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HIGH-DIMENSIONAL BIAS-CORRECTED INFERENCE, WITH

APPLICATIONS TO FMRI STUDIES

Xiaonan Zhu, PhD

University of Pittsburgh, 2019

In neuroimaging studies, measures of neural structure and function are used to

try to predict clinical outcomes of patients. Identifying biomarkers that reflect un-

derlying neuropathological processes can provide promising neural targets for future

therapeutic interventions. This identification is typically done using linear or gener-

alized linear models (GLM) with many covariates and relatively few subjects. Thus,

regularization is used to select the salient covariates in the model. In this thesis,

we compare the performance of the least absolute shrinkage and selection operator

(LASSO) regression, adaptive LASSO regression, debiased LASSO regression, and

regularized zero-inflated Poisson (ZIP) regression model in two simulation settings.

The performance of LASSO regression with Poisson and Gaussian models are similar

but for all these approaches the zero-inflated model outperforms the rest. We apply

these approaches to the data from the Longitudinal Assessment of Manic Symptoms

(LAMS) study. We then study the bias correction of GLM and the application on

ZIP data. We apply a decorrelated score approach to address Poisson distributed

data and introduce Cornish-Fisher correction to the decorrelated score test. In high-

dimension settings, the Cornish-Fisher correction can improve the performance of
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decorrelated score test for ZIP data.
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1.0 INTRODUCTION

1.1 BACKGROUND ON STATISTICAL INFERENCE

Statistical inference can be thought of as the process of drawing conclusions about

a population from a sample. It is the combination of model selection, estimation

and formulation of a hypothesis test. One of most familiar examples of statistical

inference is variable selection in regression. We consider the high-dimensional linear

regression model

Y = Xβ + ε, (1.1)

where Y is an n-dimensional response vector and X is an n×p fixed or random design

matrix. In high dimensional settings p� n. β is an unknown p dimension parameter

and ε is an n-dimensional error vector with independent and identically distributed

( i.i.d.) entries εi for i = 1, 2, ..., n. We assume Eεi = 0 and V arεi = σ2. The error

vector ε and design matrix X are independent for a random design. The goal is to

identify the non-zero entries of β. Least absolute shrinkage and selection operator

(LASSO) regression (Tibshirani, 1996) is one of the first coefficient methods to solve

such problems. Various methods have been proposed to improve LASSO for model

selection with weaker assumptions on signals, such as adaptive LASSO (Zou, 2006)

and some of other non-convex penalized methods such as smoothly clipped absolute
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deviations (SCAD) penalty (Fan and Li, 2001) and minimax concave penalty (MCP)

(Zhang, 2010). More recently, statistical inference such as p-value and confidence

interval for each coefficient was made possible using bias-corrected LASSO (Zhang

and Zhang (2014); Bühlmann (2013); Mitra and Zhang (2016); Taylor and Tibshirani

(2016)). The idea of statistical inference and variable selection for linear regression

model has also been extended to the generalized linear models (GLM) (Van de Geer

et al., 2014) and latent variable models (Wang et al., 2014a). A recent overview can

be found in (Dezeure et al., 2015). Motivated by our data, zero-inflated models might

be more appropriate. Here we mainly review one method, namely, the zero-inflated

Poisson (ZIP) model in high dimension.

1.2 MOTIVATION AND STRUCTURE OF THIS THESIS

In neuroimaging studies, measures of neural structure and function are used to

try to predict clinical outcomes of patients. Identifying biomarkers that reflect un-

derlying neuropathological processes can provide promising neural targets for future

therapeutic interventions. In Bertocci et al. (2016), neural activity measured by

functional magnetic resonance imaging (fMRI) using 80 youth from 3 clinical sites

are analyzed and LASSO regression in the Poisson model is used to assess its ability

to predict future levels of behavioral and emotional dysregulation in psychiatrically

unwell youth.

In this thesis, we compare the performance of five statistical inference approaches

in Chapter 2 and apply these approaches to the data from Bertocci et al. (2016) in

Chapter 3. In Chapter 4, we study the bias correction of a GLM and the application

on ZIP data. We apply a decorrelated score approach to address Poisson distributed

2



data and then introduce Cornish-Fisher correction to the decorrelated score test. We

also discuss extensions of current approaches in Chapter 5.
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2.0 ANALYSIS OF ZERO-INFLATED POISSON DATA

This Chapter consists of four parts. In Section 2.1, we state the statistical frame-

work for the analysis of zero-inflated Poisson data. In Section 2.2, we review five mod-

els in high-dimensional estimation, including two LASSO regression models (2.2.1.1

and 2.2.1.2), adaptive LASSO model (2.2.3), debiased LASSO model (2.2.4) and

regularized zero-inflated Poisson (RZIP) model (2.2.5). We also compare the re-

sults from different models given non-inflated data (2.2.6). Next, in Section 2.3, we

compare the performance of the five approaches through two simulation studies.

2.1 STATISTICAL FRAMEWORK

Let Yi be the outcome observed for the ith subject, i = 1, 2, ..., n. As for the

covariates, let Xk be the kth predictor and βk be the corresponding regression coef-

ficient, for k = 1, 2, ..., p. In addition, let β0 be the intercept term in the regression

model. Our goal is to obtain a subset of predictors and the estimate of their coef-

ficients βk that are significant in the model. We call the subset of predictors with

non-zero coefficients the support of regression model. We write ‖ · ‖1 for vector l1

norm and ‖ · ‖2 for vector l2 norm. We use 1n to denote the n-dimensional vector
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(1, 1, ...1)T and In to denote n×n identity matrix. Throughout the thesis we assume

p > n.

2.2 REVIEW OF EXISTING METHODS

2.2.1 LASSO regression

LASSO regression is an analysis method introduced in Tibshirani (1996). The

key idea of LASSO regression is penalizing the l1 norm of the regression coefficients

in order to select a subset of covariates instead of all of them in the regression model.

Although the original LASSO is formulated for linear regression, it has been extended

to a large variety of statistical models. In this thesis, we apply LASSO regression in

the Poisson and Gaussian models.

2.2.1.1 Gaussian model In the high-dimensional linear regression model (1.1),

we assume the outcome Y follows a Gaussian distribution with mean µ and unknown

variance σ2. For each observation Yi (i = 1, 2, ..., n), let EYi = µi, µi = β0+
∑

j Xijβj

and β = (β1, β2, ..., βp)
T ; then the Gaussian LASSO estimators are defined as

{β̂0, β̂} = arg min
β0,β

1

n
‖Y − β01n −Xβ‖22 + λ‖β‖1

= arg min
β0,β

1

n

∑
i

|Yi − µi|2 + λ‖β‖1. (2.1)

2.2.1.2 Poisson model For the high-dimensional Poisson regression model, sup-

pose that the outcome Y follows a Poisson distribution with mean µ. For each
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observation Yi (i = 1, 2, ..., n), let EYi = µi, log(µi) = β0 +
∑

j Xijβj, and β =

(β1, β2, ...βp)
T . Then the Poisson LASSO estimators are defined as

{β̂0, β̂} = arg min
β0,β
− 1

n

∑
i

(Yi log(µi)− µi) + λ‖β‖1. (2.2)

2.2.1.3 Anscombe transform and Gaussian model In the previous section,

the LASSO extension to Poisson model works well for certain applications. An-

other way of modeling the effect of covariates on the count type response is through

the Anscombe transform (Anscombe, 1948), which is a variance-stabilizing trans-

formation that transforms a Poisson distributed random variable into one with an

approximately Gaussian distribution. Let Yi be the ith outcome and EYi = µi. Then

the Anscombe transformed ith outcome Y ∗i is defined as

Y ∗i = 2

√
Yi +

3

8
. (2.3)

We apply the Anscombe transform to the outcome Y assuming that the Anscombe

transformed outcome Y ∗ is distributed as a Gaussian. Keeping the notation of Sec-

tion 2.2.1.2, the Gaussian LASSO estimators are defined as

{β̂0, β̂} = arg min
β0,β

1

n
‖Y ∗ − β0 −Xβ‖22 + λ‖β‖1 (2.4)
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2.2.2 Relationship between Poisson and Gaussian models

For the Anscombe transformed outcome Y ∗i in equation (2.3), if the original

outcome Yi follows a Poisson distribution with mean µi, then

EY ∗i = 2e−µi
∞∑
k=0

µki
k!

√
k +

3

8
(2.5)

Suppose there exists an invertible transform T such that

T

(
2e−µi

∞∑
k=0

µki
k!

√
k +

3

8

)
= µi; (2.6)

then we can analyze the Anscombe transformed data with a Gaussian model and

compare the corresponding Poisson log-likelihood with a Poisson model. We take

the derivative of EY ∗i

(EY ∗i )
′

=
d

dµi

(
2e−µi

∞∑
k=0

µki
k!

√
k +

3

8

)

= −2e−µi
∞∑
k=0

µki
k!

√
k +

3

8
+ 2e−µi

∞∑
k=1

kµk−1i

k!

√
k − 1 +

11

8

= 2e−µi
∞∑
k=0

µki
k!

(√
k +

11

8
−
√
k +

3

8

)
> 0

The positive derivative indicates that the transform T is unique. However, unfortu-

nately there is no closed form for T , so we use a grid search to find the corresponding

Poisson mean µi when the Gaussian mean is EY ∗i .

7



2.2.3 Adaptive LASSO regression for Gaussian model

In this section, we apply the adaptive LASSO estimation approach proposed by

Zou (2006). By the definition of l1 norm ‖ · ‖1, the penalty term λ‖β‖1 in LASSO

regression model (2.1) can be written as λ
∑

j 1 × |βj|, in which all coefficients βj

are penalized equally with weight factors equal to 1. In this section, we assign

different weights to different coefficients and consider the weighted LASSO. Let βj

be the jth regression coefficient and wj be the corresponding unknown weight factor,

β = (β1, β2, ..., βp)
T , then the weighted LASSO likelihood function will be

1

n
‖Y ∗ − β01n −Xβ‖22 + λ

∑
j

wj|βj|. (2.7)

We consider the adaptive LASSO regression model with the weighted factor wj =

1/|βinitj |γ:

{β̂0, β̂} = arg min
β0,β

1

n
‖Y ∗ − β01n −Xβ‖22 + λ

∑
j

|βj|
|β̂initj |γ

, (2.8)

where β̂initj is calculated from a
√
n consistent estimator, for example, the ordinary

least squares estimator β̂OLSj . γ is a pre-specified known constant (e.g. γ = 1).

To adjust the cases in which β̂OLSj = 0, we use the initial estimator thus β̂initj =

|β̂OLSj |+ 1/
√
n.
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2.2.4 Debiased LASSO regression for Gaussian model

The debiased LASSO estimator was introduced in Zhang and Zhang (2014). In

the LASSO regression model in Section 2.2.1.1, an l1 penalty term added to the clas-

sical least squares likelihood function controls the number of non-zero coefficients.

Meanwhile, this LASSO penalty term also introduces bias to the least squares es-

timate of β. For any predictor Xj, the corresponding univariate linear regression

estimator can be written as

β̂linearj =
zTj y

zTj xj
= βj +

∑
k 6=j

zTj xkβk

zTj xj
+

zTj ε

zTj xj
, (2.9)

where ‖zj‖2 = 1, zTj xj 6= 0. This representation of linear estimator suggests a bias

correction with a nonlinear initializer β̂init:

β̂j = β̂initj +
zTj {y −Xβ̂init}

zTj xj
, (2.10)

where zj is a relaxed orthogonalization of xj against other predictor vectors X−j. If

γ̂j is the vector of coefficients from the lasso regression of xj on Xj, i.e.

γ̂j = arg min
b

1

2n
‖xj −X−jb‖22 + λj‖b‖1, (2.11)

the lasso-generated score is zj = xj −X−j γ̂j (Zhang and Zhang, 2014).
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2.2.5 Regularized zero-inflated Poisson (RZIP) regression model

In this section, we introduce the regularized zero-inflated Poisson regression

model. In practice, when we deal with morbidity data or clinical visit data, the

outcomes are counts in which zero or positive integer values are observed. Often the

number of zeros in the outcome cannot be accommodated by the Poisson model. In

RZIP model, instead of assuming the outcome Y as a Poisson distributed variable,

we assume that Yi is generated from either the Poisson state or the zero state via

a latent variable. Let Zi be the zero state indicator for the ith observation Yi. In

other words, Zi = 1 if Yi is from the zero state and Zi = 0 if Yi is from the Poisson

state with mean µi. Let P (Zi = 1) = πi and P (Zi = 0) = 1− πi, then the marginal

probability of Y is:

P (Yi = 0) = πi + (1− πi) exp(−µi), (2.12)

P (Yi = yi) = (1− πi)µyii exp(−µi)/yi!, yi > 0. (2.13)

The log-likelihood function lRZIP of (Y1, ...Yn) is then given by

lRZIP =
∑
Yi=0

log(πi + (1− πi) exp(−µi)) +
∑
Yi 6=0

log((1− πi)µyii exp(−µi)/yi!)

=
∑
Yi=0

log(πi + (1− πi) exp(−µi)) +
∑
Yi 6=0

log(1− πi)

+
∑
Yi 6=0

yi log µi −
∑
Yi 6=0

µi −
∑
Yi 6=0

log(yi!). (2.14)

The EM algorithm provided in Wang et al. (2014b) can be applied to the selected

significant predictors and to estimate their coefficients. In this section, based on the

structure of zero state we apply two different models: a uniform zero state probability

model and varying zero state probability model. In the first model, we assume that

for each Yi, P (Zi = 1) = π for all i = 1, 2, ..., n. In the second model, we assume

10



that P (Zi = 1) = πi are potentially different and fit a logistic regression model for

the zero state probability. We can obtain the penalized log-likelihood function with

some penalty function pRZIP for the RZIP model,

{β̂, π̂} = arg max
β,π

lRZIP − npRZIP (2.15)

where β = (β1, β2, ..., βp)
T .

2.2.5.1 Uniform zero state probability In the first case, we assume that the

probability that an outcome is from the zero state is a fixed value π for all observa-

tions. If log µi = β0 +
∑

kXijβk and Xi0 = 1, then the log-likelihood function lRZIP

is defined as:

lRZIP =
∑
Yi=0

log

[
π + (1− π) exp(− exp(

∑
j

Xijβj))

]
+
∑
Yi 6=0

log(1− π)

+
∑
Yi 6=0

[
yi
∑
j

Xijβj − exp(
∑
j

Xijβj)

]
−
∑
Yi 6=0

log(yi!). (2.16)

The LASSO type penalty function is:

pRZIP ,U = λ1‖β‖1. (2.17)

Then (2.15) can be written as,

{β̂, π̂} = arg max
β,π

lRZIP − npRZIP,U . (2.18)
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2.2.5.2 Varying zero state probability If the probability that an outcome

is from the zero state varies for observations, we fit a logistic regression model to

estimate the zero state probability. Let log µi = β0 +
∑

j Xijβj, log[πi/1 − πi)] =

γ0 +
∑

kXikγk and Xi0 = 1, then the log-likelihood function lRZIP for is:

lRZIP =
∑
Yi=0

log(exp(
∑
k

Xikγk) + exp(− exp(
∑
j

Xijβj)))

+
∑
Yi 6=0

(yi
∑
j

Xijβj − exp(
∑
j

Xijβj))

−
∑
Yi 6=0

log(1 + exp(
∑
k

Xikγk))−
∑
Yi 6=0

log(yi!) (2.19)

Let β = (β1, β2, ...βp)
T and γ = (γ1, γ2, ..., γp)

T , then the LASSO type penalty func-

tion is:

pRZIP ,D = λ1‖β‖1 + λ2‖γ‖1. (2.20)

Thus (2.15) can be written as

{β̂, γ̂} = arg max
β,γ

lRZIP − npRZIP,D. (2.21)

2.2.6 LASSO regression without zero-inflated observations

In Section 2.2.5, we can detect the zero state observations by estimating the zero

state indicator Zi. In this section, assuming we have access to the latent indicator

Zi, we are able to drop the zero state observations and then all the remaining obser-

vations are the Poisson state observations. We analyze the Poisson state data with

the models in Section 2.2.1.1, 2.2.1.2, 2.2.3 and 2.2.4.
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2.3 SIMULATION STUDIES

We mimic the data from motivating study in Bertocci et al. (2016) and simulate 

ZIP data from two settings. We call them transformed RZIP data and simulated 

RZIP data. For both simulated data sets, we apply nine different approaches from 

five models and compare the support and Poisson log-likelihood. To evaluate the 

variable selection performance of these models, we compare the ROC curve of LASSO 

regression for Poisson, LASSO regression for Gaussian, LASSO Bias correction and 

adaptive LASSO model.

In both settings, n = 80 observations are generated from a zero inflated Poisson 

model and p = 107 covariates are specified. The zero state probability π = 0.2 for 

all observations. Xij is generated from the standard normal distribution. We use 

non-zero intercept in the Poisson regression model. A brief discussion about the 

intercept term in the Poisson model is in Section 4.3.

2.3.1 Transformed RZIP data

For transformed RZIP data, the outcomes are generated from a zero-inflated 

Poisson model. The zero state probability is set as 0.2 for all observations. The 

Poisson state mean µi for each observation Yi is transformed from the corresponding 

Gaussian mean ηi by transformation T such that T (ηi) = µi.

      We set 107 predictors and specify the Gaussian mean ηi for each observation as:

ηi = β0 +
∑
j

Xijβj, j = 1, 2, ...107. (2.22)

We fix β0 = 4.5, β1 = β2 = ... = β16 = 0.4, β17 = β18 = ... = β107 = 0, and generate

Xij independently from the standard normal distribution.
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2.3.1.1 Support and Poisson log-likelihood We applied seven different ap-

proaches to analyze the transformed RZIP data. For those approaches, the number

of predictors selected were quite different. In the following table (Table 1), we sum-

marize the support and Poisson log-likelihood for the different methods.
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Table 1: Summary of support and Poisson log-likelihood

Method Support Poisson

log-likelihood

Truth 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -3.2025

11, 12, 13, 14, 15, 16

LASSO regression 0, 4, 6, 8, 13, 14, 16, 17, 18, 27, -2.5452

for Poisson 38, 50, 51, 68, 70, 72, 87, 100,

102, 107

LASSO regression 0, 14, 38, 51, 70, 102 -2.8644

for Gaussian

Debiased LASSO 1, 14, 38, 51, 70, 102 -2.8525

Adaptive LASSO 0, 1, 7, 14, 17, 51, 87 -3.0286

Non-inflated Truth 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2.0844

11, 12, 13, 14, 15, 16

Zero-inflated Poisson 4, 6, 8, 10, 13, 14, 18, 27, 38, 66, 68,

70, 72, 77, 94, 98

Non-inflated LASSO 0, 1, 4, 5, 6, 7, 8, 10, 12, 13, 14, -1.7008

(Poisson) 16, 17, 18, 27, 34, 35, 36, 38,

39, 42, 43, 46, 47, 50, 54, 58, 59,

61, 65, 66, 68, 69, 70, 71, 72, 76,

77, 79, 80, 81, 83, 89, 90, 91, 92,

95, 98, 99, 100, 103, 104, 105, 107
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2.3.1.2 ROC curve In Section 2.2.1.2, Section 2.2.1.1 and Section 2.2.6, with

different values of tuning parameter λ, the supports we got were different. In Section

2.2.4 and Section 2.2.6, with different values of Type-I error α, the debiased LASSO

supports were also different. In Section 2.2.3 and Section 2.2.6, with different γ, the

adaptive LASSO support we got were different.

In the analysis above, we use 10-fold cross-validation method to set up the values

of these tuning parameters. The object function for tuning is the “deviance”, which

uses squared-error for Gaussian and deviance for Poisson regression model. We

choose the largest value of lambda such that error is within one standard error of

the minimum cross-validated error.

To evaluate the variable selection performance of these models, we compared

the ROC curve for LASSO regression for Poisson, LASSO regression for Gaussian,

debiased LASSO and adaptive LASSO. In LASSO regression for Poisson model and

LASSO regression for Gaussian model, for the different values of tuning parameter

λ, we compared the True Positive Rate (TPR, sensitivity) and False Positive Rate

(FPR, 1-specificity), where

TPR =
#Correctly selected predictors

#True predictors
(2.23)

FPR =
#Incorrectly selected predictors

#False predictors
(2.24)

For each λ value, we took 20 replications and use the mean of 20 (FPR, TPR) to

generate ROC curve (Figure 1).
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(a) Poisson, Whole data (b) Gaussian, Whole data

Figure 1: ROC Curve for LASSO Regression

In debiased LASSO, for the different values of Type-I error α level, we took 20

replications and use the mean p-values for each predictor, and then calculated (FPR,

TPR) to generate the ROC curve (Figure 2).

(a) Whole Data (b) Non-inflated Data (c) Whole Data

(d) Non-inflated Data

Figure 2: ROC Curve for Bias Correction
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In debiased LASSO, for the different initial LASSO tuning parameters, the de-

biased LASSO support may be different. We use all the observations in the whole

data and use only the estimated Poisson state observations in the non-inflated data.

We generated different ROC curve for 40 different initial LASSO tuning parameters

and selected the ROC curve with the largest area under curve for whole data and

non-inflated data respectively. In adaptive LASSO, for the different γ, we took 20

replications and use the mean of 20 (FPR, TPR) to generate ROC curve (Figure 3).

(a) γ = 0.5, Whole data (b) γ = 1, Whole data (c) γ = 1.5, Whole data

(d) γ = 0.5, Non-inflated (e) γ = 1, Non-inflated (f) γ = 1.5, Non-inflated

Figure 3: ROC Curve for Adaptive LASSO Regression

Remark 2.3.1. For both whole data and non-inflated data, the performance of

LASSO regression with Poisson and Gaussian are similar. For all four methods,

the non-inflated data model outperform the whole data model.
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2.3.2 Simulated RZIP data

For the simulated RZIP data, the outcomes are generated from the zero-inflated

Poisson model. The zero state probability is set as 0.2 for all observations. We set

107 predictors and specify the Poisson mean µi for each observation as:

log µi = β0 +
∑
j

Xijβj, j = 1, 2, ...107. (2.25)

We fix β0 = 1.7, β1 = β2 = ... = β16 = 0.2, β17 = β18 = ... = β107 = 0, Xij is

generated from the standard normal distribution.

2.3.2.1 Support and Poisson log-likelihood We applied seven different ap-

proaches to analyze the simulated RZIP data. For those approaches, the number of

predictors selected were quite different. In Table 2, we summarize the support and

Poisson log-likelihood for the different approaches.

Table 2: Summary of support and Poisson log-likelihood

Method Support Poisson

log-likelihood

Truth 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -3.1668

11, 12, 13, 14, 15, 16

Continued on Next Page. . .
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Table 2 – Continued

Method Support Poisson

log-likelihood

LASSO regression 0, 2, 4, 5, 6, 7, 8, 10, 13, 15, 16, -2.2665

for Poisson 19, 20, 30, 34, 36, 37, 45, 48, 51,

58, 65, 66, 67, 72, 77, 79, 91, 96,

97, 99, 102, 106

LASSO regression 0, 2, 5, 6, 7, 8, 13, 15, 16, 19, 20, -2.3379

for Gaussian 23, 34, 36, 45, 48, 58, 65, 66, 72,

77, 79, 91, 97

Debiased LASSO 1, 6, 7, 16, 17, 20, 37, 67 -4.1391

Non-inflated true 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2.3739

model 11, 12, 13, 14, 15, 16

Zero-inflated Poisson 0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13,

15, 16, 19, 20, 22, 34, 36, 41, 42,

43, 48, 49, 66, 68, 79, 91, 96, 97,

99, 100, 102, 106

Non-inflated LASSO 0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, -1.8987

for Poisson 15, 16, 19, 20, 22, 25, 27, 33,

34, 36, 41, 42, 43, 48, 49, 63,

66, 75, 80, 88, 91, 94, 96, 97,

99, 100, 102, 106
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2.3.2.2 ROC curve Keeping the same notation in Section 2.3.1, for each λ value,

we take 20 replications and use the mean of 20 (FPR, TPR) to generate ROC curve

(Figure 4).

(a) Poisson, Whole data (b) Gaussian, Whole data

(c) Poisson, Non-inflated (d) Gaussian, Non-inflated

Figure 4: ROC Curve for LASSO Regression

In debiased LASSO, for the different values of Type-I error α level, we took 20

replications and used the mean p-values for each predictor, and then calculated (FPR,

TPR) to generate ROC curve (Figure 5). In debiased LASSO, for the different initial

LASSO tuning parameters, the debiased supports may be different. We use all the

observations in the whole data and use only the estimated Poisson state observations

in the non-inflated data. We generated different ROC curve for 40 different initial

LASSO tuning parameters and selected the ROC curve with the largest area under

curve for whole data and non-inflated data respectively.
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(a) Whole Data (b) Non-inflated Data

(c) Whole Data (d) Non-inflated Data

Figure 5: ROC Curve for Debiased LASSO

Remark 2.3.2. For both whole data and non-inflated data, the performance of

LASSO regression with Poisson and Gaussian are similar. For all three methods,

the non-inflated data model outperform the whole data model.
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3.0 ANALYSIS OF DATA FROM MOTIVATING PROBLEM

3.1 REVIEW OF DATA IN MOTIVATING PROBLEM

In Bertocci et al. (2016), the measures of neural structure and function along

with clinical, demographic, genetic and environmental factors of 80 youth were col-

lected in the Longitudinal Assessment of Manic Symptoms (LAMS) study. The aim

of the LAMS study was to identify measures of neural function and structure pre-

dicting future behavioral and emotional dysregulation in a large group of youth. The

severity of future behavioral and emotional dysregulation was measured by the Par-

ent General Behavior Inventory-10 Item Mania Scale (PGBI-10M)). In the study,

PGBI-10M scores were obtained on or near the day of scan (TIME1) and at follow-

up interviews after neuroimaging scans (TIME2). Linear regression model using the

LASSO method for variable selection was used in the data analysis. In the regres-

sion model, TIME2:PGBI-10 is the outcome variable, TIME1:PGBI-10 and other

TIME1 clinical and demographic variables serve as predictor variables. There are

107 predictors, including TIME1:PGBI-10, in the regression model. TIME1 mea-

sures included the blood-oxygen-level-dependent, functional connectivity and diffu-

sion imaging (DI) neuroimaging measures, Mania Rating Scale (KMRS), Depres-

sion Rating Scale (KDRS) and diagnoses (attention deficit hyperactivity disorder
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(ADHD), bipolar spectrum disorder, major depressive disorder, disruptive behavior

disorder, anxiety disorder), age, IQ, sex, medication status (taking versus not taking

each psychotropic medication class: stimulant, non-stimulant ADHD, mood stabi-

lizer, antipsychotic and antidepressant psychotropic medications), scan site and days

between TIME1:PGBI-10M and TIME2:PGBI-10M. The predictors are standardized

before the analysis.

The outcome variable, TIME2:PGBI-10, is of count type. There are 80 subjects

in the study and 21 out of 80 outcomes are zero. We use a Poisson distribution

to build the regression model for variable selection. For convenience, the following

histogram (Figure 6) shows the marginal distribution of the outcome variable.

Figure 6: Histogram of TIME2:PGBI-10
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3.2 LASSO REGRESSION FOR POISSON MODEL

Because there are more predictors than observations, in the analysis we use a

LASSO penalty term to control the number of predictors.

We replicated the results in Bertocci et al. (2016), in the LASSO regression for

Poisson model with the following covariate indexes selected: 0, 1, 5, 6, 9, 62, 63, 92.

Here index 0 means the intercept term.

Unlike the Gaussian model, the Poisson model uses a non-linear log link function,

hence the intercept term cannot be eliminated simply by standardising the response

variable Y . The intercept term can be considered a measure of background contami-

nation (see Hunt et al. (2019) for details). A brief discussion of the intercept term in

the Poisson regression model is in Section 4.3. To study the influence of the intercept

term in the Poisson model, we also analyze the LASSO regression model without an

intercept term β0:

log(µi) =
∑
j

Xijβj (3.1)

β̂ = arg min
β
− 1

n

∑
i

(Yi log(µi)− µi) + λ‖β‖1. (3.2)

Without the intercept term β0, only predictor 1 is selected.

3.3 LASSO REGRESSION FOR GAUSSIAN MODEL

3.3.1 Gaussian model

With the Anscombe transformed response variable Y ∗, in the LASSO regression

for Gaussian model, ten predictors with the following indexes are selected: 0, 1,
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5, 6, 9, 29, 44, 62, 71, 92. Figure 7 shows the residual Q-Q plot: Compared to the

Figure 7: Transformed LASSO Q-Q Plot

Poisson model, this Gaussian model has the similar number of support variables, and

both models select variables 0, 1, 5, 6, 9, 62, 92, which shows that the Anscombe

transform is reasonable in dealing with this data set. However, based on the Q-Q

plot, the distribution of residuals indicate that further adjustments are required for

this approach, especially in the tails.

Remark 3.3.1 (without intercept term). We also analyze the LASSO regression

model without intercept term β0, i.e. β̂ = arg minβ
1
n
‖Y ∗ −Xβ‖22 + λ‖β‖1 However,

without the intercept term β0, no predictors were selected.

3.3.2 Bias correction of LASSO regression for Gaussian model

With the LASSO initializer, seven predictors with the following indexes are se-

lected: 1, 2, 42, 51, 71, 76, 92. Table 3 shows the predictors with the smallest 20
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p-values.
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Table 3: Bias correction of LASSO supports

LASSO Coef Upper Lower Sig Ind p-value Index

Zclosest ESM 4.1144 4.5170 3.7117 1 <0.0001 1

Zfolldays 0.7184 1.1147 0.3220 1 0.0004 2

ZKMRS score 0.3248 0.7664 -0.1168 0 0.1494 5

ZKDRS score 0.368 0.7603 -0.0238 0 0.0656 6

Anx -0.3616 0.1246 -0.8477 0 0.1449 12

Zrcst RD adj -0.3951 0.0586 -0.8487 0 0.0879 29

Zlcab ICV -0.6989 -0.0584 -1.3393 1 0.0325 42

Zlcst ICV 0.4605 0.9831 -0.0621 0 0.0841 46

Zlilf ICV 0.5641 1.2903 -0.1621 0 0.1279 48

Zrslfp ICV -0.5360 -0.0182 -1.0538 1 0.0425 51

Zrslft ICV 0.5836 1.2120 -0.0449 0 0.0688 53

Zrccg length -0.3912 0.1080 -0.8904 0 0.1246 63

Zlslft length 0.4725 1.0511 -0.1061 0 0.1095 70

Zrslft length 0.4602 0.9003 0.0201 1 0.0404 71

ZFmin L1 adj -0.5529 0.1469 -1.2527 0 0.1215 75

Zlatr L1 adj 0.7010 1.3413 0.0606 1 0.0319 76

Zlslfp L1 adj -0.3756 0.1472 -0.8985 0 0.1591 86

Zvs484652 1.0338 2.0283 0.0393 1 0.0416 92

ZBA40rtPar -0.4156 0.1105 -0.9417 0 0.1215 96

ZBA45lftIFG -0.4148 0.1331 -0.9628 0 0.1379 103
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      Compared to the support in Section 2.2.1.2, the variables selected in this section 

are quite different. However, if we consider variables with the smallest 20 p-values, 

most of the variables from Section 2.2.1.2 are included. Also, the p-values for the 

overlapping variables in these 20 variables are all smaller than to 0.15. Table 4 

shows the missed variables from Section 2.2.1.2. The heat map in Figure 8 shows the 

covariance of the 20 variables and the 2 missed variables. The brighter color on the 

heat map indicates the stronger correlation between two variables. From the heat 

map, variable 42, 46, 48, 51, and 53, variable 75, 76 and 86 are correlated, which can 

also explain why only one of these variables in each group is significant.

Table 4: Missed variables in bias correction for LASSO model

LASSO Coefficient Upper Lower Sig Ind p-value Index

sex 0.3304 0.9500 -0.2893 0 0.2961 9

Zlccg length -0.2765 0.2701 -0.8230 0 0.3215 62
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Figure 8: De-biased LASSO Heat Map

Remark 3.3.2. In Section 2.2.1.1 and Section 2.2.4, the value of the tuning pa-

rameter λ in equation (2.1) is selected via 10-fold cross-validation. In Section 2.2.4,

Type-I error α is set as 0.05. Table 5 shows the Poisson log-likelihood for the dif-

ferent tuning parameters and different values of the Type-I error. The bold numbers

are the maximum for each column.
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Table 5: Poisson log-likelihood with different λ and α

Bias correction

λ Initial α=0.05 α=0.06 α=0.07 α=0.08 α=0.09 α=0.10

0.3000 -2.8350 -3.0547 -3.0156 -2.8022 -2.8358 -2.8442 -2.7513

0.3205 -2.8307 -3.0547 -3.0156 -2.8022 -2.9215 -2.9005 -2.7513

0.3410 -2.8307 -3.0547 -3.0156 -2.9190 -2.9215 -2.9005 -2.7513

0.3615 -2.8548 -3.0547 -3.0156 -2.7842 -2.9215 -3.0560 -2.7513

0.3821 -2.8548 -3.1845 -3.0156 -2.6816 -2.9215 -3.0560 -2.7256

0.4026 -2.9433 -2.9645 -2.8916 -2.6816 -2.9215 -3.0560 -2.7256

0.4231 -2.9433 -2.9749 -2.8916 -2.8358 -2.7322 -2.7981 -2.5851

0.4436 -2.9967 -3.0570 -2.8916 -2.8877 -2.7322 -2.6751 -2.5851

0.4641 -2.9967 -3.0570 -2.8916 -2.7732 -2.6046 -2.6751 -2.5851

0.4846 -2.9967 -3.0570 -3.0308 -2.7732 -2.6046 -2.6751 -2.5851

0.5051 -3.0978 -3.0570 -2.9272 -2.7732 -2.6046 -2.6751 -2.5851

0.5256 -3.0978 -3.0527 -2.9272 -2.7475 -2.6959 -2.6751 -2.5851

0.5462 -3.0952 -3.0681 -2.9272 -2.7475 -2.6959 -2.6751 -2.7481

0.5667 -3.0952 -3.0681 -2.9272 -2.7475 -2.6897 -2.6751 -2.7481

0.5872 -3.1414 -3.0681 -2.9272 -2.7475 -2.6897 -2.7766 -2.7495

0.6077 -3.4471 -3.0681 -2.9272 -2.7475 -2.6897 -2.7766 -2.7495
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3.3.3 Regularized zero-inflated Poisson regression model

3.3.3.1 Uniform zero state probability Let log µi = β0 +
∑

j Xijβj, then the

log-likelihood function lZIP is

lRZIP =
∑
Yi=0

log

[
π + (1− π) exp(− exp(

∑
j

Xijβj))

]
+
∑
Yi 6=0

log 1− π

+
∑
Yi 6=0

[
yi
∑
j

Xijβj − exp(
∑
j

Xijβj)

]
−
∑
i

log(yi!)

Analysis Results We apply the EM algorithm proposed in Wang et al. (2014b) and

select 20 variables for the Poisson state (Table 6).

Table 6: RZIP with uniform π model supports

RZIP Poisson Coef Index RZIP Poisson Coef Index

(Intercept) 1.6156 0 X1Zlccg length -0.2194 62

X1Zclosest ESM 0.2671 1 X1Zrccg length -0.0816 63

X1ZAge At Scan 0.0246 3 X1Zlslfp length -0.0666 68

X1ZBase IQ -0.0738 4 X1ZFmin L1 adj -0.0143 75

X1ZKMRS score 0.0310 5 X1Zlslfp L1 adj -0.0640 86

X1Anx -0.0463 12 X1Zrslfp L1 adj -0.0060 87

X1antidepressant -0.0363 15 X1Zrunc L1 adj -0.0419 91

X1Zlcab ICV -0.1767 42 X1Zvs32658 0.1157 95

X1Zrslft ICV 0.0755 53 X1ZBA40lftPar 0.0916 99

X1Zratr length -0.1153 59 X1ZCorpCal -0.0356 101

π 0.2381
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For each observation, Zi is the zero state indicator. There are 21 zero observations

in the outcome variable. Based on estimated Zi (Table 7), 20 of those observations

are from the zero state. The bold observation is the one that is not from the zero

state.

Table 7: Zero state vs. Poisson state for zero realization

Obs Zi πi µi (1− πi)e−µi Obs Zi πi µi (1− πi)e−µi

2 1 0.2381 15.5077 0.0000 41 1 0.2381 5.1663 0.0043

3 1 0.2381 5.6993 0.0026 53 1 0.2381 2.8517 0.0440

7 1 0.2381 1.7669 0.1302 59 1 0.2381 6.6310 0.0010

8 1 0.2381 2.4949 0.0629 61 1 0.2381 8.0007 0.0003

9 1 0.2381 2.8625 0.0435 63 1 0.2381 4.3810 0.0095

16 1 0.2381 3.2294 0.0302 64 0 0.2381 1.1380 0.2442

18 1 0.2381 6.4322 0.0012 69 1 0.2381 6.7047 0.0009

29 1 0.2381 6.3400 0.0013 73 1 0.2381 2.7682 0.0478

34 1 0.2381 5.3038 0.0038 75 1 0.2381 6.7352 0.0009

37 1 0.2381 2.9922 0.0382 79 1 0.2381 4.2438 0.0109

39 1 0.2381 5.2263 0.0041
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3.3.3.2 Varying zero state probability Let log µi = β0+
∑

kXijβj, log(πi/1−

πi) = γ0 +
∑

kXikγk and Xi0 = 1, then the log-likelihood function lRZIP is:

lRZIP =
∑
Yi=0

log

[
exp(

∑
k

Xikγk) + exp(− exp(
∑
j

Xijβj))

]

+
∑
Yi 6=0

[
yi
∑
j

Xijβj − exp(
∑
j

Xijβj)

]

−
∑
Yi 6=0

log

[
1 + exp(

∑
k

Xikγk)

]
−
∑
Yi 6=0

log(yi!) (3.3)

We apply the EM algorithm proposed in Wang et al. (2014b). 20 variables for the

Poisson state and 4 variables for the zero state are selected (Table 8).
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Table 8: RZIP model support

RZIP Poisson Coef Index RZIP Poisson Coef Index

Intercept 1.6220 0 X1Zlccg length -0.2241 62

X1Zclosest ESM 0.2609 1 X1Zrccg length -0.0840 63

X1ZAge At Scan 0.0279 3 X1Zlslfp length -0.0652 68

X1ZBase IQ -0.0706 4 X1ZFmin L1 adj -0.0047 75

X1ZKMRS score 0.0288 5 X1Zlslfp L1 adj -0.0675 86

X1Anx -0.0492 12 X1Zrslfp L1 adj -0.0075 87

X1antidepressant -0.0338 15 X1Zrunc L1 adj -0.0405 91

X1Zlcab ICV -0.1731 42 X1Zrunc L1 adj -0.0405 91

X1Zrslft ICV 0.0737 53 X1ZBA40lftPar 0.0962 99

X1Zratr length -0.1106 59 X1ZCorpCal -0.0396 101

RZIP Zero Coef Index RZIP Zero Coef Index

Intercept -1.1675 0 X1BPSD -0.0827 11

X1Zclosest ESM -0.0535 1 X1Zrslft length -0.3110 71
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For each observation, Zi is the zero state indicator. There are 21 zero observations

in the outcome variable. Based on estimated Zi (Table 9), 20 of those observations

are from the zero state. The bold observation is the one that is not from the zero

state. The average value of πi for the 21 observations is 0.2844.

Table 9: Zero state vs. Poisson state for zero realization

Obs Zi πi µi (1− πi)e−µi Obs Zi πi µi (1− πi)e−µi

2 1 0.2087 14.9644 0.0000 41 1 0.1950 5.2536 0.0042

3 1 0.2431 5.8048 0.0023 53 1 0.2648 2.9345 0.0391

7 1 0.2070 1.7320 0.1403 59 1 0.3194 6.6985 0.0008

8 1 0.3937 2.6470 0.0430 61 1 0.2611 8.1030 0.0002

9 1 0.2798 2.8780 0.0405 63 1 0.2812 4.5047 0.0079

16 1 0.2456 3.2786 0.0284 64 0 0.2463 1.1019 0.2504

18 1 0.2681 6.4601 0.0011 69 1 0.2104 6.8943 0.0008

29 1 0.3368 6.3961 0.0011 73 1 0.3816 2.8357 0.0363

34 1 0.4500 5.3251 0.0027 75 1 0.3419 6.7849 0.0007

37 1 0.2770 3.0494 0.0343 79 1 0.3009 4.3391 0.0091

39 1 0.2601 5.4070 0.0033

Compared to the support from Section 2.2.1.2, the Poisson state support included

more predictors. However, variable 6, 9, and 92 were still not included. For both

uniform π model and different πi model, only observation No. 64 is from the Poisson

state, and all the remaining zero observations are from the zero state. The heat map

(Figure 9) of these 20 variables and Section 2.2.1.2 is as below. From the heat map,

variable 6, 92 and 95, variable 6 and 42 are correlated, which can also explain why
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variable 6, 9, and 92 were not included.

Figure 9: RZIP Support Heat Map

3.3.4 LASSO regression without zero-inflated observations

In Section 2.2.5, we detect the zero state observations by estimating Zi. In

this section, we drop the zero state observations and only use observations from the

Poisson state. In the new data set, there are 60 observations and 107 predictors. The

predictors are standardized before analysis. Figure 10 shows the histogram of the

Poisson state outcome. We then analyze the new data with the methods in Section

2.2.1.1 and Section 2.2.1.2.
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Figure 10: Histogram of Poisson State Outcome

3.3.4.1 Poisson model We repeat the analysis in Section 2.2.1.2 and 16 predic-

tors with the following indexes selected: 0, 1, 3, 4, 5, 12, 42, 53, 59, 62, 63, 68, 86,

91, 95, 99.

3.3.4.2 Gaussian model We repeat the analysis in Section 2.2.1.1 and 14 pre-

dictors with the following indexes selected: 0, 1, 3, 4, 9, 12, 42, 59, 62, 63, 68, 86,

95, 99.

3.3.4.3 Bias correction of Gaussian model We repeat the analysis in Section

2.2.4 and 8 predictors with the following indexes are selected: 1, 2, 42, 53, 63, 75,

97, 100. Table 10 shows the predictors with the smallest 20 p-values.

Remark 3.3.3. In Section 2.2.4, we provide the Poisson log-likelihood for the differ-
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ent tuning parameters and different values of Type-I error. Table 11 shows the Pois-

son log-likelihood for the different tuning parameters and different values of Type-I

error for the non-inflated case. The bold numbers are the maximum in each column.

Table 10: Non-inflated bias correction of LASSO supports

LASSO Coef Upper Lower Sig Ind p-value Index

Zclosest ESM 4.9170 5.2301 4.6040 1 0.0000 1

Zfolldays 0.7796 1.1058 0.4534 1 0.0000 2

ZAge At Scan 0.2262 0.5487 -0.0962 0 0.1690 3

sex 0.3527 0.8062 -0.1008 0 0.1275 9

Anx -0.3738 0.1456 -0.8932 0 0.1584 12

Zrcst RD adj -0.2618 0.1166 -0.6402 0 0.1751 29

Zlilf RD adj 0.4167 0.9822 -0.1488 0 0.1487 30

ZFM ICV -0.2925 0.1667 -0.7517 0 0.2118 38

Zlcab ICV -0.4422 -0.0105 -0.8738 1 0.0447 42

Zrslft ICV 0.4678 0.8722 0.0635 1 0.0234 53

Zrccg length -0.6053 -0.2048 -1.0059 1 0.0031 63

ZFmin L1 adj -0.4071 -0.0141 -0.8001 1 0.0423 75

Zlslfp L1 adj -0.2595 0.1368 -0.6558 0 0.1994 86

Zrslfp L1 adj -0.4597 0.0285 -0.9479 0 0.0649 87

Zrunc L1 adj -0.3732 0.1390 -0.8855 0 0.1533 91

Zvs32658 0.7025 1.4921 -0.0871 0 0.0812 95

ZBA8rtPFC -0.4387 -0.0153 -0.8620 1 0.0423 97

Continued on Next Page. . .

39



Table 10 – Continued

LASSO Coef Upper Lower Sig Ind p-value Index

ZBA40lftPar 0.2338 0.5937 -0.1261 0 0.2030 99

ZBA6lftmotot 0.4330 0.8243 0.0418 1 0.0301 100

ZCorpCal -0.3211 0.0181 -0.6603 0 0.0636 101

Table 11: Poisson log-likelihood with different λ and α

Bias correction

λ Initial α=0.05 α=0.06 α=0.07 α=0.08 α=0.09 α=0.10

0.1000 -1.9222 -2.7818 -2.7302 -2.6908 -2.6629 -2.6629 -2.5959

0.1256 -2.0013 -2.8589 -2.8589 -2.7470 -2.6930 -2.6930 -2.6930

0.1513 -2.1135 -2.8589 -2.8060 -2.7469 -2.6930 -2.6819 -2.6930

0.1769 -2.1843 -2.8589 -2.8060 -2.7469 -2.5867 -2.6819 -2.5810

0.2026 -2.2609 -2.6531 -2.6792 -2.6514 -2.5867 -2.5810 -2.5867

0.2538 -2.2667 -2.6566 -2.7423 -2.6566 -2.6531 -2.5539 -2.5867

0.2795 -2.2667 -2.6706 -2.7423 -2.6566 -2.6566 -2.6073 -2.5922

0.3051 -2.3438 -2.6706 -2.7568 -2.6566 -2.6325 -2.5862 -2.6437

0.3308 -2.4184 -2.7568 -2.7568 -2.6437 -2.6437 -2.5909 -2.6437

0.3564 -2.4184 -2.7609 -2.6780 -2.6437 -2.6437 -2.5909 -2.5059

0.3821 -2.5236 -2.7609 -2.6780 -2.6437 -2.6141 -2.4737 -2.5059

Continued on Next Page. . .
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Table 11 – Continued

Bias correction

λ Initial α=0.05 α=0.06 α=0.07 α=0.08 α=0.09 α=0.10

0.4077 -2.6230 -2.7609 -2.6780 -2.6437 -2.5920 -2.4737 -2.4561

0.4333 -2.6230 -2.7609 -2.7609 -2.6437 -2.5920 -2.3787 -2.3726

0.4590 -2.6520 -2.7609 -2.7609 -2.6437 -2.5426 -2.3372 -2.3726

0.4846 -2.7286 -2.7609 -2.7609 -2.6423 -2.5426 -2.3372 -2.3726

0.5103 -2.7590 -2.7609 -2.7609 -2.6423 -2.5512 -2.3372 -2.3726

0.5359 -2.7590 -2.7609 -2.7609 -2.6423 -2.5512 -2.3440 -2.3735

0.5615 -2.7590 -2.7225 -2.7609 -2.6423 -2.5954 -2.3440 -2.3778

0.5872 -2.7590 -2.7225 -2.6987 -2.6652 -2.5478 -2.4274 -2.3778

0.6000 -2.7590 -2.7225 -2.6987 -2.6294 -2.5684 -2.4274 -2.3811

3.4 SUMMARY

We apply the approaches that are described in the review and summarize the

supports and Poisson log-likelihood for different approaches in Table 12.

We replicate the results in Bertocci et al. (2016), in the LASSO regression for

the Poisson model to get the same covariate indexes: 0, 1, 5, 6, 9, 62, 63, 92. Here

index 0 means the intercept term. For other approaches, the number of predictors

selected are quite different. However, among the results, variables 1, 5, 62, 63 and 92

are selected by most approaches. In Section 2.2.1.1, Section 2.2.4 and Section 2.2.6,
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we apply the Anscombe transform to the outcome variable. For the results of those

three sections, we apply the transformation (2.6) and calculate the corresponding

Poisson means. From the table, the non-inflated LASSO regression for Poisson model

(different zero state probability) provides the largest Poisson log-likelihood.

Table 12: Summary of support and Poisson log-likelihood

Method Support Poisson

log-likelihood

LASSO for Poisson 0 , 1, 5, 6, 9, 62, 63, 92 -3.1722

( without intercept ) (1) (-6.1754)

LASSO for Gaussian 0, 1, 5, 6, 9, 29, 44, 62, 71, 92 -2.8780

( without intercept ) (NA) (NA)

Debiased LASSO 1, 2, 42, 51, 71, 76, 92 -3.1217

for Gaussian

Regularized zero-inflated 0, 1, 3, 4, 5, 12, 15, 42, 53,

Poisson regression 59, 62, 63, 68, 75, 86, 87, 91, 95, NA

uniform zero state 99, 101

Regularized zero-inflated 0, 1, 3, 4, 5, 12, 15, 42, 53, NA

Poisson regression 59, 62, 63, 68, 75, 86, 87, 91, 95,

Poisson (zero) 99, 101 (0, 1, 11, 71)

Non-inflated LASSO 0, 1, 3, 4, 5, 12, 42, 53, 59 -2.4224

for Poisson 62, 63, 68, 86, 91, 95, 99

Continued on Next Page. . .
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Table 12 – Continued

Method Support Poisson

log-likelihood

(same zero state probability)

Non-inflated LASSO 0, 1, 3, 4, 5, 6, 7, 11, 15, -1.9240

for Poisson 20, 25, 30, 33, 40, 42, 44, 47, 49,

(different zero state probability) 56, 59, 63, 67, 68, 70, 71, 75, 84,

89, 95, 101, 104
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4.0 BIAS CORRECTION OF GLM

In linear regression model Y = Xβ + ε, β = (β1, β2, ..., βp), we have the loss

function

l(X, Y ) =
1

n
‖Y −Xβ‖22 (4.1)

which is a convex function in β with second order partial derivative existing. We

define Σ̂ = ∂
∂β∂βT l(X, Y )/n. Given the regularized LASSO estimator

β̂init = arg min
β

(l(X, Y ) + λ‖β‖1), (4.2)

the debiased LASSO estimator defined in Section 2.2.4 takes the form of

β̂ = β̂init − Θ̂
∂

∂β
l(X, Y )|β̂init (4.3)

where Θ̂ is the approximate inverse of Σ (see details in Van de Geer et al. (2014)).

To estimate Θ̂, we consider the LASSO type optimization:

γ̂i = arg min
γ

(Σ̂i,i − 2Σ̂i,−iγ + γT Σ̂−i,−iγ + 2λi‖γ‖1), (4.4)
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where Σ̂i,−i is the ith row of Σ̂ without the ith element, and Σ̂−i,−i is the sub-matrix of

Σ̂ without the ith row and ith column for i = 1, 2, ..., p. We denote τ̂ 2i = Σ̂i,i−Σ̂i,−iγ̂i,

and T̂ = diag(τ̂1, τ̂2, ..., τ̂p),

Ĉ =


1 −γ̂1,2 · · · −γ̂1,p
−γ̂2,1 1 · · · −γ̂2,p

...
. . .

...
...

−γ̂p,1 −γ̂p,21 · · · −γ̂p,p

 , (4.5)

Then we can define Θ̂ as

Θ̂ = T̂−1Ĉ. (4.6)

In Van de Geer et al. (2014), the debiased LASSO estimator proposed in (4.3) is

extended to GLM with convex loss functions. For example, in the logistic regression

model, Y follows a Bernoulli(π) distribution with logit(π) = Xβ, β = (β1, β2, ..., βp).

If Xi is the ith row of design matrix X, then the loss function is:

l(X, Y ) = ln
∏
i

{expit(Xiβ)Yi(1− expit(Xiβ)(1−Yi))} (4.7)

=
∑
i

{Yi ln(Xiβ)− ln(1 + eXiβ)} (4.8)

We can define the debiased LASSO estimator for logistic regression model by updat-

ing the function in (4.3) with the new loss function and corresponding Σ.

In the Poisson regression model, suppose Y follows a Poisson distribution with

mean µ. Let ln(µ) = Xβ, β = (β1, β2, ..., βp), Xi be the ith row of design matrix X,

then the loss function is:

l(X, Y ) =
∑
i

Yi lnµi −
∑
i

µi (4.9)

=
∑
i

{YiXiβ − eXiβ} (4.10)
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The corresponding Σ̂ is:

Σ̂ =
∂

∂β∂βT
l(X, Y )/n. (4.11)

4.1 DECORRELATED SCORE METHOD

In Ning et al. (2017), a decorrelated score method is proposed for statistical

inference of GLM, which extended Rao’s score test to high dimensional settings. To

test the hypothesis H0 : β1 = 1 against Ha : β1 6= 0, the decorrelated score function

is:

S(β1, β−1) = ∇β1l(β1, β−1)− wT∇β−1l(β1, β−1) (4.12)

with w = I−1β−1,β−1
Iβ−1,β1 and β−1 = (β2, β3, ..., βp)

T . Iβ−1,β1 , Iβ−1,β−1 and Iβ1,β1 are

the corresponding partitions of the Fisher Information matrix I = −Eβ(∇2l(β)), i.e,

I =

 Iβ1,β1 Iβ1,β−1

Iβ−1,β1 Iβ−1,β−1

 , (4.13)

The estimated decorrelated score function Ŝ(0, β̃−1) is

Ŝ(0, β̃−1) =
1

n

n∑
i=1

{∇β1li(0, β̃−1)− w̄T∇β−1li(0, β̃−1)}, (4.14)

with the estimated weight w̄ for decorrelated score function

w̄ = arg min
w

1

2n

n∑
i=1

{∇β1li(β̃)− wT∇β−1li(β̃)}2 + λ′‖w‖1 (4.15)

In the Poisson regression model, with covariate X = (X1, X−1) and coefficient β =

(β1, β−1)
T , the decorrelated score function for testing H0 : β1 = 0 is:

Ŝ(0, β̃−1) =
1

n

n∑
i=1

(Yi − exp(β̃T−1X−1,i))(X1,i − w̄TX−1,i) (4.16)
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The test statistic Un is

Ûn = n1/2Ŝ(0, β̃−1)Î
−1/2
β1|β−1

(4.17)

where Îβ1|β−1 = 1
n

∑n
i=1∇2

β1,β1
li(β̃) − w̄T∇2

β−1,β1
li(β̃). We reject H0 if Un is larger

than the critical value zα.

4.2 CORNISH-FISHER ADJUSTED TEST

The Cornish-Fisher expansion, first proposed in Cornish and Fisher (1938), is an

asymptotic expansion used to approximate the quantiles of a probability distribution

based on its first few cumulants to try to improve the Gaussian approximation in

the central limit theorem. One application of the Cornish-Fisher expansion is to

estimate Value at Risk (VaR). When the return of a portfolio is close to Gaussian

distribution, Cornish-Fisher expansion will provide an accurate estimation of the qth

quantile.

Under the assumption that log-return of the portfolio X is Gaussian distributed

with mean µ(X) and variance V ar(X), the VaR is

V aR = µ(X) +
√
V ar(X)zα (4.18)

where zα is the VaR critical value for the confidence level α. The Cornish-Fisher

expansion takes the higher moments of X into account and modified the critical

value qα as

qα = zα +
(z2α − 1)S(X)

6
+

(z3α − 3zα)K(X)

24
− (2z3α − 5zα)S3(X)

36
(4.19)

where S(X) is the skewness, K(X) is kurtosis of X.
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In the decorrelated score test, the test statistic Ûn = n1/2Ŝ(0, β̃−1)Î
−1/2
β1|β−1

is

asymptotically Gaussian. We calculate the sample skewness S(U), sample kurto-

sis K(U):

S(U) =

∑n
i=1(Ui − Ū)3/n

s3(U)
(4.20)

K(U) =

∑n
i=1(Ui − Ū)4/n

s4(U)
(4.21)

where Ui = {∇β1li(0, β̃−1)− w̄T∇β−1li(0, β̃−1)}Î
−1/2
β1|β−1

, Ū is the sample mean, s(U) is

the sample standard deviation. The Cornish -Fisher critical value for decorrelated

score test is

qα = zα +
(z2α − 1)S(U)

6
+

(z3α − 3zα)K(U)

24
− (2z3α − 5zα)S3(U)

36
(4.22)

In the simulation study, we also consider the Cornish-Fisher expansion with first-

order skewness only, and Cornish-Fisher expansion with first-order skewness and

first-order kurtosis.

4.3 INFLUENCE OF INTERCEPT TERM

For the Gaussian regression model, EYi = α + Xiβ for i = 1, 2, ..., n. We can

remove the intercept term intercept term α by standardizing the predictors. However,

For the Poisson regression model, lnEYi = α + Xiβ for i = 1, 2, ..., n. The typical

standardizing method cannot deal with the intercept term α well since it has influence

on both the mean and variance of the observation. In Hunt et al. (2019), the intercept

term was referred as background contamination and a mapping of both Y and X are

required for further consideration. In the simulation study, we let α = 0 to simplify

the model.
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4.4 SIMULATION STUDY

In the simulation study, we generated new data sets to investigate the perfor-

mance of different models. In particular, the response variable Y is generated from

a zero-inflated Poisson distribution. The sample size is n = 200. The covariate X

is generated from a d-dimensional multivariate normal distribution N(0,Σ), where

d = 100, 200, 500, and Σ is a Toeplitz matrix with Σjk = ρ|j−k|. The correlation

parameter ρ = 0, 0.25, 0.4, 0.6, 0.75. To perform the hypothesis of H0 : β1 = 0 vs

Ha : β1 6= 0, we specified the regression coefficient β = (0, βs,0) with βs = (1, 1, 1).

The intercept term is α. The probability that Yi is from the zero state is fixed at

π = 0 and 0.2. For observations from the Poisson state, we generated Yi with

lnEYi = Xiβ (4.23)

To begin with, we set π = 0 so that all the observations were from the Poisson

state. We then set π = 0.2, in which about 20% of all observations were from the

zero state and the rest were from the Poisson state. We applied the EM algorithm in

Section 2.2.5, LASSO regression for Poisson model in Section 2.2.1.2 and decorrelated

score method in Section 4.1.

We consider three Cornish-Fisher adjusted score tests. In the first test, we only

include the first-order skewness in the model. Keeping the notation in Section 4.2,

the corresponding Cornish-Fisher critical value for decorrelated test is:

qα = zα +
(z2α − 1)S(U)

6
. (4.24)

In the second test, we include both the first-order skewness and first-order kurtosis

in the expansion. The Cornish-Fisher critical value is:

qα = zα +
(z2α − 1)S(U)

6
+

(z3α − 3zα)K(U)

24
. (4.25)
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In the third test, we use the Cornish-Fisher critical value defined in equation (4.22):

qα = zα +
(z2α − 1)S(U)

6
+

(z3α − 3zα)K(U)

24
− (2z3α − 5zα)S3(U)

36
.

For the non-inflated data, π = 0, all the outcomes are from Poisson state. The

type I error at 5% significance level table for 500 replications is as follows:

Table 13: Averaged type I error when π = 0

Methods d ρ = 0 ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

CF I 100 0.1122 0.0865 0.0669 0.1393 0.3101

CF II 100 0.2164 0.1791 0.1866 0.2308 0.4747

CF III 100 0.1042 0.0765 0.0909 0.1639 0.3291

CF I 200 0.0980 0.1340 0.1280 0.1960 0.3988

CF II 200 0.2160 0.2460 0.2180 0.3060 0.5371

CF III 200 0.0980 0.1240 0.0960 0.1620 0.3888

CF I 500 0.0840 0.1167 0.0964 0.1487 0.3333

CF II 500 0.1700 0.2354 0.1968 0.2546 0.5135

CF III 500 0.0780 0.1167 0.0965 0.1767 0.3789

As the correlation parameter ρ increase from 0 to 0.75, the type I error increased

for all of these methods. Among the three Cornish-Fisher expansions, the expansion

with all three terms performs the best, hence we use this Cornish-Fisher critical value

for the decorrelated score test.
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5.0 DISCUSSION AND FUTURE WORK

5.1 MEASURING THE SIGNAL-TO-NOISE RATIO IN GLM

5.1.1 Signal-to-noise ratio in linear model

The signal-to-noise ratio (SNR) is widely used in science and engineering that

measures the strength of a signal relative to the background noise. A standard

definition of the SNR is:

SNR =
σ2
signal

σ2
noise

, (5.1)

where σ2
signal is the variability introduced by the signal and σ2

noise is the variability

due to noise. An alternative definition of SNR in regression problems is as the ratio

of regression coefficient to standard deviation of the noise:

SNR =
|β|
σ

(5.2)

SNR is commonly expressed in decibels as 10 log10(SNR), the higher the higher SNR,

the stronger the signal or information in the signal relative to the background noise.

A definition of the SNR for GLM is proposed in Czanner et al. (2015).
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In linear regression model (1.1), the covariate structure can be represented as

Xβ = X1β̃1 + X2β̃2, where X1β̃1 is the covariate related to the signal, X2β̃2 is the

covariate not related to the signal, i.e. β̃2 = 0. The SNR is defined as

SNRX1 =
SSR(X2)− SSR(X)

SSR(X)
(5.3)

where SSR(X2) is the regression sum of squares for X2 and SSR(X) is the regression

sum of squares for X.

5.1.2 Extension of SNR to RZIP model

In Czanner et al. (2015), SNR is proposed for point process GLM which replaced

the regression sum of square SSR with the deviance of regression model, Dev. The

SNR for GLM is

SNRX1 =
Dev(X2)−Dev(X)

Dev(X)
, (5.4)

and Dev is

Dev(X) = −2 log
L(y,Xβ̂)

L(y, y))
, (5.5)

where L(y,Xβ̂) is the likelihood evaluated at the MLE β̂ and L(y, y) is the saturated

likelihood. The paper used a Volterra series expansion of the conditional intensity

function of a spiking neuron. Their supporting document defined SNR for the re-

gression model and compared SNR with R2, F-test and LR test. SNR defined by

deviance in GLM is related to K-L divergence. It also discussed the idea of bias cor-

rection for SNR. Czanner et al. (2015) also suggested an approximate bias-corrected

SNR estimate:

SNRX1 =
Dev(X2)−Dev(X) + dim(β2)− dim(β)

Dev(X) + dim(β)
. (5.6)

We will adjust SNR of GLM base on the zero-inflated model and compare SNR

of Poisson model and Anscombe transformed Gaussian model in the future.
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5.2 HIGH-DIMENSIONAL EM ALGORITHM FOR RZIP MODEL

Balakrishnan et al. (2017) showed the application of EM algorithm to latent

variable models and Wang et al. (2014a) extended the results to high-dimensional

cases. The ZIP model (especially the uniform zero-state probability model) can be

treated as a latent variable model hence we can adapt the high-dimensional EM

algorithm to ZIP.

Suppose that the outcome Y and the zero state indicator Z have a joint density

function fθ∗ . Let Ω be the parameter space. For each θ ∈ Ω, we let kθ(z|y) denote

the conditional density of z given y. The finite-sample Q function is defined as:

Qn(θ|θ′) =
1

n

n∑
i=1

∫
Z
kθ′(z|yi) log fθ∗(yi, z)dz (5.7)

Wang et al. (2014a) assumed that Qn is differentiable in its first argument and

showed the the high-dimensional EM algorithm with a truncation step. For ZIP

model, Qn can be found from the function lRZIP

lZIP =
∑
Yi=0

log(πi + (1− πi) exp(−µi)) +
∑
Yi 6=0

log((1− πi)µyii exp(−µi)/yi!)(5.8)

It would be of interest to apply the high-dimensional EM algorithm to the ZIP model

and compare the results with the EM algorithm in Wang et al. (2014b).
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Dezeure, R., Bühlmann, P., Meier, L., and Meinshausen, N. (2015). High-dimensional

inference: Confidence intervals, p-values and r-software hdi. Statistical Science,

30(4):533–558.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and

its oracle properties. Journal of the American Statistical Association, 96(456):1348–

1360.

Hunt, X. J., Reynaud-Bouret, P., Rivoirard, V., Sansonnet, L., and Willett, R.

(2019). A data-dependent weighted lasso under poisson noise. IEEE Transactions

on Information Theory, 65(3):1589–1613.

Mitra, R. and Zhang, C.-H. (2016). The benefit of group sparsity in group inference

with de-biased scaled group lasso. Electronic Journal of Statistics, 10(2):1829–1873.

Ning, Y., Liu, H., et al. (2017). A general theory of hypothesis tests and confidence

regions for sparse high dimensional models. The Annals of Statistics, 45(1):158–

195.

Taylor, J. and Tibshirani, R. (2016). Post-selection inference for l1-penalized likeli-

hood models. preprint arXiv:1602.07358.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288.
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