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Abstract 

 
 

A Comparative Analysis to Predict p53 Activity Using Classification Models 
 

Priyanka V. Setty, MS 
 

University of Pittsburgh, 2019 
 
 

Abstract 
 

Mutation studies of TP53, the gene coding the tumor protein p53, have become 

increasingly common in cancer research to understand its structural changes and its implications 

for tumor suppression. The protein’s structure is built with four identical chains containing 393 

amino acids per chain. This homo-tetrameric configuration of p53 plays an important role in 

suppressing tumors and it is important to understand the structure-function dynamics and their role 

in cancer development.  

A p53 mutant dataset was obtained from the University of California at Irvine (UCI) 

Machine Learning Repository to infer p53 protein’s ability to suppress tumors based on its two-

dimensional (2D) and three-dimensional (3D) structural features. The dataset consisted of 31,283 

instances (observations) and 5,408 numerical features. Among the total features, the first 4,826 

accounted for 2D structural features which were based on electrostatic and surface properties. The 

remaining 582 3D features were the distance maps between mutant and wild type p53. After 

selecting a subset of the features that were statistically relevant in predicting the outcome (n=100), 

three classification algorithms, Logistic Regression (LR), Support Vector Machine (SVM) and 

Random Forest (RF), were fit to the data and trained using a cross-validation scheme to obtain 

good parameters to classify an active p53 mutant from its inactive counterparts. Performance 

metrics in terms of accuracy and area-under-the-curve (AUC) were utilized in order to evaluate a 

particular classification model. Among the three different algorithms used to predict the outcome, 



 v 

LR seemed to outperform SVM and RF with an accuracy ranging from 0.75 to 0.81 and AUC 

ranging from 0.75 to 0.88.  

The LR model identified 2D feature numbers 60,74,49,40, and 73 as features of high 

importance in predicting the activity of p53. The public health significance of this study is that it 

advances the understanding of p53, which is critical to cancer tumor suppression, by helping to 

predict p53 activation using set of structural features obtained from simple classification models.  
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1.0 Introduction 

Uncontrolled cell division that proliferates into surrounding tissues is termed as cancer. 

According to the National Cancer Institute, approximately, 1,735,350 new cancer cases were 

anticipated in the year 2018 in the United States, making it a significant public health problem [1]. 

There are several factors that can cause uncontrolled cell division, and one which is widely studied 

is the mutation in gene TP53 that codes for protein p53 [2]–[4]. The p53 protein is a tumor 

suppressor which represses uncontrolled cell division. But, when there is a mutation in TP53 gene, 

which might lead to an amino acid substitution in the protein p53, it results in the protein losing 

its tumor suppressor nature [2]. This leads to uncontrolled cell division thus leading to cancer.  

p53, which has been widely recognized as “the guardian of the genome”, plays a key role 

in suppressing tumor formation [5]. In the dataset that we have chosen for our study, the structural 

features of the protein p53 were used to predict the active or inactive status of the protein. Here, 

active refers to the “on” state, whereas inactive refers to the “off” state. A protein in the active 

state can function to repress the formation of tumor. However, an inactive protein loses its function 

to repress tumor formation. Due to this relationship between the state of the protein and its activity 

to suppress tumors, predicting the tumor suppression can be linked to predicting the state of p53 

protein and thus, the goal is reduced to find if this protein is in active or inactive state. The 

prediction of states, active and inactive, is linked to the biological function of protein p53 (to 

suppress or not) and can be considered as a classification problem. Classification is a technique to 

predict the category of a sample based on its inherent properties and function. The algorithm tries 

to model the relationship between the input and outcome variables. In our study, the outcome 

variable has two classes: active (1) and inactive (0), and the input variables are the structural 
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features of p53 protein. Prior to finding the state of protein, it is important to understand the 

structure of protein and its role in cancer development which is discussed in the following sections. 

1.1  Structure of p53 Protein 

A protein is essentially made up of amino acids which are organic compounds containing 

both carboxyl (-COOH) and amine group (-NH2) along with functional groups (-R) that determine 

its function. Each amino acid is further made up of nucleotides which are organic compounds that 

are building blocks of DNA (Deoxyribo-Nucleic Acid) and RNA (Ribo-Nucleic Acid). According 

to “Central Dogma of Molecular Biology”, DNA makes RNA and RNA makes protein. There are 

20 different amino acids, and each is coded by a stretch of DNA made up of three nucleotides 

which is known as a codon. DNA is made of 4 unique nucleotides, Adenine (A), Guanine (G), 

Cytosine (C) and Thymine (T). Out of the 4 nucleotides, 3 nucleotides in a particular orientation 

results in an amino acid and specific arrangement of different amino acids results in a protein. For 

example, TTC configuration of the nucleotides results in an amino acid called lysine which is basic 

(i.e., pH > 7) in nature. If TTC changes to TGC, that is, if the thymine in position two is replaced 

with a guanine, it results in a neutral (pH = 7) amino acid Threonine. This process of changing an 

amino acid in a particular position of protein due to replacement of different nucleotides in the 

codon is termed as “point mutation”. During the occurrence of a point mutation, a protein’s 

structure undergoes changes which in turn changes its functional properties [6]. 

 In our study, p53 is the protein of interest. p53 is a homotetramer (four identical protein 

chains) with 393 amino acid residues in each chain. The protein is made up of five functional 

domains, (i) Transactivation domain (TAD) which is further sub-divided as TAD1 and TAD2, (ii) 
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Proline-rich region (PRR), (iii) DNA binding region or the core domain, (iv) Tetramerization 

domain (OD) and (v) Regulatory domain at the extreme carboxyl terminal (CTD) [7]. The domain 

that we are interested in studying further is the DNA binding region, as it has been shown that 

most of the cancer mutations are seen in this region [8]. Figure 1 (below) shows the binding of 

DNA to the core domain/DNA binding domain of the protein p53. 

 

Figure 1. Illustrates the core domain/DNA binding domain in chains A,B,C and D of p53 protein interacting 

with DNA molecule 
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1.1.1  Structure of DNA-Binding Region of p53 

Among the 393 residues in each chain of p53 protein, the DNA binding site is made up of 

197 residues which span from 94th residue to 292nd residue. The DNA binding surface is made up 

of loop-sheet-helix motif and two large loops (L2 and L3). When the secondary structures of 

proteins like loop, sheet and helix are arranged in a particular geometric arrangement it forms 

different motif or super-secondary structures. The structure of  L2 and L3 are stabilized by amino 

acids, cysteine in 176th , 238th , 242nd positions and histidine at position 179 in all four chains of 

p53 protein (tetrahedrally) [5]–[7]. The DNA binding domain of p53 has been used to extract the 

2D and 3D features in the dataset that has been used in this study. 

1.2  Surface Maps of Proteins 

Surface maps help in mapping a protein’s three-dimensional (3D) structure. In order to 

obtain the surface/structural features of a protein, its 3D structure is projected onto a plane [9]. 

During the occurrence of point mutation, a protein’s structure undergoes changes which in turn 

changes its functional properties [10]. In practical scenarios, calculating surface maps for both 

mutant and wild type and then subtracting one from another (wild type - mutant) yields useful 

results that can help explain the effect of point mutation [9]. Due to this structure-function inter-

relationship, the 2D features obtained from surface maps in UCI dataset will help in predicting the 

p53 mutant’s activity.       
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1.3  Distance Maps of Proteins 

Distance maps help in mapping distances between amino acid residues in a protein. This 

distance map is an N × N matrix, where N is the number of amino acids, and the matrix is filled 

with distances between corresponding residues. As a result of point mutation (explained in the 

previous section) the distance between pairs of amino acids and position where the mutation has 

occurred also changes [9], [11]. Thus, the changes in protein’s structure induced by mutations can 

be deduced by looking at the 3D distance map. This provides another useful direction to infer a 

protein’s activity status based on the distances between their corresponding amino acids. 

1.4 2D Features 

The 2D features for each mutant protein were obtained through homology modeling, a 

technique which is prominent in obtaining required structural models that are useful for inferring 

a protein’s function [3], [4]. The wild type p53 was substituted with the mutant amino acid and 

this configuration was used to simulate the structures of mutant p53 protein. These structural 

features were further extracted from the corresponding mutant model [2]. The extracted features 

were labelled as electrostatic or h-bond acceptor/donor using AMBER 6 [12]. The steric (structural 

changes between the mutant p53 and the wild type p53) and depth (distance between the amino 

acids of mutant and wild type p53) information was obtained by mapping the molecular surface 

onto a sphere which was then mapped to a plane. The surface map (2D representation of the 3D 

surface) that resulted from this mapping was subtracted from the wild type map, hence obtaining 

2D features in the dataset [2], [4], [9]. 
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1.5 3D Features 

The 3D features were calculated by taking the difference between mutant and wild type 

p53 distance maps (distance between all amino acid residue pairs). The core domain of the protein 

has 197 residues which resulted in a 197-dimensional square matrix that was collapsed to get a 

distance vector. This 197-length vector map showed three features of each residue (i.e., i, j, k 

directional vectors). Out of the 591 features that were obtained for a single mutant, only 582 

significant features were retained [2]–[4]. The 3D features symbolize the changes in the magnitude 

of 3D distance between the mutant and the wild type p53. 

1.6  Previous Work 

Danziger and collaborators have worked on finding useful p53 protein mutants to reveal 

important drug targets that would restore its activity [11]. In doing so, they have worked with 123 

already known putative cancer rescue mutants of p53 among which 52 were active (suppressor 

mutant: suppresses cancer) and 71 were inactive (cancer mutant: does not suppress cancer). Using 

this prior knowledge, they used Bayesian statistics to infer if the protein was an active or inactive 

mutant. For this work, they have used 1D sequence information, 2D surface details, 3D structure 

data, and 4D trajectory information-based features which were extracted from these mutant 

proteins to construct a Support Vector Machine classifier. This model was tested on 71 newly 

found p53 mutants using a double-blinded prediction study. An overall accuracy of 74% was 

achieved using 1D features alone. 2D and 3D features achieved an accuracy of 64.2% and 73.2% 

respectively. 4D features was able to obtain an accuracy of 47.2% [11].  
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In a subsequent study, Lathrop et al. used several active learning methods to explore p53 

cancer rescue mutants and also compared the different methods [4]. Active learning is a technique 

for building a classifier that uses unlabeled examples (unknown activity state of mutant) in an 

iterative fashion. In this study, a total of 204 mutants were used in the training set and 57 putative 

p53 cancer rescue mutant which was not previously classified (active vs inactive) was used as a 

test set. They used 10 different active learning methods and 3 control types, out of which, 

Maximum Curiosity performed best overall with an accuracy of around 77%. This method results 

in a high correlation coefficient when the mutant is correctly paired with its activity status [4].  

In another study by Danziger et. al, they extended the active learning method by developing 

a novel method known as Most Informative Positive (MIP) to find mutations in p53 that represses 

tumor formation [2]. Here, the novelty achieved was with respect to a faster computational time. 

MIP was able to discover active p53 mutants in-silico by carrying out 33% fewer experiments in 

comparison to the non-MIP approach which saved computational time. However, not much 

difference in the accuracies of active learning models using traditional method (non-MIP) 

described in the previous section versus MIP was found [2].  

1.7  Public Health Impact 

In developed countries, the deaths caused due to cancer are 9.6 million among the total 

deaths that occur every year which is approximately, 55.3 million people [13]. Thus, making it a 

public health problem which requires attention. We have inferred that p53 protein plays a key role 

in suppressing tumor formation. Also, from the previous work conducted we have seen that mutant 

studies of p53 protein and its structural features have a key role in predicting the p53 protein’s 
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activity to suppress the tumor formation. Hence, finding an optimal model that uses these structural 

features to predict the outcome (activity of protein p53) helps in solving global burden of cancer. 

The public health relevance of the study that has been presented here would be to help 

clinicians predict the occurrence of cancer given the right set of structural features of protein p53 

using simple classification models. This also helps in predicting the occurrence of cancer early in 

life so that the necessary precautions and preparations can be made.   

1.8  Plan of Action 

Predicting the activity of p53 mutant protein seems to be an important problem in order to 

address the cancer burden globally. Another challenging task is to use the right feature set for 

predicting an observation of interest. This motivates understanding both the data and use of 

features in a way that is scientifically acceptable. In this study, I propose a statistical approach 

towards selection of features and comparing several classification models for optimal prediction 

of the outcome.    
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2.0 Materials and Methods 

2.1  Dataset 

In this study the p53 mutant dataset from UCI machine learning was used 

(https://archive.ics.uci.edu/ml/datasets/p53+Mutants) [2]–[4]. The dataset consisted of 31,283 

instances (observations) and 5,408 numerical features. Among the total features, the first 4,826 

accounted for two-dimensional (2D) structural features which were based on electrostatic and 

surface properties. The remaining 582 three-dimensional (3D) features were the distance maps 

between mutant and wild type p53. The 2D and 3D features were obtained through biophysical 

models of p53 mutant. Based on these features, the transcriptional activity of the p53 mutant 

(active or inactive) was predicted through in-vivo assays [9]. Active label (denoted by 1) 

represented a mutation that retains the p53 activity, whereas inactive (labelled as 0) represented 

the mutation that inactivates its normal activity. Among the 31,283 instances, 150 are active and 

the rest 31,133 instances were inactive. This showed a highly imbalanced dataset, which needed 

to be handled during classification tasks. 

  

https://archive.ics.uci.edu/ml/datasets/p53+Mutants
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2.2  Methodology 

The pipeline that was followed for analyzing the dataset is illustrated in Figure 1. 

 

Figure 2 Pipeline of the Method 

 

Firstly, the data was pre-processed to get a more informative and understandable dataset. 

The features in the dataset considered for our study were all quantitative in nature but the metric 

that was used to measure them was unclear, hence normalizing helped in scaling the whole dataset 

to a new understandable scale and created uniformity in the dataset. Next, the distribution of data 

was understood by plotting mean and standard deviation (SD) of the features. The missing data 

and outliers were counted to further understand the nature of the dataset. Proceeding further, the 

pre-processed data was used to extract features to reduce the dimensionality of the dataset and to 

reduce the computational time. An additional step of removing highly correlated features was also 

performed. For this purpose, the correlation among all 5408 features were computed and the 

features which had a correlation coefficient |r| greater than 0.5 were filtered which resulted in 
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around 500 features. This feature set was sent through a feature extraction pipeline provided by 

sklearn’s SelectKBest to obtain 100 most relevant features [14]. Then, suitable classification 

models were fit using the selected features. Finally, to compare the classifiers and their prediction 

ability of the outcome (transcriptional activity of p53 mutant), metrics like accuracy and AUC 

were calculated. The steps shown in Figure 2 are explained in detail in further sections. 

2.2.1  Data Preprocessing 

The features in the dataset were first normalized prior to exploring some of its statistical 

measures. Normalization of the numeric features in the dataset helped in scaling them to a common 

scale without distorting the broad range of values they possess. The normalized dataset was 

obtained by applying the formula below for each data entry, 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑥𝑥 −  𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛
 

Where, 𝑥𝑥 represented the individual observation in the dataset,   𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 was the new 

observation got after normalizing, 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛 was the minimum observation and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 was the maximum 

observation. The 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 values were calculated for respective features and not the whole 

dataset. The method to normalize was implemented using sklearn’s data preprocessing package 

called “Normalizer”. 

Further, the dataset had 31,283 instances and 5,408 features which consisted of around 0.6 

million missing values that accounted for 0.35% of the total data. Among the total number of 

missing values, all of them were present in 2D features. 3D features on the other hand did not have 

any missing value. The number of missing values in each 2D feature ranged from 0 to 150 in 

number. In total 598,424 missing values were present among 169,178,464 (5,408 × 31,283) entries. 
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The missing value in each feature did not seem to be very large and hence imputing those with the 

mean of the respective feature column seemed more appropriate, rather than deleting the entries. 

2.2.2  Data Exploration 

In order to understand the p53 mutant data, a simple analysis of calculating the mean and 

standard deviation (SD) for each feature was done. Then, the Coefficient of variation was 

calculated as a percent using the formula, 

                                        𝐶𝐶𝐶𝐶 =  𝑠𝑠
�̅�𝑚

× 100        

• Where, CV stands for coefficient of variation, s is the standard deviation and �̅�𝑥 stands for 

the mean of each feature. The plot for coefficient of variation for all the features with 

respect to the percent of variability can be seen in Figure 3 below.  
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Figure 3 Coefficient of variation among all the features 

 

Coefficient of variation measured the expected variability relative to the mean. Here, mean 

between features were really small and SD seemed to be high which implied there was high 

variability in these features. We can see that there were around 3000 features with coefficient of 

variation less than 200%, around 500 features with CV between 400-1000% and around 700 

features with greater than 1000% CV. Also this implied that there might be large number of 

outliers. 

The outliers for each feature were calculated using the interquartile range (IQR) technique. 

In this technique, the first quartile (Q1) and third quartile (Q3) values for each feature was 

calculated. Then, the difference between Q1 and Q3 was calculated which was termed as the 

interquartile range (IQR). The outliers were the points which were less than Q1 – 1.5 * IQR or 

greater than Q3 + 1.5 * IQR values. Then, the percentage of outliers were calculated which was 

used to plot the histogram in Figure 4. This plot helped us visualize the trend in percentage of 
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outliers with respect to the number of features. The number of features with outliers decreased as 

the percentage of outlier range increased.  As seen in Figure 4, there were around 3000 features 

with 0-5%, around 1500 features with 5-10% and very few features with 35-40% of outliers 

respectively. 

 

Figure 4 Trend in percentage of outliers with respect to number of features 

 

In order to understand the probability distribution of the UCI dataset, the fourth-order 

moment (kurtosis) was computed. The data followed a highly non-Gaussian distribution with an 

overall kurtosis of around 230. A Gaussian distribution would technically have a kurtosis equal to 

3 and anything above 3 was labeled as non-Gaussian. Kurtosis was also computed at a feature 

level. Majority of the features had a kurtosis value greater than 3. Thus, PCA among other 

dimensionality reduction methods which assumes that the data distribution should be Gaussian 

cannot be used in this context. 
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2.2.3  Feature Extraction 

Efficient models are built by selecting the right set of features. Careful selection of these 

features will not only save computational time but also lead to an improvement in the prediction 

accuracy. The p53 mutant dataset used for the current analysis had dimensions of 5,408 features × 

31,283 instances. Handling such a large dataset would not only put a burden on computational 

time but also affect the performance. Using all 5,408 features would also result in overfitting 

(training accuracy being significantly greater than test accuracy) [15], [16]. 

In order to handle the issues of computational time and overfitting, feature selection was 

performed. First, the correlation matrix was constructed which had the correlation coefficient 

values between all the features. Then, features with correlation coefficient greater than 0.5 were 

removed from the upper triangle of the correlation matrix in order to reduce the multicollinearity 

problem. This resulted in 500 features among 5,408 total features that were present. These 500 

features were further reduced to 100 features by using SelectKBest function from sklearn which is 

explained in the following section.  

2.2.3.1 Feature Selection: SelectKBest and f_classif scoring function 

To reduce the dimensionality of the dataset and for easier comparison between the classifiers, 

feature selection was performed. From sklearn, the function “SelectKBest” was used to select the 

top ‘k’ features [14]. As there was no specific way to select a value for ‘k’, ‘k=100’ was chosen to 

get the features in order to reduce the computational time and to reduce the overfitting issue. 

Choosing 50% of features or using all the features took over 2-3 days to run the models like 

Support Vector Machine (SVM) and Random Forest (RF). Due to time constraint, only 100 

features were used for further analysis. 
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This function aids in univariate selection of features. Univariate feature selection is a way 

of selecting features by calculating the univariate statistical tests between features and the outcome 

variable. There are numerous scoring function options in sklearn’s “SelectKBest” which can be 

used based on the nature of features. Since, the features in our dataset were all numerical in nature 

and the outcome variable was binary the appropriate scoring function was “f_classif”. This scoring 

function calculated an ANOVA F-value between each feature and the outcome variable. The F-

value was useful to see if the mean value of features significantly differed by p53 activation status 

[14]. Based on the scoring function “f_classif”, “SelectKBest” function performed appropriate 

statistical test and selected ‘k’ features with highest score.  

2.2.4  Train Test Split 

Once the features were selected, the dataset was split into training and test sets in the ratio 

70-30. Selecting an optimum train-to-test ratio is tricky. Having less data to train leads to greater 

variances in parameter estimates. However, having less test data will lead to high variation in 

performance statistics [17]. Hence, to have ample data to train and test, the dataset was split in 70-

30 ratio of training and testing sets using sklearn’s “train_test_split” function.  The test set was 

untouched until the end and was used to analyze the accuracy and discrimination ability of the 

final classification models. 

2.2.4.1 Oversampling technique SMOTE (Synthetic Minority Over-Sampling Technique) 

 The training set was oversampled using SMOTE (Synthetic Minority Over-Sampling 

Technique). It helped in improving the decision boundaries in imbalanced data by interpolating 
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the minority class and at the same time under sampling the majority class [18]. The oversampled 

training set was used for training and validating different classifiers. 

The outcome variable in our dataset had two classes (binary outcome), active and inactive. 

The number of instances in the active and inactive classes were 150 and 31,133 respectively. This 

posed a problem of imbalance, that is number of observations with active and inactive outcomes 

were unequal. To handle the data in such situations, we could either sample with replacement from 

the minority class (the outcome that has occurred less number of times) or reduce the samples from 

the majority class (the outcome that has occurred highest number of time) to make the two 

outcomes equal in the dataset. These procedures are called oversampling and under sampling, 

respectively [19]. In oversampling, the samples are duplicated. Under sampling reduces the 

observations in the dataset, therefore reducing the data available for training. Also, there were 

possibilities that the important information might be lost in under sampling. On the other hand, 

oversampling would solve the issues associated with under sampling but, the training of 

classification models might be incomplete as these classifiers learn the same thing many times. 

This would affect the prediction capability of the classification models.  

SMOTE is an oversampling technique in which the samples are extrapolated rather than 

simply duplicating [18]. This is done by obtaining data samples from feature space for both active 

and inactive target variable and its closest neighbors. Further, it generates new data samples by 

taking into account the both features of neighbors and features of target variable. Since it takes 

care of the faults in both under sampling and random oversampling, this method was used in our 

analyses. Also, SMOTE has proven to be a suitable technique when number of features are not 

larger than the number of instances which was the case in our data (31,283 instances and 5,408 

features) [20].  
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2.2.5  Method Implemented 

The models are trained by looping the dataset through the steps illustrated in figure 5. 

 

Figure 5 Illustrates the steps followed to fit classification models 

 

K-Fold cross validation is also called as out-of-sample testing or rotation estimation. In 

this method, the whole dataset was divided into K batches. I used K = 10, 20 and 30 for analysis 

of p53 mutant dataset. The k splits were all same for all the classification models were training 

using the k-fold cross validation technique. For training, N-K samples were used as depicted in 

Figure 5, where N denoted the total number of training samples. For validation, K samples were 

used to predict the activity of p53 mutant based on the model trained. Finally, the 30% of the data 

used for testing was deployed to predict the outcome using the same 100 features as in training. 
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2.2.6  Classification Model: Logistic Regression 

Since we were dealing with categorical outcome, logistic regression was selected as one of 

the choices for performing classification. 

Logistic regression is an extension of simple linear regression which uses a logistic 

function to model the binary dependent variable [21]. It is used to model the probability of active 

or inactive status of p53 mutant in this study. The model is defined as, 

𝑙𝑙𝑙𝑙 �
𝑝𝑝

1 − 𝑝𝑝
� = 𝑋𝑋𝑋𝑋 

Where, ‘p’ is the probability of active status of p53 mutant, X is the covariate matrix and 

β is the parameter vector.  

The regression model was implemented using sklearn’s “LogisticRegression” function. In 

order to evaluate the model, the training dataset was further subdivided into training and validation 

set with a K-fold cross validation strategy (where K=10,20 and 30). Prior to feeding the training 

set into the algorithmic pipeline, it was oversampled using SMOTE technique as described 

previously. Further, the training and validation performance metrics were reported, and this model 

was evaluated on the test set. In order to run the model, default parameters were used with 

regularizing cost function value C=1, penalty parameter L2, and the number of iterations for 

convergence max_iter=100. Again, sklearn’s “predict” function was used to obtain the label 

predictions based on feature dataset using the logistic regression module. Performance metrics 

such as accuracy and area-under-the-curve (AUC) were measured on the training, validation and 

testing set separately.  

 



 20 

2.2.7  Classification Model: Support Vector Machine (SVM) 

Due to its ability to find decision surfaces in a high dimensional space through non-linear planes, 

SVM was utilized. Also, it handles imbalanced data well [22]. Therefore, SVM was selected as 

one of the models to predict the p53 activity. 

SVM is a type of supervised learning (presence of input and outcome variable to train the 

data) model. Given the features and an outcome variable, SVM finds decision boundaries that 

discriminate one category of the data from another. In doing so, it tries to optimize an objective 

function defined by weights which depend upon the distance between the data points to the 

decision surface. Thus, it tries to classify by drawing a hyperplane which transforms to a line in 

two-dimensional (2D) space [23]. For example, if we have distribution of classes as seen in Figure 

6a, it would be difficult to separate the classes in x-y plane or by drawing a line. SVM would apply 

an appropriate transformation to data, in this case, it would add one more dimension or z-axis and 

separate the data in three-dimensional space which would look like the plot shown in Figure 6b in 

a two-dimensional space. 
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6(a) 

              

6(b) 

Figure 6 SVM discriminates the two classes in 2D space 
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For implementation, “SVC”, a C-Support Vector Classification (SVM module) provided by sklearn 

was used. The pipeline for training and testing the model was like the one used to implement 

logistic regression. Here, however, the parameters used to obtain hyperplanes generated by the 

Support Vector Machine classifier was different. The regularization parameter value of C=1 was 

used. Kernel coefficient gamma was set to auto with a non-linear rbf kernel which finds non-linear 

decision boundaries (curves) to classify.  

2.2.8  Classification Model: Random Forest 

Random forest is very robust and handles overfitting issue is minimized when it is used for 

classification tasks [24], [25]. Hence, this was selected as one of the models to train on the 100 

features selected in the feature extraction step.   

Random forest (RF) uses multiple decision trees to make the final decision about the 

outcome prediction. Decision tree can be thought of as multiple yes/no questions which would 

lead to the predicted class. Each decision tree is built using a bootstrap sample of the data and 

random sample of predictors at each node of the tree. Each tree gives a classification vote and 

estimated probability, then the final decision is made based on the majority vote or average 

prediction. The prediction accuracy increases with the number of trees obtained by the number of 

data samples generated. The parameter, i.e., the number of estimators, is used to define the number 

of random decision trees used for predicting the class of the outcome variable which is obtained 

by taking the majority among the decisions provided by each tree.  

Since, we are dealing with a classification problem, Gini impurity criterion was used for 

data splitting in the decision tree. This criterion measures the frequency of misclassification of a 

randomly selected instance if it were labeled randomly. The number of samples that is needed to 
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split an internal node (a node that can be split further) and number of samples needed to be at a 

leaf node (terminal node which is not split further) should be specified as well for training an RF 

algorithm.  

Random Forest was implemented using sklearn’s ensemble package 

“RandomForestClassifier”. Once again, the same pipeline for evaluating the model on test set was 

followed similar to SVM and Logistic Regression. Here, the default parameters provided by the 

software was used. Specifically, the number of estimators n_estimators=10, criterion=gini, 

minimum number of samples at leaf node min_samples_leaf=1, min_samples_split=2 was 

selected for generating the RF model.   

2.2.9  Metrics Used for Comparison 

The metrics used to compare the results between train, validation and test sets were 

accuracy and AUC (Area Under the Curve). AUC is the area under the Receiver Operating 

Characteristic curve (ROC) which is a plot of sensitivity (true positive rate) v/s 1-specificity (false 

positive rate). AUC helped us understand how well the model discriminated between the two 

classes, active and inactive. Accuracy measured how precisely the model predicted the outcome 

using the features selected in the feature selection step. Accuracy and AUC are given by, 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑛𝑛

𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑛𝑛 + 𝐹𝐹𝑝𝑝 + 𝐹𝐹𝑛𝑛
 

𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 =  
𝑇𝑇𝑝𝑝

𝑇𝑇𝑝𝑝 +  𝐹𝐹𝑛𝑛
  

𝑆𝑆𝑝𝑝𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 =  
𝑇𝑇𝑛𝑛

𝑇𝑇𝑛𝑛 + 𝐹𝐹𝑝𝑝
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𝐹𝐹𝐴𝐴𝑙𝑙𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆 =  
𝐹𝐹𝑝𝑝

𝑇𝑇𝑛𝑛 + 𝐹𝐹𝑝𝑝
 

                                      𝐴𝐴𝐴𝐴𝐶𝐶 = 𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 𝐴𝐴𝑙𝑙𝑢𝑢𝑆𝑆𝐴𝐴 𝑆𝑆ℎ𝑆𝑆 𝑅𝑅𝑅𝑅𝐶𝐶 𝑝𝑝𝑙𝑙𝑃𝑃𝑆𝑆 

Where, 𝑇𝑇𝑝𝑝 (true positives), 𝑇𝑇𝑛𝑛 (true negatives), 𝐹𝐹𝑝𝑝 (false positives) and  𝐹𝐹𝑛𝑛 stands for (false 

negatives). 

Typically, an AUC value of greater than 75%-80% discriminates the classes well. 

Similarly, an accuracy of over 80% is reasonable.  
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3.0 Results 

3.1  Feature extraction results 

 

Figure 7 Heatmap of correlation-coefficients of all 5,408 features 

 



 26 

The Figure 7 shows the heatmap of correlation coefficient among all 5,408 features. Once 

the correlation coefficient matrix was constructed the absolute values were considered to plot the 

heatmap. As we can see there were many highly correlated features with correlation coefficient 

greater than 0.5.  

As explained in the method after constructing the correlation coefficient matrix, using |r| 

>0.5 as a threshold the features were removed from the upper triangular region of the correlation 

coefficient matrix. This way of removing the features made sure one of the highly correlated 

feature was still present and this can be seen in Figure 8 below. 

 

Figure 8 Heatmap of 462 features that were obtained after removing the higly correlated features 

 

Further, as described in the previous section, prior to training the models on dataset, the 

first step was to select 100 features in order to reduce the computational time. Th3 462 features 

were further downsized to 100 features using SelectKBest function. The heatmap in Figure 9 below 
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shows the correlation between final 100 features which were used for training. All the 100 features 

which were selected had missing values of 150 originally before imputing them with respective 

feature column mean. Almost all of the features had a correlation that spanned between 0 to 0.25. 

All the heatmaps were plotted with the absolute values of correlation coefficient. 

 

Figure 9 Heatmap of 100 features which were selected for training the models 

 

After feature selection, three different classification algorithms: Logistic Regression (LR), 

Support Vector Machine (SVM), and Random Forest (RF) was implemented on the UCI p53 

mutant dataset. A K-fold cross validation approach was used for each of the learning model to deal 

with the problem of overfitting and also as an attempt to improve accuracy on the unseen data (test 

set). For the purpose of evaluation, model accuracies and area-under-the-curve (AUC) was 

compared for a variety of combinations of algorithms and folds for cross validation. Following 
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section elucidates the performance of each model on training and validation set followed by test 

set.  

3.2 Performance on Training and Validation data 

Three classification models (LR, SVM, and RF) were used to fit the training data which 

was oversampled using SMOTE, a technique used to handle class-imbalance. Further, this trained 

model was evaluated on the validation set that was generated using K-fold cross-validation (K=10, 

20 and 30). Predictions on the train set and validation set were used to compute accuracy and 

measures of class discrimination using AUC. Results from respective algorithms is described in 

the following section.  
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3.2.1  Performance of Logistic Regression 

 

Figure 10 Accuracy measure of LR on train and validation data for three different folds (where A: K=10, B: 

K=20; C: K=30) 

 



 30 

The panel of plots shown in Figure 10 describes the performance of logistic regression on 

train and validation set using default parameters provided by sklearn package which was 

mentioned in the Methods section of this report. Based on the results in Figure 10 (10A, 10B, 10C) 

which visualizes the accuracy score on both the sets, it can be observed that the training accuracy 

is slightly greater than validation accuracy. On an average, the validation accuracy fluctuates 

around 75% mark for 20 and 30-fold cross-validation set. Looking at the 10-fold set, the average 

validation accuracy is around 79%. Training accuracy on the other hand has an average accuracy 

approximately equal to 80% for all the flavors of cross-validation.     
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Figure 11  AUC measure of LR on train and validation data for three different folds (where A: K=10, B:  

K = 20, C: K=30) 

Figure 11 shows the AUC score for each iteration over a span of different K-fold cross-

validations for LR model. It is interesting to observe that, the AUC on train data is approximately 
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consistent for each of the cross-validation set with a score of 0.80. However, the AUC scores for 

validation set for each iteration and across different K (10, 20 or 30) values seems to be fluctuating 

between 0.50 and 0.90. For the 10-fold cross-validation, AUC score ranges between 0.70 and 0.86 

at first and last iterations respectively. Only one score out of ten falls above the training AUC mark 

of 0.80, while the rest are below that value. Similarly, for 20-fold cross-validation, eight AUCs are 

above and twelve are below the threshold defined by training AUC. We can observe that the 4th 

iteration performs worst with an AUC value of around 0.5 when trying to infer the correctness in 

differentiating the activity of p53 to be active vs inactive. Two such samples are visible in 30-fold 

cross-validation at 3rd and 10th iteration run when the AUC is the least. The large variability in the 

AUC scores between all the examples can be attributed to the model fitting and randomness in 

generating the validation data. Compared to the 10-fold set, the range of AUC values span from 

0.5 to 0.9 for 20-fold variation and 0.6 to 0.9 for the 30-fold cross-validated dataset. 
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3.2.2  Performance of Support Vector Machine 

 

Figure 12 Accuracy measure of SVM on train and validation data for three different folds (where A: K=10, 

B: K = 20, C: K=30) 
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The performance of SVM classifier on the training and validation data follows a similar 

trend when compared to logistic regression as it can be seen from Figure 12. But, looking at the 

blue line plot that indicates accuracy for train data, it shows that there is no much variability in the 

values. Almost all of the training samples for three different cross-validation folds shows an 

accuracy in between the range 0.65-0.70. But, there is a large variation in the validation accuracy 

of SVM classifier. For the 10-fold variation, the accuracies range from 0.4 to 0.5. For the other 

two categories (20 and 30-fold) the accuracies range from 0.35 to 0.42 and 0.3 to 0.43 respectively. 

This can be observed from the fluctuations in the orange line depicting validation accuracies in 

Figure 12.  
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Figure 13 AUC measure of SVM on train and validation data for three different folds (A: K=10, B: K= 20 

and C: K=30) 

Figure 13 shows the AUC curve for different cross-validation based generated samples. 

The AUC values for 20-fold and 30-fold cross-validation falls in the range 0.42-0.70 which can be 
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observed from the linear curve in Figure 13B and 13C. However, from Figure 13A we can see that 

there are slight fluctuations in how well the algorithm (here SVM) is able to differentiate between 

the two classes and the values lie between 0.60 and 0.72.   
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3.2.3  Performance of Random Forest 

 

Figure 14 Accuracy measure of RF on train and validation data for three different folds (A: K=10, B: K=20 

and C: K= 30) 



 38 

The third classification algorithm that was implemented for the classification task was 

random forest. Contrary to the results obtained from LR and SVM on training and validation data, 

here as we can observe from Figure 14, the training data seems to perform slightly better than 

validation set with a larger accuracy. But we can see that the trend in both the accuracies is 

observed to follow a similar pattern indicated by an almost straight blue and orange linear curve 

with less fluctuations in the accuracy values for different samples. In case of random forest, the 

training data seems to perform exceptionally well, with almost a 100% accuracy for all of the data 

samples for three different cross-validation folds (blue line shown in Figure 14). Random forest 

applied to validation set also performs considerably well compared to its counterpart, LR and 

SVM, with a range 99%-99.9%. This shows the effect of using RF on this particular dataset to 

obtain a greater accuracy.  
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Figure 15 AUC measure of RF on train and validation data for three different folds (A: K=10, B: K= 20 and 

C: K=30) 

As we previously observed that, the training accuracy was higher than validation accuracy, 

similarly, even in the AUC plot, train data seems to perform better with a maximum AUC of 
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around 1 as shown by the blue line in Figure 15. The discriminating score of validation data, 

however, fluctuates between 0.5 and 1 as it can be observed from the orange curve in Figure 15. 

For the 10-fold cross-validation, the minimum AUC achieved is around 0.50 for the third iteration 

and the highest AUC reached is 0.74 for the tenth iteration. In the 2nd set that accounts for 20-fold 

cross-validation, the lowest AUC is around 0.5 that can be seen for the 1st, 2nd, 3rd, 7th, 8th, 9th 14th, 

15th, and 16th iteration. In the last, 3-fold variation data, larger number of samples are poorly 

classified with an AUC of around 0.5 for 18 iterations,that is around 60% of the runs do not 

perform well. A highest AUC can be observed for 12th iteration that almost perfectly classifies the 

binary data. 

3.3  Performance on Test data 

As mentioned previously, 30% of the total dataset was set aside for testing the model 

performance. Specific parameter sets were chosen across three different classification algorithms 

in order to predict the activity status of p53 mutant. This section describes the model performance 

on the test data which was not seen by the algorithm while trying to learn the objective function 

for classification. 

 
Table 1 Test accuracy for different combinations of classification algorithms and folds for cross-validation 
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According to Table 1 which describes the performance of LR, SVM and RF for 10,20 and 

30-fold cross-validation techniques to train the data, an overall good accuracy of greater than 94% 

can be observed when trained using RF. In terms of accuracy alone, random forest is observed to 

outperform SVM and LR by a huge margin achieving an average accuracy of around 99.4%. LR 

falls second in the line with an average accuracy of around 76.6%. SVM on the other hand 

performs poorly when compared to RF and LR with an average accuracy of only 44.3%. The 

possible reasons for this large variation in average accuracy is described in the Discussion section. 

 
Table 2 Test AUC for different combinations of classification algorithms and folds for cross-validation 

 

 
Since, accuracy alone cannot be a good measure to gauge how well the classifier is 

performing, AUC was calculated for each of the data variations. It is interesting to observe that, 

LR which had an accuracy of around 76.6% seems to have the best AUC score with 0.77 for 10-

fold cross-validation set and 0.76 for 20 and 0.74 for 30-fold dataset variation. In case of SVM, it 

achieves a moderate AUC of around 0.70 on an average. This is surprising since SVM was able to 

achieve a lower accuracy of around 44%. RF on the other hand is able to discriminate between the 

classes rightly only 65% although it achieved a high accuracy.  
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3.4  Summary 

 

Figure 16 Illustrates the accuracy for  LR, SVM and RF for K=10 (A: LR, B: SVM, C: RF) 

 

 

Figure 17 Illustrates the AUC for LR, SVM and RF for K=10 (A: LR, B: SVM, C: RF) 

 

Among the K=10, 20 and 30, K = 10 seemed to perform better among the three. Figures 

16 and 17 above shows the accuracy and AUC of LR, SVM and RF respectively. Thus, we 

observed the accuracies and AUC obtained by logistic regression, support vector machine and 

random forest for three different cross-validation folds from Figures 10-15 for train, validation, 

and test dataset. Performance of train data over validation data was always higher when using LR, 

SVM, and RF. We observed a large difference in the accuracies achieved by all the algorithms 

across different variations. But, in terms of AUC metric, LR outperformed SVM and RF. In the 

following section, the results obtained will be discussed in detail and possible explanations for 

some of the limitations of the model will also be highlighted.   
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3.4.1  Importance of features while training the models 

Once the classification models LR, SVM and RF were trained we wanted to see which 

among the 100 features were important for the prediction. The Figure 18 and 19 shows the 

importance of features for LR and RF models. Due to the non-linear kernel that was used to train 

the SVM model, the transformation that was applied in high dimensional space to classify the 

classes were unclear and there was no way to extract them. Hence, the feature importance could 

not be extracted for SVM. 

 

Figure 18 Feature Importance for training LR 

 
We can observe in Figure 18, that the  top 5 feature of importance for training a LR model 

on this dataset were feature numbers 60, 74, 49, 40, and 73. 
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Figure 19 Feature Importance for RF 

 
We can observe in Figure 19, that top 5 feature of importance for training a LR model on 

this dataset were feature number 21,92,30,2 and10. It looks like the top 5 features in LR and RF 

are totally different. This indicated that the important features depend on the model trained.  
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4.0 Discussion  

For this report, an evaluation of three classifiers: Logistic regression (LR), Support Vector 

Machine (SVM) and Random Forest (RF) was deployed using a three-fold cross-validation 

strategy with number of folds including 10, 20 and 30 to identify the activity of p53 mutant based 

on 2D and 3D features. The dataset consisted of 5,408 numerical features from 31,283 observations 

with around 600,000 missing values. The missing values were imputed using the average of the 

respective columns as a first step towards preprocessing the data.   

Further, due to the high intrinsic data dimensionality, it was not feasible to work with the 

entire 5,408 features without using some sort of efficient computational strategy. Thus, it was 

necessary to work with the most important features that affected the target variable, in our case, 

the activity status of p53 mutant. Since the data failed to follow a Gaussian distribution, classic 

dimensionality reduction techniques such as Principal Component Analysis (PCA), is a tool in 

machine learning that is used to examine interrelations among set of variables which further helps 

in dimensionality reduction of large sets of features. Here, this tool could not be applied. 

 Apart from having the advantage of reducing computational time, proper feature selection 

also reduces the problem of overfitting, thereby improving accuracy. Features that do not directly 

contribute towards the binary classification problem might affect learning algorithms such as LR 

to a greater extent compared to SVM and RF. Some of the feature extraction algorithms were 

attempted to select the most relevant attributes. Among these was pyMRMR [26], an algorithm 

that works towards finding minimum redundancy and maximum relevance between the features 

such that they are mutually distant from each other but still contribute towards having a correlation 
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with the output variable. But this method took over 48 hours to obtain 100 features from the UCI 

dataset, and thus it was discarded.     

Next, a combined technique based on correlation-coefficient that filters the features with 

greater than 0.5 correlation and F-statistic was used to obtain a smaller feature set that can explain 

the outcome variable. For this, sklearn’s “SelectKBest” was used that takes as an input, a scoring 

function based statistical metric computed between the feature set and returns k highest scoring 

features that are most relevant in predicting the target variable. The package offers chi2 and 

f_classif as scoring functions. SelectKBest used with chi2 as the input parameter computes the chi2 

statistic between each feature variable and the output variable. A lower value of this chi2 statistic 

indicates statistical independence between the feature and outcome. On the other hand, a larger 

value indicates the opposite, that is, the feature has a relationship with the target and the importance 

of this relationship can be quantified numerically based on the score. However, this is true only 

for non-negative features and therefore this scoring function was not used. Also, chi2 is less 

meaningful if the features and target variable have a non-linear relationship which is true in this 

case.  

The second scoring option provided by sklearn is f_classif which computes F-statistic for 

each feature assuming the outcome variable to be a class label. The statistic is measured as ratio 

between the explained variance to unexplained variance which signifies the proportion of 

variability between groups compared to within groups. The number of features K (groups) that is 

required as an input is used to compute those number of non-repeating values of the target variable 

based on F-statistic. In this case, a high F-score indicates that the averages of these groups are not 

equal and also it would indicate that the feature values are derived from a Gaussian distribution 

which is contradicting to the data under consideration. Thus, lower values of this scoring function 
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are meaningful and is considered for selecting the features. Based on this, 100 features (K=100) 

were selected for further analysis to predict the activity of p53 mutant. An exhaustive analysis for 

choosing the right K value was not performed. Further, other feature extraction techniques that 

may be better suited for data which does not follow a normal distribution was not evaluated. Also, 

the 100 features that were extracted from the pipeline explained in method section were all 2D in 

nature and the interesting fact is that they all had missing values of 150 before imputing them with 

the mean. The outliers in these 100 features ranged from 0 to 400. This seems to be interesting 

thing to consider for further analysis. The feature importance plot that was obtained for LR and 

RF had top 5 features with missing values of 150 and outliers ranged from 93 to 384. 

Among several classification models available, the reduced dataset was trained using LR, 

SVM, and RF. Since the dataset had only 150 active instances compared to 31,133 inactive 

instances, rejecting any further data processing techniques might have led to obtaining high 

accuracy but low AUC score. Thus, in order to deal with class-imbalance SMOTE technique was 

used which is explained in detail in the Methods section [27]. It is a popular method to generate 

synthetic samples of data that can correct for issues arising from class-imbalance. Another 

approach that was tried for oversampling was by making duplicate copies of the data, but, when 

trying to perform cross-validation, the algorithm was exposed to the same data either twice or at 

least once. This had a negative effect on obtaining the right parameter set for prediction. Although, 

certain randomization techniques could have been tried to avoid this problem, in this situation, 

established oversampling methods like SMOTE was used. Next, the oversampled data was 

modeled for prediction using cross-validation. This technique was useful to assess the performance 

of algorithms and evaluate their outcome on new dataset. While training the models such as LR, 

SVM or RF, it saw only the train data and learnt the parameters for prediction. However, in order 
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to have a more realistic direction towards data modeling, it needs to perform well even on the test 

set. Two methods for cross-validation could have been employed. First, is the leave-one-out cross-

validation which leaves one instance out for validation and trains on the remaining instances and 

this is iterated until all the instances is left out for validation once. Since this method was 

computationally expensive and given the large number of instances provided by UCI dataset, the 

other approach using K-fold cross-validation was used. In this method, instead of leaving one 

instance out for validation, a block of K-instances was left out for validation and the algorithm was 

trained on remaining instances. Three different K values of 10, 20 and 30 was used and the 

performance for different models were compared. 

The results from logistic regression showed that the algorithm performed better on training 

data over validation data. The accuracies obtained by training set were up by a margin of around 

5% for 10-fold and 20-fold cross-validation set and 1% for 30-fold set in contrast to the validation 

data. Training error is bound to be lower than validation error. In all the cases for model training 

using LR, that is, using K=10, 20 and 30, it is intuitive to observe that the validation error is indeed 

greater than the training error. The possible explanation may be due to a situation where the 

training set might have obtained easier data to predict compared to the validation data or a possible 

overfitting. This ‘overfitting’ obtained by looking at the accuracy curve can further be validated 

by looking at the AUC scores from Figure 9. As we can see, almost half of the iterations belonging 

to the validation set of 20 and 30-fold data have a larger AUC. Based on these two metric results 

while training the model, we can observe from Table 1 and Table 2 that LR performs well in 

predicting the class (active vs inactive) in terms of both accuracy and AUC. We can also see that 

as the K-value increases from 10 to 30, the accuracy seems to increase from 0.730 to 0.799. On 

the contrary, AUC decreases from 0.768 to 0.737. A 4% decrease in AUC can be observed when 
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K is changed from 10-fold to 30-fold. But when changed from K=20 to K=30, a 3% change in 

AUC score was observed. Overall, logistic regression seems to perform well in differentiating 

between active and inactive class of p53 mutant data based on feature set. 

Next, in an attempt to find decision surfaces in high-dimensional plane, SVM was 

implemented. While training the model using three different folds for cross-validation, the training 

accuracy was much larger than validation accuracy by a margin of around 30%. The validation 

accuracy is found to be seemingly low with values ranging from 31% - 55%. But in the case for 

10-fold and 20-fold cross-validation, the smaller number of iterations had AUC scores greater than 

training AUC which was also true for 30-fold scenario which had over 60% of the validation runs 

to have greater AUC. From Figure 11 it is intuitive to observe that SVM’s validation accuracy was 

much lower than LR and also in terms of AUC it does not seem to outperform the regression 

model. Even for the training data, the average AUC was around 0.68 which is 12% lesser than the 

average AUC achieved by LR on train data. We can also observe from Figure 11 that fewer number 

of iterations have AUC value around 0.5 (no discrimination) especially for the 20-fold and 30-fold 

case. Following the “No free lunch theorem” which is established in the machine learning 

literature, there is no one model that was previously expected to perform the best on this dataset. 

Thus, SVM’s lower performance compared to LR may be due to the intrinsic nature of the data 

not being linearly separable. On the test data, SVM did not perform well, with an accuracy of 

around 45% and with an increase in the K-folds, the accuracy was observed to decrease; however, 

the difference was not seemingly significant for 20-fold and 30-fold set. In terms of AUC, SVM 

had an average score of around 70% which did not seem to vary much by changing K folds number. 

The default C and gamma parameters was used to train the SVM model. A detailed hyper-
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parameter tuning of these two parameters was not carried out which could have improved its 

performance both in terms of accuracy and AUC.  

The third classifier used was RF (Figures 12 and 13). Following the performance of LR 

and SVM on train and validation set respectively, the RF trained model to work better on train set 

in comparison to validation set. The largest margin between train and validation accuracies was 

around 2% and the average margin considering all three-fold variations was around 1% which can 

be seen from Figure 12. According to results from Figure 13, there was a large difference between 

train AUC and validation AUC with around 30% for 10-fold cross-validation, 35% on 20-fold data 

and 30% for the 30-fold variation. This large difference can indicate a possibility of overfitting. 

The performance of random forest on the 30% testing data (out of the total available data) was not 

impressive. The 30-fold cross-validation achieved the highest AUC of 1.0. In case of random 

forest, there are certain parameters like number of trees and number of splits at a node. In this case, 

default parameters offered by sklearn was used (very low value of 1 and 2 for number of nodes 

and splits respectively were used). An improvement in the algorithm’s performance could have 

been seen as a result of hyperparameter tuning of these parameters which was not done in this 

study. Also, if we had increased the value of these parameters, prediction may have improved. On 

the test set, RF achieved the highest accuracy of around 99.4% in comparison to LR and SVM. 

This score was 25% larger compared to LR and 54% larger compared to SVM. But the AUC score 

seems to be comparable to the other algorithms. The AUC decreases by 15% when increasing the 

k-value from 10 to 20. However, when further increasing the k value to 30, the score increases by 

8.5%. 
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4.1 Summary 

Overall, logistic regression seemed to outperform support vector machine and random 

forest by taking into account accuracy and AUC scores. Christodoulou et. al and team had 

conducted a clinical study which showed that for classification problems on medical data, machine 

learning algorithms did not significantly outperform logistic regression [28]. The results obtained 

in this study were in line with their findings. We found that the importance, or not, of the features 

depended on the model. Ideally, we would have liked to find a strong signal for certain specific 

features. However, this study still advanced the study of p53 in identifying only 2D features for 

inclusion. Future work should focus on understanding the distribution of feature and how they are 

important for each model. Removing the less important feature and training the models and 

comparing the results with models trained with 100 features also might help us understand more 

about these features. 
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