k + 1-dimensional subvarieties of X. When X is a smooth

variety, we let Ak(X) = An−k(X), then the product defined using transverse intersection gives

A∗(X) the structure of a graded algebra ([Ful13, Proposition 8.3]). Again, an irreducible

subvariety V ⊂X of dimension k generates a class [V ] ⊂ An−k(X) just as in the case of toric

varieties, though this time we do not have the correspondence between closed T -invariant

subvarieties and cones in the fan. For certain important classes of varieties, there are relations

between the Chow ring A∗(X) and the cohomology ring H∗(X). The following proposition

can be found in [Ful13, Example 19.1.11].

Proposition 3.3.6. If X has a cellular decomposition such as is the case for X = G/B with

the Bruhat decomposition, then there is an isomorphism

H∗(X) ≅ A∗(X).

This can be combined with the well-known Borel description of the cohomology ring of

G/B,

H∗(G/B) ≅ Z[ΛR]/IW , (3.6)

where ΛR ≅ Rn−1 is the weight lattice tensored with R, and IW is the ideal generated by non-

constant Weyl group invariant polynomials. We recall that the map Λ→H2(G/B) given by

λ↦ c1(Lλ) is additive as Lλ⊗Lµ = Lλ+µ, and extends to give an isomorphism of graded rings

as both are generated by the above graded pieces. We have the following isomorphism:

Λ ≅H2(G/B) ≅ Pic(G/B). (3.7)

Alternatively, H∗(G/B) can be viewed as the polytope algebra of the GZ family, see

[Kav11, Corollary 5.3]. There it is shown that

H∗(G/B) ≅ Sym(ΛR)/I
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where I is the ideal of polynomials which, when viewed as differential operators, annihilate

the volume polynomial of the GZ polytopes.

Next, we recall the Chow cohomology of a non-smooth toric variety XΣ. Chow groups

and rings have been defined for singular toric varieties, the so-called operational Chow ring,

by Fulton and MacPherson in [FM81]. As in the smooth case, the Chow group Ak(X) is

generated by orbit closures V (σ) for σ ∈ Σ(n − k), however these groups may have torsion.

In the case that the fan Σ is complete (as it is for ΣGZ), we define Ak(X) = Hom(Ak(X),Z)
(see [FS97]). The main goal of Fulton and Sturmfels in [FS97] is to construct an isomorphism

between A∗(XΣ) and another graded ring more combinatorial in nature. We discuss this in

the following section.

3.3.3 Minkowski Weights

In this section we recall the description of the Chow cohomology ring of a toric variety in

terms of Minkowski weights (see [FS97]). Let Σ(k) be the set of cones of dimension k in a

fan Σ.

Definition 3.3.7. A function c ∶ Σ(n−k)→ Z is a Minkowski weight if it satisfies a balancing

condition

∑
σ∈Σ(n−k),σ⊃τ

⟨u,nσ,τ ⟩c(σ) = 0 (3.8)

where nσ,τ is a lattice point in σ which generates Nσ/Nτ , the quotient of the lattices spanned

by σ and τ . The above equation must be satisfied for all u ∈M(τ), the lattice perpendicular

to the span of τ .

Let MW k denote the set of Minkowski weights on cones of codimension k. For two

Minkowski weights, c ∈MW p and c̃ ∈MW q, the product c ∪ c̃ ∈MW p+q is given by

(c ∪ c̃)(γ) = ∑
(σ,τ)∈Σ(n−p)×Σ(n−q)

mγ
σ,τc(σ)c̃(τ)

where γ is a cone of codimension p+q, and mγ
σ,τ = [N ∶ Nσ +Nτ ] and the sum is over all pairs

of cones (σ, τ) which both contain γ and such that σ meets τ + v for fixed generic vector v.

This is the content of [FS97] Theorem 4.2.
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The goal of [FS97] is to give an isomorphism between the ring of Minkowski weights and

the operational Chow ring of a complete toric variety XΣ. First, they show MW k ≅ Ak(XΣ)
in [FS97, Theorem 3.1]. As a consequence,

Pic(XΣ) ≅ A1(XΣ) (3.9)

in this situation. It is proven in [KP08, Corollary 4.6] that for any toric variety there is an

isomorphism Pic(X) ≅ A1(X). The multiplication of Minkowski weights described above

gives MW ∗(XΣ) the structure of a graded ring isomorphic to the operational Chow ring.

Example 3.3.8 (Hypersimplex). The following is an example of a variety where the ring

MW ∗ is not generated by MW 1. See Example 3.5 of [FS97] or, equivalently, Example 4.2 of

[KP08]. We consider the fan ΣH over the cube in R3 with vertices (±1,±1,±1) then examine

the ring of Minkowski weights for the toric variety XΣH . The rays in the fan ΣH will be

notated as follows:

ρ1 = ⟨1,1,1⟩ ρ5 = −ρ1

ρ2 = ⟨1,1,−1⟩ ρ6 = −ρ2

ρ3 = ⟨1,−1,1⟩ ρ7 = −ρ3

ρ4 = ⟨−1,1,1⟩ ρ8 = −ρ4.

The 2-dimensional cone spanned by ρi and ρj will be denoted σij, and similarly the 3-

dimensional cone spanned by ρi, ρj and ρk will be denoted σijk.

We first show that MW 1 ≅ Z. We recall that a weight c ∈ MW 1 is a map on cones of

codimension 1, which in this example will have dimension 2. Let

c(σij) = cij

for each cone σij. We will have a relation as in Equation (3.8) for each ray ρk. As ΣH is

the fan over a cube, without loss of generality, we can consider the equation for the ray ρ1

and by symmetry draw conclusions about the relations corresponding to other rays. Each

ray is contained in exactly three cones of dimension 2. For ρ1, the balancing condition will

involve the cones σ12, σ13 and σ14. The other ingredients we require are the vectors nσ1i,ρ1 for
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i = 2, . . . ,4. Again, appealing to symmetry, it will be enough to understand n12. Recall n12 is

the lattice point in σ12 which generates the lattice Nσ12/Nρ1 , so since the rays are orthogonal,

we can take n12 = ρ2 and similarly n1i = ρi. It is enough to consider the balancing equations

for u ∈ {⟨1,0,−1⟩, ⟨0,1,−1⟩} as these vectors form a basis for the lattice M(ρ1) orthogonal

to ρ1. We obtain:

0 =
4

∑
i=2

⟨⟨1,0,−1⟩, ρi⟩c1i =2c12 − 2c14

0 =
4

∑
i=2

⟨⟨0,1,−1⟩, ρi⟩c1i =2c12 − 2c13.

Thus the balancing equations associated with ρ1 imply that the value of c on all 2-dimensional

cones is the same. The symmetry of our fan implies that this same computation can be done

for any other ray, and hence the value of c on all 2-dimensional cones is the same, so therefore

MW 1 ≅ Z.

To show that MW ∗ is not generated by MW 1, it is enough to show that rank MW 2 > 1.

To prove this, let c ∈MW 2. Recall that codimension 2 cones in ΣH are rays. Let c(ρi) = ci,
then the balancing condition

8

∑
i=1

ciρi = 0

must be satisfied. As this equation is a 3-dimensional vector equation, our 8 values {c1, . . . , c8}
must satisfy at most 3 additional equations, hence rank MW 2 ≥ 5. It can be shown that these

equations are independent and that MW 2 ≅ Z5 and thus cannot be generated by products

of elements of MW 1.

3.3.3.1 GZ Example, n = 3 We next compute the Chow ring of XGZ for n = 3 using

Minkowski weights. We consider the variety constructed from the weight λ = (−1,0,1) for

ease of computation. The polytope ∆λ is defined by the following array of inequalities

−1 0 1

x y

z
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and has normal fan ΣGZ as in Figure 3.12. We enumerate the rays as follows:

ρ1 = (1,0,0) ρ3 = (0,1,0) ρ5 = (1,0,−1)
ρ2 = (−1,0,0) ρ4 = (0,−1,0) ρ6 = (0,−1,1).

Figure 3.12: Rays of ΣGZ for n = 3

Likewise, we let σij denote the 2-dimensional cone spanned by rays ρi and ρj.

σ13 σ23 σ24

σ15 σ25 σ35 σ45

σ16 σ26 σ36 σ46

Similarly, the collection of 3-dimensional cones are:

γ135 γ235 γ245 γ1456

γ136 γ236 γ246

We now determine MW k for each value k = 0, . . . ,3, as these are the only codimensions

in the fan Σ. We first compute MW 3. There is a single cone of codimension 3, namely, the

origin. Then a Minkowski weight on Σ(3) is a map 0→ Z, and there are no cones τ ⊂ 0, thus

no relations to satisfy. Hence

MW 3 ≅ Z. (3.10)
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We next determine MW 2. A weight c ∈MW 2 is a function on cones of codimension 2,

i.e., on rays ρi. Let c(ρi) = ci, then the single relation coming from the cone τ = 0 which is a

subcone of all ρi is given by
6

∑
i=1

ciρi (3.11)

as the positive generator of the lattice Nρi/N0 is just the ray ρi, and the lattice orthogonal to

0 is the entire lattice. Expanding this equation in terms of our basis, we get three relations:

c1 − c2 + c5 = 0

c3 − c4 − c6 = 0

−c5 + c6 = 0.

We see from this that any weight c ∈MW 2 is determined by its value on three rays, suppose,

c(ρ2) = a, c(ρ4) = b and c(ρ6) = c, then

c(ρ1) = a − c c(ρ3) = b + c c(ρ5) = c
c(ρ2) = a c(ρ4) = b c(ρ6) = c.

(3.12)

Thus MW 2 ≅ Z3.

Next, we examine MW 1. These are functions on codimension 1 cones σij. Let c ∈MW 1

and suppose the value on cone σij is c(σij) = cij. Then, a weight of codimension 1 is given

by the data

c13 c23 c24

c15 c25 c35 c45

c16 c26 c36 c46

subject to relations coming from the rays {ρi}.

First, the relation for τ = ρ1 involves the cones σ13, σ15 and σ16. For each of these, we need

to compute nστ , the lattice point in σ which generates the one-dimensional lattice Nσ/Nτ .

The relation will be a vector equation in the vector space perpendicular to ρ1 = (1,0,0). We

compute:

n13 = (0,1,0), n15 = (0,0,−1), and n16 = (0,−1,1)
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where all vectors are considered modulo ρ1. The relation equation becomes

c13 ⋅ (0,1,0) + c15 ⋅ (0,0,−1) + c16 ⋅ (0,1,−1) = 0

which implies

c13 = c15 = c16.

Similar computations for the other rays yield the following results:

c13 = c15 = c16 = c25 = c26

c24 = c35 = c36 = c45 = c46

c23 = c13 + c24

For later computations, we will let a and b be the generators of MW 1 ≅ Z2, that is,

a = c13 = c15 = c16 = c25 = c26

b = c24 = c35 = c36 = c45 = c46

c23 = a + b.

We now examine MW 0. A weight c ∈ MW 0 is a function on top-dimensional cones

subject to relations coming from each 2-dimensional cone. Each 2 dimensional cone σij

separates two top-dimensional cones, and the corresponding relation gives equality between

the values of c on each pair of top-dimensional cones. Hence MW 0 ≅ Z as the value of c on

each 3-dimensional cone must be the same. In summary, we have the following:

MW 0 ≅ Z

MW 1 ≅ Z2

MW 2 ≅ Z3

MW 3 ≅ Z.

Before understanding the product structure on MW ∗, it is already clear that the ring cannot

have Poincarè duality as the rank of MW 2 is greater than MW 1.
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Our next goal is to understand the product structure on MW ∗(XGZ). For weights

c ∈ MW p and c̃ ∈ MW q, their product is a function on cones of codimension p + q, and its

value on a cone γ ∈MW p+q is given by

(c ∪ c̃)(γ) = ∑
σ,τ∈Σ(n−p)×Σ(n−q)

mγ
στ ⋅ c(σ) ⋅ c̃(τ), (3.13)

where mγ
στ is [N ∶ Nσ +Nτ ] as long as

(a) σ, τ ⊃ γ

(b) σ meets τ + v for a generic fixed v ∈ N

otherwise mγ
στ = 0. Recall also that Σ(n − p) is the set of cones in Σ of dimension n − p.

Our goal is to compute products of Minkowski weights in our example to determine

whether MW ∗(XGZ) is generated in degree 1. To this end, let c, c̃ ∈MW 1(XGZ), such that

c ∶ {σ13, σ15, σ16, σ25, σ26}↦ a

c ∶ {σ24, σ35, σ36, σ45, σ46}↦ b

c ∶ {σ23}↦ a + b

c̃ ∶ {σ13, σ15, σ16, σ25, σ26}↦ ã

c̃ ∶ {σ24, σ35, σ36, σ45, σ46}↦ b̃

c̃ ∶ {σ23}↦ ã + b̃.

Then c ∪ c̃ ∈ MW 2 will be evaluated on cones of codimension 2, i.e., rays. It is enough to

determine the value of this weight on the rays ρ2, ρ4 and ρ5; see Equation (3.12).

We begin by examining (c∪ c̃)(ρ2) via Equation (3.13). Recall that this involves looking

at all pairs (σ, τ) ∈ Σ(2)×Σ(2) where σ and τ both contain ρ2 and σ meets τ +v for a generic

fixed v ∈ N . The cones in Σ(2) which contain ρ2 are {σ23, σ24, σ25, σ26}, so σ, τ will come

from this collection. Since all these cones involve ρ2 = (−1,0,0), we can sketch the relevant

cones in the yz-plane where, for example, σ23 can be viewed as ρ3 = (1,0). In Figure 3.13, we

see the cones for c in blue, and for c̃ in green using a shift of v = (.1, .1, .1). Then there are

two pairs (σ, τ) which meet for this vector v, either (σ, τ) = (σ23, σ25) or (σ, τ) = (σ26, σ24).
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Figure 3.13: Intersection of σ and τ + v

The last ingredient required to compute this product are the coefficients mρ2
στ for the sum.

Recall mγ
στ is [N ∶ Nσ +Nτ ]. In both cases, Nσ +Nτ = N so mρ2

στ = 1. Thus we have

(c ∪ c̃)(ρ2) = c(σ23)c̃(σ25) + c(σ26)c̃(σ24)

= (a + b)ã + a(b̃)

= aã + bã + ab̃.

Similar computations for (c ∪ c̃)(ρ4) and (c ∪ c̃)(ρ5) yield:

(c ∪ c̃)(ρ4) = bb̃

(c ∪ c̃)(ρ5) = bã + ab̃.

Thus we see that products c ∪ c̃ in fact generate the entire 3-dimensional space MW 2, and

hence MW ∗ for ΣGZ is generated in degree 1 for the case n = 3.
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3.3.3.2 GZ Example, n = 4 For computations of A∗(XGZ) in the case n = 4 we utilize

SageMath [The19]. See Appendix 4 for the code. We fix an order on the set of cones of

codimension k and represent a weight c ∈MW k as a vector in Z∣Σ(n−k)∣. We then use linear

algebra to determine the rank of MW k as well as a basis. We also implement the product

structure of MW ∗. We obtain the following results for the case n = 4:

rank MW 0 = rank MW 6 = 1 rank MW 3 = 11

rank MW 1 = 3 rank MW 4 = 12

rank MW 2 = 6 rank MW 5 = 6.

We choose a basis for MW 1 and compute products of these elements in order to determine

the Lefschetz subalgebra generated by MW 1. We compute that the rank of the degree three

graded piece of LMW ∗ is 10, so there must be a generator of MW ∗ in degree three. In

particular, we have an example where the Chow ring A∗(XGZ) is not generated in degree

one.

3.3.4 Main Theorem

We now state and prove our main theorem relating the Chow ring of the toric variety

XGZ constructed from the fan of the Gelfand-Zetlin polytope to the cohomology ring of

the flag variety G/B. Recall from Proposition 3.3.6 that A∗(G/B) ≅ H∗(G/B) where the

isomorphism doubles degree.

Theorem 3.3.9. For XGZ the toric variety associated to GZ fan Σ ⊂ RN and the flag variety

G/B for G = SLn(C), the Chow ring A∗(G/B) can be identified with the Gorenstein quotient

of the Lefschetz subalgebra of A∗(XGZ).

Proof. We first show that there is an isomorphism of groups A1(G/B) ≅ A1(XGZ). In

Equation (3.7) we recalled that

A1(G/B) ≅ Pic(G/B) ≅ Λ.

In Equation (3.9) we recalled that since ΣGZ is a complete toric variety,

A1(XGZ) ≅ Pic(XGZ).
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We next use the correspondence between Cartier divisors and piecewise linear functions to

establish

Pic(XGZ) ≅ PL(ΣGZ). (3.14)

Recall that for [D] ∈ Pic(XGZ), where D = ∑aρDρ is Cartier, the corresponding piecewise

linear function f satisfies f(vρ) = aρ where ρ ∈ Σ(1), Dρ is the corresponding T -invariant

divisor, and vρ is the ray generator. In PL(ΣGZ) the functions are defined up to shifting.

Such a piecewise linear function corresponds to a virtual polytope normal to ΣGZ with

support numbers {aρ}.

PL(ΣGZ) ≅ P∗(ΣGZ) (3.15)

Finally, we can identify P∗(ΣGZ) with Λ via the correspondence between ∆ and λ es-

tablished in Proposition 3.1.2. We identify ∆ ∈ P∗(ΣGZ) as a difference P − Q of convex

polytopes normal to ΣGZ , apply Proposition 3.1.2 to each, then simplify the resulting differ-

ence of GZ polytopes to obtain ∆ = c+∆λ where ∆λ may be virtual. This map P∗(ΣGZ)→ Λ

is clearly surjective. We briefly justify injectivity. Suppose ∆ = c + ∆λ = c′ + ∆λ′ is a shift

of two GZ polytopes, then λ is a shift of λ′, and hence the two are identified in Λ. It is

a homomorphism because of additivity of GZ polytopes, see Proposition 2.3.2. Combining

these facts, we have established that

A1(XGZ) ≅ Λ ≅ A1(G/B).

The next step is to show that self-intersection numbers on A1(XGZ) ≅ A1(G/B) match.

Since both groups are isomorphic to Picard groups, it makes sense to consider the degree of

the line bundle associated to λ ∈ Λ for each variety. It will be enough to show that degrees

match for λ dominant. Let λ be a dominant weight, then Lλ and L∆λ
are the associated line

bundles on G/B and XGZ respectively. We recall that by Proposition 2.5.2 and Proposition

2.5.3 we have

deg(G/B,Lλ) = N !VolN(∆λ)

and

deg(XGZ , L∆λ) = N !VolN(∆λ).
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Finally, we show that this isomorphism between A1(G/B) and A1(XGZ) extends using

Lemma 3.3.3 to give our desired result. We apply this lemma with A = A∗(G/B) and

B = LA∗(XGZ) the Lefschetz subalgebra of A∗(XGZ). Since A is the cohomology ring of the

flag variety, we have A0 ≅ AN ≅ Z, and we have B0 ≅ Z. Note that in the Lefschetz subalgebra

we will have BN ≅ Z as deg(XGZ , L∆λ
) ≠ 0. Both A and B are generated in degree one,

and A has Poincarè duality. Finally, degrees of line bundles corresponding to λ ∈ Λ match.

Consequently, we obtain an isomorphism

A∗(G/B) ≅ Gor(LA∗XGZ)

as desired.
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4.0 APPENDIX

from f u t u r e import p r i n t f u n c t i o n
from sage . matrix . c on s t ruc to r import Matrix
from sage . misc . f un c t i o n a l import rank
from sage . misc . prandom import random
from sage . geometry . cone import Cone
from sage . combinat . i n t e g e r v e c t o r we i gh t ed import

WeightedIntegerVectors

c l a s s MW:
de f i n i t ( s e l f , fan ) :

”””The graded r ing o f Minkowski weights on fan . ”””
s e l f . f an = fan
s e l f . cones = fan . cones
s e l f . dim = fan . dim ( )
s e l f . rk , s e l f . A = s e l f . s e t r a nk s ma t r i c e s ( )
s e l f . A RR = [M. eche lon form ( ) f o r M in s e l f . A ]
s e l f . ba s e s = [M.T. ke rne l ( ) . b a s i s ( ) f o r M in s e l f . A ]
s e l f . N = fan . l a t t i c e ( )
s e l f . suba l g eb ra gene ra t ed = False

de f b a s i s ( s e l f , k ) :
”””Returns a ba s i s f o r MŴ k . ”””
return s e l f . ba s e s [ k ]

de f ranks ( s e l f ) :
”””Returns l i s t o f ranks o f MW graded by codimension . ”””
return s e l f . rk

de f product ( s e l f , w1 , cd1 ,w2 , cd2 ) :
”””Computes product o f two weights . ”””
cd = cd1+cd2
d = s e l f . dim − cd
d1 = s e l f . dim − cd1
d2 = s e l f . dim − cd2
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a s s e r t s e l f . check we ight (w1 , cd1 ) ,”Weight w1 i s not a v a l i d
we igh t o f codimension cd1”

a s s e r t s e l f . check we ight (w2 , cd2 ) ,”Weight w2 i s not a v a l i d
we igh t o f codimension cd2”

i f d < 0 :
re turn [ ]

e l s e : #compute product and eva luate on a l l cones o f dim d
so ln = [ ]
cones = s e l f . f an (d)
Sigmas = s e l f . f an ( d1 )
Taus = s e l f . f an ( d2 )
#determine g ene r i c v
v = s e l f . g e n e r i c ( s e l f . f an )
new weight = [ ]
f o r c in cones :

# only need m { s ig , tau} when both s ig , tau conta in c
s i g c = s e l f . c on e s c on t a i n i ng ( c , Sigmas )
tau c = s e l f . c on e s c on t a i n i ng ( c , Taus )
r e l e van t = s e l f . c h e c k g en e r i c ( s i g c , tau c , v )
c sum = 0
#fo r each pair , compute m { s ig , tau} = [N: N s ig + N tau ]
f o r ( s i g , tau ) in r e l e van t :

N s ig = s i g . s u b l a t t i c e ( )
N tau = tau . s u b l a t t i c e ( )
N sum = s e l f . N . submodule ( N s ig . b a s i s ( )+N tau . ba s i s

( ) )
#N sum . index in (N) i s m { s ig , tau}
c sum += N sum . index in ( s e l f . N) ∗w1 [ Sigmas . index (

s i g ) ]∗w2 [ Taus . index ( tau ) ]
new weight . append ( c sum )

a s s e r t s e l f . check we ight ( new weight , cd ) ,”New weigh t f a i l s ”
re turn new weight

de f ba l anc ing ( s e l f , tau ) :
”””Returns r e l a t i o n s a s s o c i a t ed with cone tau . ”””
r e l n s = [ ]
d = tau . dim ( )
l = len ( s e l f . cones (d+1) ) # dimension o f r e l a t i o n s
r e l e van t = tau . f a c e t o f ( )
b a s i s = tau . o r t h o g ona l s ub l a t t i c e ( ) . b a s i s ( )
f o r b in ba s i s : #each b g i v e s r e l a t i o n

v = [ ] # vecto r ho ld ing r e l a t i o n s
f o r c in s e l f . cones (d+1) :

i f c in tau . f a c e t o f ( ) :
Q = c . r e l a t i v e q u o t i e n t ( tau )
n = Q. gens ( ) [ 0 ]
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v . append (b∗n)
e l s e :

v . append (0)
r e l n s . append (v )

re turn r e l n s

de f s e t r ank ( s e l f , cd ) :
”””Returns the rank o f degree ‘ cd ‘ as we l l as the matrix o f

r e l a t i o n s . ”””
d = s e l f . dim − cd
ConeList = s e l f . cones (d)
n = len ( ConeList )
#generate ba lanc ing cond i t i on s
ConeRelns = s e l f . cones (d−1)
r e l a t i o n s = [ ]
f o r c in ConeRelns :

ba lance = s e l f . ba l anc ing ( c )
f o r b in balance :

r e l a t i o n s . append (b)
#r e l a t i o n s may be redundant , determine rank
A = Matrix ( r e l a t i o n s )
r = rank (A)
#ba s i s o f k e rne l (A.T) i s b a s i s f o r MŴ cd
return n−r , A

de f s e t r a nk s ma t r i c e s ( s e l f ) :
””” I t e r a t e s through a l l codimens ions and i n i t i a l i z e s l i s t s o f

ranks and r e l a t i o n matr i ce s ”””
rnks = [ ]
mtrx = [ ]
f o r cd in range ( s e l f . dim ) :

r ,M = s e l f . s e t r ank ( cd )
rnks . append ( r )
mtrx . append (M)

rnks . append (1 )
mtrx . append (Matrix (1 ) )
re turn rnks , mtrx

de f check we ight ( s e l f ,w, cd ) :
”””Determines whether ‘w‘ i s a balanced weight o f codimension ‘

cd ‘ . ”””
#f i r s t check that l ength o f w i s compatible with codimension cd
d = s e l f . dim−cd
i f l en (w) != l en ( s e l f . f an (d) ) :

r e turn Fal se
#l eng th s compatible , mul t ip ly matr i ce s
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r e s = s e l f . A [ cd ]∗ Matrix (w) .T ##re s should be zero vec to r o f
l ength = num r e l a t i o n s

re turn r e s . i s z e r o ( )

de f g e n e r i c ( s e l f , fan ) :
”””Returns a vec to r ‘v ‘ which i s g en e r i c with r e sp e c t to the

g iven fan . ”””
d = fan . dim ( )
#random candidate f o r g en r i c vec to r
v = [ random ( ) f o r r in range (d) ]
#check whether gener i c , i . e . , v NOT in any cones o f cd 1
needToCheck = True
whi l e needToCheck :

coneFlag = False #change to t rue i f v in a cone o f codim 1
f o r c in fan . cones (d−1) :

i f v in c :
coneFlag = True

i f coneFlag :
#generate new random vecto r and try again
v = [ random ( ) f o r r in range (d) ]

e l s e :
#vecto r v i s g en e r i c
needToCheck = False

re turn v

de f c h e ck g en e r i c ( s e l f , cones1 , cones2 , v ) :
”””Returns pa i r s o f cones which i n t e r s e c t with r e sp e c t to ‘v ‘ .

”””
good pa i r s = [ ]
f o r c1 in cones1 :

f o r c2 in cones2 :
# check i f v i s in c1−c2 (mink sum c1 , −c2 )
C = Cone ( rays = [ r f o r r in c1 . rays ( ) ]+[−1∗ r f o r r in

c2 . rays ( ) ] )
i f C. conta in s ( v ) :

good pa i r s . append ( ( c1 , c2 ) )
re turn good pa i r s

de f c on e s c on t a i n i ng ( s e l f , cone , c o n e l i s t ) :
”””Returns s u b l i s t o f c o n e l i s t whose cones have cone as a f a c e .

”””
to re tu rn = [ ]
f o r c in c o n e l i s t :

i f cone . i s f a c e o f ( c ) :
t o r e tu rn . append ( c )

re turn to re tu rn
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