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Variable Stepsize, Variable Order Methods for Partial Differential Equations

V. P. DeCaria, PhD

University of Pittsburgh, 2019

Variable stepsize, variable order (VSVO) methods are the methods of choice to efficiently

solve a wide range of ODEs with minimal work and assured accuracy. However, VSVO

methods have limited impact in complex applications due to their computational complexity

and the difficulty to implement them in legacy code. The goal of this dissertation is to

develop, analyze, and test new VSVO methods that have the same computational complexity

as their nonadaptive counterparts per step. Adaptivity allows these methods to take fewer

steps, which makes them globally less complex.

Herein, we show how to use any backward differentiation formula (BDF) method as the

basis for a VSVO method. Order adaptivity is achieved using an inexpensive post-processing

technique known as time filtering. Time filters do not add to the asymptotic complexity of

these methods, and allow for every possible order in the VSVO family to be computed for the

same cost as one BDF solve. This approach yields new, nonstandard timestepping methods

that are not in the literature, and we analyze their stability and accuracy herein.

Backward Euler (BDF1) and BDF2 are extremely ubiquitous methods, and this research

demonstrates how they can be converted to order adaptive codes with only a few additional

lines of code. We also develop a solver called Multiple Order One Solve Embedded 2,3,4

(MOOSE234). MOOSE234 is a VSVO method based on BDF3 that computes approxima-

tions of order two, three and four each step. All three approximations in MOOSE234 are at

least A(α) stable, and the second order approximation is A stable.

While these methods are generally applicable to any system that is first order in time,

we focus on issues pertaining to the Navier-Stokes equations. Our methods have been opti-

mized for Navier-Stokes solvers, and we include linearly implicit and implicit-explicit (IMEX)

versions.
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1.0 Introduction

This research addresses the specific need for time marching methods in a high perfor-

mance computing setting to be adaptive in an efficient and easily implementable way. Due to

the perceived computational and implementational difficulties of adaptive algorithms, many

practitioners resort to simulations performed on uniform time grids with a static formula.

While this is simple to implement, it is inefficient when the same small grid size that is

required for sudden transient events is also used in uneventful periods. The situation is even

worse when using a low order method that requires small stepsizes for accuracy require-

ments, or a high order method that requires small stepsizes for stability. Finally, there is

the problem of how to pick the optimal global stepsize a’priori.

Attaining time accuracy in numerical simulations of many flows ranges from difficult

to not yet possible. Contributing factors (each a topic of current research) include phe-

nomenological models of unresolved processes omitting dynamic effects such as intermittent,

Newtonian uncertainty implying a finite predictability horizon (requiring ensemble simula-

tions), lack of computational resources for spacial meshes in the asymptotic regime (a central

issue of large eddy simulation) and the low order, non-adaptive time discretizations com-

monly used in computational fluid dynamics (CFD). These issues are linked. For example,

where model steady state represents statistical equilibrium, constant stepsize backward Euler

is commonly used to time step to steady state.

This dissertation considers higher order, time adaptive discretizations in CFD. Ap-

proaches for time adaptivity include small time step, adaptive, explicit 1-step methods (com-

mon in gas dynamics) for short time simulations, and the goal oriented, adaptive space-time

Galerkin Finite Element methods, e.g., [12]. In [59], Kay, Gresho, Griffiths and Silvester

developed a time adaptive trapezoid rule method suitable for longer time simulations where

errors are estimated using an AB2 implementation not requiring additional storage. The

aim herein is similar to that of [59]. We give higher order, time adaptive methods for time

accurate fluid flow simulations. Due to the richness of scales in higher Reynolds number

flows, single order, variable timestep linear multistep methods are limited to A-stable (hence
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second order) methods. We present a family of variable order methods up to order four,

although the possibility exists to extend this to higher orders. These methods are modular,

and are easily implementable on top of several popular existing methods such as the back-

ward differentiation formula (BDF) methods. Switching the order of the method is trivial,

and does not require additional linear or nonlinear solves, or function evaluations to do so.

Good, general purpose variable step, variable order (VSVO) methods such as Gear’s

method, or MATLAB’s ode15s already exist. We stress that the methods herein address

a specific difficulty of complex applications (like CFD) that are constrained by cognitive,

memory, and computational complexity. While uncommon, it is certainly possible that

general purpose VSVO methods can be adapted to CFD and that special purpose methods

(such as herein) can be made more general. Heuristics are often used in production codes to

further improve efficiency. These possibilities are interesting directions for exploration.

Our approach to adaptivity is novel, and yields new timestepping methods not equivalent

to any standard methods in the literature. To adapt the order, we use time filters, which are

an established tool to non-intrusively modify weather models to suppress spurious, nonphys-

ical modes to improve predictions [8] with recent improvements [83],[84],[85], [66],[5], [50].

They have also been used to improve the physical fidelity of artificial compression methods

[28]. They are simple to implement and inexpensive to compute.

This dissertation is organized as follows. In Chapter 2, we develop a VSVO method

of orders one and two that is based on the backward Euler method for the Navier-Stokes

equations. This is then generalized to a family of VSVO methods based on the BDF methods

in Chapter 3. In Chapter 4, we revisit the specific method developed in Chapter 4 by

analyzing an implicit-explicit version. In Chapter 5, we prove some new stability results for

variable stepsize BDF2.

2



2.0 A Second Order VSVO Method Based on Implicit Euler

2.1 Introduction

The backward Euler time discretization is often used for complex, viscous flows due to its

stability, rapid convergence to steady state solutions and simplicity to implement. However,

it has poor time transient flow accuracy, [40], and can fail by overdamping a solution’s

dynamic behavior. For ODEs, adding a time filter to backward Euler, as in (2.3) below,

yields two, embedded, A-stable approximations of first and second order accuracy, [46].

This chapter develops this idea into an adaptive time-step and adaptive order method for

time accurate fluid flow simulation and gives an analysis of the resulting methods properties

for constant time-steps. For constant time-steps, the resulting Algorithm 1 below involves

adding only one extra line to a backward Euler code. The added filter step increases accu-

racy and adds negligible additional computational complexity, see Figure 1a and Figure 1b.

Further, both time adaptivity and order adaptivity, presented in Section 2.2 and tested in

Section 2.6, are easily implemented in a constant time step backward Euler code with O(20)

added lines.

Thus, algorithms herein have two main features. First, they can be implemented in a

legacy code based on backward Euler without modifying the legacy components. Second,

both time step and method order can easily be adapted due to the embedded structure of

the method. The variable step, variable order step (VSVO) method is presented in Section

2.2 and tested in Section 2.6.2.

Even for constant time-steps and constant order, the method herein does not reduce

to a standard / named method. Algorithm 1 with Option B is (for constant order and

time-step) equivalent to a member of the known, 2 parameter family of second order, 2-

step, A-stable one leg methods (OLMs), see Algorithm 4, Section 2.3. Stability and velocity

convergence of the (constant time step) general second order, two-step, A-stable method for

the Navier-Stokes equations was proven already in [38], see equation (3.20) p. 185, and has

been elaborated thereafter, e.g., [55].

3



Our velocity stability and error analysis, while necessary for completeness, parallels this

previous work and is thus collected in Appendix A.1. On the other hand, Algorithm 1 with

Option A does not fit within a general theory even for constant stepsize, and produces more

accurate pressure approximations.

We begin by presenting the simplest, constant stepsize case to fix ideas. Consider the

time dependent incompressible Navier-Stokes (NS) equations:

ut + u · ∇u− ν∆u+∇p = f, and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and

∫
Ω

p dx = 0,

u(x, 0) = u0(x) in Ω.

(2.1)

Here, Ω ⊂ Rd(d=2,3) is a bounded polyhedral domain; u : Ω × [0, T ] → Rd is the fluid

velocity; p : Ω× (0, T ] → R is the fluid pressure. The body force f(x, t) is known, and ν is

the kinematic viscosity of the fluid.

Suppressing the spacial discretization, the method calculates an intermediate velocity

ûn+1 using the backward Euler / fully implicit method. Time filters (requiring only two

additional lines of code and not affecting the BE calculation) are applied to produce un+1

and pn+1 follows:

Algorithm 1 (Constant 4t BE plus time filter). With u∗ = ûn+1 (Implicit) or u∗ = 2un −

un−1 (Linearly-Implicit), Step 1: (Backward Euler)

ûn+1 − un

∆t
+ u∗ · ∇ûn+1 − ν∆ûn+1 +∇p̂n+1 = f(tn+1),

∇ · ûn+1 = 0,

(2.2)

Step 2: (Time Filter for velocity and pressure)

un+1 = ûn+1 − 1

3
(ûn+1 − 2un + un−1) (2.3)

Option A: (No pressure filter)

pn+1 = p̂n+1.

Option B:

pn+1 = p̂n+1 − 1

3
(p̂n+1 − 2pn + pn−1)

Algorithm 1A means Option A is used, and Algorithm 1B means Option B is used.

4
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Figure 1: The time filter does not add to the computational complexity (Fig. 1a), yet

increases the method to second order (Fig. 1b).

Its implementation in a backward Euler code does not require additional function eval-

uations or solves, only a minor increase in floating point operations. Figure 1a presents a

runtime comparison with and without the filter step. It is apparent that the added computa-

tional complexity of Step 2 is negligible. However, adding the time filter step has a profound

impact on solution quality, see Figure 1b.

Herein, we give a velocity stability analysis in Section 2.4 and error analysis for constant

timestep in Appendix A.1. Since (eliminating the intermediate step) the constant time-step

method is equivalent to an A-stable, second order, two step method, its velocity analysis

has only minor deviations from the analysis in [38] and [55]. We also give an analysis of the

unfiltered pressure error, which does not have a parallel in [38] or [55].

The predicted (optimal) convergence rates are confirmed in numerical tests in Section

2.6. We prove the pressure approximation is stable and second order accurate provided only

the velocity is filtered. The predicted second order pressure convergence, with or without

filtering the pressure, is also confirmed in our tests, Figure 2.

The rest of the chapter is organized as follow. In Section 2.2, we give the full, self-

adaptive VSVO algorithm for a general initial value problem. Section 2.3 introduces some

5



important mathematical notations and preliminaries necessary and analyze the method for

the Navier-Stokes equations. In Section 2.4, we prove unconditional, nonlinear energy sta-

bility in Theorem 2.4.1. We analyze consistency error in Section 2.4.1. In A.1.2, we prove

O(∆t2) convergence for velocity, Theorem 2.4.2. The proof of the stability of the pressure is

in Theorem 2.5.1 in Section 2.5.1. We prove second order accuracy for pressure in Section

2.5.2. Numerical tests are given in Section 2.6 to validate the theoretical predictions.

2.1.1 Related work

Time filters are primarily used to stabilize leapfrog time discretizations of weather models;

see [74], [7], [83]. In [46] it was shown that the time filter used herein increases accuracy

to second order, preserves A-stability, anti-diffuses the backward Euler approximation and

yields an error estimator useful for time adaptivity. The analysis in [46] is an application of

classical numerical ODE theory and does not extend to the Navier-Stokes equations.

For the constant time step case, our analysis is based on eliminating the intermediate

approximation ûn+1 and reducing the method to an equivalent two step, OLM (a twin

of a linear multistep method). The velocity stability and convergence of the general A-

stable OLM was analyzed for the NSE (semi-implicit, constant time step and without space

discretization) in [38]. Thus, the constant time step, discrete velocity results herein follow

from these results.

There is considerable previous work on analysis of multistep time discretizations of var-

ious PDEs, e.g. Crouzeix and Raviart [21]. Baker, Dougalis, and Karakashian [10] gave a

long-time error analysis of the BDF methods for the NSE under a small data condition. (We

stress that the method herein is not a BDF method.) The analysis of the method in Girault

and Raviart [38] was extended to include spacial discretizations in [55]. The work in [55]

also shows how to choose those parameters to improve accuracy in higher Reynolds number

flows - a significant contribution by itself. Other interesting extensions include the work of

Gevici [37], Emmrich [30], [31], Jiang [54], Ravindran [73] and [64].

6



2.2 The Adaptive VSVO Method

Section 2.6.2 tests both the constant time step method and the method with adaptive

step and adaptive order. This section will present the algorithmic details of adapting both

the order and time step based on estimates of local truncation errors based on established

methods [42]. The constant time step Algorithm 1 involves adding one (Option A) or two

(Option B) lines to a backward Euler FEM code. The full self adaptive VSVO Algorithm 2

below adds O(20) lines. We first give the method for the initial value problem

y ′(t) = f(t, y(t)), for t > 0 and y(0) = y0.

Denote the nth time step size by ∆tn. Let tn+1 = tn + ∆tn and yn an approximation to

y(tn). The choice of filtering weights depend on ωn ..= ∆tn/∆tn−1, Step 2 below. TOL is

the user supplied tolerance on the allowable error per step.

Algorithm 2 (Variable stepsize, variable order 1 and 2 (VSVO-12)).

Step 1 : Backward Euler

yn+1
(1) − yn

∆tn
= f(tn+1, y

n+1
(1) )

Step 2 : Time Filter

yn+1
(2) = yn+1

(1) −
ωn

2ωn + 1

(
yn+1

(1) − (1 + ωn)yn + ωny
n−1)

)
Step 3 : Estimate error in yn+1

(1) and yn+1
(2) .

EST1 = yn+1
(2) − y

n+1
(1)

EST2 =
ωn−1ωn(1 + ωn)

1 + 2ωn + ωn−1 (1 + 4ωn + 3ω2
n)

(
yn+1

(2)

−(1 + ωn)(1 + ωn−1(1 + ωn))

1 + ωn−1

yn + ωn(1 + ωn−1(1 + ωn))yn−1

−
ω2
n−1ωn(1 + ωn)

1 + ωn−1

yn−2

)
.

Step 4 : Check if tolerance is satisfied.

7



If ‖EST1‖ < TOL or ‖EST2‖ < TOL, at least one approximation is acceptable. Go to

Step 5a. Otherwise, the step is rejected. Go to Step 5b.

Step 5a : At least one approximation is accepted. Pick an order and stepsize

to proceed.

If both approximations are acceptable, set

∆t(1) = 0.9∆tn

(
TOL

‖EST1‖

) 1
2

, ∆t(2) = 0.9∆tn

(
TOL

‖EST2‖

) 1
3

.

Set

i = arg max
i∈{1,2}

∆t(i), ∆tn+1 = ∆t(i), tn+2 = tn+1 + ∆tn+1, yn+1 = yn+1
(i) .

If only y(1) (resp. y(2)) satisfies TOL, set ∆tn+1 = ∆t(1) (resp. ∆t(2)), and yn+1 = yn+1
(1)

(resp. yn+1
(2) ). Proceed to Step 1 to calculate yn+2.

Step 5b : Neither approximations satisfy TOL.

Set

∆t(1) = 0.7∆tn

(
TOL

‖EST1‖

) 1
2

, ∆t(2) = 0.7∆tn

(
TOL

‖EST2‖

) 1
3

.

Set

i = arg max
i∈{1,2}

∆t(i), ∆tn = ∆t(i), tn+1 = tn + ∆tn

Return to Step 1 to try again.

For clarity, we have not mentioned several standard features such as setting a maximum

and minimum timestep, the maximum or minimum stepsize ratio, etc.

The implementation above computes an estimation of the local errors in Step 3. EST1

provides an estimation for the local error of the first order approximation y
(1)
n+1 since y

(2)
n+1 is

a second order approximation. For a justification of EST2, see Appendix A.2.

Standard formulas, see e.g. [41], are used to pick the next stepsize in Steps 5a and 5b.

Based on the previous ∆t and the current error estimator, the formula estimates the largest

next stepsize that can be taken by the method such that the tolerance will still be satisfied.

Out of the approximations that satisfy the tolerance, the approximation which yielded the

largest estimated ∆t is chosen to advance the solution.
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The numbers 0.9 in Step 5a and 0.7 in Step 5b are commonly used safety factors to make

the next approximation more likely to be accepted since the exact optimal ∆t is unknowable.

One more line is needed for linearly implicit methods. For linearly implicit

methods the point of linearization must also have O(∆t2) accuracy. For example, with

u∗ = un

un+1 − un

∆tn
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1 & ∇ · un+1 = 0 (2.4)

is a common first order linearly implicit method. The required modification in the BE step

to ensure second order accuracy after the filter is to shift the point of linearization from

u∗ = un to

u∗ =

(
1 +

∆tn
∆tn−1

)
un − ∆tn

∆tn−1

un−1 = (1 + ωn)un − ωnun−1.

Other simplifications. The algorithm can be simplified if only the time-step is adapted

(not order adaptive). It can be further simplified using extrapolation where the second order

approximation is adapted based on EST1 (pessimistic for the second order approximation).

2.3 Notations and Preliminaries

We introduce some notations and inequalities which will be used in later sections. (·, ·),‖·‖

denotes the L2(Ω) inner product and norm. C will denote a generic, finite constant depending

possibly on T , Ω and f . The velocity space X and pressure space Q are defined

X := H1
0 (Ω)d = {v ∈ H1(Ω)d : v|∂Ω = 0},

Q := L2
0(Ω)d = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

The divergence free space V is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q)}.

9



For measurable v : [0, T ]→ X, define for, respectively, 1 ≤ p <∞ and p =∞

||v||Lp(0,T ;X) =

(∫ T

0

||v(t)||pXdt
)1/p

and ||v||L∞(0,T ;X) = ess sup
0≤t≤T

||v(t)||X ,

|||v|||p,k =

(∫ T

0

‖v(t)‖p
Hk(Ω)

)1/p

and |||v|||∞,k = ess sup
0≤t≤T

‖v(t)‖Hk(Ω).

We define the skew-symmetrized nonlinear form:

B(u, v) := u · ∇v +
1

2
(∇ · u)v, ∀ u, v, w ∈ X,

b(u, v, w) := (B(u, v), w).

Lemma 2.3.1. There exists C > 0 such that

b(u, v, w) ≤ C‖∇u‖‖∇v‖‖∇w‖, ∀ u, v, w ∈ X

b(u, v, w) ≤ C‖u‖‖v‖2‖∇w‖ ∀u,w ∈ X, v ∈ X ∩H2(Ω).

Proof. See Lemma 2.1 on p. 12 of [78].

We use the following discrete Gronwall inequality found in [49, Lemma 5.1].

Lemma 2.3.2 (Discrete Gronwall Inequality). Let ∆t, H, an, bn, cn, dn (for integers n ≥ 0)

be non-negative numbers such that

aN + ∆t
N∑
n=0

bn ≤ ∆t
N∑
n=0

dnan + ∆t
N∑
n=0

cn +H, ∀ N ≥ 0 (2.5)

Suppose ∆tdn < 1 ∀n, then,

aN + ∆t
N∑
n=0

bn ≤ exp
(

∆t
N∑
n=0

1

1−∆tdn

)(
∆t

N∑
n=0

cn +H
)
, ∀ N ≥ 0 (2.6)
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Multiplying (2.1) by test functions (v, q) ∈ (X,Q) and integrating by parts gives

(ut, v) + b(u, u, v) + ν(∇u,∇v)− (p,∇ · v) + (∇ · u, q) = (f, v), (∇ · u, q) = 0. (2.7)

To discretize the above system in space, we choose conforming finite element spaces for

velocity Xh ⊂ X and pressure Qh ⊂ Q satisfying the discrete inf-sup condition and the

following approximation properties:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖

≥ β > 0.

We further assume that for each u ∈ X ∩Hk+1(Ω)d, and p ∈ Q ∩Hs+1(Ω) there exists

vh ∈ Xh and qh ∈ Qh such that

‖u− vh‖ ≤ Chk+1‖u‖k+1,

‖u− vh‖1 ≤ Chk‖u‖k+1,

‖p− qh‖ ≤ Chs+1‖p‖s+1.

(2.8)

h denotes the maximum triangle diameter. Examples of finite element spaces satisfying these

conditions are the MINI [6] and Taylor-Hood [80] elements. The discretely divergence free

subspace Vh ∈ Xh is defined

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

The dual norms of Xh and Vh are

‖w‖X∗h := sup
vh∈Xh

(w, vh)

‖∇vh‖
, ‖w‖V ∗h := sup

vh∈Vh

(w, vh)

‖∇vh‖
.

The following Lemma from Galvin [36, p. 243] establishes the equivalence of these norms on

Vh.

Lemma 2.3.3. Suppose the discrete inf-sup condition holds, let w ∈ Vh, then there exists

C > 0, independent of h, such that

C‖w‖X∗h ≤ ‖w‖V ∗h ≤ ‖w‖X∗h .
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Lemma 2.3.3 is used to derive pressure error estimates with a technique shown in

Fiordilino [34]. We will use the following, easily proven, algebraic identity.

Lemma 2.3.4. The following identity holds.(
3

2
a− 2b+

1

2
c

)(
3

2
a− b+

1

2
c

)
= (2.9)(

a2

4
+

(2a− b)2

4
+

(a− b)2

4

)
−
(
b2

4
+

(2b− c)2

4
+

(b− c)2

4

)
+

3

4
(a− 2b+ c)2

With the notation in place, we state the fully discrete method.

Algorithm 3 (Fully discrete method). Given un−1
h , unh ∈ Xh (and if necessary, given pn−1

h , pnh ∈

Qh), find (ûn+1
h , p̂n+1) ∈ (Xh, Qh) satisfying(

ûn+1
h − unh

∆tn
, vh

)
+ b(ûn+1

h , ûn+1
h , vh) + ν(∇ûn+1

h ,∇vh)− (p̂n+1
h ,∇ · vh) = (f(tn+1), vh),

(2.10)

(∇ · ûn+1, qh) = 0.

for all (vh, qh) ∈ (Xh, Qh). Then compute

un+1
h = ûn+1

h − ωn
2ωn + 1

(
ûn+1
h − (1 + ωn)unh + ωnu

n−1
h )

)
.

Option A: (No pressure filter)

pn+1
h = p̂n+1

h .

Option B:

pn+1
h = p̂n+1

h − ωn
2ωn + 1

(
p̂n+1
h − (1 + ωn)pnh + ωnp

n−1
h )

)
.

The constant time-step stability and error analysis works with the following equivalent

formulation of the method. We stress that what follows is not the preferred implementation

since it only yields one approximation, while Algorithm 3 gives the embedded approximations

ûn+1
h and un+1

h and an error estimator.
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Algorithm 4 (Constant time-step, equivalent method). Assume the time-step is constant.

Given (unh, p
n
h) and (un−1

h , pn−1
h ), find (un+1

h , pn+1
h ) such that for all (vh, qh) ∈ (Xh, Qh),

Option A( 3
2
un+1
h − 2unh + 1

2
un−1
h

∆t
, vh

)
+ b

(
3

2
un+1
h − unh +

1

2
un−1
h ,

3

2
un+1
h − unh +

1

2
un−1
h , vh

)
(2.11)

+ν

(
∇
(

3

2
un+1
h − unh +

1

2
un−1
h

)
,∇vh

)
−
(
pn+1
h ,∇ · vh

)
=
(
fn+1, vh

)
,(

∇ ·
(

3

2
un+1
h − unh +

1

2
un−1
h

)
, qh

)
= 0,

or Option B( 3
2
un+1
h − 2unh + 1

2
un−1
h

∆t
, vh

)
+ b

(
3

2
un+1
h − unh +

1

2
un−1
h ,

3

2
un+1
h − unh +

1

2
un−1
h , vh

)
(2.12)

+ν

(
∇
(

3

2
un+1
h − unh +

1

2
un−1
h

)
,∇vh

)
−
(

3

2
pn+1
h − pn

h +
1

2
pn−1
h ,∇ · vh

)
=
(
fn+1, vh

)
,(

∇ ·
(

3

2
un+1
h − unh +

1

2
un−1
h

)
, qh

)
= 0.

The pressure is highlighted in bold, and is the only difference between the two above

equations. The time difference term of the above equivalent method is that of BDF2 but

the remainder is different. This is not the standard BDF2 method.

Proposition 2.3.1. Algorithm 3A (respectively B) is equivalent Algorithm 4A (respectively

B).

Proof. We will just prove the case for Option A since the other case is similar. Let

(un+1
h , pn+1

h ) be the solution to Algorithm 3. By linearity of the time filter, (un+1
h , pn+1

h ) ∈

(Xh, Qh). We can write ûn+1
h in terms of un+1

h ,unh, and un−1
h as ûn+1 = 3

2
un+1 − un + 1

2
un−1.

Substitute this into (2.10). Then (un+1
h , pn+1

h ) satisfies equation (2.11). These steps can be

reversed to show the converse.
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We next define the discrete kinetic energy, viscous and numerical dissipation terms that

arise naturally from a G-stability analysis of Algorithm 4, regardless of whether Option

A or B is used. The (constant time-step) discrete kinetic energy, discrete viscous energy

dissipation rate and the numerical energy dissipation rate of Algorithm 4 are

discrete energy: En = 1
4

[‖un‖2 + ‖2un − un−1‖2 + ‖un − un−1‖2] ,

viscous dissipation: Dn+1 = ∆tν||∇
(

3
2
un+1 − un + 1

2
un−1

)
||2,

numerical dissipation: Zn+1 = 3
4
‖un+1 − 2un + un−1‖2.

Remark 2.3.1. As ∆t → 0, En is consistent with the kinetic energy 1
2
‖u‖2 and Dn is

consistent with the instantaneous viscous dissipation ν‖∇u‖2. The numerical dissipation

Zn+1 ≈ 3
4
∆t4‖utt(tn+1)‖2, is asymptotically smaller than the numerical dissipation of back-

ward Euler, 1
2
∆t2‖ut(tn+1)‖2.

The method’s kinetic energy differs from that of BDF2, which is (e.g. [62])

EnBDF2 =
1

4

[
‖un‖2 + ‖2un − un−1‖2

]
due to the term ‖un−un−1‖2 in En which is a dispersive penalization of a discrete acceleration.

Define the interpolation and difference operators as follows

Definition 2.3.1. The interpolation operator I and difference operator D are

I[wn+1] =
3

2
wn+1 − wn +

1

2
wn−1 and D[wn+1] =

3

2
wn+1 − 2wn +

1

2
wn−1.

Formally, I[w(tn+1)] = w(tn+1) +O(∆t2), and D[w(tn+1)]
∆t

= wt(t
n+1) +O(∆t2). This will

be made more precise in the consistency error analysis in Section 2.4.1.
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2.4 Stability and Error Analysis

We prove stability and error analysis of the constant time-step method. The velocity

proofs parallel ones in [38] and [55] and are collected in Appendix A.1. The pressure

analysis is presented in Section 2.5.1.

Theorem 2.4.1. Assume the stepsize is constant. The following equality holds.

EN +
N−1∑
n=1

Dn+1 +
N−1∑
n=1

Zn+1 = ∆t
N−1∑
n=1

(f, I[un+1
h ]) + E1.

Proof. In Algorithm 4, set vh = ∆tI[un+1
h ] and qh = pn+1

h for Option A, or qh = I[pn+1
h ] for

Option B, and add.

(D[un+1
h ], I[un+1

h ]) +Dn+1 = ∆t(f, I[un+1
h ]). (2.13)

By Lemma 2.3.4 and Definition 2.3.1,

(D[un+1
h ], I[un+1

h ]) = En+1 − En + Zn+1.

Thus, (2.13) can be written

En+1 − En +Dn+1 + Zn+1 = ∆t(f(tn+1), I[un+1
h ]).

Summing over n from 1 to N − 1 yields the result.

This result is for the time stepping method applied to the Navier-Stokes equations. More

generally, the constant time-step method of Algorithm 1 is G-Stable, a fact that follows from

the equivalence of A and G-Stability [23]. We calculate the G matrix explicitly below.

Corollary 2.4.1. Assume the time-step is constant. Backward Euler followed by the time

filter is G-Stable with G matrix

G =

 3
2
−3

4

−3
4

1
2

 .
Proof. Simply check that

[un, un−1]G

 un

un−1

 =
1

4

[
|un|2 + |2un − un−1|2 + |un − un−1|2

]
.
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2.4.1 Consistency error

By manipulating (2.7), we derive the consistency error. The true solution to (2.7) satisfies

(
D[u(tn+1)]

∆t
, vh

)
+ b
(
I[u(tn+1)], I[u(tn+1)], vh

)
+ ν

(
∇I[u(tn+1)],∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
fn+1, vh

)
+ τn+1(u, p; vh) ∀vh ∈ Xh.

(2.14)

If Option A is used (pressure is unfiltered),

τn+1(u, p; vh) = τn+1
A (u, p; vh) ..=

(
D[u(tn+1)]

∆t
− ut(tn+1), vh

)
(2.15)

+b
(
I[u(tn+1)], I[u(tn+1)], vh

)
− b(u(tn+1), u(tn+1), vh) + ν

(
∇(I[u(tn+1)]− u(tn+1)),∇vh

)
If Option B is used (pressure is filtered),

τn+1(u, p; vh) = τn+1
A (u, p; vh)−

(
I[p(tn+1)]− p(tn+1),∇ · vh

)
(2.16)

Thus, filtering the pressure introduces a term that, while still second order, adds to the

consistency error. We believe this is why Option A performs better in the numerical tests,

Figure 2. Furthermore, Option B requires assuming additional regularity for convergence,

see Theorem 2.4.2.

The terms in the consistency error are bounded in the following lemma.

Lemma 2.4.1 (Consistency). For u, p sufficiently smooth, we have∥∥∥∥D[u(tn+1)]

∆t
− ut(tn+1)

∥∥∥∥2

≤ 6

5
∆t3

∫ tn+1

tn−1

‖uttt‖2dt,

∥∥∥∥I[u(tn+1)]− u(tn+1)

∥∥∥∥2

≤ 4

3
∆t3

∫ tn+1

tn−1

‖utt‖2dt. (2.17)

∥∥∥∥I[p(tn+1)]− p(tn+1)

∥∥∥∥2

≤ 4

3
∆t3

∫ tn+1

tn−1

‖ptt‖2dt. (2.18)

Proof. See Appendix A.1.
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2.4.2 Error estimates for the velocity

Next, we analyze the convergence of Algorithm 4 and give an error estimate for the

velocity. Let tn = n∆t. Denote the errors enu = u(tn)− unh and enp = p(tn)− pnh.

Theorem 2.4.2. Assume that the true solution (u, p) satisfies the following regularity

u ∈ L∞(0, T ; (Hk+1Ω))d), ut ∈ L2(0, T ; (Hk+1Ω))d), utt ∈ L2(0, T ; (H1Ω))d),

uttt ∈ L2(0, T ; (L2Ω))d), p ∈ L2(0, T ; (Hs+1(Ω))d).
(2.19)

Additionally for Option B, assume ptt ∈ L2(0, T ; (L2(Ω))d. For (un+1
h , pn+1

h ) satisfying (2.11),

and for ∆t sufficiently small, we have the following estimate

‖eNu ‖2 + ‖2eNu − eN−1
u ‖2 + ‖eNu − eN−1

u ‖2 +
N−1∑
n=1

3‖en+1
u − 2enu + en−1

u ‖2

+ ν∆t
N−1∑
n=1

‖∇I[en+1
u ]‖2 ≤ C

(
h2k + h2s+2 + ∆t4

) (2.20)

Proof. See Appendix A.1.

2.5 Pressure Stability and Convergence

2.5.1 Stability of pressure

We introduce the following discrete norms

‖|ω‖|∞,k := max
0≤n≤T/∆t

‖ωn‖k, ‖|ω‖|2,k :=

T/∆t−1∑
n=0

∆t‖ωn‖2
k

1/2

. (2.21)

In this section, we prove that the pressure approximation is stable in l1(0, T ;L2(Ω)). We

first give a corollary of Theorem 2.4.1 asserting the stability of the velocity approximation.

Corollary 2.5.1. Suppose f ∈ L2(0, T ;H−1(Ω)d), then the velocity approximation satisfies

EN +
1

2

N−1∑
n=1

Dn+1 +
N−1∑
n=1

Zn+1 ≤ 1

2ν
‖|f‖|22,−1 + E1.
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Proof. Consider Theorem 2.4.1. Applying the Cauchy-Schwarz yields the inequality.

We now prove the stability of the filtered pressure.

Theorem 2.5.1. Suppose Corollary 2.5.1 holds, then the pressure approximation satisfies

β∆t
N−1∑
n=1

‖pn+1
h ‖ ≤ C for Option A,

β∆t
N−1∑
n=1

‖I[pn+1
h ]‖ ≤ C for Option B.

(2.22)

Proof. We prove it for Option A, as the other case is similar. Isolating the discrete time

derivative in (2.11), and restricting vh to Vh yields(
D[un+1

h ]

∆t
, vh

)
= −b

(
I[un+1

h ], I[un+1
h ], vh

)
− ν

(
∇I[un+1

h ],∇vh
)

+
(
fn+1, vh

)
∀vh ∈ Vh.

(2.23)

The terms on the right hand side of (2.23) can be bounded as follows,

b
(
I[un+1

h ], I[un+1
h ], vh

)
≤ C‖∇I[un+1

h ]‖‖∇I[un+1
h ]‖‖∇vh‖,

− ν
(
∇I[un+1

h ],∇vh
)
≤ ν‖∇I[un+1

h ]‖‖∇vh‖,(
fn+1, vh

)
≤ ‖fn+1‖−1‖∇vh‖.

(2.24)

In equation (2.23), we can use the above estimates in (2.24), divide both sides by ‖∇vh‖,

and take the supremum over vh ∈ Vh. This gives∥∥∥∥D[un+1
h ]

∆t

∥∥∥∥
V ∗h

≤ (C‖∇I[un+1
h ]‖+ ν)‖∇I[un+1

h ]‖+ ‖fn+1‖−1. (2.25)

Lemma 2.3.3 implies∥∥∥∥D[un+1
h ]

∆t

∥∥∥∥
X∗h

≤ C
[
(‖∇I[un+1

h ]‖+ 1)‖∇I[un+1
h ]‖+ ‖fn+1‖−1

]
. (2.26)

Now consider Algorithm 4 again with vh ∈ Xh. Isolating the pressure term in (2.11) and

using the estimates from (2.24) yields

(
pn+1
h ,∇ · vh

)
≤
(
D[un+1

h ]

∆t
, vh

)
(2.27)

+C(‖∇I[un+1
h ]‖+ 1)‖∇I[un+1

h ]‖‖∇vh‖+ ‖fn+1‖−1‖∇vh‖.
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Divide both sides by ‖∇vh‖, take supremum over vh ∈ Xh and use the discrete inf-sup

condition and the results in (2.27). Then,

β‖pn+1
h ‖ ≤ C

[
(‖∇I[un+1

h ]‖+ 1)‖∇I[un+1
h ]‖+ ‖fn+1‖−1

]
. (2.28)

We then multiply by ∆t, sum from n = 1 to n = N − 1, and apply Cauchy-Schwarz on the

right hand side,

β∆t
N−1∑
n=1

‖pn+1
h ‖ ≤ C∆t

[
(‖|∇I[uh]‖|2,0 + 1)‖|∇I[uh]‖|2,0 + ‖f‖2,−1

]
. (2.29)

Then using the result from velocity approximation, we get,

β∆t
N−1∑
n=1

‖pn+1
h ‖ ≤ C

[
(‖|f‖|2,−1 + 1)‖|f‖|2,−1 + (E1 + 1)E1

]
. (2.30)

2.5.2 Error estimates for the pressure

We now prove convergence of the pressure approximation in l1(0, T ;L2(Ω)). Denote the

pressure error as enp = p(tn)− pnh.

Theorem 2.5.2. Let u, p satisfy the equation (2.20). Let the assumption of regularity in

Theorem 2.4.2 be satisfied. Then there exists a constant C > 0 such that

∆tβ
N−1∑
n=1

‖en+1
p ‖ ≤ C

(
hk + hs+1 + ∆t2

)
for Option A,

∆tβ
N−1∑
n=1

‖I[en+1
p ]‖ ≤ C

(
hk + hs+1 + ∆t2

)
for Option B.

(2.31)
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Proof. Again, we only prove this for Option A since the other case requires only slight

modification. Using the equations ( A.3) and ( A.4) yields(
D[φn+1

h ]

∆t
, vh

)
= −

(
D[ηn+1]

∆t
, vh

)
− b
(
I[en+1

u ], I[u(tn+1)], vh
)

− b
(
I[un+1

h ], I[en+1
u ], vh

)
− ν

(
∇I[en+1

u ],∇vh
)

+
(
en+1
p ,∇ · vh

)
+ τn+1(u, p; vh) ∀vh ∈ Vh.

(2.32)

We bound the six individual terms on the right hand side of (2.32), term by term as follows:

(
D[ηn+1]

∆t
, vh

)
≤ C∆t−

1
2‖ηt‖L2(tn−1,tn+1;L2(Ω))‖∇vh‖, (2.33)

− b
(
I[en+1

u ], I[u(tn+1)], vh
)
≤ C‖∇I[en+1

u ]‖‖∇I[u(tn+1)]‖‖∇vh‖, (2.34)

− b
(
I[un+1

h ], I[en+1
u ], vh

)
≤ C‖∇(I[un+1

h ])‖‖∇I[en+1
u ]‖‖∇vh‖, (2.35)

− ν
(
∇I[en+1

u ],∇vh
)
≤ ν‖∇I[en+1

u ]‖‖∇vh‖, (2.36)

(
p(tn+1)− λn+1

h ,∇ · vh
)
≤ C‖p(tn+1)− λn+1

h ‖‖∇vh‖, (2.37)

τn+1(u, p; vh) ≤ C∆t
3
2

(
‖uttt‖L2(tn−1,tn+1;L2(Ω)) + ‖∇utt‖L2(tn−1,tn+1;L2(Ω))

+
(
‖∇u(tn+1)‖2 + ‖∇I[u(tn+1)]‖

)
‖∇utt‖2

L2(tn−1,tn+1;L2(Ω))

)
‖∇vh‖.

(2.38)

Considering equation (2.32) and Lemma 2.3.3 , using equations (2.33)-(2.38), dividing both

sides by ‖∇vh‖ and taking a supremum over Vh gives∥∥∥∥D[φn+1
h ]

∆t

∥∥∥∥
X∗h

≤ C
[
∆t−

1
2‖ηt‖L2(tn,tn+1;L2(Ω))‖

+ ‖∇I[en+1
u ]‖(‖∇I[u(tn+1)]‖+ ‖∇(I[un+1

h ])‖+ 1)

+ ‖p(tn+1)− λn+1
h ‖+ ∆t

3
2

(
‖uttt‖L2(tn−1,tn+1;L2(Ω)) + ‖∇utt‖L2(tn−1,tn+1;L2(Ω))

+ ‖∇u‖2
L4(tn−1,tn+1;L2(Ω)) + ‖∇utt‖2

L4(tn−1,tn+1;L2(Ω))

)]
.

(2.39)
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Reconsidering (2.32), we separate the pressure error term en+1
p = (p(tn+1)− λn+1

h )− (pn+1
h −

λn+1
h ) and rearrange, which yields for all vh ∈ Xh

(
pn+1
h − λn+1

h ,∇ · vh
)

= −
(
D[ηn+1]

∆t
, vh

)
−
(
D[φn+1]

∆t
, vh

)
− b(I[en+1

u ], I[u(tn+1)], vh)

−b(I[un+1
h ], I[en+1

u ], vh)− ν
(
∇I[en+1

u ],∇vh
)

+
(
p(tn+1)− λn+1

h ,∇ · vh
)

+ τn+1(u, p; vh).

Consider the estimates in (2.33)-(2.39). Divide by ‖∇vh‖, take the supremum over

vh ∈ Xh and use the discrete inf-sup condition to obtain,

β‖pn+1
h − λn+1

h ‖ ≤ C
[
∆t−

1
2‖ηt‖L2(tn,tn+1;L2(Ω))

+ ‖∇I[en+1
u ]‖

(
‖∇I[u(tn+1)]‖+ ‖∇(I[un+1

h ])‖+ 1
)

+ ‖p(tn+1)− λn+1
h ‖+ ∆t

3
2

(
‖uttt‖L2(tn−1,tn+1;L2(Ω)) + ‖∇utt‖L2(tn−1,tn+1;L2(Ω))

+ ‖∇u‖2
L4(tn−1,tn+1;L2(Ω)) + ‖∇utt‖2

L4(tn−1,tn+1;L2(Ω))

)]
.

(2.40)

We multiply by ∆t, sum from n = 1 to n = N − 1 and apply triangle inequality. This yields

β∆t
N−1∑
n=1

‖en+1
p ‖ ≤ C

[
∆t−

1
2‖ηt‖L2(0,T ;L2(Ω))

+ ‖|p− λh‖|2,0 + ‖|∇I[en+1
u ]‖|2,0

+ ∆t
5
2

(
‖uttt‖2,0 + ‖∇utt‖2,0 + ‖|∇u‖|24,0 + ‖∇utt‖2

4,0

)]
.

(2.41)

Results from the equations (A.20) and (A.23) give the bounds for the first two terms. Using

error estimates of the velocity on the third term and taking infimum over Xh and Qh yield

the result.

2.6 Numerical Tests

We verify second order convergence for the new method through an exact solution in

Section 2.6.1. Visualizations of the flow and benchmark quantities gives additional support

to the increased accuracy of the new method in Section 2.6.3. The tests used P2/P1 and

P3/P2 elements. All computations were performed with FEniCS [4].
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2.6.1 Taylor-Green vortex

We apply the backward Euler and the backward Euler plus filter for the 2D Taylor-Green

vortex. This test problem is historically used to assess accuracy and convergence rates in

CFD [15]. The exact solution is given by

u = e−2νt(cosx sin y,− sinx cos y) and p = −1

4
e−4νt(cos 2x+ cos 2y).

To test time accuracy, we solve using P3/P2 elements on a uniform mesh of 250 × 250

squares divided into 2 triangle per square. We take a series of time steps for which the total

error is expected to be dominated by the temporal error. Since the true solution decays

exponentially, we tabulate and display relative errors. Figure 2 displays the relative errors

for backward Euler, backward Euler plus filtering only the velocity (Algorithm 1A), and

backward Euler plus filtering both the velocity and pressure (Algorithm 1B). Filtering the

pressure does not affect the velocity solution, so the velocity error plot only shows two lines.

The velocity error is O(∆t2), as predicted, and significantly smaller than the backward Euler

error. Thus, adding the filter step (1.3) reduces the velocity error substantially, Figure 2,

at negligible cost, Figure 1b. The pressure error is O(∆t2) when either both u and p are

filtered, or only u is filtered, which is consistent with our theoretical analysis. Filtering only

u has smaller pressure error since the pressure filter introduces an extra consistency error

term, see (2.16).

2.6.2 Adaptive test

We test the time/order adaptive algorithm on a problem that showcases the superiority

of the VSVO method over the constant stepsize, constant order method.

The Taylor-Green problem can be modified by replacing F with any differentiable func-

tion of t. With velocity and pressure defined as before, the required body force is

f(x, y, t) = (2νF (t) + F ′(t))〈cosx sin y,− cos y sinx〉.
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Figure 2: Convergence rates for the filtered quantities are second order as predicted. Filtering

only the velocity produces the best pressure.

For F (t), we construct a sharp transition function between 0 and 1. First, let

g(t) =

0 if t ≤ 0

exp
(
− 1

(10t)10

)
if t > 0

This is a differentiable function, and g(5) ≡ 1 in double precision. Therefore, a differentiable

(up to machine precision) function can be constructed with shifts and reflections of this

function. This creates sections of flatness, and sections that rapidly change which require

adaptivity to resolve efficiently. See Figure 3 for the evolution of ‖u‖ with time. All tests

were initialized at rest spaced at a constant interval of ∆t = 0.1, 100 nodes per side of the

square using P2/P1 elements, and with final time of 45.

Figure 3 compares two numerical solutions. One is from Algorithm 1 (second order

- nonadaptive), and the other is from Algorithm 2 (VSVO-12). With TOL = 10−3, the

VSVO-12 method takes 342 steps, which comprises 254 accepted steps, and 88 rejected

steps. The constant stepsize method which took 535 steps does not accurately capture the

energetic jumps.

Figure 4 shows the relative l2L2 velocity errors versus steps taken of VSVO-12 for seven

different TOLs, starting at 10−1, and dividing by ten down to 10−7. This is compared
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with nonadaptive method (which has no rejected steps) sampled at several stepsizes. Both

methods show second order convergence, but for smaller tolerances, VSVO-12 performs about

103 better than the nonadaptive method for the same amount of work.

0 5 10 15 20 25 30 35 40 45
1

2

Or
de

r

VSVO versus Constant Stepsize Constant Order

0 5 10 15 20 25 30 35 40 45
t

0

2

4

6

8

10

||u
||

VSVO-12, TOL= 10−3, 342 steps
second order - nonadaptive, 535 steps
Exact ||u||

Figure 3: The nonadaptive second order method results in large overshoots and undershoots

while requiring more work than the adaptive method.

2.6.3 Flow around a cylinder

We now use the benchmark problem of flow around a cylinder, originally proposed in

[75], to test the improvement obtained using filters on flow quantities (drag, lift, and pressure

drop) using values obtained via a DNS in [56] as a reference. This problem has also been
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used as a benchmark in [71],[67],[12],[14] and others. Let ν = 10−3, f ≡ 0, Tfinal = 8, and

Ω = {(x, y) | 0 < x < 2.2, 0 < y < 0.41 and (x− 0.2)2 + (y − 0.2)2 > 0.052},

i.e., a channel with a cylindrical cutout. A parabolic velocity of u = 0.41−2 sin(πt/8)(6y(0.41−

y), 0) is prescribed at the left and right boundaries. We used a spatial discretization with

479026 degrees of freedom with 1000 vertices on the boundary of the cylinder. The mesh

used P2/P1 elements, and was obtained by adaptive refinement from solving the steady

solution with u = 0.41−2(6y(0.41− y), 0) as inflow and outflow boundary conditions.

The correct behavior for this problem is that vortices shed off the cylinder as the in-

let and outlet velocities increase. Figure 5 shows snapshots of the flow at t = 6 for five

successively halved ∆t’s. The Backward Euler approximation shows no vortex shedding for

∆t = 0.04, 0.02, and 0.01. The filtered method of Algorithm 1 shows the qualitatively correct

behavior from ∆t = 0.02 on. Clearly, higher order and less dissipative methods are necessary

to see dynamics for modestly large ∆t.

It was demonstrated in [56] that the backward Euler time discretization greatly under

predicts lift except for very small step sizes. Figure 6 demonstrates that the time filter in

Algorithm 1 corrects both the amplitude and phase error in the backward Euler approxi-

mation. Other quantities that were compared to reference values were the maximum drag

cd,max, the time of max drag t(cd,max), time of maximum lift t(cl,max), and pressure drop

across the cylinder at t = 8 are shown in Table 1.

The choice of whether or not to filter the pressure does not affect the velocity solution,

the snapshots shown Figure 5 are the same for both choices. Table 1 shows that filtering u

greatly improves the calculated flow quantities whether or not p is filtered.

2.7 Conclusion

Accurate and stable time discretization is important for obtaining correct flow predic-

tions. The backward Euler time discretization is a stable but inaccurate method. We have
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shown that for minimum extra programming effort, computational complexity, and stor-

age, second order accuracy and unconditional stability can be obtained by adding a time

filter. Due to the embedded and modular structure of the algorithm, both adaptive time-

step and adaptive order are easily implemented in a code based on a backward Euler time

discretization. Extension of the method and analysis to yet higher order time discretization

is important as is exploring the effect of time filters on other methods possible for Step 1 of

Algorithm 1. Analysis of the effect of time filters with moving and time dependent boundary

conditions would also be a significant extension.
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amount of work compared to the nonadaptive 2nd order method for the test problem in

Section 2.6.2. Each circle represents a different tolerance from TOL = 10−1 to 10−7.
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(a) Backward Euler (b) Backward Euler Plus Filter

Figure 5: Flow snapshots at t = 6 with ∆t = 0.04 (top), and ∆t halving until ∆t = 0.0025

(bottom). Backward Euler (left) destroys energy and suppresses oscillations, meaning that

it can predict nearly steady state solutions when a time dependent one exists. The time

filter (right) corrects this.
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Figure 6: Lift of the Backward Euler solution and the filtered solution for ∆t = 0.0025. The

filtered solution correctly predicts both the time and magnitude of the maximum lift.
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Table 1: Lift, drag, and pressure drop for cylinder problem

Backward Euler

∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8)

0.04 3.92 2.95112558 0.88 0.00113655 -0.12675521

0.02 3.94 2.95064522 0.92 0.00117592 -0.12647232

0.01 3.93 2.95041574 7.17 0.02489640 -0.12433915

0.005 3.93 2.95031983 6.28 0.17588270 -0.10051423

0.0025 3.9325 2.95038901 6.215 0.30323034 -0.10699361

Backward Euler Plus Filter

0.04 3.92 2.95021463 7.56 0.00438111 -0.12628328

0.02 3.94 2.95026781 6.14 0.20559211 -0.11146505

0.01 3.93 2.95060684 5.81 0.40244197 -0.09943203

0.005 3.935 2.95082513 5.72 0.46074771 -0.11111586

0.0025 3.935 2.95089028 5.7 0.47414096 -0.11193754

Backward Euler Plus Filter u and p

0.04 3.92 2.95073993 7.52 0.00439864 -0.12642684

0.02 3.94 2.95039973 6.14 0.21101313 -0.11153593

0.01 3.93 2.95063962 5.81 0.40624697 -0.09945143

0.005 3.935 2.95083296 5.72 0.46192306 -0.11112049

0.0025 3.935 2.95089220 5.7 0.47444753 -0.11193859

Reference Values

— 3.93625 2.950921575 5.693125 0.47795 −0.1116
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3.0 Higher Order VSVO Methods

3.1 Introduction

In this chapter, we generalize the idea from Chapter 2 of using time filters on backward

Euler to yield VSVO methods to the BDF family. We develop a general formula for the

time filters that increase the order of any BDF method by one order. We also analyze and

characterize the stability of these methods. In addition to time filters that increase the order

of accuracy, we also develop stabilizing time filters.

While the end goal is the application to PDEs such as the Navier-Stokes equations, the

theory is developed in a Numerical ODEs context, and will mostly use the notation of a

more general IVP,

y′(t) = f(t, y(t)),

y(0) = y0.

We recall the algorithm for constant stepsize,

Backward Euler
yn+1

1 − yn

∆t
= f(tn+1, y

n+1
1 )

Time Filter yn+1
2 = yn+1

1 − 1

3
(yn+1

1 − 2yn + yn−1)

The approximation yn+1
2 is second order, A-stable and is implemented by adding one line to

an existing backward Euler code. In this chapter, we answer the natural question: Can this

be extended by more filters, using more y values, to produce an embedded family of methods

and from that a VSVO algorithm of negligible additional complexity over backward Euler?

We prove in Theorem 3.3.2 an order barrier: backward Euler can only be made up to

second order with linear time filters. Thus, to develop an embedded family of higher accuracy,

we apply the time filter idea beginning with a third order method, BDF3. BDF methods are

popular in CFD, e.g. BDF2 [35][2] [82], BDF3 [14][43], BDF4 [60], convex combinations of

BDF methods [79] [72] [54], a predictor corrector scheme using BDF [70], VSVOBDF [47],

and many others.
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We develop time filters for every variable stepsize, variable coefficient BDFp method that

increases their order of accuracy by one. We call this method Filtered BDFp+1 (FBDFp+1),

and it is given in Algorithm 5. We then use the filtering idea to generate a VSVO algorithm

of orders 2,3,4 with complexity comparable to BDF3. Starting with the approximation from

BDF3, we apply a time filter to obtain FBDF4. We then develop a second filter, BDF3-

Stab (3.22) to the BDF3 approximation to yield a second order A-stable (and G-stable)

approximation (see Theorem 3.3.3).

Let the super script denote the order of the approximation, and the subscript denote the

timestep. The resulting method, Multiple Order One Solve Embedded 234 (MOOSE234) for

constant stepsize is

BDF3
11yn+1

3 − 18yn + 9yn−1 − 2yn−2

6∆t
= f(tn+1, y

n+1
3 )

BDF3-Stab yn+1
2 = yn+1

3 +
9

125
(yn+1

3 − 3yn + 3yn−1 − yn−2)

FBDF4 yn+1
4 = yn+1

3 − 3

25
(yn+1

3 − 4yn + 6yn−1 − 4yn−2 + yn−3)

Error Est2 = yn+1
2 − yn+1

3

Estimation Est3 = yn+1
4 − yn+1

3

Est4 = yn+1
4 − 48

25
yn +

36

25
yn−1 − 16

25
yn−2 +

3

25
yn−3 − 12

25
∆tf(tn+1, y

n+1
4 )

The algorithm for variable timestep is given in Section 3.4. This is an embedded family;

its complexity is dominated by the nonlinear BDF3 solve. The remaining steps contribute

negligible cost, require non-intrusive modifications to an existing BDF3 code, and, when

used for a complex application, are single instruction, multiple data (SIMD) type, which

adapt well to parallel architectures.

Each step computes a solution of different temporal orders of accuracy, so Est2 gives

an error estimator for yn+1
2 , and Est3 gives an error estimator for yn+1

3 . Est4 is an explicit

approximation of the leading term of the local truncation error of yn+4
4 . Thus, the error

estimates are embedded. Using standard strategies for timestep and order selection, the
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family yields a VSVO algorithm, presented in Section 3.4. We demonstrate the time/order

adaptivity of MOOSE234 on the Van der Pol test problem in Section 3.5.1. A linearly

implicit version of MOOSE234 performed well on the incompressible Navier-Stokes equations,

Sections 3.5.2-3.5.4.
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Figure 7: The regions of absolute stability are outside of the above curves. BDF3-Stab is

A-Stable. The stability regions of BDF3 and FBDF4 still contain an infinite wedge of the

left half of the plane, with α being the angle of the wedge measured from the real axis.

3.2 Preliminaries

The methods discussed herein will be shown to correspond to one-leg methods (OLMs),

which require one function evaluation per timestep. OLMs are distinct from linear multistep

methods (LMMs), have better nonlinear stability properties than their LMM counterparts

and are well suited to time adaptation [24], [69], [53], [61]. Section 3.2.1 introduces the basic

notation needed to state the methods in their full variable stepsize generality. Section 3.2.2

recalls a result of Dahlquist for OLMs needed herein.

3.2.1 Notation

Let ∆tn = tn+1− tn, and ∆tn be homogeneous of first degree in ∆tn,∆tn+1, ...,∆tn+m−1.

An m step OLM is [24]

m∑
i=0

αiy
n+i = ∆tnf

(
m∑
i=0

βitn+i,

m∑
i=0

βiy
n+i

)
. (3.1)
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The corresponding LMM twin is

m∑
i=0

αiy
n+i = ∆tn

m∑
i=0

βif
(
tn+i, y

n+i
)
. (3.2)

The first and second characteristic polynomials associated with both OLMs and LMMs are

ρ(r) =
m∑
j=0

αjr
j, σ(r) =

m∑
j=0

βjr
j.

For variable timesteps, αi and βi depend on the stepsizes ∆tn, but we suppress additional

subscripts for the sake of uncluttered notation. In the construction of the methods developed

herein, it is convenient to absorb ∆tn into αi through the change of variables ᾱi = αi/∆tn.

Then (3.1) becomes
m∑
i=0

ᾱiy
n+i = f

(
m∑
i=0

βitn+i,
m∑
i=0

βiy
n+i

)
. (3.3)

The variable stepsize, variable coefficient BDF methods of order p (BDFp) using Newton

interpolation are given as follows. Using the notation of [47, pg. 155], let δj be the jth order

backward divided difference at tn+m,

δjφ = φ[tn+m, tn+m−1, · · · , tn+m−j].

Let m ≥ p. Then BDFp can be written

m∑
j=m−p

ᾱ
(p)
j yn+j ..=

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
δjy = f(tn+m, y

n+m)

where the ᾱ
(p)
j s are given implicitly by the equation. The coefficients for variable stepsize

BDF up to order four can also been written explicitly in terms of stepsize ratios in [81]. The

divided differences can be expanded as

δjφ =
m∑

i=m−j

c
(j)
i φn+i (3.4)

with a procedure to generate the c
(j)
i s given in the appendix.
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If the approximation at tn+m is an intermediate approximation, we will denote it by ỹn+m

to indicate a generic intermediate approximation, or yn+m
p to indicate an approximation of

order p. The intermediate divided differences are defined

δj ỹ = c(j)
m ỹn+m +

m−1∑
i=m−j

c
(j)
i yn+i, δjyp = c(j)

m yn+m
p +

m−1∑
i=m−j

c
(j)
i yn+i

Example. Recalling the variable stepsize backward Euler plus time filter in [46, pg. 307],

we will rewrite it in terms of divided differences. With ω = ∆tn+1

∆tn
it is as follows,

Backward Euler
yn+2

1 − yn+1

∆tn+1

= f(tn+2, y
n+2
1 )

Time Filter yn+2 = yn+2
1 − ω(1 + ω)

1 + 2ω

(
1

1 + ω
yn+2

1 − yn+1 +
ω

1 + ω
yn
)

Through algebraic manipulation, this can be written with divided differences,

Backward Euler δ1y1 = f(tn+2, y
n+2
1 )

Time Filter yn+2 = yn+2
1 −

(
∆tn+1

1
∆tn+1

+ 1
∆tn+1+∆tn

)
δ2y1 (3.5)

= yn+2
1 −

(
∆tn+1

1
∆tn+1

+ 1
∆tn+1+∆tn

) yn+2
1 −yn+1

∆tn+1
− yn+1−yn

∆tn

∆tn+1 + ∆tn


The rearrangement (3.5) is a special case of Algorithm 5 with p = 1.

The coefficients for higher order differences are lengthy to write out. While they may be

hard-coded into a program, they are easily computed with recursion [47, pg. 175] or nested

loops (see Appendix B.2).
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3.2.2 Classical error results

Define the local truncation error (LTE)

εn =
(
∆tn

)−1
m∑
i=0

αiy(tn+i)− f

(
m∑
i=0

βitn+i,

m∑
i=0

βiy(tn+i)

)

=
m∑
i=0

ᾱiy(tn+i)− f

(
m∑
i=0

βitn+i,

m∑
i=0

βiy(tn+i)

)

A characterization of the accuracy of the OLM can be stated in terms of the differentiation

and interpolation error operators [25] [26].

Definition 3.2.1 (Differentiation and Interpolation Error ). The differentiation error Ld

and interpolation error Li operators are defined

(Ldφ)

(
m∑
i=0

βitn+i

)
=

m∑
i=0

ᾱiφ(tn+i)− φ′
(

m∑
i=0

βitn+i

)
(3.6)

(Liφ)

(
m∑
i=0

βitn+i

)
=

m∑
i=0

βiφ(tn+i)− φ

(
m∑
i=0

βitn+i

)
. (3.7)

A Taylor series calculation gives

Leading term of εn =

(
Ldy − fy

(
m∑
i=0

βitn+i, y

(
m∑
i=0

βitn+i

))
· Liy

)(
m∑
i=0

βitn+i

)
. (3.8)

Definition 3.2.2 (Proposed in [25, pg. 8]). Let pd be the largest integer such 3.6 is zero for

all polynomials of degree pd, and pi the largest integer such that 3.7 is zero for all polynomials

of degree pi. The order of the one leg method is min(pd, pi + 1).
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3.3 Embedding BDFp in a New Family

We now develop a time filter that increases the order of consistency of BDFp by one.

Let m = p+ 1, and consider the following method.

Algorithm 5 (Filtered BDFp+1 (FBDFp+1)). Given

{yn, yn+1, ..., yn+m−1},

find yn+m satisfying

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
δjyp = f(tn+m, y

n+m
p ). (3.9)

η(p+1) =

∏p
i=1(tn+m − tn+m−i)∑p+1

j=1(tn+m − tn+m−j)−1
. (3.10)

yn+m = yn+m
p − η(p+1)δp+1yp. (3.11)

It will be shown in Theorem 3.3.1 that this method has consistency error of order p+ 1.

The proof requires reducing the above steps to an OLM. Specifically, the OLM approximates

y′ the same as BDFp+ 1, but not f(y).

Algorithm 6 (Equivalent one-leg BDF filter). Given

{yn, yn+1, ..., yn+m−1},

and η(p+1) as in (3.10), find yn+m satisfying

p+1∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
δjy = f

(
tn+m, y

n+m +
η(p+1)

1− η(p+1)c
(p+1)
m

δp+1y

)
. (3.12)

The βis for this method are given implicitly by

m∑
j=0

βjy
n+j = yn+m +

η(p+1)

1− η(p+1)c
(p+1)
m

δp+1y.

Since δpt = 0 for p ≥ 2, this is indeed an OLM of the form (3.3).

Proposition 3.3.1. Algorithms 5 and 6 are equivalent.
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Proof. Subtract η(p+1)cp+1
m yn+m from both sides of (3.11) and use (3.4).

(1− η(p+1)c(p+1)
m )yn+m = (1− η(p+1)c(p+1)

m )yn+m
p − η(p+1)δp+1y.

Solving for yn+m
p gives

yn+m
p = yn+m +

η(p+1)

1− η(p+1)c
(p+1)
m

δp+1y. (3.13)

Substituting this into the BDFp step (3.9), the right hand side of (3.9) becomes the right

hand side of (3.12) as desired. The left hand side of (3.9) becomes

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
δjy (3.14)

+

{
η(p+1)

1− c(p+1)
m η(p+1)

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
c(j)
m

}
δp+1y.

We next simplify the scalar, shown in braces, multiplying δp+1y in (3.14). First, note that a

simple calculation (not shown) gives

c(j)
m =

(
j∏
i=1

(tn+m − tn+m−i)

)−1

.

Splitting the term in braces apart, we see that

η(p+1)

1− c(p+1)
m η(p+1)

=

∏p
i=1(tn+m−tn+m−i)∑p+1

j=1(tn+m−tn+m−j)−1

1−
(∏p+1

i=1 (tn+m − tn+m−i)
)−1

∏p
i=1(tn+m−tn+m−i)∑p+1

j=1(tn+m−tn+m−j)−1

=

=

∏p
i=1(tn+m − tn+m−i)∑p+1

j=1(tn+m − tn+m−j)−1 − (tn+m − tn)−1
=

∏p
i=1(tn+m − tn+m−i)∑p

j=1(tn+m − tn+m−j)−1

and

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
c(j)
m

=

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

](
j∏
i=1

(tn+m − tn+m−i)

)−1

=

p∑
j=1

(tn+m − tn+m−j)
−1.

Thus, the term in braces simplifies to

p∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
c(j)
m

η(p+1)

1− c(p+1)
m η(p+1)

=

p∏
i=1

(tn+m − tn+m−i). (3.15)

Absorbing this into the sum in (3.14) gives the desired left hand side of (3.12).
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3.3.1 Stability and error analysis of FBDFp+1

By construction, the left hand side of FBDFp+1 is that of BDFp+1, and the argument

of the function evaluation in FBDFp+1 is a consistent approximation to y(tn+m). It is

immediate that FBDFp+1 is 0-stable whenever BDFp+1 is 0-stable since they have the

same first characteristic polynomial. Therefore, FBDF6, which is BDF5 plus a time filter,

is the highest order 0-stable method for constant stepsize. The 0-stability of variable step

methods is highly nontrivial, and conditions on the stepsize ratios to guarantee 0-stability

for BDF methods are given [13], and [44] which improved the upper bound on the stepsize

ratios for BDF3. A recent technique for analyzing 0-stability for general methods is shown

in [77].

The consistency error analysis, presented next, is an application of Definition 3.2.2.

Theorem 3.3.1. FBDFp+1 is consistent of order p+ 1.

Proof. The differentiation error Ld (see Definition 3.2.1) of FBDFp+1 is the same as the local

truncation error of BDFp+1 which annihilates polynomials up to order p+ 1, so pd = p+ 1.

The interpolation error Li is

(Liφ)

(
m∑
i=0

βitn+i

)
=

m∑
i=0

βiφ(tn+i)− φ

(
m∑
i=0

βitn+i

)

= φ(tn+m) +
η(p+1)

1− η(p+1)c
(p+1)
m

δp+1φ− φ(tn+m) =
η(p+1)

1− η(p+1)c
(p+1)
m

δp+1φ. (3.16)

If φ is smooth, then for some ξ ∈ (tn, tn+m),

δp+1φ = φ[tn+m, tn+m−1, · · · , tn] =
φ(p+1)(ξ)

(p+ 1)!
,

see e.g. [52]. Hence, (Liφ) (
∑m

i=0 βitn+i) is zero on polynomials of degree less than or equal

to p, so pi = p. Thus, the order of the the method is min(pd, pi + 1) = p+ 1.
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3.3.2 Error estimation

Let yn+m
p+1 the FBDFp+1 approximation. As a consequence FBDFp+1 being O(∆tp+1),

we have that

Estp = yn+m
p+1 − yn+m

p

(see Algorithm 5) is an estimate for the local error in BDFp. In order to estimate the

local error for FBDFp+1, we need to estimate (3.8) which involves the exact solution. To

approximate Liy, note from (3.13) and (3.16)

Liy(t) =
η(p+1)

1− η(p+1)c
(p+1)
m

δp+1y(t) ≈ yn+m
p − yn+m

p+1 = −Estp.

To approximate the rest of (3.8), use y(tn+i) ≈ yn+i a possible error estimate of FBDFp+1

is

Estp+1 =

( p+1∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
δjyp+1 − f(tn+m, y

n+m
p+1 ) (3.17)

+fy(tn+m, y
n+m
p+1 ) · Estp

)/
ᾱ(p+1)
m

However, plugging the approximate solution into (3.17) underpredicts the error, which

lead to overly large stepsizes. This is because (3.17) is the leading term of the residual of

the method, so it should be approximately zero for the discrete solution. A more successful

estimator in our tests was to only estimate Ld with

Estp+1 =

( p+1∑
j=1

[
j−1∏
i=1

(tn+m − tn+m−i)

]
δjyp+1 − f(tn+m, y

n+m
p+1 )

)/
ᾱ(p+1)
m . (3.18)

Using (3.18) is pessimistic because it does not allow for cancellation with the neglected term.

It’s success may be due to the fact that enforcing small Estp+1 also forces the yn+m
p+1 to make

the BDFp+1 residual small. Thus, we are forcing the solution to be within ε of satisfying

a nearby method of order p + 1. (3.18) also does not require evaluating the directional

derivative of f . Since C∆tp+1y(p+1) is the leading error term of (3.18), this could potentially

be estimated instead using a p+1 order difference, which requires storing one more solution,

but no function evaluation.
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3.3.3 Order barrier

We prove in this section that it is impossible to increase the order of the simplest method,

BDF1, by more than one by filtering yn+m alone. This motivates the development of time

filtered VSVO methods centered at higher order methods. We show in Section 3.3.4 that

time filters can create more stable, lower order approximations.

Theorem 3.3.2 (An Order Barrier). BDF1 followed by a linear time filter of arbitrary finite

length,

ỹn+m − yn+m−1 = ∆tf(ỹn+m)

yn+m = ỹn+m − (cmỹ
n+m + cm−1y

n+m−1 + · · ·+ c0y
n) cm 6= 0 (3.19)

is of no higher than second order consistency.

Proof. For simplicity, we assume the ODE is autonomous, and that the step size is constant

with ∆tn = ∆t for all n. Without loss of generality, we need only consider the application

of one time filter; a sequence of time filters can be reduced to one of possibly greater length

by eliminating the intermediate values.

Solving (3.19) for ỹn+m,

ỹn+m =
1

1− cm
(yn+m + cm−1y

n+m−1 + · · ·+ c0y
n).

For convenience, we perform the change of variables ĉm = (1 − cm)−1, ĉm−1 = (cm−1)(1 −

cm)−1 − 1, and ĉi = ci(1− cm)−1 for 0 ≤ i ≤ m− 2.

ỹn+m = yn+m−1 +
m∑
j=0

ĉjy
n+j

Substituting this into the backward Euler step yields the equivalent OLM

m∑
j=0

ĉjy
n+j = ∆tn+m−1f(yn+m−1 +

m∑
j=0

ĉjy
n+j).
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Ld must be zero on polynomials of order 3, and Li must be zero on polynomials of order

2. We derive conditions on ĉi from the differential error operator applied to 1, t, and t2. To

simplify further, set n = 0.

(Ld1)(tm) = (∆t)−1
m∑
i=0

ĉi = 0 =⇒
m∑
i=0

ĉi = 0

(Ldt)(tm) = (∆t)−1
m∑
i=0

ĉii∆t− 1 =
m∑
i=0

ĉii− 1 = 0 =⇒
m∑
i=0

ĉii = 1

(Ldt
2)(tm) = (∆t)−1

m∑
i=0

ĉi(i∆t)
2 − 2(mk) = (∆t)−1

m∑
i=0

ĉii
2∆t2 − 2m∆t

= ∆t
m∑
i=0

ĉii
2 − 2m∆t = 0⇒

m∑
i=0

ĉii
2 = 2m

Next, apply the interpolation error operator to t2.

(Lit
2)(tm) =

m∑
i=0

ĉi(i∆t)
2 + ((m− 1)∆t)2 − (∆tm)2 =

m∑
i=0

ĉii
2∆t2 + (m− 1)2∆t2 −∆t2m2

= ∆t2
m∑
i=0

ĉii
2 + (m2 − 2m+ 1)∆t2 −∆t2m2

= 2m∆t2 +m2∆t2 − 2m∆t2 + ∆t2 −∆t2m2 = ∆t2.

The operator does not vanish on quadratics, so by Definition 3.2.2, the method is no higher

than second order.
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3.3.4 Stabilizing time filters

Adaptive codes using non-A-stable methods will, when necessary, decrease timesteps to

enforce stability rather than accuracy. We thus need an A-stable member in the embedded

family. This is achieved automatically for BDF1 plus a time filter (FBDF2), but we are

limited to second order since filters can increase the order of accuracy by only one (see The-

orem 3.3.2). Thus, we construct time filters that create lower order, but A-stable, embedded

methods from BDF3 for constant stepsize. The result (BDF3-Stab below) is second order,

G-stable and therefore A-stable by [23].

Recall that a method is absolutely stable for the product ∆tλ if the discrete solution to

y′ = λy, λ ∈ C, does not grow unbounded. A method is A-stable if its region of absolute

stability contains the negative real half of the complex plane. A-stability can be analyzed

by the root locus method by drawing the curve that separates points where the method

is stable or unstable. We prove A-Stability using the equivalent G-Stability theory, since

regions of absolute stability can be misleading if it is not obvious that the locus curve passes

the imaginary axis. However, the locus plot for the method parameter choice µ = 9/125 is

shown in Figure 7a.

We then generalize the filter for variable stepsize. We begin with the ansatz that such a

filter should be a third order perturbation of BDF3.

Algorithm 7 (Constant stepsize stabilized BDF3, BDF3-Stab).

BDF3 Step
11yn+3

3 − 18yn+2 + 9yn+1 − 2yn

6∆t
= f(tn+3, y

n+3
3 )

BDF3-Stab Step yn+3
2 = yn+3

3 + µ(yn+3
3 − 3yn+2 + 3yn+1 − yn) (3.20)

The induced OLM after eliminating the intermediate variable is

11yn+3 − 18yn+2 + 9yn+1 − 2yn

6∆t
− 11

6∆t

µ

1 + µ
(yn+3 − 3yn+2 + 3yn+1 − yn)

= f

(
tn+3, yn+3 − µ

1 + µ
(yn+3 − 3yn+2 + 3yn+1 − yn)

)
(3.21)

From (3.21), a Taylor series calculation shows that the method is second order consistent

with

leading term of εn = −11

6

µ

1 + µ
y′′′∆t2.
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What remains is to show that it may be G-Stable for a range of µ.

Theorem 3.3.3. BDF3-Stab is G-Stable for µ ∈ [0.07143215,0.14285528]

Proof. Multiplying (3.21) by 6∆t
11

gives

yn+3

1 + µ
+

(
3µ

1 + µ
− 18

11

)
yn+2 +

(
− 3µ

1 + µ
+

9

11

)
yn+1 +

(
µ

1 + µ
− 2

11

)
yn

=
6

11
∆tf

(
tn+3,

yn+3

1 + µ
+

3µ

1 + µ
yn+2 − 3µ

1 + µ
yn+1 +

µ

1 + µ
yn
)
.

We show there exists a symmetric positive definite matrix G = G3×3 and some constants

a3, a2, a1, a0 such that(
yn+3

1 + µ
+

(
3µ

1 + µ
− 18

11

)
yn+2 +

(
− 3µ

1 + µ
+

9

11

)
yn+1 +

(
µ

1 + µ
− 2

11

)
yn
)

·
(
yn+3

1 + µ
+

3µ

1 + µ
yn+2 − 3µ

1 + µ
yn+1 +

µ

1 + µ
yn
)

=

∥∥∥∥∥∥∥∥∥
yn+3

yn+2

yn+1

∥∥∥∥∥∥∥∥∥
2

G

−

∥∥∥∥∥∥∥∥∥
yn+2

yn+1

yn

∥∥∥∥∥∥∥∥∥
2

G

+ ‖a3y
n+3 + a2y

n+2 + a1y
n+1 + a0y

n‖2.

We solved for gij and ai in terms of µ symbolically with MATLAB, and write them explicitly

in B.3.1. Using Sylvesters criterion, we seek an interval of µ for which the principal minors

of G have positive determinant. From smallest to largest principal minors, we denote their

determinants as G1, G2, and G3 = det(G). By plotting the real and imaginary parts of the

determinants, we see that the real parts are positive, and the imaginary parts vanish within

the interval µ ∈ [0.07143215,0.14285528], which implies that BDF3-Stab is G stable for µ in

this interval.

Dahlquist’s Second Barrier states that the leading error constant C of all A-Stable LMMs

is, in magnitude, greater than or equal to CTR = 1/12, which is attained by the trapezoid rule

[22]. For the left endpoint of the interval given in Theorem 3.3.3, BDF3-Stab has a leading

error constant of 1
12
< CBDF3-Stab ≈ 0.1222 < 2

12
. This is about 2.73 times smaller than

CBDF2 = 4
12

(compare with the optimized blended BDF2/BDF3 and BDF2/BDF3/BDF4
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Figure 8: The real parts of G1, G2 and G3 are positive and the imaginary parts vanish in

the region of G stability, which is bounded by the vertical bars in Fig. 8a.

schemes in [79] which have respectively 2 and 2.64 times smaller leading constants than

CBDF2).

The filter is extended (nonuniquely) to variable stepsize by replacing yn+3
3 − 3yn+2 +

3yn+1−yn with the third order divided difference δ3y, and rescaling by the leading coefficient

c
(3)
3 .

yn+3
2 = yn+3

3 +
µ

c
(3)
3

δ3y3, (3.22)

This gives a variable stepsize BDF3 method a stable method to switch to rather than cutting

the timestep.

3.4 The VSVO Algorithm

In Section 3.3, we derived a general embedded method FBDFp+1 which increases the

order of any BDFp method by one, and an embedded stabilized BDF3 method (BDF3-

Stab) that is second order and G-Stable. We combine FBDF4 and BDF3-Stab to create

45



an embedded implicit method that is second, third, and fourth order called Multiple Order

One Solve Embedded 234 (MOOSE234). After a filter is applied, the new solution is used

to estimate the error in the pre-filtered solution. We then pick the solution which allows for

the largest stepsize to be taken. The variable stepsize algorithm is as follows.

Algorithm 8 (MOOSE234). Let m = 4. Given ε, γ̃, γ, {yn, · · · , yn+3},

µ ∈ [0.07143215,0.14285528], compute yn+4
2 , yn+4

3 , yn+4
4 by solving

BDF3
3∑
j=1

[
j−1∏
i=1

(tn+4 − tn+4−i)

]
δjy3 = f(tn+4, y

n+4
3 )

BDF3-Stab yn+4
2 = yn+4

3 +
µ

c
(3)
4

δ3y3

FBDF4 yn+4
4 = yn+4

3 − η(4)δ4y3.

Put Est2 = yn+4
3 − yn+4

2 , Est3 = yn+4
4 − yn+4

3 , and

Est4 =

( 4∑
j=1

[
j−1∏
i=1

(tn+4 − tn+4−i)

]
δjy4 − f(tn+4, y

n+4
4 )

)/
ᾱ

(4)
4 (3.23)

Of the solutions that satisfy |Esti| < ε, find j that would allow a maximum step size to

be taken.

j = arg max
i∈{2,3,4}

(
ε

|Esti|

) 1
i+1

, ∆tn+4 = γ∆tn+3

(
ε

|Estj|

) 1
j+1

(3.24)

Then set yn+4 = yn+4
j . If none satisfy the tolerance, set

∆tn+3
..= max

j
γ̃∆tn+3

(
ε

|Estj|

) 1
j+1

,

and recompute the above steps.
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The second equation in (3.24) is a standard formula for stepsize selection given an es-

timate for the local truncation error [76],[41],[1]. γ ≤ 1 is a safety factor used to keep the

next step size from growing too fast, and to increase the chance that the next solution will

be accepted. If a solution is rejected, γ̃ ≤ γ is a second factor used to nudge the stepsize

in a direction that will make the recomputed solution more likely to be accepted. We took

γ = 0.9, and γ̃ = 0.7. Est4 is an estimation of the local truncation error (3.18) of FBDF4

(justification in Section 3.3.2).

For step size control, we use the most popular criteria [76], [41] which is to require

the local truncation error be less than a user supplied tolerance ε. Other criterion, not

tested herein, include requiring the error per unit time interval be less than a tolerance,

LTE < ∆tnε [19],[76], or adapting to control the global error [18]. In our implementation,

we add a common heuristic that the step size can change by no more than a factor of two

at a time [1], although this may be overly cautious since factors as large as five have been

used for adaptive BDF methods [47]. Many other considerations for implementation and

improvement of adaptive methods are discussed in the PhD thesis of Ahmad [1].

The algorithm above is of variable order two through four, but different methods can be

obtained by taking a max in (3.24) over a subset of {2, 3, 4}, which is tested numerically in

Section 3.5.

3.5 Applications to Nonlinear Evolution Equations

MOOSE234 is easily implemented for nonlinear evolution equations with decreased cost,

increased assured accuracy and thereby increased predictive power. We give one test on a

highly stiff and fluctuating ODE (the Van der Pol oscillator), and two tests for the Navier-

Stokes equations, which describe a phenomena for which predictive accuracy is important and

where memory limitations, accuracy requirements, cognitive and computational complexity

are often in competition.

The Van der Pol test is given in Section 3.5.1. The NSE and the spatial discretization

used herein are defined in Section 3.5.2. In Section 3.5.3 , the constant stepsize, constant
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order methods are applied to a Taylor-Green vortex array. This is a common benchmark

problem in CFD such as [16], and others. The VSVO method is tested for the same problem

in Section 3.5.4.

We measure error versus work by the number of time steps taken plus the number of

rejected solution in Section 3.5.1, and by compute time in Section 3.5.4. We test methods

of different orders (2,23,234,3,34,4) by restricting the approximations that MOOSE234 is

allowed to select. The method of order three is simply adaptive BDF3, 23 is adaptive BDF3

and BDF3-Stab, etc. If the method does not include 4, we do not evaluate the error estimator

for FBDF4 so that it does not artificially inflate the runtime of the other methods. We chose

the method parameter µ = 9
125

= 0.072 somewhat arbitrarily. It comes close to minimizing

the leading term of the local truncation error within the interval of µ for which it is G-Stable.

A larger µ may be useful if more dissipation is needed.

3.5.1 Van der Pol oscillator

In this section, we test the methods on the Van der Pol oscillator, a common test problem

for stiff ODE integrators. We do not compare runtime performance with well calibrated,

existing ODE codes. We just demonstrate the adaptivity of the methods in a simpler setting

before the PDE tests. The Van der Pol oscillator is

y′1 = y2, y′2 = µ̄(1− y2
1)y2 − y1

with µ̄ = 1000. We compute relative errors at t = 3000 by comparing with a reference

solution from MATLAB’s ode15s with an absolute tolerance of 1e-16, and a relative tolerance

of 3e-14.

The error vs total work (number of steps taken plus rejected steps) is shown in Figure

9, and clearly shows that the higher order methods are most efficient for this problem. We

tested many combinations of orders (2,23,234,3,34,4) to verify that the higher order methods

reduced the total amount of work, although we do not plot the results of all these combina-

tions. Specific to this test, we note that 23 performed essentially the same as adaptive BDF3,

and 34 was essentially the same as MOOSE234. Adaptive FBDF4 appears to perform the
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best, although it does not have an obvious trend. Other tests such as the one performed in

Section 3.5.4 do show a notable increase in efficiency using the full MOOSE234 versus using

a subset of the available orders.

The stepsize and order evolution of MOOSE234 is shown in Figure 10. While MOOSE234

chooses the BDF3 approximation for most of the simulation, the narrow sections where the

fourth order method is used is enough to make it globally fourth order, shown in Figure 9.
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Figure 9: The fourth order methods produce the smallest errors in the least amount of steps.
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3.5.2 Finite element formulation

Given the domain Ω ⊂ Rd (d = 2, 3), consider the problem

ut + u · ∇u− ν∆u+∇p = f and ∇ · u = 0 in Ω× (0, T ]

u = 0 on ∂Ω and u(x, 0) = u0(x).

To discretize in space, let (Xh, Qh) be a finite element pair satisfying the inf-sup, or LBBh

condition. We suppress the spatial discretization on velocity and pressure to avoid excessive

super and subscripts. Define the explicitly skew-symmeterized trilinear form b∗(u, v, w) =

(u · ∇v, w) + 1
2
((∇ · u)v, w).

The fully discrete BDF3 problem is as follows. Find (un+4
3 , pn+4) ∈ (Xh, Qh) such that

for all (vh, qh) ∈ (Xh, Qh),(
ᾱ

(3)
4 un+4

3 +
3∑
j=1

ᾱ
(3)
j un+j, vh

)
+ b∗(un+4

3 , un+4
3 , vh) + ν(∇un+4

3 ,∇vh)

−(pn+4,∇ · vh) = (f(tn+4), vh), and (∇ · un+4
3 , qh) = 0.

This method for constant stepsize was analyzed in [10] under a small data condition with

the nonlinearity treated explicitly. We linearize the problem as follows. Let

ûn+4
3 = − 1

c
(4)
4

3∑
i=0

c
(4)
i un+i

which is a fourth order extrapolation of un+4
3 to preserve the order of consistency of FBDF4.

Then the linearly implicit (sometimes called semi-implicit) method is obtained by replacing

b∗(un+4
3 , un+4

3 , vh) with b∗(ûn+4
3 , un+4

3 , vh).

Implicit-explicit [17][81] and linearly implicit methods [29][3] are a common way to reduce

the computational complexity of time stepping nonlinear problems . The idea of Baker [9]

to treat the convective term in Galerkin approximations of Navier-Stokes this way while

preserving skew-symmetry has a long history of use and expansions [38, p. 185] [51] [72]

[54][2].

Pressure is not a dynamic variable; only the pressure at the current time level is required,

so applying the time filters to pressure will not affect the computed velocity solution. Thus,
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we choose not to filter it for these tests. Therefore, Est2, Est3, and Est4 are only estimates

of the temporal velocity error. |Esti| = ||Esti|| is the L2(Ω) norm.

The error for FBDF4 is estimated by Est4, where Est4 is the finite element discretization

of (3.23), and is the solution of

ᾱ
(4)
4 (Est4, vh) = (ᾱ

(4)
4 un+4

4 +
3∑
j=0

ᾱ
(4)
j un+j, vh) + b∗(un+4

4 , un+4
4 , vh)

−(pn+4,∇ · vh)− (f(tn+4), vh) for all vh ∈ Xh.

This is the only non-embedded error estimator, and since it is a mass matrix with order one

condition number and narrow band width, does not add significantly to the computational

complexity. In our tests in Section 3.5.4 with 495,000 degrees of freedom, this system can be

solved with about 10 iterations of the conjugate gradient method within a relative tolerance

of 1e-6; this takes about 0.1 seconds on a desktop with a four core Intel i7 7700k cpu. The

time taken to solve this system is included in the timing tests in Figure 12. All tests were

performed with FEniCS [4].

In the adaptive tests, the stepsize ratios were limited to a maximum of two and a min-

imum of one half, which is a common heuristic [1]. All tests were performed on a square

periodic domain using P5/P4 Lagrange elements with 32 elements per edge of the square

resulting in 67,584 degrees of freedom.

3.5.3 Constant stepsize test

We test the case of constant step size on a Taylor-Green vortex array, a common bench-

mark problem in CFD.

We took Ω to be the periodic box with sides of length 2π, and ν = 1. Define F (t) = e−2νt.

An exact solution is given by

u(x, y; t) = F (t)(cosx sin y,− cos y sinx), p(x, y; t) = −1

4
F (t)2(cos 2x+ cos 2y).

The final time was taken to be T = 1. Figure 11 shows the relative l2L2 velocity and pressure

errors for different stepsize ∆t. We achieve convergence rates in time for the velocity and

pressure predicted by the ODE theory.
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3.5.4 Variable stepsize variable order test

In this test, we allow the method to adapt, and run the above problem to a final time of

T = 1. The same mesh from the constant stepsize test was used. All tests were initialized

with exact solutions that were ∆t =1E-3 apart. The safety factors were γ = 0.9, and γ̃ = 0.7.

We tested many combinations of orders (2,23,234,3,34,4) to verify that variable order is

necessary for an improvement in execution time. We do not show the results of all these

combinations in the plots for clarity, but we note that the method of order 23 is slightly

more efficient than adaptive BDF3. The method of order 34 performed better than FBDF4,

but slightly worse than MOOSE234 for larger tolerances. Each test was timed starting at

the outer time stepping loop of the program, and ending after the final time step. Various ε

were tested from 1e-1 to 1e-8. Figure 12 shows the amount of time in seconds each method

required to run to completion for different tolerances versus the relative l2L2 errors, with

the tolerances decreasing from left to right.

For the smallest tolerances, we clearly see that the higher order methods are the most

efficient with the full MOOSE234 method performing the best. MOOSE234 is about two

times faster than adaptive BDF3 for the final tolerance.

3.6 Conclusion

We present MOOSE234, a new stiff VSVO solver of orders two, three, and four. The

computational complexity is comparable to BDF3. In our tests on the Van der Pol oscillator

and a standard spatial discretization of the Navier-Stokes equations, the VSVO methods

of higher order give the most accurate approximations at least cost. We also developed

FBDFp+1 of orders two through six, which uses computationally inexpensive time filters to

increase the order of all variable stepsize BDFp methods with p ≤ 5 by one.

Many open problems remain. Linearly implicit (tested herein for Navier-Stokes) and

Implicit-Explicit versions need systematic development. Error analysis of the fully discrete

method for NSE, and a deeper understanding of the pressure error are needed. There may
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exist more optimal G-Stabilizing filters for BDF3. The idea of constructing second order

G-stabilizing time filters can be applied to higher order BDF methods, and other multistep

methods. MOOSE234 can be applied to other complex nonlinear applications.
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Figure 10: Stepsize and order adaptation for the Van der Pol oscillator.
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Figure 11: Velocity and pressure converge at the predicted rates.
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4.0 An Implicit-Explicit VSVO Method for Navier-Stokes

4.1 Introduction

In this chapter, we revisit the method developed in Chapter 2. We present with support-

ing analysis an adaptive time discretization of the Navier-Stokes equations (NSE) requiring,

at each timestep the solution of a shifted stokes problem. Methods of this type are known

to be inexpensive per step, but often have a severe timestep restriction due to the explicit

treatment of the nonlinear term. As solvers have matured and memory increased, methods of

this type have seen decreased development. However with the recent explosion of interest in

uncertainty quantification and machine learning, along with newly emerging computational

architectures methods requiring less memory, and lower computational complexity have be-

come interesting tools again. We stress that our analysis is for a variable timestep. This is a

unique feature that reduces the gap between the needs of practical CFD and what analysis

can contribute.

This chapter is organized as follows. In Section 4.2 we present preliminary analysis which

will be needed in the ensuing sections. The fully discrete algorithm we will analyze is outlined

in Section 4.3. In Section 4.4 we present an energy stability analysis of the algorithm by

analyzing stability of each order independently. The variable stepsize, first order algorithm

is analyzed in Section 4.4.1. The constant stepsize version of the second order method is

analyzed in Section 4.4.2.

4.1.1 Previous works

Variable timestep schemes have been studied extensively for linear multistep methods

for ODES see [20, 27] and the references therein. Linear stability analysis for constant

timestep BDF2-AB2 and CNLF applied to systems of linear evolution equations with skew

symmetric couplings was conducted in [62]. It was shown under a timestep condition that

both methods were long time energy stable. The CNLF scheme was proven to be unstable for
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variable timestep in [65]. Recently, for the NSE adaptive time stepping schemes have been

studied for a variety of second order implicit and linearly implicit methods [57, 59, 12]. It

was demonstrated that time adaptivity increased the accuracy and efficiency of the schemes.

A stability analysis of these methods for increasing and decreasing timestep ratio is still an

open problem. Constant timestep IMEX schemes for the NSE have been studied for CN-AB2

[68, 58], a three-step backward extrapolating scheme in [10] and BEFE in [48].

4.2 Notation and Preliminaries

Let Ω ⊂ Rd, d = 2, 3, denote an open regular domain with boundary ∂Ω and let [0, T ]

denote a time interval. We consider the incompressible Navier-Stokes equations (NSE)

ut + u · ∇u− ν∆u+∇p = f(x, t) ∀x ∈ Ω× (0, T ]

∇ · u = 0 ∀x ∈ Ω× (0, T ]

u = 0 ∀x ∈ ∂Ω× (0, T ]

u(x, 0) = u0(x) ∀x ∈ Ω.

(4.1)

We denote by ‖ · ‖ and (·, ·) the L2(Ω) norm and inner product, respectively, and by

‖ · ‖Lp and ‖ · ‖Wk
p

the Lp(Ω) and Sobolev W k
p (Ω) norms, respectively. Hk(Ω) = W k

2 (Ω) with

norm ‖ · ‖k. The space H−1(Ω) denotes the dual space of bounded linear functionals defined

on H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}; this space is equipped with the norm

‖f‖−1 = sup
06=v∈X

(f, v)

‖∇v‖
∀f ∈ H−1(Ω).

The solutions spaces X for the velocity and Q for the pressure are respectively defined

as

X :=[H1
0 (Ω)]d = {v ∈ [L2(Ω)]d : ∇v ∈ [L2(Ω)]d×d and v = 0 on ∂Ω}

Q :=L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0
}
.

57



A weak formulation of (4.1) is given as follows: find u : (0, T ]→ X and p : (0, T ]→ Q such

that, for almost all t ∈ (0, T ], satisfy
(ut, v) + (u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) = (f, v) ∀v ∈ X

(∇ · u, q) = 0 ∀q ∈ Q

u(x, 0) = u0(x).

(4.2)

The subspace of X consisting of weakly divergence-free functions is defined as

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} ⊂ X.

We denote conforming velocity and pressure finite element spaces based on a regular trian-

gulation of Ω having maximum triangle diameter h by Xh ⊂ X and Qh ⊂ Q. We assume

that the pair of spaces (Xh, Qh) satisfy the discrete inf-sup (or LBBh) condition required

for stability of finite element approximations; we also assume that the finite element spaces

satisfy the approximation properties

inf
vh∈Xh

‖v − vh‖ ≤ Chs+1 ∀v ∈ [Hs+1(Ω)]d

inf
vh∈Xh

‖∇(v − vh)‖ ≤ Chs ∀v ∈ [Hs+1(Ω)]d

inf
qh∈Qh

‖q − qh‖ ≤ Chs ∀q ∈ Hs(Ω),

where C is a positive constant that is independent of h. The Taylor-Hood element pairs

(P s-P s−1), s ≥ 2, are one common choice for which the LBBh stability condition and the

approximation estimates hold [39, 45].

We will also assume that the mesh satisfies the following standard inverse inequalities

‖vh‖ ≤ Ch−1‖∇vh‖ ∀vh ∈ Xh (4.3)

‖vh‖∞ ≤ C| lnh|1/2‖∇vh‖ ∀vh ∈ Xh, and for d = 2 (4.4)

We define the trilinear form

b(u, v, w) = (u · ∇v, w) ∀u, v, w ∈ [H1(Ω)]d
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and the explicitly skew-symmetric trilinear form given by

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) ∀u, v, w ∈ [H1(Ω)]d ,

or equivalently,

b∗(u, v, w) := (u · ∇v, w) +
1

2
(∇ · u, v · w) ∀u, v, w ∈ [H1(Ω)]d .

This satisfies the bound [63]

b∗(u, v, w) ≤ Cb∗‖∇u‖‖∇v‖‖∇w‖ ∀u, v, w ∈ X. (4.5)

b∗(u, v, w) ≤ Cb∗(‖u‖‖∇u‖)1/2‖∇v‖‖∇w‖ ∀u, v, w ∈ X. (4.6)

b∗(u, v, w) ≤ Cb∗‖∇u‖(‖v‖‖∇v‖)1/2‖∇w‖ ∀u, v, w ∈ X. (4.7)

Additionally, we have the following bound.

Lemma 4.2.1.

b∗(u, v, w) ≤ Cb∗‖∇u‖‖∇v‖(‖w‖‖∇w‖)1/2 ∀u, v, w ∈ X (4.8)

Proof. We have by repeated Hölders inequality that

(∇ · u, v · w) =
d∑
i=1

∫
Ω

(∇ · u)viwidx ≤
d∑
i=1

‖∇ · u‖‖vi‖L6‖wi‖L3

≤
√
d‖∇ · u‖‖v‖L6‖w‖L3 ≤ C(d)‖∇u‖‖v‖L6‖w‖L3 .

Similarly, we have ∫
Ω

(u · ∇v) · wdx ≤ C(d)‖u‖L6‖∇v‖‖w‖L3 .

By Sobolev embedding theorems, H1 ↪→ L6 and H
1
2 ↪→ L3 for d = 2, 3 . The result then

follows from the interpolation inequality ‖w‖ 1
2
≤ C‖w‖ 1

2‖∇w‖ 1
2 .

We also define the discretely divergence-free space Vh as

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} ⊂ X.
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4.3 Algorithm

The fully discrete constant stepsize scheme we consider is a Backward Euler in time with

a second order Adams Bashforth treatment of the advection term (BE-AB2)(
un+1
h − unh

∆t
, vh

)
+ ν(∇un+1

h ,∇vh)+b∗(2unh − un−1
h , 2unh − un−1

h , vh)

−(pn+1,∇ · vh) = (fn+1, vh) ∀vh ∈ Xh

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

(4.9)

For the case of nonuniform timesteps, let ∆tn = tn+1 − tn. The stepsize ratios are

ωn = ∆tn
∆tn−1

. The second order extrapolation of un+1
h becomes En+1(uh) := unh+ωn(unh−un−1

h ).

We then have the variable stepsize BE-AB2 (VSS BE-AB2) method.

Algorithm  9  (Variable stepsize BE-AB2). Given ε, ∆tn, (uhn, phn),(u
n−1

h , pn−1
h ), and a norm

‖ · ‖#, find (un+1
h , pn+1

h ) satisfying(
un+1
h − unh

∆tn
, vh

)
+ ν(∇un+1

h ,∇vh)+b∗(En+1(uh), E
n+1(uh), vh)

−(pn+1,∇ · vh) = (fn+1, vh) ∀vh ∈ Xh

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

(4.10)

Let

Est =
ωn

2ωn + 1
‖un+1

h − En+1(uh)‖#.

If Est ≤ ε, accept (un+1
h , pn+1

h ) and let

∆tn+2 = 0.9∆tn+1

( ε

Est

)1/2

.

Else Reject (un+1
h , pn+1

h ) and let

∆tn+1 := 0.7∆tn+1

( ε

Est

)1/2

.

Recalculate (un+1
h , pn+1

h ).
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The numbers 0.9 and 0.7 are safety factors that make it more likely the next stepsize will

give an accepted solution, which is common practice. They are chosen arbitrarily here. The

error estimation is derived from the variable stepsize backward Euler time filter that results

in a second order method. That is, if

un+1,2
h = un+1

h − ωn
2ωn + 1

(un+1
h − (1 + ωn)unh + ωnu

n−1
h ),

then un+1,2
h is a second order approximation. Thus, un+1

h − un+1,2
h provides an estimation for

the error in the first order approximation. Rearranging this shows

un+1
h − un+1,2

h =
ωn

2ωn + 1
(un+1

h − (1 + ωn)unh + ωnu
n−1
h )

=
ωn

2ωn + 1
(un+1

h − En+1(uh)).

4.4 Stability

4.4.1 Energy stability for VSS BE-AB2

In this section we prove nonlinear conditional stability of (4.10). We begin with a general

stability result.

Theorem 4.4.1. [General Stability of VSS BE-AB2] Consider the method (4.10) and let

Ω ⊂ Rd, d = 2, 3. Suppose that

1− Cstab∆tn(1 + ω2
n)

νh
‖∇En+1(uh)‖2 ≥ 0. (4.11)

Then for any N > 1

1

2
‖uNh ‖2 +

1

4
‖uNh − uN−1

h ‖2 +
ν

4

N−1∑
n=1

∆tn‖∇un+1
h ‖2

+
N−1∑
n=1

1

8(1 + ω2
n)
‖un+1

h − unh + ωn(unh − un−1
h )‖2 ≤

N−1∑
n=1

∆tn
ν
‖fn+1‖2

−1

+
1

2
‖u1

h‖2 +
1

4
‖u1

h − u0
h‖2.

(4.12)
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Proof. Setting vh = un+1
h and multiplying by ∆tn we have

1

2
‖un+1

h ‖2 − 1

2
‖unh‖2 +

1

2
‖un+1

h − unh‖2 + ∆tnν‖∇un+1
h ‖2

+∆tnb
∗(En+1(uh), E

n+1(uh), u
n+1
h ) = ∆tn(fn+1, un+1

h )

Applying Young’s inequality to the right hand side then gives

1

2
‖un+1

h ‖2 − 1

2
‖unh‖2 +

1

2
‖un+1

h − unh‖2 + ∆tnν‖∇un+1
h ‖2

∆tnb
∗(unh + ωn(unh − un−1

h ), unh + ωn(unh − un−1
h ), un+1

h )

≤ ν∆tn
4
‖∇un+1

h ‖2 +
∆tn
ν
‖fn+1‖2

−1.

Next we deal with the nonlinearity. Applying (4.8), using the skew symmetry of the nonlin-

earity, applying the Cauchy-Schwarz-Young, Poincaré-Friedrichs and inverse inequalities we

have

∆tnb
∗(En+1(uh), u

n
h + ωn(unh − un−1

h ), un+1
h )

= ∆tnb
∗(En+1(uh), u

n+1
h , un+1

h − unh − ωn(unh − un−1
h ))

≤ C∆tnh
− 1

2‖∇En+1(uh)‖‖un+1
h − unh − ωn(unh − un−1

h )‖‖∇un+1
h ‖

≤ C
∆t2n(1 + ω2

n)

h
‖∇En+1(uh)‖2‖∇un+1

h ‖2

+
1

8(1 + ω2
n)
‖un+1

h − unh − ωn(unh − un−1
h )‖2.

For the last term we have by the parallelogram law

1

8(1 + ω2
n)
‖un+1

h − unh − ωn(unh − un−1
h )‖2

=
1

4(1 + ω2
n)
‖un+1

h − unh‖2 +
ω2
n

4(1 + ω2
n)
‖unh − un−1

h ‖2

− 1

8(1 + ω2
n)
‖un+1

h − unh + ωn(unh − un−1
h )‖2

≤ 1

4
‖un+1

h − unh‖2 +
1

4
‖unh − un−1

h ‖2

− 1

8(1 + ω2
n)
‖un+1

h − unh + ωn(unh − un−1
h )‖2
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Combining like terms we then have

1

2
‖un+1

h ‖2 − 1

2
‖unh‖2 +

1

4
‖un+1

h − unh‖2 − 1

4
‖unh − un−1

h ‖2

+
ν∆tn

4
‖∇un+1

h ‖2 +
ν∆tn

2

(
1− C∆tn(1 + ω2

n)

νh
‖∇En+1(uh)‖2

)
‖∇un+1

h ‖2

+
1

8(1 + ω2
n)
‖un+1

h − unh + ωn(unh − un−1
h )‖2 ≤ ∆tn

ν
‖fn+1‖2

−1.

Now using condition (4.11) letting C = Cstab and summing from n = 1 to N − 1 the result

follows.

There are several cases where the time step condition can be improved by using a different

embedding for the nonlinear term. When Ω ⊂ R2 the discrete Sobolev embedding will give

a superior timestep condition to that in Theorem 4.4.1.

Theorem 4.4.2. [2d Stability of VSS BE-AB2] Consider the method (4.10) and let Ω ⊂ R2.

Suppose that

1− Cstab∆tn(1 + ω2
n)| lnh|

ν
‖∇En+1(uh)‖2 ≥ 0. (4.13)

Then the energy inequality (4.12) from Theorem 4.4.1 holds.

Proof. The proof is similar to that of Theorem 4.4.1, the key difference being in the treat-

ment of the nonlinearity. Using Holders inequality for the nonlinear term we have

∆tnb
∗(En+1(uh), u

n+1
h , un+1

h − unh − ωn(unh − un−1
h ))

≤ C∆tn‖En+1(uh)‖∞‖un+1
h − unh − ωn(unh − un−1

h )‖‖∇un+1
h ‖

+ C
∆tn

2
‖∇ · En+1(uh)‖‖un+1

h − unh − ωn(unh − un−1
h )‖‖un+1

h ‖∞.

Then applying (4.4) and Cauchy-Schwarz-Young

C∆tn‖En+1(uh)‖∞‖un+1
h − unh − ωn(unh − un−1

h )‖‖∇un+1
h ‖

+ C
∆tn

2
‖∇ · En+1(uh)‖‖un+1

h − unh − ωn(unh − un−1
h )‖‖un+1

h ‖∞

≤ C| lnh|1/2∆tn‖∇En+1(uh)‖‖un+1
h − unh − ωn(unh − un−1

h )‖‖∇un+1
h ‖

≤ C∆t2n(1 + ω2
n)| lnh|‖∇En+1(uh)‖2‖∇un+1

h ‖2

+
1

8(1 + ω2
n)
‖un+1

h − unh − ωn(unh − un−1
h )‖2.

The result then follows from Theorem 4.4.1.
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4.4.2 Energy stability for constant timestep Filtered-BE-AB2

In this section we give a stability result for the constant timestep filtered version of

Algorithm 9.

Algorithm 10 (Constant stepsize filtered-BE-AB2). Given ∆t, (unh, p
n
h), (un−1

h , pn−1
h ), find

(ûn+1
h , pn+1

h ) satisfying(
ûn+1
h − unh

∆t
, vh

)
+ ν(∇ûn+1

h ,∇vh)+b∗(2unh − un−1
h , 2unh − un−1

h , vh)

−(pn+1
h ,∇ · vh) = (fn+1, vh) ∀vh ∈ Xh

(∇ · ûn+1
h , qh) = 0 ∀qh ∈ Qh.

(4.14)

Then compute

un+1
h = ûn+1

h − 1

3
(ûn+1

h − 2unh + un−1
h ) (4.15)

Equivalently this can be written as( 3
2
un+1
h − 2unh + 1

2
un−1
h

∆t
, vh

)
+ ν

(
∇
(

3

2
un+1
h − unh +

1

2
un−1
h

)
,∇vh

)
+b∗(2unh − un−1

h , 2unh − un−1
h , vh)− (pn+1,∇ · vh) = (fn+1, vh)

(∇ · ûn+1
h , qh) = 0

(4.16)

In order to prove stability we will need to use the identity

Lemma 4.4.1. The following identity holds(
3

2
a− 2b+

1

2
c,

3

2
a− b+

1

2
c

)
=(

‖a‖2

4
+
‖2a− b‖2

4
+
‖a− b‖2

4

)
−
(
‖b‖2

4
+
‖2b− c‖2

4
+
‖b− c‖2

4

)
+

3

4
‖a− 2b+ c‖2

We then have the following general conditional stability result. This result can be im-

proved further in some cases, such as the 2D case. Stability and convergence of the VSS

version of this method is currently an open problem.
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Theorem 4.4.3. Consider the method (4.16) and suppose that

1− C∆t

νh
‖∇(2unh − un−1

h )‖2 ≥ 0. (4.17)

Then for any N > 1

1

4
‖uNh ‖2 +

1

4
‖2uNh − uN−1

h ‖2 +
1

4
‖uNh − uN−1

h ‖2

+
ν∆t

4

N−1∑
n=1

‖∇(
3

2
un+1
h − unh +

1

2
un−1
h )‖2

≤
N−1∑
n=1

∆t

ν
‖fn+1‖2

−1 +
1

4
‖u1

h‖2 +
1

4
‖2u1

h − u0
h‖2 +

1

4
‖u1

h − u0
h‖2

Proof. Setting vh = 3
2
un+1
h −unh+ 1

2
un−1
h multiplying by ∆t, using lemma 4.4.1, and applying

Young’s inequality to the right hand side

1

4
(‖un+1

h ‖2 + ‖2un+1
h − unh‖2 + ‖un+1

h − unh‖2)−
1

4
(‖unh‖2 + ‖2unh − un−1

h ‖2 + ‖unh − un−1
h ‖2)+

3

4
‖un+1

h − 2unh + un−1
h ‖2 + ∆tν‖∇(

3

2
un+1
h − unh +

1

2
un−1
h )‖2+

∆tb∗(2unh − un−1
h , 2unh − un−1

h ,
3

2
un+1
h − unh +

1

2
un−1
h )

≤ ν∆t

4
‖∇(

3

2
un+1
h − 2unh +

1

2
un−1
h )‖2 +

∆t

ν
‖fn+1‖2

−1.

Next dealing with the nonlinear term we use the skew symmetry of b∗, Poincar inequality,

inequality (4.5), the inverse inequality and Young’s inequality

∆tb∗(2unh − un−1
h , 2unh − un−1

h ,
3

2
un+1
h − unh +

1

2
un−1
h )

= −∆tb∗(2unh − un−1
h ,

3

2
un+1
h − unh +

1

2
un−1
h ,−2unh + un−1

h )

= −3

2
∆tb∗(2unh − un−1

h ,
3

2
un+1
h − unh +

1

2
un−1
h , un+1

h − 2unh + un−1
h )

≤ 3

2
Cb∗∆t‖∇(2unh − un−1

h )‖‖∇(
3

2
un+1
h − unh −

1

2
un−1
h )‖

‖∇(un+1
h − 2unh − un−1

h )‖1/2‖(un+1
h − 2unh − un−1

h )‖1/2

≤ C∆th−
1
2‖∇(2unh − un−1

h )‖∇(
3

2
un+1
h − unh −

1

2
un−1
h )‖‖(un+1

h − 2unh − un−1
h )‖

≤ C
∆t2

h
‖∇(2unh − un−1

h )‖2‖∇(
3

2
un+1
h − unh −

1

2
un−1
h )‖2

+
3

4
‖un+1

h − 2unh + un−1
h ‖2.
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Combining like terms we then have

1

4
(‖un+1

h ‖2 + ‖2un+1
h − unh‖2 + ‖un+1

h − unh‖2)−
1

4
(‖unh‖2 + ‖2unh − un−1

h ‖2 + ‖unh − un−1
h ‖2)+

∆tν

4
‖∇(

3

2
un+1
h − unh +

1

2
un−1
h )‖2+

ν∆t

2

(
1− C∆t

νh
‖∇(2unh − un−1

h )‖2

)
‖∇(

3

2
un+1
h − unh +

1

2
un−1
h )‖2

≤ ∆t

ν
‖fn+1‖2

−1.

Now using condition (4.17) and summing from n = 1 to N − 1 the result follows.

4.5 Concluding Remarks

We have given a VSVO IMEX algorithm of up to second order for the incompressible

Navier-Stokes equations. This is the first attempt at analyzing such an algorithm to our

knowledge. Such analysis is feeling around the boundary of what is currently possible/known

for such methods, and as a result, there are many open problems. An error analysis of the

variable stepsize first order method, not included in this dissertation, is underway. The most

challenging question that we have not been able to answer with analysis is probably the

stability of the variable stepsize second order method. Indeed, energy stability analysis of

any variable stepsize two step is highly nontrivial to begin with. It is even more nontrivial

for a nonlinear problem with mixed implicit and explicit treatments of the equation. Finally,

there is the question of numerical testing, which is in progress.
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5.0 Stability of Variable Stepsize BDF2

An essential step in the analysis of the VSVO methods developed in Chapter 3 is to

analyze the variable stepsize stability of each standalone method. In particular, we are

interested in variable stepsize stability of the BDF methods which form the basis of the

methods. The difficulty of the analysis goes from trivially easy for BDF1 to extremely

difficult for BDF2. Stability of variable stepsize BDF2 is the subject of many papers, and

in this chapter, we expand on this knowledge by answering the following. What limit on the

stepsize ratios ω is required to maintain A0 stability.

Consider the following diffusion equation

ut = −Au. (5.1)

where A is SPD. We will assume A is an SPD matrix for the entire chapter, but extensions

to PDEs will be obvious. Taking the inner product with u yields

d

dt

1

2
‖u‖2 = −‖A1/2u‖2,

which implies l2 stability. On the other hand, multiplying by ut (as if for a gradient flow)

and rearranging gives
d

dt

1

2
‖A1/2u‖2 = −‖ut‖2,

giving stability in the A1/2 norm, which implies l2 stability by coercivity. This is the core

idea of our proof.

Discrete energy stability in the A1/2 norm is known for BDF1-3 for constant stepsizes.

For variable stepsizes, the stability results are naturally stated in terms of stepsize ratios

ωn = ∆tn/∆tn−1, and there has been steady progress at extending the upper bound of

ωn for BDF2 applied to a nonautonomous version of (5.1). For stability, results include

Becker’s bound of (2 +
√

13)/3 ≈ 1.86 [11]. The largest upper bound to my knowledge is

by Emmrich [32] in 2005 where he proved stability for stepsize ratios bounded by 1.91. The

analysis for nonlinear diffusion is even more restrictive, and Emmrich additionally showed

the error may depend badly on the fluctuation of adjacent stepsize ratios [33]. Nevertheless,

67



we are interested in analyzing stability properties in the worst cases of ωn since practical

computations may require large amplitudes and fluctuations of ωn. See also [77] for recent

results on 0-stability on non uniform grids. Unlike Emmrich, we restrict ourselves to the

autonomous case which is the case that A0-Stability pertains to.

Recall variable stepsize BDF2 as it is normally presented in the literature. Let ∆tn =

tn+1 − tn, ωn = ∆tn
∆tn−1

.

1

∆tn

(
1 + 2ωn
1 + ωn

un+1 − (1 + ωn)un +
ω2
n

1 + ωn
un−1

)
= −Aun+1. (5.2)

The BDFp methods are naturally given by weighted sums of divided differences up to order

p, and it is insightful to rewrite BDF2 as follows.

Proposition 5.0.1. Method (5.2) is equivalent to

1

∆tn(1 + ωn)

(
ω2
n

(
un+1 − un − (un − un−1)

)
+ (−ω2

n + 2ωn + 1)
(
un+1 − un

))
(5.3)

= −Aun+1.

Taking the inner product with un+1 − un gives

1

∆tn(1 + ωn)

(
ω2
n

2

(
‖un+1 − un‖2 − ‖un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)
+(−ω2

n + 2ωn + 1)‖un+1 − un‖2

)
(5.4)

= −1

2
‖A1/2un+1‖2 +

1

2
‖A1/2un‖2 − 1

2
‖A1/2(un+1 − un)‖2.

We can highlight the essential difficulties of the proof. The time differences in the top line,

which correspond to numerical dispersion, will not telescope for variable ωn. The term on the

second line, which corresponds to physical dissipation, will be positive provided ωn ≤ 1+
√

2,

which is the known limit for 0-Stability. Fortunately, the right hand side is independent of

ωn and ∆tn. Also, the numerical dispersion is actually stabilizing as it will allow the physical

dissipation to be negative as long as it’s balanced by the dispersion.
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5.1 Stability

We prove an energy equality which is true independent of ωn, but does not necessarily

imply stability in Section 5.1.1. We then derive sufficient conditions for which the energy

equality implies stability of the solution in the A1/2 norm, and therefore stability in l2.

5.1.1 Energy equality

Theorem 5.1.1 (Energy Equality). Let

αn+1 =
−ω2

n + 2ωn + 1

∆tn(1 + ωn)
βn+1 =

ω2
n

∆tn(1 + ωn)
. (5.5)

Then for all N ≥ 3, the following equality holds,

1

2
‖A1/2uN‖2 +

(
αN +

βN

2

)
‖uN − uN−1‖2

+
N−1∑
n=1

1

2
‖A1/2(un+1 − un)‖2 +

N−1∑
n=2

(
αn +

1

2
βn − 1

2
βn+1

)
‖un − un−1‖2 (5.6)

+
N−1∑
n=1

1

2
βn+1‖un+1 − 2un + un−1‖2 =

1

2
‖A1/2u0‖2 +

β2

2
‖u1 − u0‖2.

For clarity, we prove an identity as a separate Lemma as it may have more universal

application.

Lemma 5.1.1. For every sequence {an}n, {bn}n, and {cn}n, and N ≥ 3, we have the identity

N−1∑
n=1

(
an+1cn+1 + bn+1(cn+1 − cn)

)
cn+1

=

(
aN +

bN

2

)
(cN)2 +

N−1∑
n=2

(
an +

1

2
bn − 1

2
bn+1

)
(cn)2 (5.7)

+
N−1∑
n=1

bn+1(cn+1 − cn)2 − b2

2
(c1)2.
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Proof. We have for the n = 1 term

(
a2c2 + b2(c2 − c1)

)
c2 = a2(c2)2 + b2

(
1

2
(c2)2 − 1

2
(c1)2 +

1

2
(c2 − c1)2

)
.

Adding this equation for n = 1 and n = 2 and grouping like terms yields the N = 3 case

3−1∑
n=1

(
an+1cn+1 + bn+1(cn+1 − cn)

)
cn+1

=

(
a3 +

b3

2

)
(c3)2 +

(
a2 +

1

2
b2 − 1

2
b3

)
(c2)2 − b2

2
(c1)2

+
1

2
b2(c2 − c1)2 +

1

2
b3(c3 − c2)2

=

(
a3 +

b3

2

)
(c3)2 +

3−1∑
n=2

(
an +

1

2
bn − 1

2
bn+1

)
(cn)2

+
3−1∑
n=1

bn+1(cn+1 − cn)2 − b2

2
(c1)2.

An induction argument yields the result.

Now we prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Taking the inner product of (5.3) with un+1 − un gives

1

2
‖A1/2un+1‖2 − 1

2
‖A1/2un‖2 +

1

2
‖A1/2(un+1 − un)‖2

+

(
1

∆tn(1 + ωn)

(
ω2
n

(
un+1 − un − (un − un−1)

)
+(−ω2

n + 2ωn + 1)
(
un+1 − un

))
, un+1 − un

)
= 0.

Summing from n = 1 to N − 1 gives

1

2
‖A1/2uN‖2 +

N−1∑
n=1

1

2
‖A1/2(un+1 − un)‖2

+
N−1∑
n=1

(
1

∆tn(1 + ωn)

(
ω2
n

(
un+1 − un − (un − un−1)

)
+(−ω2

n + 2ωn + 1)
(
un+1 − un

))
, un+1 − un

)
=

1

2
‖A1/2u1‖2.
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Recalling (5.5), let an+1 = αn+1, bn+1 = βn+1, and cn+1 = un+1 − un. Then

1

2
‖A1/2uN‖2 +

N−1∑
n=1

1

2
‖A1/2(un+1 − un)‖2

+
N−1∑
n=1

(
an+1cn+1 + bn+1(cn+1 − cn)

)
cn+1 =

1

2
‖A1/2u1‖2.

If N ≥ 3, we can apply Lemma 5.1.1, which completes the proof.

5.1.2 Main result

The energy equality derived in Section 5.1 is not sufficient for stability without applying

some restrictions on ωn.

Theorem 5.1.2. Let A be SPD, and the stepsize ratios ωn < (3 +
√

13)/2 . Then solutions

to variable stepsize BDF2 are bounded uniformly in n by initial data.

Proof. From Theorem 5.1.1, we observe that a sufficient condition for boundedness is that

αn +
1

2
βn − 1

2
βn+1 ≥ 0 for all n ≥ 1.

Indeed, since βn is always positive, this implies positivity of every term in the energy equality

(5.6), and coercivity of A implies boundedness of ‖u‖ in both the l2 and A1/2 norms.

By definition (5.5), this means

−ω2
n + 2ωn + 1

∆tn(1 + ωn)
+

ω2
n/2

∆tn(1 + ωn)
−

ω2
n+1/2

∆tn+1(1 + ωn+1)
≥ 0.

Multiplying by ∆tn,

−ω2
n + 2ωn + 1

1 + ωn
+

ω2
n/2

1 + ωn
− ωn+1/2

1 + ωn+1

≥ 0.

and combining like terms,

2ωn + 1− ω2
n/2

1 + ωn
− ωn+1/2

1 + ωn+1

≥ 0.

Multiplying by 2 and rearranging gives

4ωn + 2− ω2
n

1 + ωn
≥ ωn+1

1 + ωn+1

.
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Multiplying by (1 + ωn+1)(1 + ωn) (which is always positive) and rearranging gives

4ωn + 2− ω2
n ≥ ωn+1(ω2

n − 3ωn − 1).

ω2
n − 3ωn − 1 has roots (3−

√
13)/2 ≈ −.3 and (3 +

√
13)/2 ≈ 3.3. Therefore, ω2

n − 3ωn − 1

is negative for ωn < (3 +
√

13)/2, and

ωn+1 ≥
4ωn + 2− ω2

n

ω2
n − 3ωn − 1

.

4ωn+2−ω2
n has roots 2±

√
6, and is therefore positive in that interval. Since [0, (3+

√
13)/2) ∈

(2−
√

6, 2 +
√

6), we actually have

ωn+1 ≥ 0 ≥ 4ωn + 2− ω2
n

ω2
n − 3ωn − 1

,

which is trivially satisfied by ωn+1.

This result is independent of A and the dimension. In fact, observing the second line

of (5.6), and using ‖A1/2u‖2 ≥ λ‖u‖2 where λ = λmin shows that we could use a weaker

assumption

αn +
1

2
βn − 1

2
βn+1 +

λ

2
≥ 0 for all n ≥ 1

In fact, one can show that solutions are bound by initial data if eventually all ∆tn ≥ 1
λ
!
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5.2 Damping Rate

We derive and briefly analyze a specific modified equation for VSSBDF2 applied to

the Dahlquist problem y′ = λy. That is, we seek an ODE depending on ∆t of the form

y′ = λ+ ∆t2g(y) for which VSSBDF2 is actually third order consistent.

For VSSBDF2 applied to y′ = λy, we have

1

∆tn

(
1 + 2ωn
1 + ωn

y(tn+1)− (1 + ωn)y(tn) +
ω2
n

1 + ωn
y(tn−1)

)
− y(tn+1)

= O((∆tn + ∆tn−1)3)− λy(tn+1) +
1

∆tn

(
1 + 2ωn
1 + ωn

yn+1−

−(1 + ωn)

(
(y(tn+1)−∆tny

′(tn+1) +
∆t2n

2
y′′(tn+1)− ∆t3

6
y′′′(tn+1)

)
+

ω2
n

1 + ωn

(
(y(tn+1)− (∆tn + ∆tn−1)y′(tn+1)

+
(∆tn + ∆tn−1)2

2
y′′(tn+1)− (∆tn + ∆tn−1)3

6
y′′′(tn+1)

)
= y′(tn+1)− ∆t2n(1 + ωn)

6ωn
y′′′(tn+1))− λy(tn+1) +O((∆tn + ∆tn−1)3).

Therefore, we see that VSSBDF2 applied to y′ = λy results in a third order consistent

approximation to

y′ − ∆t2n(1 + ωn)

6ωn
y′′′ − λy = 0.

We can reduce the order of the modified equation by taking two derivatives, and solving for

y′′′,

y′′′ =
∆t2n(1 + ωn)

6ωn
y(5) + λy′′

Plugging this back into the modified equation gives

0 = y′ − ∆t2n(1 + ωn)

6ωn

(
∆t2n(1 + ωn)

6ωn
y(5) + λy′′

)
− λy

= y′ − λ∆t2n(1 + ωn)

6ωn
y′′ − λy +O((∆tn + ∆tn−1)4),

so that another third order consistent modified equation is

y′ − λ∆t2n(1 + ωn)

6ωn
y′′ − λy = 0. (5.8)
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Multiplying by y′ and assuming λ < 0 gives

d

dt

(
1

2
|λ|y2 +

|λ|∆t2n(1 + ωn)

12ωn
(y′)2

)
= −(y′)2,

This provides an intuitive explanation for the difficulty of proving a decrease of energy

for VSSBDF2. The modified equation has a potential energy 1
2
λ(y)2 and a pseudo kinetic

energy

Numerical Kinetic Energy =
|λ|∆t2n(1 + ωn)

12ωn
(y′)2

that can cause oscillations if ∆t is not small enough to control λ, and if a lot of energy is

stored in y′.

To quantify this further, note (5.8) can also be written

y′′ − 6ωn
λ∆t2n(1 + ωn)

y′ +
6ωn

∆t2n(1 + ωn)
= 0. (5.9)

which is a damped harmonic oscillator with frequency Fn and damping ratio ξn given by

Fn =
1

∆tn

√
6ωn

1 + ωn
ξn =

−1

λ∆tn

√
3ωn

2(1 + ωn)

The system returns to steady state without oscillation if ξn ≥ 1, which is the desired behavior

of the original system. This can be written as a CFL like condition,

−1

λ

√
3

2
≥ ∆tn

√
ωn

1 + ωn

(
−
√

3

λ
≥ ∆t for constant stepsize

)
.

Otherwise we expect oscillations (overshooting) on the return to steady state.
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Appendix A

Second Order Method Supplementary Material

A.1 Velocity Error Analysis for Backward Euler Plus Filter

A.1.1 Proof of Lemma 2.4.1

Proof. By Taylor’s theorem with the integral remainder,

D[u(tn+1)]−∆tut(t
n+1) =

3

2
u(tn+1)−∆tut(t

n+1)

−2

(
u(tn+1)−∆tut(t

n+1) +
∆t2

2
utt(t

n+1)) +
1

2

∫ tn

tn+1

uttt(t)(t
n − t)2dt

)
+

1

2

(
u(tn+1)− 2∆tut(t

n+1) + 2∆t2utt(t
n+1)) +

1

2

∫ tn−1

tn+1

uttt(t)(t
n−1 − t)2dt

)

=

∫ tn+1

tn
uttt(t

n − t)2dt− 1

4

∫ tn+1

tn−1

uttt(t
n−1 − t)2dt.

These terms are first estimated by Cauchy-Schwarz.(∫ tn+1

tn
uttt(t)(t

n − t)2dt

)2

≤
∫ tn+1

tn
u2
tttdt

∫ tn+1

tn
(tn − t)4dt =

∆t5

5

∫ tn+1

tn
u2
tttdt.

1

16

(∫ tn+1

tn−1

uttt(t)(t
n−1 − t)2dt

)2

≤ 1

16

∫ tn+1

tn−1

u2
tttdt

∫ tn+1

tn−1

(tn−1 − t)4dt =
2∆t5

5

∫ tn+1

tn−1

u2
tttdt.

Thus, (
D[u(tn+1)]

∆t
− ut(tn+1)

)2

≤ 6

5
∆t3

∫ tn+1

tn−1

u2
tttdt.
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Integrating with respect to x yields the first inequality. Next,

I[u(tn+1)]− u(tn+1) =
1

2
u(tn+1)− u(tn) +

1

2
u(tn−1)

=
1

2

∫ tn+1

tn
utt(t)(t

n+1 − t)dt+
1

2

∫ tn−1

tn
utt(t)(t

n−1 − t)dt.

By similar steps, (∫ tn+1

tn
utt(t)(t

n+1 − t)dt

)2

≤ ∆t3

3

∫ tn+1

tn
u2
ttdt.

(∫ tn

tn−1

utt(t)(t
n−1 − t)dt

)2

≤ ∆t3

3

∫ tn

tn−1

u2
ttdt.

Therefore, (
I[u(tn+1)]− u(tn+1)

)2 ≤ ∆t3

6

∫ tn+1

tn−1

u2
ttdt. (A.1)

The last inequality can be proved using the same strategy.

A.1.2 Proof of Theorem 2.4.2

Proof. We prove this for Option A. A parallel proof exists for Option B. At tn+1 = (n+1)∆t,

the true solution of (2.1) satisfies,(
D[u(tn+1)]

∆t
, vh

)
+ b
(
I[u(tn+1)], I[u(tn+1)], vh

)
+ ν

(
∇I[u(tn+1)],∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
fn+1, vh

)
+ τn+1(u, p; vh) ∀vh ∈ Xh.

(A.2)

Subtracting (2.11) from (A.2) yields(
D[en+1

u ]

∆t
, vh

)
+ b
(
I[en+1

u ], I[u(tn+1)], vh
)

+ b
(
I[un+1

h ], I[en+1
u ], vh

)
+ ν

(
∇I[en+1

u ],∇vh
)

−
(
en+1
p ,∇ · vh

)
= τn+1(u, p; vh).

(A.3)

Decompose the error equation for velocity

u(tn+1)− un+1
h = (un+1 − ũn+1

h ) + (ũn+1
h − un+1

h ) = ηn+1 + φn+1
h . (A.4)
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where ũn+1
h is the best approximation of u(tn+1) in Xh.

Set vh = I[φn+1
h ]. Using the identity (2.9) with a = φn+1

h , b = φnh, c = φn−1
h , ( A.4), and

applying (λh,∇ · φh) = 0 for all λh ∈ Vh, equation (A.3) can be written

1

4∆t
(‖φn+1

h ‖2 + ‖2φn+1
h − φnh‖2 + ‖φn+1

h − φnh‖2)

− 1

4∆t
(‖φnh‖2 + ‖2φnh − φn−1

h ‖2 + ‖φnh − φn−1
h ‖2)

+
3

4∆t
‖φn+1

h − 2φnh + φn−1
h ‖2 + ν‖∇I[φn+1

h ]‖2

= −
(
D[ηn+1]

∆t
, I[φn+1

h ]

)
− b
(
I[φn+1

h ], I[u(tn+1)], I[φn+1
h ]

)
− b
(
I[un+1

h ], I[ηn+1], I[φn+1
h ]

)
− b
(
I[ηn+1], I[u(tn+1)], I[φn+1

h ]
)

+
(
p(tn+1)− λn+1

h ,∇ · I[φn+1
h ]

)
− ν

(
∇I[ηn+1],∇I[φn+1

h ]
)

+ τn+1(u, p; I[φn+1
h ]).

(A.5)

The next step in the proof is to bound all the terms on the right hand side of (A.5) and

absorb terms into the left hand side. For arbitrary ε > 0, the first term on the right hand

side of ( A.5) is bounded in the following way,

−
(
D[ηn+1]

∆t
, I[φn+1

h ]

)
≤ 1

4ε

∥∥∥∥D[ηn+1]

∆t

∥∥∥∥2

−1

+ ε‖∇I[φn+1
h ]‖2. (A.6)

The first nonlinear term can be bounded as

− b
(
I[φn+1

h ], I[u(tn+1)], I[φn+1
h ]

)
≤ C‖I[φn+1

h ]‖‖I[u(tn+1)]‖2‖∇I[φn+1
h ]‖

≤ C2

4ε
‖I[φn+1

h ]‖2‖I[u(tn+1)]‖2
2 + ε‖∇I[φn+1

h ]‖2.
(A.7)

The second nonlinear term is estimated by rewriting it using ( A.4) as follows

− b
(
I[un+1

h ], I[ηn+1], I[φn+1
h ]

)
= −b

(
I[u(tn+1)], I[ηn+1], I[φn+1

h ]
)

+ b
(
I[ηn+1], I[ηn+1], I[φn+1

h ]
)

+ b
(
I[φn+1

h ], I[ηn+1], I[φn+1
h ]

)
.

(A.8)

then find bounds for all terms on the right hand side of ( A.8). We bound the third nonlinear

term in ( A.5) the same way as the first nonlinear term in ( A.8).

− b
(
I[u(tn+1)], I[ηn+1], I[φn+1

h ]
)

≤ C‖∇I[u(tn+1)]‖‖∇I[ηn+1]‖‖∇I[φn+1
h ]‖

≤ C2

4ε
‖u‖2

∞,1‖∇I[ηn+1]‖2 + ε‖∇I[φn+1
h ]‖2,

(A.9)
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and

b
(
I[ηn+1], I[ηn+1], I[φn+1

h ]
)
≤ C2

4ε
‖∇I[ηn+1]‖4 + ε‖∇I[φn+1

h ]‖2. (A.10)

Next, by the inverse inequality and approximation assumptions,

b
(
I[φn+1

h ], I[ηn+1], I[φn+1
h ]

)
≤ C‖∇I[φn+1

h ]‖‖∇I[ηn+1]‖‖∇I[φn+1
h ]‖

≤ Ch−1‖I[φn+1
h ]‖‖∇I[ηn+1]‖‖∇I[φn+1

h ]‖

≤ C‖I[φn+1
h ]‖‖I[u(tn+1)]‖2‖∇I[φn+1

h ]‖

≤ C2

4ε
‖I[φn+1

h ]‖2‖I[u(tn+1)]‖2
2 + ε‖∇I[φn+1

h ]‖2.

(A.11)

The pressure can be bounded as follows(
p(tn+1)− λn+1

h ,∇ · I[φn+1
h ]

)
≤ C2

4ε
‖p(tn+1)− λn+1

h ‖2 + ε‖∇I[φn+1
h ]‖2. (A.12)

Then we can bound the term after the pressure,

− ν
(
∇I[ηn+1],∇(I[φn+1

h ])
)
≤ ν

2
‖∇I[ηn+1]‖2 +

ν

2
‖∇I[φn+1

h ]‖2. (A.13)

Next we will bound all components of the consistency error τn+1(u, p; I[φn+1
h ]).(

D[u(tn+1)]

∆t
− ut(tn+1), I[φn+1

h ]

)
≤ C‖D[u(tn+1)]

∆t
− ut(tn+1)‖‖∇I[φn+1

h ]‖

≤ C2

4ε
‖D[u(tn+1)]

∆t
− ut(tn+1)‖2 + ε‖∇I[φn+1

h ]‖2.

(A.14)

ν
(
∇(I[u(tn+1)]− u(tn+1)),∇I[φn+1

h ]
)

≤ C2

4ε
‖∇(I[u(tn+1)]− u(tn+1))‖2 + ε‖∇I[φn+1

h ]‖2.
(A.15)

The nonlinear term in τn+1(u, p; I[φn+1
h ]) is then estimated as follows,

b
(
I[u(tn+1)], I[u(tn+1)], I[φn+1

h ]
)
− b(u(tn+1), u(tn+1), I[φn+1

h ])

= b
(
I[u(tn+1)]− u(tn+1), I[u(tn+1)], I[φn+1

h ]
)

+ b(u(tn+1), I[u(tn+1)]− u(tn+1), I[φn+1
h ])

≤ C‖∇(I[u(tn+1)]− u(tn+1))‖‖∇I[φn+1
h ]‖

(
‖∇I[u(tn+1)]‖+ ‖∇u(tn+1)‖

)
≤ C2

4ε
‖∇(I[u(tn+1)]− u(tn+1))‖2

(
‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2

)
+ ε‖∇I[φn+1

h ]‖2.

(A.16)
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Set ε = ν
40

. Using (A.6) to (A.13) in ( A.5) yields

1

4∆t
(‖φn+1

h ‖2 + ‖2φn+1
h − φnh‖2 + ‖φn+1

h − φnh‖2) +
ν

4
‖∇I[φn+1

h ]‖2

− 1

4∆t
(‖φnh‖2 + ‖2φnh − φn−1

h ‖2 + ‖φnh − φn−1
h ‖2) +

3

4∆t
‖φn+1

h − 2φnh + φn−1
h ‖2

≤ Cν−1
(
‖D[ηn+1]

∆t
‖2
−1 + ‖I[φn+1

h ]‖2‖I[u(tn+1)]‖2
2

+ |||u|||∞,1‖∇I[ηn+1]‖2 + ‖∇I[ηn+1]‖4 + ‖p(tn+1)− λn+1
h ‖2

+ ν2‖∇I[ηn+1]‖2 + ‖D[u(tn+1)]

∆t
− ut(tn+1)‖2

+ ‖∇(I[u(tn+1)]− u(tn+1))‖2

+ ‖∇(I[u(tn+1)]− u(tn+1))‖2(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)
)
.

(A.17)

Let κ = C
‖u‖2∞,2

ν
. Assume ∆t < 1

κ
, summing from n = 1 to n = N − 1 and applying the

discrete Gronwall lemma we obtain

‖φNh ‖2 + ‖2φNh − φN−1
h ‖2 + ‖φNh − φN−1

h ‖2

+
N−1∑
n=1

3‖φn+1
h − 2φnh + φn−1

h ‖2 + ν∆t
N−1∑
n=1

‖∇I[φn+1
h ]‖2

≤ e

(
∆tκ(N−1)

1−∆tκ

)(
‖φ1

h‖2 + ‖2φ1
h − φ0

h‖2 + ‖φ1
h − φ0

h‖2 + C∆t
N−1∑
n=1

‖D[ηn+1]

∆t
‖2
−1

+ C∆t(‖u‖2
∞,1 + ν2)

N−1∑
n=1

‖∇I[ηn+1]‖2 + C∆t
N−1∑
n=1

‖∇I[ηn+1]‖4

+ C∆t
N−1∑
n=1

‖p(tn+1)− λn+1
h ‖2 + C∆t

N−1∑
n=1

‖D[u(tn+1)]

∆t
− ut(tn+1)‖2

+ C∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2

+ C∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)
)
.

(A.18)

The first three terms can be bounded as

‖φ1
h‖2 + ‖2φ1

h − φ0
h‖2 + ‖φ1

h − φ0
h‖2

≤ C
(
‖u(t1)− u1

h‖2 + ‖(u(t0)− u0
h)‖2

)
+ Ch2k+2|||u|||∞,k+1.

(A.19)
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We bound the fourth term in ( A.18) as follows

∆t
N−1∑
n=1

‖D[ηn+1]

∆t
‖2
−1 = ∆t

N−1∑
n=1

‖
3
2
(ηn+1 − ηn)− 1

2
(ηn − ηn−1)

∆t
‖2
−1

≤ C
N∑
n=0

∫ tn+1

tn−1

‖ηt‖2ds ≤ Ch2k+2‖ut‖2
2,k+1,

(A.20)

and

∆t(‖u‖2
∞,1 + ν2)

N−1∑
n=1

‖∇I[ηn+1]‖2

≤ C∆t(‖u‖2
∞,1 + ν2) max

{
9

4
, 1,

1

4

}N−1∑
n=1

3
(
‖∇ηn+1‖2 + ‖∇ηn‖2 + ‖∇ηn−1‖2

)
≤ C∆t

N∑
n=0

h2k‖un+1‖2
k+1 = Ch2k‖|u‖|22,k+1.

(A.21)

Similarly to ( A.21), we also have

∆t
N−1∑
n=1

‖∇I[ηn+1]‖4 ≤ C∆t
N∑
n=0

h4k‖u(tn+1)‖4
k+1 = Ch4k‖|u‖|44,k+1. (A.22)

Observe that

∆t
N∑
n=1

‖p(tn+1)− λn+1
h ‖2 ≤ Ch2s+2‖|p‖|22,s+1. (A.23)

The terms from consistency error are bounded using Lemma 2.4.1.

∆t
N−1∑
n=1

‖D[u(tn+1)]

∆t
− ut(tn+1)‖2 ≤ C∆t4

N−1∑
n=0

∫ tn+1

tn−1

‖uttt‖2dt ≤ C∆t4‖uttt‖2
2,0. (A.24)

∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2 ≤ C∆t4
N−1∑
n=1

∫ tn+1

tn−1

‖∇utt‖2dt ≤ C∆t4‖∇utt‖2
2,0.

(A.25)

∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)

≤ C∆t
N−1∑
n=1

(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)∆t3
∫ tn+1

tn−1

‖∇utt‖2dt

≤ C∆t4‖∇u‖∞,0
N−1∑
n=1

‖∇utt‖2dt = C∆t4|||utt|||22,1.

(A.26)
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Combining (A.19) - (A.26) gives

‖φNh ‖2 + ‖2φNh − φN−1
h ‖2 + ‖φNh − φN−1

h ‖2 +
N−1∑
n=1

3‖φn+1
h − 2φnh + φn−1

h ‖2

+ ν∆t
N−1∑
n=1

‖∇I[φn+1
h ]‖2

≤ C
(
‖u(t1)− u1

h‖2 + ‖(u(t0)− u0
h)‖2 + h2k+2‖|u‖|2∞,k+1

+ h2k+2‖ut‖2
2,k+1 + h2k‖|u‖|22,k+1 + h4k‖|u‖|44,k+1 + h2s+2‖|p‖|22,s+1

+ ∆t4(‖uttt‖2
2,0 + ‖∇utt‖2

2,0

)
.

(A.27)

We add both sides of (A.27) with

‖ηN‖2 + ‖2ηN − ηN−1‖2 + ‖ηN − ηN−1‖2 +
N−1∑
n=1

3‖ηn+1 − 2ηn + ηn−1‖2

+ ν∆t
N−1∑
n=1

‖∇(
3

2
ηn+1 − ηn +

1

2
ηn−1)‖2.

(A.28)

and apply triangle inequality to get (2.20).

A.2 Second Order Error Estimator

This section justifies the use of EST2 as an error estimator for the second order approx-

imation. A Taylor series calculation shows that the second order approximation yn+1
(2) in

Algorithm 2 has the local truncation error (LTE) (for constant stepsize)

LTE = −∆t3
(

1

3
y′′′ +

1

2
fyy
′′
)

+O(∆t4).

Consider the addition of a second time filter,

Step 1 :
yn+1
(1)
−yn

∆t
= f(tn+1, y

n+1
(1) ),

Step 2 : yn+1
(2) = yn+1

(1) −
1
3

{
yn+1

(1) − 2yn + yn−1
}

Step 3 : yn+1 = yn+1
(2) −

2
11

{
yn+1

(2) − 3yn + 3yn−1 − yn−2
} (A.29)
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Another Taylor series calculation shows that the induced method has the LTE of

LTE = −∆t3
1

2
fyy
′′ +O(∆t4),

Thus, yn+1 yields a more accurate (still second order) approximation, and

EST2 = yn+1
(2) − y

n+1 =
2

11

{
yn+1

(2) − 3yn + 3yn−1 − yn−2
}

gives an estimate for the error of yn+1. This is extended to variable stepsize using Newton

interpolation, and written with stepsize ratios in Algorithm 2.

This is a nonstandard approach since one would normally use a higher order approxima-

tion to estimate the error. However, this is simple since it requires no additional function

evaluations or Jacobians, and does not require solving a system of equations. Interestingly,

( A.29) remains energy stable, and could be useful as a standalone constant stepsize method.
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Appendix B

MOOSE234 Supplementary Material

B.1 Alternate Implementation of MOOSE234

We now state formulas for the coefficients used in the algorithm with stepsize ratios

τn = kn
kn−1

rather than divided differences. We will fix k̄n ..= kn. Then BDFp is written

1

kn+3

(
p∑
i=0

α
(p)
i yn+i

)
= f(tn+p, yn+p)

The coefficients for this are well known [82]. For completeness, we include the coefficients

for variable stepsize BDF3 and BDF4 in this section. We will also show how the time filter

coefficients can be expressed in terms of the BDF coefficients.

BDF3
1

kn+3

(
α

(3)
4 yn+4

3 +
3∑
i=1

α
(3)
i yn+i

)
= f(tn+4, y

n+4
3 )

BDF3-Stab yn+4
2 = yn+4

3 + C4y
n+4
3 +

3∑
i=1

Ciy
n+i

FBDF4 yn+4
4 = yn+4

3 +D4y
n+4
3 +

3∑
i=0

Diy
n+i

Put

Est2 = yn+4
3 − yn+4

2

Est3 = yn+4
4 − yn+4

3

Est4 =

(
α

(4)
4 yn+4

4 +
3∑
i=1

α
(4)
i yn+i − kn+3f(tn+4, y

n+4
4 )

)/
α

(4)
4 (B.1)
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The coefficients for below BDF3, below, are padded with an extra zero to make the formulas

for the filter coefficients more clear. These coefficients were generated using Mathematica.

BDF3 coefficients (α
(3)
i )

α
(3)
0 = 0

α
(3)
1 = −

τ 3
n+2τ

2
n+3 (1 + τn+3)

(1 + τn+2) (1 + τn+2 (1 + τn+3))

α
(3)
2 = τn+2τ

2
n+3 +

τ 2
n+3

1 + τn+3

α
(3)
3 = −1− τn+3 −

τn+2τn+3 (1 + τn+3)

1 + τn+2

α
(3)
4 = 1 +

τn+3

1 + τn+3

+
τn+2τn+3

1 + τn+2 (1 + τn+3)

BDF4 coefficients (α
(4)
i )

α
(4)
0 =

τ 4
n+1τ

3
n+2τ

2
n+3 (1 + τn+3) (1 + τn+2 (1 + τn+3))

(1 + τn+1) (1 + τn+1 (1 + τn+2)) (1 + τn+1 (1 + τn+2 (1 + τn+3)))

α
(4)
1 =−

τn+1τ
3
n+2τ

2
n+3 (1 + τn+3 )

1 + τn+2

−
τ 3
n+2τ

2
n+3 (1 + τn+3)

(1 + τn+2) (1 + τn+2 (1 + τn+3))

α
(4)
2 =τn+2τ

2
n+3 +

τ 2
n+3

1 + τn+3

+
τn+1τn+2τ

2
n+3 (1 + τn+2 (1 + τn+3))

1 + τn+1

α
(4)
3 =− 1− τn+3 −

τn+2τn+3 (1 + τn+3)

1 + τn+2

− τn+1τn+2τn+3 (1 + τn+3) (1 + τn+2 (1 + τn+3))

(1 + τn+2) (1 + τn+1 (1 + τn+2))

α
(4)
4 =1 + τn+3

(
1

1 + τn+3

+
τn+2

1 + τn+2 (1 + τn+3)

)
+

τn+1τn+2τn+3

1 + τn+1 (1 + τn+2 (1 + τn+3))

BDF3-Stab coefficients (Ci)

C0 =0

C1 =−
µτ 2

n+2τn+3 (1 + τn+3)

1 + τn+2

C2 =µτn+3 (1 + τn+2 (1 + τn+3))

C3 =− µ (1 + τn+3) (1 + τn+2 (1 + τn+3))

1 + τn+2

C4 =µ
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FDF4 filter coefficients (Di)

γi =
α

(3)
i − α

(4)
i

α
(3)
4

D4 =
γ4

1− γ4

Di = γi(1 +D4) for 0 ≤ i ≤ 3.

The time filter coefficients Di for FBDF4 can be implemented with knowledge of the

BDF3 and BDF4 coefficients alone. We now show the derivation of the formulas for Di. The

goal as usual is to eliminate the time filter step to yield an equivalent method. We start

with the equation for the time filter omitting the super script 4,

yn+4 = yn+4
3 +D4y

n+4
3 +

3∑
i=0

Diy
n+i

Add D4y
n+4
4 to both sides,

yn+4 +D4y
n+4
4 = yn+4

3 +D4y
n+4
3 +

4∑
i=0

Diy
n+i.

Solving for yn+4
3 ,

yn+4
3 = yn+4 − 1

1 +D4

4∑
i=0

Diy
n+i.

Substituting this into the BDF3 step yields the equivalent method, the left hand side of

which is
1

kn+3

(
4∑
i=1

α
(3)
i yn+i − α

(3)
4

1 +D4

4∑
i=0

Diy
n+i

)
. (B.2)

Recall that the time filter was chosen so that the left hand side of the induced FBDF4

method is equal to the left hand side of BDF4. Thus, Di must satisfy

α
(3)
i −

α
(3)
4

1 +D4

Di = α
(4)
i

for 0 ≤ i ≤ 4. This completely determines Di. Let

γi =
α

(3)
i − α

(4)
i

α
(3)
4

.

Solving the i = 4 first for D4, then substituting this into the other equations gives the

coefficients as stated above.
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Remark B.1.1. These formulas are easily generalized to the other FBDF methods. Given

the coefficients of BDFp and BDFp+1, similarly compact formulas for the filter coefficients

can be derived following the same steps above.

B.2 Code to Calculate BDF Coefficients

Algorithm 11 (BDF and filter coefficients).

dj = em+1−j ∈ Rm+1 for j ∈ {0, 1, · · · ,m}.

FUNCTION BACKDIFF(tn, ..., tn+m)

(c
(0)
0 , c

(0)
1 , · · · , c(0)

m ) = d0

FOR q = 1:m

FOR j = 0:m-q

dj = (dj − dj+1)/(tn+m−j − tn+m−q−j)

END FOR

(c
(q)
0 , c

(q)
1 , · · · , c(q)

m ) = d0

END FOR

RETURN {c(j)
i }mi,j=0

//The function below calculates the coefficients for BDFp,

//η(p+1), and the coefficients of the divided differences c
(j)
i

FUNCTION BDFANDFILTCOEFF(tn, ..., tn+m,p)

{c(j)
i }mi,j=0 = BACKDIFF(tn, ..., tn+m)

η(p+1) = (
∏p

i=1(tn+m − tn+m−i)) /
(∑p+1

j=1(tn+m − tn+m−j)
−1
)

FOR k = m-p:m

ᾱk =
∑p

j=1

[∏j−1
i=1 (tn+m − tn+m−i)

]
c

(j)
k

END FOR

RETURN {ᾱk}mk=m−p, η
(p+1), and {c(j)

i }mi,j=0
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B.3 Python Implementation

We also include an implementation of the above functions in Python. The “\” character

is the continue line command.

import numpy as np

de f f i r s t d i f f e r e n c e (T,Y) :

”””

T i s a vec to r o f times , g r e a t e s t to l e a s t

Y i s a vec to r o l d e r d i f f e r e n c e s , [ d ( j ) , d ( j +1)]

See algorthm in chapter

”””

re turn (Y[0]−Y[ 1 ] ) / (T[ 0 ] − T[ 1 ] )

de f backward d i f f e r enc e s (T) :

”””

Generate the d iv ided d i f f e r e n c e c o e f f i c i e n t s .

T i s a vec to r o f t imes from l e a s t to g r ea t e s t , e . g .

T = [ t n , t n + 1 , . . . . , t n+m]

”””

numOfTimes = len (T)

#the number o f s t ep s in the method

m = numOfTimes − 1

#generate the i n i t i a l d i f f e r e n c e s , which

#i s j u s t the standard b a s i s .

D = np . array ( [ [ np . f l o a t 6 4 ( ( i +1)==(numOfTimes−j ) )\

f o r i in xrange (numOfTimes ) ] \

f o r j in xrange (numOfTimes ) ] )

d i f f e r e n c e s = np . z e r o s l i k e (D)
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d i f f e r e n c e s [ 0 ] = D[ 0 ]

f o r q in xrange (1 , numOfTimes ) :

f o r j in xrange (numOfTimes − q ) :

D[ j ] = f i r s t d i f f e r e n c e \

( [T[m−j ] ,T[m−j−q ] ] , [D[ j ] ,D[ j +1 ] ] )

d i f f e r e n c e s [ q ] = D[ 0 ]

r e turn d i f f e r e n c e s

de f b d f c o e f f i c i e n t s a n d d i f f e r e n c e s (T, order ) :

d i f f e r e n c e s = backward d i f f e r enc e s (T)

m = len (T)−1

#c a l c u l a t e f i l t e r c o e f f i c i e n t f o r i n c r e a s i n g order

eta = np . prod ( [T[m]−T[m−i ] \

f o r i in xrange (1 ,m) ] ) / np . sum ( 1 . / (T[m] − T[m−j ] ) \

f o r j in xrange (1 ,m+1))

re turn [ np . sum(np . prod ( [T[m]−T[m−i ] \

f o r i in xrange (1 , j ) ] ) ∗ d i f f e r e n c e s [ j ] \

f o r j in xrange (1 , order +1)) , d i f f e r e n c e s , eta ]

B.3.1 Coefficients of G matrix

Define the G-matrix as 
g33 g32 g31

g32 g22 g21

g31 g21 g11

 ,
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g33 = (µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1))

+ (−42µ2 + µ+ 21)/(22(µ2 + 2µ+ 1));

(B.3)

g32 = (42µ2 + 13µ− 7)/(11(µ2 + 2µ+ 1))− (µ+ 3
1
2 ((7µ− 1)

(6µ− 5)(14µ− 1)(µ+ 1)5)
1
2 + 41µ2 + 83µ3 + 42µ4 + 1)

/(22(µ4 + 4µ3 + 6µ2 + 4µ+ 1));

(B.4)

g31 = (µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2 + 41µ2

+ 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1))− (21µ2

+ 8µ− 2)/(11(µ2 + 2µ+ 1));

(B.5)

g22 = (µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2 + 41µ2

+ 83µ3 + 42µ4 + 1)/(11(µ4 + 4µ3 + 6µ2 + 4µ+ 1))− (120

µ2 + 23µ− 9)/(22(µ2 + 2µ+ 1));

(B.6)

g21 = (51µ2 + 5µ− 2)/(22(µ2 + 2µ+ 1))− (µ+ 3
1
2 ((7µ− 1)

(6µ− 5)(14µ− 1)(µ+ 1)5)
1
2 + 41µ2 + 83µ3 + 42µ4 + 1)

/(22(µ4 + 4µ3 + 6µ2 + 4µ+ 1));

(B.7)

g11 = (−9µ2 + 2µ)/(11(µ2 + 2µ+ 1)) + (µ+ 3
1
2 ((7µ− 1)

(6µ− 5)(14µ− 1)(µ+ 1)5)
1
2 + 41µ2 + 83µ3 + 42µ4 + 1)

/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1));

(B.8)
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a3 = (22 ∗ µ2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2 (B.9)

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
3
2

−42µ2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+µ((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+44µ((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
3
2

−((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+22((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ

+1)))
3
2/(20µ− 2)

a2 = −(22µ2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2 (B.10)

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
3
2

−42µ2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+11µ((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+44µ((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
3
2

−2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+22((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ

+1)))
3
2/(10µ− 1)
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a1 = (22µ2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
3
2

− 42µ2((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+ 41µ((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+ 44µ((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
3
2

− 5((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2

+ 22((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2

+ 41µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ

+ 1)))
3
2/(20µ− 2);

(B.11)

a0 = −((µ+ 3
1
2 ((7µ− 1)(6µ− 5)(14µ− 1)(µ+ 1)5)

1
2 + 41

µ2 + 83µ3 + 42µ4 + 1)/(44(µ4 + 4µ3 + 6µ2 + 4µ+ 1)))
1
2 ;

(B.12)
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