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BOUND STATES OF FERMIONS IN ONE DIMENSION

Binbin Tian, PhD

University of Pittsburgh, 2019

The formation of bound states of fermions in one dimension has always been one of the

key topics in condensed matter physics. Motivated by recent experimental progresses in

Prof. Jeremy Levy’s group, we study the interplay of both species (spin and transverse band

index) and mass imbalance in a mixture of two or more species of fermions with attractive

interactions in one dimension. Previous theoretical and experimental efforts have shown the

existence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase for the case of two species

with equal mass, in addition to the fully paired and fully polarized phases. For the unequal

mass case, there are signatures of trion phases as well. We use DMRG to explore the rich

possibilities of quantum phases and their transport signatures for the cases of two and more

species of Fermions as we vary the interaction strengths and mass imbalances. With this

we can gain insights into ongoing experiments with sketched nanowires in LAO/STO and

ultracold atoms confined to one-dimensional tubes.

We also study the formation of bound states in a single component Fermi chain with

attractive interactions. The phase diagram, computed from DMRG (density matrix renor-

malization group), shows not only a superfluid of paired fermions (pair phase) and a liquid

of fermion triplets (trion phase), but also a phase with two gapless modes. We show that

the latter phase is described by a 2-component Tomonaga-Luttinger liquid (TLL) theory,

consisting of one charged and one emergent neutral mode. We argue based on our numerical

data, that the single, pair, and trion phases are descendants of the 2-component TLL theory.

We speculate on the nature of the phase transitions amongst these phases.

iii



TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 DENSITY MATRIX RENORMALIZATION GROUP (DMRG) 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Matrix Product State (MPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 canonical form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 overlap and efficient contraction of MPS . . . . . . . . . . . . . . . . . . 10

2.3 Matrix Product Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 applying an MPO to an MPS . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 MPO representation of Hamiltonian . . . . . . . . . . . . . . . . . . . . 14

2.4 Ground state calculation with MPS . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 implementation of the DMRG procedure . . . . . . . . . . . . . . . . . 17

2.5 Properties of the ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 correlation length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 ground state energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.3 entanglement entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.4 correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 DMRG sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 sample output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.0 TOMANAGA-LUTTINGER LIQUID THEORY 34

iv



3.1 Fermi liquid theory and the the peculiarity one dimension . . . . . . . . . . . 34

3.2 Bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 spectra equivalence of boson and fermion in 1D . . . . . . . . . . . . . . . . . 39

3.4 effects of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 correlation functions in TLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.0 N−COMPONENT ONE DIMENSIONAL QUANTUM LIQUIDS WITH-

OUT SU(N) SYMMETRY 47

4.1 model Hamiltonian and SU(N) symmetry . . . . . . . . . . . . . . . . . . . . 48

4.2 results in the low filling fraction limit . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Jordan-Wigner transformation and numerical setup . . . . . . . . . . . . . . . 53

4.4 2 species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 numerical setup and expected phases . . . . . . . . . . . . . . . . . . . 55

4.4.1.1 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1.2 Expected phases . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 attractive interaction case . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 repulsive interaction case . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3.1 correlators in FFLO phase and paired phase . . . . . . . . . . . 60

4.4.4 pair to FFLO transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.5 strong repulsion and mass imbalance . . . . . . . . . . . . . . . . . . . . 62

4.5 3 species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.0.1 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.0.2 Expected phases . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 isotropic interaction case . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 trion with anisotropic interactions . . . . . . . . . . . . . . . . . . . . . 67

4.6 connections with LAO/STO experiments . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.2 numerical models and results . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.2.1 single-particle model . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.2.2 Effective 1D lattice model with interactions . . . . . . . . . . . 71

v



4.6.2.3 numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.3 transport properties analysis . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Mathematica code for section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.0 EMERGENT MODE AND BOUND STATES IN ONE-COMPONENT

ONE-DIMENSIONAL LATTICE FERMIONIC SYSTEMS 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Bound states of multiple fermions . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 how we run DMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 entanglement entropy and central charge . . . . . . . . . . . . . . . . . 84

5.3.3 correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Fourier spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 2-mode theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 single mode phase as a descent of the 2-mode theory . . . . . . . . . . . 96

5.6 Data and theory in each phases . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.1 single phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.1.1 central charge and correlators . . . . . . . . . . . . . . . . . . . 97

5.6.1.2 single phase as a descent of the 2-mode theory . . . . . . . . . . 97

5.6.2 pair phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.2.1 central charge and correlators . . . . . . . . . . . . . . . . . . . 99

5.6.2.2 pair phase as a desecnt of the 2-mode theory . . . . . . . . . . . 101

5.6.3 trion phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6.3.1 central charge and correlators . . . . . . . . . . . . . . . . . . . 102

5.6.3.2 trion phase as a desecnt of the 2-mode theory . . . . . . . . . . 102

5.6.4 summary of locking terms and validation of decaying exponents . . . . . 103

vi



5.6.4.1 summary of locking terms and resulting phases . . . . . . . . . 103

5.6.4.2 validation of decaying exponents in the pair and trion phases . . 104

5.6.5 2M phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.5.1 central charge in the 2M phase . . . . . . . . . . . . . . . . . . 108

5.6.5.2 correlators in the 2M phase . . . . . . . . . . . . . . . . . . . . 108

5.7 phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7.1 sinlge-pair transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7.2 DMRG data at the interface of single and trion phases . . . . . . . . . . 111

5.8 quaternion phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.9 Why our numerical data is inconsistent with the band bending theory of Ref.1 113

5.10 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.0 LANDAU LEVELS IN STRAINED OPTICAL LATTICES [PAPER] 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Synthetic field in cold atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Pseudo magnetic fields in optical lattices . . . . . . . . . . . . . . . . . 117

6.2.2 A prescription for a uniform pseudo-magnetic field . . . . . . . . . . . . 119

6.2.3 Proposed experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.4 Landau levels in a harmonic trap . . . . . . . . . . . . . . . . . . . . . . 122

6.2.5 Experimental signatures . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.6 Observing interaction effects . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.8 acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.1 Timescales in experiments with optical lattices and synthetic gauge fields 125

6.3.2 Gaussian beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.3 Model relating laser intensity to the tight binding parameters . . . . . . 126

6.3.4 Optimal beam parameters . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.5 Constraints on trap frequency . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.6 Local Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



6.3.7 Bragg spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.8 Bloch-Zener spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 130

BIBLIOGRAPHY 135

viii



LIST OF TABLES

1 Locking terms and correlators of single-mode phases. The first line lists interac-

tion terms and the second line shows the corresponding phases when interaction

terms get locked. The remaining rows show the algebraic decay form of corre-

lators G1,2,3; the coefficient of each term is neglected for simplicity. In Fig. 31,

we show the numeric data verifying the predicted dependence. . . . . . . . . . 104

2 Timescales in conventional synthetic gauge field experiments on a lattice, typ-

ical timescale for static optical lattice experiments are several hundreds of mil-

liseconds2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3 Fitting parameters for Eq. (6.6) and (6.7). . . . . . . . . . . . . . . . . . . . . 127

4 Optimal beam waist w0 and displacement d for different sample sizes R0. . . 132

ix



LIST OF FIGURES

1 Schematic picture of contraction between two MPS. The number with arrows

denotes the order of the contraction. . . . . . . . . . . . . . . . . . . . . . . . 11

2 Optimization procedure in graphic representation. We obtain the lower figure

using the properties of the mixed canonical form of MPS. . . . . . . . . . . . 17

3 Optimization procedure for two-site updating in graphic representation. . . . . 19

4 Energy as a function of correlation length. Blue dots are different data points

calculated from a set of bond dimensions χ = 40, 80, 160, 240, 300 and red line

is the fitting. See chapter 4 for details of the model that we analyze. . . . . . 21

5 Particle-hole spectrum for higher dimensions (left) and for one dimension (right).

In one dimension, particle-hole excitations have both a well-defined momentum

and energy for small momentum q. . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Pairing gap (left) and pair band mass (right) as a function of the interaction

strength U . Dots are calculated data points and line is the fitted quadratic

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Comparison of Pair and Trion binding energies as a function of interaction

strength. For the case of trions, we consider three cases: {U1,2, U2,3, U1,3} =

{U,U, U}, {U, 0, U}, {U,−U,U} as labeled. The trion binding energies were

computed on a 55-site Hubbard model lattice with periodic boundary conditions. 52

8 Schematic picture of the labeling of the particles on site i. Particles inside the

same circle are located in the same lattice site. . . . . . . . . . . . . . . . . . 53

9 Phase diagram for 2 species fermion with attractive interaction U1,2 = −3.

Vacuum 2 stands for n1 = 0, n2 = 1 or n1 = 1, n2 = 0. Here g1 = 1, g2 = −1. . 58

x



10 Phase diagram for 2 species fermion with attractive interaction U1,2 = −3 and

mass imbalance t2 = 2.1t1. We get all the phases as shown in Fig. 9 but are

skewed because of the mass imbalance. . . . . . . . . . . . . . . . . . . . . . . 59

11 Phase diagram for 2 species fermion with repulsive interaction U1,2 = 3 and

hopping parameters t1 = t2 = 1. Compared to Fig. 9 the phase diagram

is rotated by 90 degree and the Mott phase is when n1 = n2 = 1, which

corresponds to the pair phase after the transformation in Eq. (4.7). . . . . . . 59

12 Single correlator (left) and pair correlator (right) in the FFLO phase. Data

is taken at t1 = t2 = 1, n1 = 6/13, n2 = 5/13, U = −3. Black vertical line

represents the correlation length. . . . . . . . . . . . . . . . . . . . . . . . . . 61

13 Single correlator (left) and pair correlator (right) in the paired phase. Data is

taken at t1 = t2 = 1, n1 = n2 = 6/13, U = −3. Black vertical line represents

correlation length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14 (left) Magnetization as a function of B field. The zig-zag structure is an artifact

of the finite filling fraction. (right) Energy of various mz sectors as a function

of B field. The ground state energy is plotted in red. . . . . . . . . . . . . . 62

15 Phase (central charge) diagram of a mass-imbalanced mixtures with n1 = n2 =

5/12. j = t1/t2 measures the mass imbalance and U is the interaction between

the two species. The top-left corner are regions where the code fails to converge,

leading to arbitrary central charge numbers. . . . . . . . . . . . . . . . . . . 63

16 Phase diagram for 3 species fermion: t1,2,3 = 1, U1,2 = U1,3 = U2,3 = −2. Data

is calculated using fill fraction step of 1/17. g1 = 0.5, g2 = 0, g3 = −0.5. . . . . 66

17 Phase diagram of three species case as filling and U2,3 varies with U1,2 = U1,3 =

−2 and t1 = t2 = t3 = 1. Red points stand for trion phase, blue points stand

for 3-LL phase and green points are in between (undetermined). . . . . . . . 67

xi



18 (A) Depiction of the sketched waveguide. Green lines indicate conductive paths

at the LaAlO3/SrTiO3 interface. Device dimensions are indicated: barrier

width LB, barrier separation LS, total length of the channel between the volt-

age sensing leads LC , and nanowire width as measured at room temperature

typically w ≈ 10 nm. (B) Conductance G through Device A at T = 50mK and

B = 6.5T . A series of quantized conductance steps appears at (1, 3, 6, 10, )e2/h. 68

19 Transconductance data for one device. White lines are fits of the peak locations

for the n = 2 and n = 3 Pascal states and correspond to contribution of

additional subbands in the transconductance data. . . . . . . . . . . . . . . . 70

20 DMRG phase diagrams calculated for two (A) and three (B) fermions with

attractive interactions in one dimension. Abbreviations for various phases:

mF: m distinct fermi surfaces, P: paired phase, T: trion phase, V: vacuum,

A+B: phase composed of A and B. The black numbers on the plots indicate

the strength of the locking for the pair (A) and trion (B) phases. Similar to

what is observed in fits of the experimental data, the trion phase is locked over

a larger range of magnetic field values. . . . . . . . . . . . . . . . . . . . . . . 74

21 a.c. conductivity for two sets of parameters. For both plots KW = KL = 1,

L = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

22 Schematic picture of the model Hamiltonian. V1, V2 < 0 and V3 > 0 to promote

the formation of bound states of multiple fermions (pairs and trions). . . . . 82

23 Central charge as a function of interactions in the lattice model (5.1) computed

at filling fraction 1/5. We have identified single, pair and trion phase based on

the central charge and correlators. Besides these three phases there is a region

with c ≈ 2 which we call 2M phase. The two dashed lines represent the linecuts

for our Fourier spectra analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii



24 Spectra G1, G2 and G3 (from top to bottom) as a function of wavevector and

interaction strength (V1 = V2), showing agreement of peak locations between

DMRG and theory. The data is taken at cuts shown in Fig. 23. Plots (a–c)

taken at V3 = 1.56 show the trion, 2M, and pair phases; plots (d–f) taken

at V3 = 1.3 show the trion and single phases (with a possible 2M phase in

between). Darker (Blue) colors represent larger values of amplitudes. The

peak in the data of G1, which continuously varying between 0 and kF/3 in

the 2M/single phase is identified as k′. The lines added to the color plot

are theoretic predictions with the determined parameter k′. The solid lines

denote several long distance kosc associated with algebraic-decay; the dotted

lines denote several exponential-decay “peaks”, which are possibly visible if

the decay-length-scale is large. The peak smaller than the kF in the single

phase in panel (d) is not expected in the single phase and can be viewed as a

precursor of the trion phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

25 Entanglement entropy v.s. correlation length on a linear-log scale in the single

phase. From the linear fit we obtain c = 1.04. The data is taken at V1 =

−0.7, V3 = 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

26 Correlators G1(r), G2(r), G3(r) and theirs Fourier spectra in the single phase at

V1 = −0.7, V3 = 1.3 and filling ratio of 1/5. The dashed lines on the left figures

denote the correlation length ξ, and all the correlators decay exponentially after

r > ξ. On the right figures we see kF peak for G1 and G3, and 0 and 2kF peaks

for G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

27 Entanglement entropy v.s. correlation length on a linear-log scale in the pair

phase. From the linear fit we obtain c = 1.04. The data is taken at V1 =

−0.8, V3 = 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

28 Correlators G1(r), G2(r), G3(r) and the Fourier spectra of G2 in the pair phase

at V1 = −0.8, V3 = 1.3 and filling ratio of 1/5. We see that only G2 decays

algebraically while G1 and G3 decay exponentially. The Fourier spectra of G2

is shown, with peaks at 0 and kF . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



29 Entanglement entropy v.s. correlation length on a linear-log scale in the trion

phase. From the linear fit we obtain c = 1.0. The data is taken at V1 =

−0.95, V3 = 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

30 Correlators G1(r), G2(r), G3(r) and the Fourier spectra of G3 in the trion phase

at V1 = −0.8, V3 = 1.3 and filling ratio of 1/5. In the trion phase only G3 decays

algebraically while G1 and G2 decay exponentially. The Fourier spectra of G3

show peaks at kF/3 and kF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

31 Verification of predicted decay exponents. Left figure: leading decay exponent

(η2) of pair correlator in pair phase. Right figure: leading decay exponent

(η3) of trion correlator in trion phase. The two lines are prediction from TLL

theory. According to Table 1, η2 = 1
2K

, η3 = 1
2
(K+ 1

K
). The values of Luttinger

parameter K are extracted from the information of neutral sector. In order to

cover larger range of K, we use DMRG data from fillings (left to right) 1
5
, 1

6
,...

1
10

. The parameters for the left figure are V1 = V2 = −0.8, V3 = 1.4; the

parameters for the right figure are V1 = V2 = −1, V3 = 1.4. . . . . . . . . . . 106

32 DMRG data for the 2M phase at V1 = V2 = −0.9936, V3 = 1.6: central charge fit

with bond dimensions 40, 57, 80, 120, 160, 200, 240, 300, 450, 600, 800, 1200;

Correlators G1(r), G2(r), G3(r) in the same data point with bond dimension

1200, all showing algebraically decay. . . . . . . . . . . . . . . . . . . . . . . . 107

33 single to pair transition collapsing: (left) collapse of the entanglement entropy

(S) data computed as a function of the tuning parameter (V1 = V2) for vari-

ous bond dimensions (χ – indicated by different color points as labeled) using

the scaling ansatz Eq. (5.19); (right) collapse of the disorder parameter (Φ)

computed as a function of the tuning parameter (V1 = V2) for various bond

dimensions (χ – indicated by different color points as labeled) using the scaling

ansatz Eq. (5.21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xiv



34 DMRG ground state energy (after subtracting a linear function, see text) along

a cut at the interface of single (right) and trion (left) phases. The bond dimen-

sion is χ = 300. These two sets of data points correspond to the energy of two

phases on either of the transition. There is a region where the two curves have

overlap in the parameter (V1) space. In this region, the data point with lower

energy is the ground state, while the data point with higher energy indicates

a metastable states. This metastability is an artifact of DMRG which occurs

near a first-order transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

35 DMRG data in the quaternion phase: (left) Correlators in quaternion phase.

The parameters of Hamiltonian are V1 = V2 = V3 = −0.7, V4 = 1.7. The

DMRG bound dimension χ = 600. The data indicates that G1(r), G2(r) and

G3(r) decay exponentially while G4(r) decays algebraically. (right) Fourier

spectra of quaternion correlator (G4 of Fig. ??) in a quaternion phase. The

oscillatory wavevectors (kosc) are located at even multiples of π/20. With a

choice “derivative” n = 2, the first three kosc can be seen in this plot as peaks

or step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

36 Band bending pictures from Ref.1 where k0 and k1 are the right moving wavevec-

tors. To satisfy Luttinger’s theorem we need k0+k1 = kF (left) and k0+k1+π =

kF (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

37 (a) Schematic of the setup: the optical lattice is produced by three Gaussian

laser beams intersecting at 120◦ with offset d – lattice orientation is depicted

in the upper right. The cross marks the center of the harmonic trap, and the

star marks the position associated with the displaced Dirac cones depicted in

(b). (b) Schematic of the displacement of the Dirac cones in momentum space

associated with stretching type 1 bond. First Brillouin zone is indicated with

the dashed line. (c) Pseudo-vector potential ~A as a function of position. (d)

Pseudo-magnetic field ~B = ∇× ~A as a function of position. The hexagon in (c)

and (d) marks the sample area with 80% uniformity in the pseudo-magnetic

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xv



38 (a) Local Density of States as a function of energy and position in the trap for

various trap frequencies. ωtrap = 11.7 (2πHz) – trap cancels the anti-trapping

potential of lattice beams. ωtrap = 16.4 (2πHz) – bending of distinct Landau.

ωtrap = 21.1 (2πHz) – strong smearing of Landau levels. (b) Density of a

fermionic fluid as a function of position in the trap showing incompressible

plateaus [corresponding chemical potentials are indicated with dashed lines in

(a)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

39 (a) Snap shots of the in-situ density of an atom cloud undergoing cyclotron

motion, where N0 is the total number of atoms in the cloud. Trajectory of

the center of mass of the cloud is superimposed on top (red dots – tilt α/h =

0.84kHz/µm, blue – no tilt, green – current frame). (b)-(c) Momentum resolved

Bragg-spectroscopy: transition rate as a function of frequency ν = ω/2π and

momenta kx and ky. (b) Slice at fixed ky=0. (c) Slices at fixed ω (as indicated

by the dashed white lines in (b)). The location of the Dirac cone is indicated

with dashed magenta line in (b) and (c). . . . . . . . . . . . . . . . . . . . . . 121

40 Comparison of (exact) hopping matrix elements obtained numerically and fitted

matrix elements obtained using Eq. (6.6). For this plot, we fixed I2 = I3 = 3ER. 132

41 Bloch-Zener spectroscopy: spectral density of the atom cloud as a function of

time for small tilt (top) and large tilt (bottom). . . . . . . . . . . . . . . . . . 133

42 Tilt spectroscopy: (a-c) Center of mass position of an atom cloud as a function

of time for three different values of tilt α. (d) Same data as (a-c) with both

axis rescaled by α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

43 Relation between the critical tilt αc (rescaled by the wavelength of optical

lattice light λ) and the gap between the n = 0 and n = 1 Landau levels for

various values of the pseudo-magnetic field. The line represents best fit to the

linear law E1 − E0 = c λαc where c is the constant of proportionality. . . . . . 134

xvi



LIST OF FIGURES

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xvii

LIST OF FIGURESLIST OF EQUATIONS



2.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xviii



3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xix



4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xx



5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xxi



1.0 INTRODUCTION

This thesis is devoted to the numerical studies of the formation of bound states of fermions

in one dimension. Motivated by recent experimental progresses made by Prof. Jeremy

Levy’s group, we first study the bound states of fermions composed of different species

(band/spin). We construct a one dimesional minimal lattice model (Hubbard like) to simu-

late the LAO/STO nanowires and use numerical methods of Density Matrix Renormalization

Group (DMRG) to obtain the ground state. By tuning the hopping parameters as well as

the interactions strength between different species we are able to get qualitative agreement

with the experimental data.

Tomonaga-Luttinger liquid (TLL) theory captures the physics of many 1-D quantum

systems such as spin chains, spin ladders, nanotubes3, nanowires4, and cold atoms confined

to 1-D tubes5–9. In higher dimensional systems, TLL is a tool that is often used, e.g. in edge

theory10 and coupled-wire constructions11–13.

Recently, there has been significant interest in the study of 1D systems that cannot be

described by the standard TLL theory14–20. In describing 1D interacting fermions, TLL

theory naturally arises through bosonization that maps fermionic modes to bosonic modes.

Nearby phases (i.e., descendants) such as charge density order appear as instabilities of the

parent TLL theory21–28.

The other key topic in this thesis in the bound states in single-component one-dimensional

fermionic systems. We perform DMRG numerics on a lattice model with finite-range inter-

actions, and find liquids of singles, pairs, trions, etc. in addition to an extended phase with

two gapless modes (2M phase). We unify these findings by constructing an effective theory

with an emergent mode that characterizes the 2M phase, the descendants of this theory de-

scribe the liquid phases of single fermions as well as multi-fermion bound states (of 2, 3, 4, . . .
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fermions).

The rest of this thesis are organized as follows:

Chapter 2 gives an introduction of the DMRG method which is used throughout the thesis

for numerical simulations. Specifically we first introduce the concept of Matrix Product State

(MPS) and Matrix Product Operator (MPO) and their graphic notations. We show how to

calculate the overlap between two MPS as well as how to apply an MPO onto an MPS. Then

we discuss the details of DMRG algorithm, specifically how to “sweep” local sites to obtain

the minimum energy state. Next, we discuss how to analyze the properties of the ground

state, by measuring the ground state energy, entanglement entropy and various correlation

functions. At the end of this chapter we provide a sample DMRG code and a sample output

file as a guide to run the TenPy2 package, which we use in our numerical simulations.

Chapter 3 presents a brief overview of the Tomanaga-Luttinger liquid (TLL) theory.

Specifically we discuss the peculiarity of one dimension and show how bosonization works.

We also provide a short section on the spectral equivalence of boson and fermion in 1D.

Next, we discuss the effects of interaction on TLL composed of spinless fermions. In the end

we discuss the properties of various correlation functions in TLL.

Chapter 4 discuss the first main focus of this thesis. We begin this chapter by the

experimental motivation and the model Hamiltonian we construct to simulate the LAO/STO

nanwires. We aslo discuss the meaning of SU(N) symmetry of our model Hamiltonian.

Next, we present some results in the low filling limit, which we obtain using finite lattice

calculations. In this section we calculated the binding energies and masses of pairs and trions,

showing that trions are quite stable. Next, we discuss the details of Jordan-Wigner transition

and the numerical setup for our DMRG calculations. Afterwards, we separate our results

into two parts: 2 species and 3 species. In each part we first discuss the expected phases

and present the phase diagrams for different interactions. Next, we show the connections of

our results with LAO/STO experiments. We discuss the validity of our model and perform

transport calculations which is consistent with the experimental observation.

Chapter 5 discuss the other key result in this thesis. In this chapter we study the forma-

tion of bound states in single-component 1D fermionic systems. We first present the model

Hamiltonian and the parameters we choose in the numerical calculations. We then discuss

2



numerical setup and how to run the DMRG code. Next, we present the numerical results,

specifically the phase diagram and the Fourier spectra along two cuts of the phase diagram.

To analyze the results we present a 2-mode theory where single mode phases are descents of

the 2-mode theory. In section 5.6 we discuss in detail the match of numerical results with the

predictions from the 2-mode theory. Afterwards we disucss the phase transitions in the phase

diagram. In the end we provide numerical results of the quaternion phase, which serves as a

general extension of our model. We also discuss how our results are beyond explanation of

theories by previous studies.

Chapter 6 discuss a unique way to generate synthetic magnetic field for utracold atoms.

We show the validaity of our proposal by analyzing the uniformness of the magnetic fields

as well as the existence of the Landau levels in the system.

The works in this thesis have resulted in the following publications29–32.
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2.0 DENSITY MATRIX RENORMALIZATION GROUP (DMRG)

Most of the studies in this thesis are numerical simulations of one dimensional lattice systems.

In this chapter we describe the standard algorithms of Density Matrix Renormalization

Group (DMRG) we use for calculating the ground state proeprties of one dimensioanl lattice

systems. The discussion in this chapter follows Ref.33.

2.1 Introduction

Invented by Steve White in 199234, DMRG has been one of the most powerful numerical

algorithms for calcuating the properties of one-dimensional quantum lattice systems, such

as the Heisenberg and Hubbard models. Since its invention, the algorithms has been un-

der constant development, expanding its application to more physical systems and higher

dimensions33.

Interestingly, the Matrix Product States (MPS) were discovered unrelated to DMRG as a

class of quantum states for analytical studies. The most relavant prehistory is arguably given

by the exact expression of the one-dimensional AKLT state in this form23;35. The connection

between MPS and DMRG was made in two steps: the first step was made by Ostlund and

Rommer36 where they realized that the block growth step of the infinite-system DMRG can

be expressed in MPS form. The second step was the recognition that finite-system DMRG

leads to quantum states and MPS form, over which it varitionally optimizes37. It was not

until 2004 that Cirac, Verstrate, Vidal and coworkers took the connections between DMRG

and MPS seriously and explored the power of MPS systematically. MPS provides a convienet

way to describe DMRG and opens the way to powerful extensions of DMRG.
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We begin this chapter by first introducing the representation schemes we use for desribing

quantum states – Matrix Product State (MPS). To do this we use graphic notations to pro-

vide a more clear picture of the procedures. We also discuss the convience of using canonical

forms in our calculations. Then we present the details of how we achieve approximations by

compressing the MPS representations.

Next, we discuss the Matrix Product Operators (MPO), specifically how we turn our

Hamiltonian into MPO form. Then we present the standard procedures of applying MPO

onto MPS.

Then we discuss the procedures we use throughout this thesis to get approximate MPS

representation of the ground states of one dimensional lattice systems. We also present the

details of obtaining entanglement entropy and correlation functions. Finally, We provide

some sample code for our DMRG calculations.

2.2 Matrix Product State (MPS)

Consider a one-dimensional lattice of L sites, each site has local Hilbert space of dimension d

described by σi (i = 1 . . . L). The dimension of the Hilbert space for the entire system is then

given by dL which grows exponentially with system size L. In general, any quantum state on

the lattice can be written as: where cσ1...σL is a tensor of complex numbers with dimension

|ψ〉 =
∑
σ1...σL

cσ1...σL|σ1, . . . , σL〉, (2.1)

dL and |σ1, . . . , σL〉 = |σ1〉 ⊗ · · · ⊗ |σL〉 is a product state. Based on the dimensionality we

immediately see that the representations here is complete.

So far we have simply written down the most general form of any quantum state. Can

we find a notation that gives a more local representation of the state? Indeed, by performing

Singular Value Decomposition (SVD) we can achieve this.
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In the first step we can reshape the coefficients cσ1...σL into a matrix Ψ of dimensions

d× dL−1: We can perform an SVD on Ψ: where U has orthonormal columns (UU † = I), V †

Ψσ1,(σ2...σL) = cσ1...σL . (2.2)

cσ1...σL = Ψσ1,(σ2...σL) =

r1∑
a1

Uσ1,a1

[
Sa1,a1(V †)a1,(σ2...σL)

]
=

r1∑
a1

Uσ1,a1ca1σ2...σL , (2.3)

has orthonormal rows (V V † = I) and S is diagonal (Saa = sa) with singular values sa. The

number r of non-zero singular values is the Schmidt rank and we assume descending order

such that s1 ≥ s2 · · · ≥ sr.

𝑐

𝜎1 𝜎2 … 𝜎𝐿

= 𝑐

𝜎2 … 𝜎𝐿

𝐴

𝜎1

𝑎1

The above figure shows the gaphic notation of Eq. (2.3). For convience we define Aσ1
a1

=

Uσ1,a1 and we obtain cσ1...σL = Aσ1
a1

Ψa1,(σ2...σL). Here we have reshaped the coefficents into two

blocks: one block on site 1 and the other block representing the rest of the lattice. These

two blocks share the same index a1 (that ranges from 1 to r1 ≤ d), shown in the figure as a

connecting line between the two blocks.
We can repeat the same procedure for site 2: first we reshape cσ1...σL into a matrix

Ψ(a1σ2),(σ3...σL) of dimensions (r1d × dL−2) such that cσ1...σL = Aσ1
a1

Ψ(a1σ2),(σ3...σL). Then we
perform SVD on Ψ: where we use a set of a matrices Aσ2 of dimensions r1 × r2 (r2 ≤ d2) to
represent U : Aσ2

a1,a2
= U(a1σ2),a2 . The graphic representation is shown below.

𝑐

𝜎1 𝜎2 … 𝜎𝐿

= 𝑐

𝜎3 … 𝜎𝐿

𝐴

𝜎1

𝑎1
𝐴

𝜎2

𝑎2
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cσ1...σL =

r1∑
a1

r2∑
a2

Aσ1
a1
U(a1σ2),a2

[
Sa2,a2(V †)a2,(σ3...σL)

]
=

r1∑
a1

r2∑
a2

Aσ1
a1
Aσ2
a1,a2

Ψ(a2,σ3),(σ4...σL), (2.4)

We can continue the procedure and arrive at: More consicely we can write the quantum

cσ1...σL =
∑

a1,...,aL−1

Aσ1
a1
Aσ2
a1,a2

. . . AσL−1
aL−2,aL−1

AσLaL−1
. (2.5)

state in the form of a matrix product state:

|ψ〉 =
∑

σ1,...,σL

Aσ1 . . . AσL|σ1, . . . , σL〉, (2.6)

2.2.1 canonical form

Note here that because UU † = I holds for every SVD, we can readily get Based on this

∑
σl

Aσl†Aσl = I. (2.7)

relation we define A is left-normalized, MPS that consists only of left-normalized matrices

is left canonical.

7



In general we can split the lattice into parts A and B, where A is composed of sites 1

though l and B sites l + 1 to L. We can introduce states as following: such that the MPS

|al〉A =
∑

σ1,...,σl

(Aσ1 . . . Aσl)|σ1, . . . , σl〉 (2.8)

|al〉B =
∑

σl+1,...,σL

(Aσl+1 . . . AσL)|σl+1, . . . , σL〉 (2.9)

can be written as

|ψ〉 =
∑
al

|al〉A|al〉B. (2.10)

The forms we have obtained looks close to a Schmidt decomposition of |ψ〉, however it

is not. For the Schmidt decomposition we need both |al〉A and |al〉B to form orthonormal

basis. Because of the left-normality of A matrices, we immediately find that |al〉A form an

orthonormal basis while |al〉B does not.

To deal with this we can instead start from the right (site L) and perfroming SVD to

the left. By doing this we obtain the right-normalized matrices B such that where MPS

∑
σl

BσlBσl† = I, (2.11)

composed of purely B matrices are called right-canonical.
To achieve the Schmidt decomposition we need the mixed-caonical form of the MPS.

Specifically we write: which contains the singular values on the bond (l, l+1) and graphically
represented below. By redefining |al〉B in terms of B matrices, we arrive at which is the
Schmidt decomposition on site l.

8



cσ1...σL = Aσ1 . . . AσlSBσl+1 . . . BσL , (2.12)

|ψ〉 =
∑
al

sa|al〉A|al〉B, (2.13)

𝑐

𝜎1 𝜎2 … 𝜎𝐿

= 𝐴

𝜎1

…
𝐴

𝜎𝑙

𝑎𝑙
𝐵

𝜎𝑙+1

…
𝐵

𝜎𝐿

𝑆
𝑎𝑙

This form will be important in the DMRG algorithm when we optimize the elements of

a particular tensor in order to find the variational ground state.

2.2.2 truncation

In the MPS representation we readily see that we have achieved a “local” representation:

each site is descriped by a matrix with dimensions: (1×d), (d×d2), . . . , (dL/2−1×dL/2), (dL/2×

dL/2−1), . . . , (d× 1). Here the dimensions of the matrix is still exponential with system size

L, and we need to find a way to bound their size to some χ (bond dimension). Refer to

the mixed canonical representation in Eq. (2.13), we can keep the χ largest singular values.

By doing this we have reduced the computational complexity from O(dL) (exponential)

to O(Lχ2) (linear), which greatly reduces the computational cost1. We can repeat the

truncation L − 1 times (at each bond) and it has been shown that the error is at worst:

where εi(χ) =
∑

j>χ s
2
j is the truncation error (sum of the discarded squared singular values)

1We will describe the details of choosing χ in a later section of this chapter

9



||ψ〉 − |ψtrunc〉|2 ≤ 2
L−1∑
i=1

εi(χ), (2.14)

at bond i. The accuracy of DMRG is then related to the singular value spectra of the reduced

density operators. There is an area law which states that entanglement entropy grows as

the area instead of volume38 2. In one dimension this means entanglement entropy does not

grow with system size and we can achieve a high precision ground state for systems with

short-range interactions using DMRG.

2.2.3 overlap and efficient contraction of MPS

Having introduced the notation of MPS, we now discuss how to calculate the overlap of two

MPS state |ψ〉 and |φ〉, described by matrices M and M̃ , respectively:

|ψ〉 = Mσ1 . . .MσL|σ1 . . . σL〉 (2.15)

|φ〉 = M̃σ1 . . . M̃σL|σ1 . . . σL〉 (2.16)

To calculate the overlap 〈φ|ψ〉 we need to take the adjoint of |φ〉: the pictorial represen-

tation is shown below.

In Eq. (2.17) we see that we need to perform contractions both over the matrix indices

(implicit) and also over the physcial indices σi. If we were to contract the matrix indices first

and then physical indices, we will need to perform over dL times of matrix multiplication,

2the area law states predict that for ground states of short-ranged Hamiltonians with a gap to excita-
tions entanglement entropy is not extensive, but proportional to the surface. For critical states (like TLL)
entanglement grows logarithmically with system size. This allows us to make progress by studying finite size
scaling as we describe later.
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〈φ|ψ〉 =
∑

σ1,...,σL

M̃σ1† . . . M̃σL†Mσ1 . . .MσL , (2.17)

which is exponentially with system size L3.

 𝑀

𝜎1

𝑀

 𝑀

𝜎2

𝑀

 𝑀

𝜎3

𝑀

 𝑀

𝜎𝐿

𝑀

…

  𝜙

  𝜓

1

2

3

4

5

6

Figure 1: Schematic picture of contraction between two MPS. The number with arrows

denotes the order of the contraction.

However, we can get around with this by regrouping the sum as: Here in the first step

〈φ|ψ〉 =
∑
σL

M̃σL†

(
. . .

(∑
σ2

M̃σ2†

(∑
σ1

M̃σ1†Mσ1

)
Mσ2

)
. . .

)
MσL . (2.18)

we multiply M̃σ1† and Mσ1 to form a matrix and sum over the first physical index σ1. Then

we perform a three-matrix multiplication over the second physical index (shown in Fig. 1 as

step 2 and 3). The individual complexity of the matrix multiplication is O(χ3) and we need

in total O(Lχ3d) complexity, which is a lot better than the exponential cost if we perfrom

the contraction of matrix indices and then physical indices.

3each spin combination requires a separate matrix multiplication
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2.3 Matrix Product Operators

Having introduced the concept of MPS, a natural extension lead to the definition of Matrix

Product Operator (MPO) such that the coefficients 〈σ|Ô|σ〉 are given by where W σσ′ are

〈σ|Ô|σ〉 = W σ1σ′1 . . .W σLσ
′
L , (2.19)

matrices just like the M matrices we have encountered before, except that now we have two

physical indices sticking out instead of one. The graphical representation is shown below.

𝑊

𝜎1
′ 𝜎𝑙

′ 𝜎𝐿
′

… 𝑊 𝑊…

𝜎1 𝜎𝑙 𝜎𝐿

As shown in the figure above, the matrix representation of an operator Ô is given by:

Ô =
∑
σ,σ′

W σ1σ′1 . . .W σLσ
′
L|σ〉〈σ′|. (2.20)

In principle, any operators can be written in the form of MPO: where we have reshaped

Ô =
∑

σ1,...,σL;σ′1,...,σ
′
L

c(σ1...σL),(σ′1...σ
′
L)|σ1, . . . , σL〉〈σ′1, . . . , σ′L|

=
∑

σ1,...,σL;σ′1,...,σ
′
L

c(σ1σ′1)...(σLσ
′
L)|σ1, . . . , σL〉〈σ′1, . . . , σ′L| (2.21)
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the form of c and we can decompose further as we did with MPS and obtain the form of an

MPO.

2.3.1 applying an MPO to an MPS

The application of an MPO (Eq.(2.20)) to an MPS (Eq.(2.6)) runs as: The graphical repre-

Ô|ψ〉 =
∑
σ,σ′

(
W σ1,σ′1(W σ2,σ′2 . . .

)(
Mσ′1Mσ

2
′ . . .

)
|σ1, . . . , σL〉

=
∑
σ,σ′

∑
a,b

(
W

σ1,σ′1
1,b1

W
σ2,σ′2
b1,b2

. . .
)(
M

σ′1
1,a1

Mσ′2
a1,a2

. . .
)
|σ〉

=
∑

sigma,σ′

∑
a,b

(
W

σ1,σ′1
1,b1

M
σ′1
1,a1

)(
W

σ2,σ′2
b1b2

Mσ′2
a1,a2

)
. . . |σ〉

=
∑
σ

∑
a,b

Nσ1

(1,1),(b1,a1)N
σ2

(b1,a1),(b2,a2) . . . |σ〉

=
∑
σ

Nσ1Nσ2 . . . |σ〉 (2.22)

sentation is shown below:

𝑊

𝜎1
′ 𝜎𝑙

′ 𝜎𝐿
′

… 𝑊 𝑊…

𝜎1 𝜎𝑙 𝜎𝐿

𝑀 𝑀 𝑀… …

𝑁 𝑁 𝑁… …

𝜎1 𝜎𝑙 𝜎𝐿

We see that applying an MPO to an MPS results a new MPS. The result above can be

13



summarized as |φ〉 = Ô|ψ〉 where |φ〉 is an MPS with matrices Nσi :

Nσi
(bi−1,ai−1),(bi,ai)

=
∑
σ′i

W
σiσ
′
i

bi−1bi
M

σ′i
ai−1ai . (2.23)

Using the formula above, the operational complexity is of order Ld2χ2
Wχ

2, where χW is

the bond dimension of the MPO.

2.3.2 MPO representation of Hamiltonian

For our numerical calculations, we build MPO from the Hamiltonian and apply variational

approach to calculate the ground state. To build an MPO, we need a localized description

of the operators in the Hamiltonian. From the graphical representation of an MPO shown

above, we see that an MPO generally takes the form of 4-tensor (except the left- and right-

most tensors).

For onsite (one-body) terms the 4-tensors can be written as: where multiplying Wi would

W
σi,σ

′
i

i
(1) =

 Iσi,σ
′
i 0

X
σi,σ

′
i

i Iσi,σ
′
i

 (2.24)

give the sum of onsite terms X1 +X2 +X3 + . . . .

For two-body terms the 4-tensors can be written as: where multiplying Wi would give the

term XiYi+1. All matrices in the above has local dimensions d× d. Generally a Hamiltonian

contains both the one-body and two-body terms, and we can combine the above equations

into: which gives terms Xi + YiZi+1.

As discussed before, the left- and right-most sites have different dimensions and we can

write their MPO as: The complete Hamiltonian can then be constructed by multiplying

14



W
(2)
i =


I 0 0

Yi 0 0

0 Xi I

 (2.25)

W
(1,2)
i =


I 0 0

Zi 0 0

Xi Yi I

 (2.26)

W1 =
(
X1 Y1 I

)
,WL =


X1

Y1

I

 (2.27)

these Wi tensors.

Generally, we can achieve longer-ranged Hamiltonian by increasing the matrix size. As

an example, a model with nearest and next-nearest neighbours such as: can be constructed

H = J1

∑
i

Szi S
z
i+1 + J2

∑
i

Szi S
z
i+2 (2.28)

by the following MPO:

15



Wi =


I 0 0 0

Sz 0 0 0

0 I 0 0

0 J1S
z J2S

z I

 (2.29)

2.4 Ground state calculation with MPS

DMRG is a variational optimization scheme and its goal is to minimize the energy of state

|ψ〉 with respect to Hamiltonian:

E =
〈ψ|H|ψ〉
〈ψ|ψ〉

, (2.30)

The minimization of E is the same as extremizing the expression: 〈ψ|H|ψ〉 − λ〈ψ|ψ〉,

where λ is the Langragian multiplier.

In the general case with matrices of bond dimension χ, the amount of parameters is

of order O(Ldχ2). The standard procedure of differentiation with respect to each of the

parameters would require enormerous complexity for a moderate-sized spin chain and bond

dimension.

The key idea of DMRG is to perfrom the optimization by sweeping over localized sites.

In the language of MPS, this means to optimize each MPS tensor at a time. As shown in

the graphical representation below, the missing tensor is due to the nature of optimization

(taking derivatives of the rank-3 tensor Mσi
ai−1,ai

). Thanks to the mixed-canonical form of an

MPS, we can contract the indices at all other sites (for the term λ〈ψ|ψ〉).
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Figure 2: Optimization procedure in graphic representation. We obtain the lower figure

using the properties of the mixed canonical form of MPS.

As shown in the figure above, if we reshape the 3 open legs and the 3 legs connecting

with the red circle into a single leg, the optimization becomes an eigenvalue problem: where

Mν − λν = 0, (2.31)

the “matrix” M is built from the MPO and current MPS tensors. The dimension of this

eigenvalue problem is dχ2 × dχ2, from counting the dimensions of the 3 open legs in Fig. 2.

Recall that the original problem requires solving the ground state of a dL× dL Hamiltonian,

which is exponential in system size. We have obtained a much more efficient method for

calcualting the approximate ground state using DMRG.

2.4.1 implementation of the DMRG procedure

In the previous subsection we described how to “locally” optimize the matrices. Recall our

original goal is to find the ground state that is optimized globally. To get the globally

optimized state we need to perform an iterative procedure, consisting of several “sweeps”.

The general updating procedure is as follows:

• Start from the initial guess for |ψ〉, and make sure it is in the right-canonical form (B

matrices).
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• Calculate the expressions in Fig. 2 iteratively for all sites from L− 1 to 1 iteratively.

• Right sweep: Starting from site l = 1 to L−1, sweep the lattice sites as follows: solve the

eigenproblem for Mσl , taking its current value as a starting point. Once the solution is

obtained, left-canonicalize Mσl into Aσl by perforing SVD. The remaining matrices are

multiplied to Mσl+1 to the right and will be the starting guess for the next site. Keep

moving one site at each step until site L− 1 4.

• Left sweep: Starting from site l = L to site 2, sweep the lattice sites to the left. Similar

procedure as right sweep, except using SVD to get the right-normalized form and multiply

to the left for further calculation. Keep moving one by one until site 2.

• Repeat right and left sweeps until convergence is reached (energy is converged).

If we use matrices A,B,M to represent left-normalized, right-normalized and current

site matrices, the algorithm would give rise to the following procedures in a full sweep for a

system with four lattice sites:

M0B0B0B0

diag−−→M1B0B0B0
SV D−−−→ A1M0B0B0

diag−−→ A1M1B0B0
SV D−−−→ A1A1M0B0

diag−−→ A1A1M1B0
SV D−−−→ A1A1A1M0

diag−−→ A1A1A1M1
SV D−−−→ A1A1M1B1

diag−−→ A1A1M2B1
SV D−−−→ A1M1B2B1

diag−−→ A1M2B2B1
SV D−−−→M1B2B2B1 (2.32)

In this procedure the energy can only go down: we optimize the energy at each step

by varying the parameters. There are two possible issues here: one is the starting state we

choose, which may lead to large iteration steps and bad performance if the starting state is

“bad”; the other is how can we guarrantee that we have reached the global minimum instead

4Using mixed canonical form make the contraction of left and right sites convenient.
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Figure 3: Optimization procedure for two-site updating in graphic representation.

of a local minimum.

To deal with the first issue, we can start the initial state with various χ and generally

increase it until results converge (the result is guaranteed to be exact in the χ→∞ limit). To

deal with the problem of getting stuck at local minimum, we can instead perform optimization

on two sites at a time, which offers a slightly enlarged ansatz space with a subsequent

truncation which makes the algorithm more robust against getting stuck in a local minimum.

The optimization procedure is described as follows.

The DMRG procedure for the two sites is very similar to that for a single site. Fig. 3

shows the graphic representation. Here instead of three open legs we now have 4 open legs

for optimization, which increases the complexity by d2. For spin-1
2

system, this will increase

the parameter sizes to four times of the original parameter space.

In our numerical calculations, we use iDMRG(infinite-DMRG), which is a general ex-

tension of the finite DMRG discussed before, and can be used to build highly controlled

translationally invariant (modulo, say, a unit cell of length 2) thermodynamic limit states,

more details can be found in Ref.33.

2.5 Properties of the ground state

Having presented the DMRG procedures for obtaining the ground state, we now discuss

how to analyze the properties of ground state. We first discuss the correlation length and

ground state energy calculation, then we present the calculation of entanglement entropy
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and correlation functions.

2.5.1 correlation length

Correlation length ξ is one of the most important quantities we get from the DMRG calcu-

lations, as we will present later in this section, it is closely related to the calculation of the

ground state energy, central charge as well as determining whether certain correlation func-

tions decay algebraically or exponentially. As we run DMRG on a specific bond dimension

χ, the correlation length naturally depends on χ and we denote such dependence as ξ(χ).

In practice, conservation laws resulting from global symmetries can be taken into account

explicitly in the construction of MPS. This reduces the number of degrees of freedom such

that approximations with higher matrix dimensions can be calculated using the same amount

of computation time and memory. In the DMRG calculation we separate quantities into

various charge sectors and for each charge sector q we can compute ξq(χ), which is the

length scale for correlators of form 〈A†(0)B(r)〉 where A,B are charge-q operators. If the

charge-q sector is gapless, then ξq(χ) goes to infinity as χ increases. If the sector is gapped,

then ξq(χ) saturates to its physical value ξq(∞).

The typical dependence of ξ on bond dimension χ for a gapless system is a power law:

ξ ≈ χκ. In the code the most used correlation length is the neutral sector (q = 0), which is

always gapless in our calculation and hence ξ = −1/(log s2), where s2 is the second largest

eigenvalue of the normalized reduced density matrix of the system (bipartite density matrix).

Any finite-bond dimension MPS will only approximate the true correlator by a super-

position of exponentials, and this works well on short distances, even for power laws33.

Eventually, the slowest exponential decay will survive, making the correlation into a pure

exponential decay with ξ = −1/(log s2).

2.5.2 ground state energy

The DMRG procedure we discussed before contains a final step: check convergence. In the

convergence check, the first thing to check is the energy: we set a low threshold for δE, which
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Figure 4: Energy as a function of correlation length. Blue dots are different data points

calculated from a set of bond dimensions χ = 40, 80, 160, 240, 300 and red line is the fitting.

See chapter 4 for details of the model that we analyze.

is the energy difference after several sweeps. If the energy change is smaller than δE, then

we declare that we have reached the ground state5 and mark the current energy as E0(χ).

Recall that the DMRG is running at a finite bond dimension χ, we would expect different

values of E0 for different χ. In practice, we focus on the dependence of energy v.s. correlation

length ξ 39: In practice, we run our DMRG simulations at different bond dimensions and

E(ξ) = E∞ +
A

ξ2
+ const. (2.33)

obtain correlation length ξ(χ) as well as ground state energy E(χ). Then we fit the relation

between energy and correlation length according to Eq. (2.33) to extract the real ground

state energy E∞. Fig. 4 shows an example of this extrapolation χ→∞.

5We will present the details of other checks later in this section.
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2.5.3 entanglement entropy

Another important quantities that we calculate to analyze the ground state property is the

entanglement entropy S. Specifically we measure the bipartite entanglement entropy: for

a bipartite system AB the entanglement entropy is defined as: where ρA/B are the reduced

S = −TrρA log ρA = −TrρB log ρB, (2.34)

density matrix of subsystem A/B.

The entanglement entropy is infinite for a true ground state (ξ → ∞), but is cut off by

finite bond dimension χ. In the code we are using infinite system DMRG with a unit cell

and we calculate the entanglement entropy by averaging over the bonds within the unit cell.

The sample code for calculating entanglement entropy is shown below:

1 def entanglement_entropy(self, n = 1):

2 """ Calculate the entanglement entropy for all the bonds, and

return a np.ndarray.

3 S = []

4 if n==1:

5 for i_bond in range(0, len(self.s)):

6 s=self.s[i_bond][self.s[i_bond]>10**(-16)]**2

7 S.append(-np.inner(np.log(s),s))

8 return np.array(S)

As shown in the code above, the entanglement entropy for a specific bond is defined as

S = −
∑

i s
2
i log s2

i where si are the eigenvalues for each bond.

2.5.4 correlation functions

Finally in the DMRG calculations we calculate various correlation functions. More specifi-

cally, we focus on the two-point correlation functions separated by distance r. As mentioned

before we can tell whether certain correlation decay algebraically or exponentially up to
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the correlation length to determine whether the mode that associated with the correlation

function is gapless or gapped. In Chpater 4 and 5 we present details of correlation functions

we measure and how we use them to identify phases, respectively.

2.6 DMRG sample code

In this section we present a sample code for our DMRG calculation. The code here is for

certain calculations related to Chapter 4. We will break the sample code into parts where

we explain the purpose of each part. The code is a slight modification from our collaborator

Prof. Roger Mong and the libaray we use is TenPy.

1 import sys

2 import numpy as np

3 from copy import deepcopy

4 import itertools

5 from fractions import Fraction as F

6

7 from models import dual_ising

8 from mps.mps import iMPS

9 from algorithms import simulation

10 from algorithms.linalg import np_conserved as npc

11 from tools.string import joinstr, to_mathematica_lists

12 import cluster.omp as omp

13 import os

In this part we load the libraries and packages we need for our DMRG calculations. The

model used here is dual ising model which enables calculations of two types of particles and

we perfrom calculations on fixed filling fraction of particles based on np conserved package.

The Hamiltonian is: we will discuss in detail about this model in Chapter 4.

1 def pipe_output(outfile, verbose=0):

2 #sys.stdout = default_stdout

3 #sys.stderr = default_stderr

4 if verbose:

5 print "Piping to \"%s\"." % (outfile,)

6 # open our log file

7 so = se = open(outfile, ’w’, 0)

8 # re-open stdout without buffering

9 sys.stdout = os.fdopen(sys.stdout.fileno(), ’w’, 0)

10 # redirect stdout and stderr to the log file opened above
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H =−
∑
i

t1

(
c†i,1ci+1,1 + h.c.

)
−
∑
iσ

(µ1 − 2t1)ni,1

−
∑
i

t2

(
c†i,2ci+1,2 + h.c.

)
−
∑
iσ

(µ2 − 2t2)ni,2

+
∑
i

U1,2ni,1ni,2, (2.35)

11 os.dup2(so.fileno(), sys.stdout.fileno())

12 os.dup2(se.fileno(), sys.stderr.fileno())

13 print "Running with {} threads".format(omp.get_max_threads())

This is the function for output logfiles for our calculations. We need this part to see the

result of our code at each step, I will show a sample logfile at the end of this chapter.

1 def gcd(a, b):

2 """Greatest common divisor. Return 0 if both a,b are zero, otherwise

always return a non-negative number."""

3 a = abs(a)

4 b = abs(b)

5 while b > 0:

6 a, b = b, a % b # after this, a > b

7 return a

8

9 def lcm(a, b):

10 if a == 0 and b == 0: return 0

11 return a * b / gcd(a, b)

These are the functions we use to calculate greatest common divisor and lowest common

multiplier. We need this function to determin the size of the unit cell in our calculation. As

an example, if our filling fraction here for two types of particles are 1/2 and 2/5 respectively,

we would need a unit cell of size 10.

1 def model_GaudinYang2(V1, V2, nu1, nu2, t1, t2):

2 r"""

3 H = \sum_{a,s} t_s (c_a - c_{a+1})^\dag (c_a - c_{a+1})

4 - \sum_{a,s} \mu_s c_a^\dag c_a

5 + U \sum_a n_{1,a} n_{2,a}
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6 + (1/2) \sum_{a,s,s’} V_{s,s’} n_{s,a} n_{s’,a}

7 where we set \mu = 0, V = 0.

8

9 Under the Jordan-Wigner transformation:

10 c^\dag <--> S^- * string

11 c^\dag c <--> 1/2 - S^z.

12 """

13 V1, V2, t1, t2 = float(V1), float(V2), float(t1), float(t2)

14 hop_list = [ (’pIX’,’pXI’,-t1/2), (’pIY’,’pYI’,-t1/2),

(’pZI’,’pZI’,V2/2), (’pIZ’,’pIZ’,V2/2), (’pIZ’,’pII’,0),

(’pII’,’pZI’,0), (’pZZ’,’pII’,V1/4), (’pII’,’pZZ’,V1/4),

(’pIZ’,’pZI’,V1/2), (’pXX’,’pII’,-t2/4), (’pII’,’pXX’,-t2/4),

(’pYY’,’pII’,-t2/4), (’pII’,’pYY’,-t2/4) ]

15 configL = lcm(nu1.denominator, nu2.denominator)

16 if configL == 1: configL = 2

17 config = [ np.ediff1d(np.rint(np.linspace(0, nu * configL, num = configL

+ 1, endpoint = True)).astype(int)) for nu in [nu1, nu2] ]

18 Mpar = {

19 ’L’: 1,

20 ’verbose’: 1,

21 ’gxx’: 0,

22 ’gyy’: 0,

23 ’gzz’: 0,

24 ’hSz’: 0,

25 ’hTz’: 0,

26 ’constant offset’: 0,

27 ’extra_hoppings’: [hop_list],

28 ’conserve_Sz’: False,

29 ’conserve_diff_Sz’: False,

30 ’dtype’: float,

31 ’parstring’: ’xxzt{},{}_,V{},{}_nu{}o{},{}o{}’.format(t1, t2, V1,

V2, nu1.numerator, nu1.denominator, nu2.numerator,

nu2.denominator),

32 ’root config 1’: config[0],

33 ’root config 2’: config[1],

34 }

35 return Mpar

In this part we define the model we use for our calculation, which is GaudinYang in this case.

We perform Jordan-Wigner transformation to go from a lattice model to a spin model 6, and

we have mapped the parameters accordingly. The parstring serves as the name for our logfile

as well as output file where it includes the parameters and filling fractions for both particle

types.

6the details of Jordan-Wigner transformation can be found in Chapter 4.
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1 default_sim_par = {

2 ’VERBOSE’: True,

3 ’STARTING_ENV_FROM_PSI’: 1,

4 ’N_STEPS’: 20,

5 ’MAX_ERROR_E’: 1e-10,

6 ’MAX_ERROR_S’: 1e-6,

7 ’MIN_STEPS’: 40,

8 ’MAX_STEPS’: 200,

9 ’LANCZOS_PAR’ : {’N_min’: 2, ’N_max’: 20, ’e_tol’: 5*10**(-15),

’tol_to_trunc’: 1/5.},

10 # ’mixer’: (1e-3, 1.5, 5, ’id’),

11 }

12

13 def run_dmrg(sim, dmrg_par, model_par=None, chi=None, min_steps=None,

save_sim=False):

14 if sim is None:

15 print ’Initializing "{}"...’.format(model_par[’parstring’])

16 M = dual_ising_dp2.dual_ising_model(model_par)

17

18 ## Compute the initial state from the root configurations

19 state_ordering = [’up’, ’dn’] # 0 is spin up, 1 is spin dn

20 initial_state = np.array([

M.states[0][state_ordering[s1]+state_ordering[s2]] for s1,s2

in itertools.izip(model_par[’root config 1’], model_par[’root

config 2’]) ])

21 print joinstr(["Initial configs: ", str(model_par[’root config

1’]) + ’\n’ + str(model_par[’root config 2’])])

22 psi = iMPS.product_imps(M.d, initial_state, dtype=float,

conserve=M, bc=’periodic’)

23

24 sim = simulation.simulation(psi, M)

25 sim.model_par = model_par

26

27 else:

28 if model_par is not None:

29 print ’Updating simulation

"{}"...’.format(model_par[’parstring’])

30 sim.update_model(model_par)

31 else:

32 print ’Running simulation

"{}"...’.format(model_par[’parstring’])

33 try:

34 del sim.canon_psi

35 except:

36 pass

37

38 sim_par = deepcopy(dmrg_par)

26



39 if chi is not None: sim_par[’CHI_LIST’] = {0:chi}

40 if min_steps is not None: sim_par.update[’MIN_STEPS’] = min_steps

41 sim.dmrg_par = sim_par

42 print ’DMRG parameters:\n’ + ’\n’.join([ " {} : {}".format(k,v) for k,v

in sim.dmrg_par.items() ])

43 sim.ground_state()

44

45 try:

46 sim.append

47 except AttributeError:

48 sim.append = {}

49 if ’xi’ in sim.append: del sim.append[’xi’]

50

51 sim.append[’GS Energy’] = sim.sim_stats[-1][’Es’][-1]

52 sim.canon_psi = sim.psi.copy()

53 sim.canon_psi.canonical_form()

54 if save_sim:

55 filename = outroot + model_par[’parstring’] +

’_chi{}’.format(max(sim_par[’CHI_LIST’].values()))

56 uncanon_psi = sim.psi

57 sim.psi = sim.canon_psi

58 print ’Presaving simulation to "{}"...’.format(filename)

59 sim.save(filename)

60 sim.append[’xi’] = sim.canon_psi.correlation_length()

61 print "xi = {}".format(sim.append[’xi’])

62

63 sim.append[’Sbond’] = np.average(sim.canon_psi.entanglement_entropy())

64 print "Sbond = {}".format(sim.append[’Sbond’])

65

66 print "Egs = {}".format(sim.append[’GS Energy’])

67

68 if save_sim:

69 print ’Saving simulation to "{}"...’.format(filename)

70 sim.save(filename)

71 sim.psi = uncanon_psi

72 print

73 return sim

This part is the DMRG paramters and run dmrg is the function we use for calculating

the ground state. We observe here that in this calculation we calculated ground state energy

’GS Energy’, correlation length ’xi’ and entanglement entropy ’Sbond’.

1 def load_sim(model_par, chi, verbose=1):

2 filename = outroot + model_par[’parstring’] + ’_chi’ + str(chi)

3 print ’Loading "{}"...’.format(filename)

4 try:
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5 sim = simulation.simulation.load(filename,

dual_ising_dp2.dual_ising_model, force_mod_verbose=0)

6 except IOError, e:

7 if verbose >= 1: print " IOError!", e

8 return None

9 return sim

10

11

12 def measure_correlator(sim):

13 if hasattr(sim, ’canon_psi’):

14 psi = sim.canon_psi

15 else:

16 psi = sim.psi

17 M = sim.M

18 xi = sim.append[’xi’]

19 dist = int(5 * xi)

20

21 site_n1 = 0.5 - psi.site_expectation_value(M.Sz)

22 site_n2 = 0.5 - psi.site_expectation_value(M.Tz)

23 print "Occupation number <n1> = {}, <n2> = {}".format(site_n1, site_n2)

24 corr_c1d_c1 = psi.correlation_function(M.SmZ, M.SpI, 200, OpStr=M.pZZ)

25 corr_c2d_c2 = psi.correlation_function(M.ISm, M.ZSp, 200, OpStr=M.pZZ)

26 print corr_c1d_c1[:10]

27 print corr_c2d_c2[:10]

28 print sim.append[’Sbond’]

This part shows how we can load previous calculations and analyze the properties of

the ground state by measure the correlation functions. Specifically, the sample code shown

here calculates the occupation number for both particles, single correlator for both particles

〈c†1(r)c1(0) and 〈c†2(r)c2(0).

1 np.set_printoptions(linewidth=2000, precision=5, threshold=4000)

2 outroot = ’testmpo/sim/’ # this determines where everything is

saved/loaded.

3 outroot2 = ’testmpo/log/’ # this is where all the log files are

4 nn = 3

5

6 nn1 = int(sys.argv[1])

7 nn2 = int(sys.argv[2])

8 t1 = float(sys.argv[3])

9 t2 = float(sys.argv[4])

10 V1 = float(sys.argv[5])

11 V2 = float(sys.argv[6])

12

13 ############################################################################
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14 if 1: # run simulation and save for positive U

15 for n1 in [nn1]:

16 for n2 in [nn2]:

17 model_par = model_GaudinYang2(V1, V2, F(n1,nn), F(n2,nn),

t1, t2)

18 for ii in range(1):

19 sim = load_sim(model_par, [40, 80, 160, 300][ii])

20 if sim is None:

21 sim_par = deepcopy(default_sim_par)

22 CHI_LIST = dict([(0,14), (20,20), (40,28),

(80,40), (120,80), (300,160),

(500,300)][:ii+4])

23 logfile = outroot2 + model_par[’parstring’]

+ ’_chi{}.out’.format([40, 80, 160,

300][ii])

24 print logfile

25 pipe_output(logfile)

26 sim_par.update({’CHI_LIST’:CHI_LIST,

’MIN_STEPS’:1.5*max(CHI_LIST.keys())})

27 sim = run_dmrg(None, sim_par,

model_par=model_par, save_sim=True)

28 measure_correlator(sim)

29 else:

30 continue

31

32

33 #########################################################

34

35 if 0: #measure correlator

36 datalist=[]

37 for V1 in [1]:

38 for V2 in [1]:

39 model_par = model_GaudinYang2(V1, V2, F(n1,nn), F(n2,nn),

t=0.0)

40 for chi in [40, 80]:

41 sim = load_sim(model_par,chi)

42 if sim is None: continue

43 if hasattr(sim, ’canon_psi’):

44 psi = sim.canon_psi

45 else:

46 psi = sim.psi

47 M = sim.M

48 xi = sim.append[’xi’]

49 site_n1 = 0.5 - psi.site_expectation_value(M.Sz)

50 site_n2 = 0.5 - psi.site_expectation_value(M.Tz)

51 dist = int(5 * xi)

52 corr_c1d_c1 = psi.correlation_function(M.SmZ,
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M.SpI, 200, OpStr=M.pZZ)

53 corr_pairing = psi.correlation_function(M.SpSp,

M.SmSm, dist+20, OpStr=M.pII)

54 datalist.append([n1,n2,site_n1,site_n2,sim.append[’xi’],

55 sim.append[’Sbond’],

56 sim.append[’GS Energy’],

57 corr_c1d_c1,corr_c2d_c2,corr_pairing,corr_pairing2])

58 # print to_mathematica_lists(datalist)

59 file = open("nnnPair.txt", "w")

60 file.write(to_mathematica_lists(datalist))

61 file.close()

This part shows how we set up the parameters and run our simulations at various bond

dimensions. The first part is the calculation procedure where we perform DMRG calcualtions

at various bond dimensions, keep log files at each step and save the result as sim files. The

second part is the measurement part where we can load the sim file we have calculated

before and calculate the properties of the ground state at each bond dimension: correlation

length, particle number, single correlators such as c†1(r)c1(0) and pair correlators such as

〈c†1(r)c†2(r)c2(0)c1(0)〉. In the end we can output the results into a .txt file which we can

analyze using Mathematica.

2.6.1 sample output file

In this subsection we show a sample output file, which we will discuss the steps of our DMRG

and the convergence criteria. This logfile is for two species both at filling fraction 1 and the

interaction between them is U = −3 and hopping parameter t = 1.

1 Running with 8 threads

2 Initializing "t1.0,1.0_U-3.0_nu1o1,1o1"...

3 dual ising model

4 verbose: 1

5 L = 1

6 dtype = <type ’float’>

7 constant offset = 1.25

8 hSz = -0.5

9 hTz = -0.5

10 gzz = -3.0

11 extra_hoppings = [[(’pXI’, ’pXI’, -0.5), (’pYI’, ’pYI’, -0.5), (’pIX’,

’pIX’, -0.5), (’pIY’, ’pIY’, -0.5)]]
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12 Checking for Sz conservation...

13 Checking for complex numbers...

14 conserving Sz, (num_q = 2)

15 mpo chi: [6]

16 Init model with num_q = 2

17 Initial configs: [1 1]

18 [1 1]

19 DMRG parameters:

20 CHI_LIST : {0: 14, 40: 28, 20: 20, 80: 40}

21 LANCZOS_PAR : {’N_max’: 20, ’e_tol’: 5.000000000000001e-15, ’tol_to_trunc’:

0.2, ’N_min’: 2}

22 MAX_ERROR_S : 1e-08

23 VERBOSE : True

24 MIN_STEPS : 120.0

25 MAX_ERROR_E : 1e-12

26 STARTING_ENV_FROM_PSI : 1

27 N_STEPS : 20

28 MAX_STEPS : 2000

In this part the log file outputs the parameters we use for this DMRG simulation, such as

hopping parameter t, bond dimensions χ and convergence parameters: MAX ERROR S =

1e − 08 and MAX ERROR E = 1e − 12 which means the simulation is converged only if

the differences between current and previous calculated energies and entanglement entropies

are smaller than these two numbers.

1 Finding ground state...

2 Using 0_new engine.

3 Initializing environment from scratch.

4 Updating environment .

5 Beginning optimization...

6 this sim has 72000 s before everything is shelved

7 Changing to chi max = 14

8 Peak memory used (mb) 41.828125 Time elapsed 0.3

9 ----> step = 20 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

10 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

11

12 Changing to chi max = 20

13 Peak memory used (mb) 41.828125 Time elapsed 0.6

14 ----> step = 40 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

15 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

16

17 Changing to chi max = 28

18 Peak memory used (mb) 41.828125 Time elapsed 0.8
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19 ----> step = 60 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

20 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

21

22 Peak memory used (mb) 41.828125 Time elapsed 1.1

23 ----> step = 80 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

24 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

25

26 Changing to chi max = 40

27 Peak memory used (mb) 42.0 Time elapsed 1.3

28 ----> step = 100 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

29 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

30

31 Peak memory used (mb) 42.0 Time elapsed 1.6

32 ----> step = 120 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

33 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

34

35 Peak memory used (mb) 42.0 Time elapsed 1.9

36 ----> step = 140 chi = [1, 1] Normerr = 0.0 ESys = 1.0000000000000000 Sbond =

0.0000000000

37 Etrunc = 0.0000e+00 Ptrunc = 0.0000e+00 D_ESys = 0.0000e+00 D_S = 0.0000e+00

38

39 Time per [ steps * L * (chi/64)^3 ]: 1737.9265625

40 Time per [ steps * L * (chi/16)^3 * d^3 * D]: 4.52595563616

41 Peak memory used (mb) 42.0

42 DMRG time: 1.85642194748s, memory: 42.0Mb

43 Presaving simulation to "MI/t1.0,1.0_U-3.0_nu1o1,1o1_chi40"...

44 xi = 0.0

45 Sbond = 0.0

46 Saving simulation to "MI/t1.0,1.0_U-3.0_nu1o1,1o1_chi40"...

This part shows the log outputs of DMRG at each step in unit of 20 steps. At each step it

outputs the energy and entanglement entropy. It also changes bound dimension at certain

steps. In the end when the code converges it outputs the time and memory used and saving

the result to a sim file.
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2.7 summary

In this chapter we have presented the DMRG algorithm as well as instructions on how we

run TenPy2 DMRG code. We used MPS representation and graphical notation to discuss

the DMRG algorithms. We showed that any quantum state can be written in the MPS

form and any operators can be written in MPO form. After this we discussed about how to

get the ground state using the MPS language and the procedure for obtaining the ground

state via sweeps. Next, we discussed how to analyze the properties of the ground state, i.e.,

the correlation length, ground state energy, entanglement entropy and correlation functions.

Finally we showed our sample code for DMRG calculation as well as a sample log file with

which we discussed the convergence criteria for our DMRG simulations.
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3.0 TOMANAGA-LUTTINGER LIQUID THEORY

In this chapter we provide a brief overview of Tomanaga-Luttinger liquid (TLL) theory. We

first discuss how Fermi liquid theory fails in one dimension. Then we introduce the concept

of TLL and the exact mapping between fermions and bosons in one dimension, as well as the

bosonization scheme. We also discuss the effects of interactions and spatial decay of various

correlators in the TLL. The discussions in this chapter follows Ref40.

3.1 Fermi liquid theory and the the peculiarity one

dimension

We first discuss the effects of interactions in higher dimensions. The excitations for a free elec-

tron gas is adding particles with well-defined momentum k and energy ε(k). These excitations

have infinite lifetime since they are eigenstates of the Hamiltonian. The probability of finding

a state with frequency ω and momentum k, i.e. the spectral function A(k, ω) = − 1
π
ImG(k, ω)

(G(k, ω) is the retarded Green’s function), for the free electron is A(k, ω) = δ(ω−ξ(k)), where

ξ(k) is the energy relative to the chemical potential ξ(k) = ε(k)− µ.

The remarkable result of Fermi liquid theory is that when interactions are turned on,

the properties of the system remain essentially similar, except that the elementary particles

(qusiparticles) have now been dressed by density fluctuations around them. The quasiparticle

excitations are not completely free and they have a lifetime τ , which leads to a Lorentzian

in the spectral function instead of the delta function as in the free electron case.

In one dimension, however, interactions have drastic effects. Unlike higher dimensions

where low-energy scattering at the Fermi surface can have arbitrary momentum transfer, in
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Figure 5: Particle-hole spectrum for higher dimensions (left) and for one dimension (right).

In one dimension, particle-hole excitations have both a well-defined momentum and energy

for small momentum q.

1D only forward and back scattering is possible. As a result, the particle-hole excitations

in one dimension have both a well-defined momentum and energy (for small momentum q),

as shown in Fig. 5. The theory to describe the 1D interacting electron gas is known as the

Tomanaga-Luttinger Liquid (TLL) theory.

3.2 Bosonization

The history of TLL theory goes back to the work of Tomanaga in 195041 where he suggested

that excitations in one-dimensional systems could be described by a “quantized field of

sound waves”. Luttinger developed this theory into a model that he incorrectly solved in

196342. Later, Mattis and Lieb fixed the mistake in 196543 and Haldane invented the term

“Tomanaga-Luttinger liquid” and discovered a nice physical interpretation of the meaning

of bosonization in one dimension, which we discuss in the following.

As we have seen in Fig. 5, the particle-hole excitations have a nearly linear spectrum, with

well-defined momentum and energy. To make the relation perfect consider the Tomanaga-

Luttinger model where the spectrum is purely linear. The Hamiltonian is as follows: where

r = R/L stands for right/left-moving fermions and εR = 1, εL = −1. The particle-hole

excitations for the right-moving partciles are given by: which are independent of k and are

well-defined with a well-defined momentum k and a well-defined energy E = vF q. The

density fluctuations are a superposition of particle-hole excitations: Note here the density
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H =
∑

k;r=R,L

vF (εrk − kF )c†r,kcr,k, (3.1)

ER,k(q) = vF (k + q)− vfk = vF q, (3.2)

ρ†(q) =
∑
k

c†k+qck. (3.3)

operator is of bosonic nature as it is made of a product of two fermion operators.

One can readily check the commutation relations of the density operators40: where r =

[
ρ†r(p), ρ

†
r′(−p

′)
]

= δr,r′δp,p′
rpL
2π

, (3.4)

+1 for r = R and r = −1 for r = L and L is the length. The above relation shows that

the density operators have similar commutation relations to boson operators. In addition,

if we choose |0〉 as the non-interacting ground state of Eq. (3.1), we have In this regard we

can identify the density operators as the destuction operators for bosons. One can readily

define the boson creation operators as: where Θ is the step function and bosons are defined

except for p = 0. One can check the commutation relation between bp and the Hamiltonian

H: [bp0 , H] = vFp0bp0 , which leads to: which shows that the kinetic energy is quadratic

in terms of boson operators. Note that the interaction term is typically a product of four
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ρ†L(p > 0)|0〉 = 0

ρ†R(p < 0)|0〉 = 0. (3.5)

b†p =

(
2π

L|p|

)1/2∑
r

Θ(rp)ρ†r(p), (3.6)

H '
∑
p 6=0

vF |p|b†pbp, (3.7)

fermion operators and thus also quadratic in the boson operators, which allows solving the

interacting problem in a remarkably simple way.

It is convenient to introduce two bosonic fields φ(x) and θ(x) defined by: where upper

φ(x), θ(x) = ∓(NR ±NL)
πx

L
∓ iπ

L
∑
p6=0

1

p
e−ipx(ρ†R(p)± ρ†L(p)), (3.8)

signs are for φ(x) and NR, NL are the numbers of fermions in the right-/left-moving sectors.

Using these fields the exact expressions for the Hamiltonian and the single-particle operator

are: where Ur commutes with the boson operators and U †r adds one fermion of species r.

Based on Eq. (3.6) one can rewrite the two bosonic fields φ(x) and θ(x) as: The fields

φ(x) and θ(x) satisfy simple commutation rules and Define the conjugate momentum Π(x) =
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H =
∑
p 6=0

vF |p|b†pbp +
πvF
L
∑
r

N2
r

ψr(x) = Ur lim
α→0

1√
2πα

eir(kF−π/L)xe−i[rφ(x)−θ(x)] (3.9)

φ(x) = −(NR +NL)
πx

L
− iπ

L

∑
p

(
L|p|
2π

)1/2
1

p
e−ipx(b†p + b−p)

θ(x) = (NR −NL)
πx

L
− iπ

L

∑
p

(
L|p|
2π

)1/2
1

p
e−ipx(b†p − b−p). (3.10)

[φ(x1),∇θ(x2)] = iπθ(x2 − x1) (3.11)

1
π
∇θ(x) we obtain:

[φ(x1),Π(x2)] = iδ(x2 − x1). (3.12)

The Hamiltonian can be rewritten in terms of the new fields: In the thermodynamic

H =
1

2π

∫
dxvF [(πΠ(x))2 + (∇φ(x))2] (3.13)
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limit L → ∞ the single operator becomes

ψr(x) =
Ur√
2πα

eirkF xe−i[rφ(x)−θ(x)] (3.14)

3.3 spectra equivalence of boson and fermion in 1D

Having discussed the bosonization scheme in the previous section, we now show the spectral

equivalence of bosons and fermions in one dimension.

Based on Eq. (3.9) a state in the bosonic basis is characterized by the total number of

fermions of each species Nr and the bosonic numbers of each momentum np. Define UR/L

such that we can readily write down the basis state as: where |0〉 is the vacuum.

U †R|NR, NL〉 = |NR + 1, NL〉

U †L|NR, NL〉 = |NR, NL + 1〉, (3.15)

|NR, NL, np〉 =
∏
p

(b†p)
np

(np!)1/2
(U †R)NR(U †L)NL|0〉, (3.16)

To check the completeness of the bosonic representation we calculate the partition func-

tion in both the fermionic and bosonic representations. In the fermionic representation the

energy is: using the quantization relation for k and putting Fermi levels in the mid point. A

single state above the Dirac sea contributes to the partition function as: where ω = e−βπvF /L.
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ξr,k = vF (rk − kF ) = vF (r
2πn

L
− 2πnF
L
− π

L
), (3.17)

Z1 = 1 + e−β|ξr,k| = 1 + ω|2(rn−nF )−1|, (3.18)

Note that there are two branches of excitations (right and left), thus the total partition

function is: where the exponent of ω is always positive and we have shifted the definition of

Z =

[
∞∏
n=1

(1 + ω2n−1)2

]2

, (3.19)

n.

In the bosonic representation, the contribution to the partition function from a single

boson of energy εn = vF2π|n|/L is:

Z1B =
∞∑
m=0

e−βmε =
1

1− ω2n
. (3.20)

The total boson partition function is: Note that there is another contribtion to the

partition function from the states |NR, NL〉 is: Thus the total partition function in the

bosonic representation is:

If we compare Eq. (3.19) and Eq. (3.23), we notice that they are quite different. However,

using the Jacobi Triple product Identity: we see that the bosonic partition function and the
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Zb =
∏
n 6=0

1

1− ω2n
=

[
∞∏
n=1

1

1− ω2n

]2

. (3.21)

ZN =

[
∞∑

m=−∞

ωm
2

]
, (3.22)

Zb =

[
∞∏
n=1

1

1− ω2n

∞∑
m=−∞

ωm
2

]2

. (3.23)

∞∑
m=−∞

qm
2

=
∞∏
n=1

(1 + q2m−1)2(1− q2m), (3.24)

fermionic partition are equivalent and thus the spectra are equivalent.

3.4 effects of interactions

Having shown that the mapping between fermion and boson is exact, we now discuss the

effects of interactions. One can argue that the interaction is of form40:

For spinless fermions we only need to consider the g4 (forward-scattering) and g2 (backscat-

tering) processes: the g4 process can be written as: and similar terms for the left movers

(R→ L and φ− θ → φ+ θ). The sum of these two terms gives:
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H =

∫
dxV (x− x′)ρ(x)ρ(x′). (3.25)

g4

2
ψ†R(x)ψR(x)ψ†R(x)ψR(x) =

g4

2
ρR(x)ρR(x)

=
g4

2

2

(2π)2
(∇φ−∇θ)2, (3.26)

g4

(2π)2

∫
dx[(∇φ)2 + (∇θ)2]. (3.27)

Recall Eq. (3.13), one sees that the g4 process only renormalizes the velocity, which

becomes:

u = vF (1 +
g4

2πvF
). (3.28)

Similarly, the backscattering process g2 can be written as: where we have considered the

g2ψ
†
R(x)ψR(x)ψ†L(x)ψL(x) = g2ρR(x)ρL(x)

=
g2

(2π)2
[(∇φ)2 − (∇θ)2], (3.29)
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q independent interaction processes (δ function in real space).

Combining the g4 and g2 process, we can rewrite the Hamiltonian as: where u has

H =
1

2π

∫
dx[uK(πΠ(x))2 +

u

K
(∇φ(x))2], (3.30)

dimension of velocity and K is dimensionless: For repulsive interactions (g2 > 0) we have

u = vF [(1 +
g4

2πvF
)2 − (

g2

2πvF
)2]1/2

K =

(
2πvF + g4 − g2

2πvF + g4 + g2

)1/2

. (3.31)

K < 1 and for attractive interactions (g2 < 0) we have K > 1.

Note here we have “solved” the spinless fermions with “weak” interactions in one-

dimension. The case of spin-1/2 fermions can be solved in essentially the same manner

using spin-charge separation. More details can be found in 40. In the next sections we will

discuss the correlation functions in TLL.

3.5 correlation functions in TLL

We start with the density-density correlation function. In the continuum model40 and the

ψ(x) = ψR(x) + ψL(x) (3.32)

density ρ(x) = ψ(x)†ψ(x) composes of four terms. Recall Eq.(3.14) and Eq.(3.8), we get
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ρ(x) = ρR(x) + ρL(x) + [ψ†R(x)ψL(x) + h.c.]

= − 1

π
∇φ(x) +

1

2πα
[ei2kF xe−i2φ(r) + h.c.] (3.33)

〈ρ(r)ρ(0)〉 =
1

π2
〈∇φ(r)∇φ(0)〉+

1

(2πα)2
[e−i2kF x〈ei(2φ(r)−2φ(0))〉+ h.c.] (3.34)

The density-density correlation is then where 〈. . . 〉 denotes the time-ordered average.

Evaluating the 2-point correlation functions40: For T = 0 we get: where r = (x, uτ) and

〈[φ(r)− φ(0)]2〉 = KF1(r)

〈[θ(r)− θ(0)]2〉 = K−1F1(r)

〈[φ(r)θ(0)]〉 =
1

2
F2(r) (3.35)

F1(r) =
1

2
log[

x2 + (u|τ |+ α)2

α2
]

F2(r) = −iArg(yα + ix) (3.36)

yα = uτ + αSign(τ).

For a quadratic Hamiltonian one has for any number of Aj and Bj: This allows us to
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〈ei
∑
j(Ajφ(rj)+Bjθ(rj))〉 = e−

1
2
〈(
∑
j Ajφ(rj)+Bjθ(rj))

2〉 (3.37)

calculate all correlation functions. Here we only present the results1.

The density-density correlation function is The non-oscillatory part (first term on the

〈ρ(r)ρ(0)〉 =
K

2π2

y2
α − x2

(x2 + y2
α)2

+
2

(2πα)2
cos[2kFx]

(α
r

)2K

(3.38)

right) is Fermi liquid like (free fermion correlation decays as 1/x2). The cos[2kFx] term

differs from Fermi liquids where its decay remains 1/r2.

One can also obtain the pair correlation: from the bosonic representation the same way

OSU(r) = ψ†(r)ψ†(r + 1) (3.39)

as the density-density correlation40 and we only show results here: We see that the pair

〈OSU(r)OSU(0)〉 =
1

(πα)2

(α
r

)1/(2K)

(3.40)

correlation also decays as power law. As mentioned before, for attractive interaction K > 1,

and the pairing correlation decays slower.

1More detailed calculations can be found in Ref.40
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One can also calculate the single-particle Green’s function in the same manner. For right-

movers: which is again a power law. The occupation factor n(k) is the Fourier transform of

GR(r) = −〈ψR(r)ψ†R(0)〉

= −e
ikF x

2πα
〈ei(φ(r)−θ(r))e−i(φ(0)−θ(0))〉

= −e
ikF x

2πα
e−[K+K−1

2
F1(r)+F2(r)] (3.41)

the equal time Green’s function and Here we see that instead of a discontinuity at kF (which

n(k) ∝ |k − kF |
K+K−1

2
−1 (3.42)

is the case for Fermi liquids), we observe a power law. This is the siganture that fermionic

quasiparticles do not exist in one dimension.

To summarize, we have discussed the behavior of single and two-partilce correlation

functions in Luttinger liquids. In the next two chapters we will see how we numerically

extract the Luttinger parameter K from the correlation functions and cross-validate the

decaying exponents.
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4.0 N−COMPONENT ONE DIMENSIONAL QUANTUM LIQUIDS

WITHOUT SU(N) SYMMETRY

Having discussed the basics of our numerical methods-DMRG and the nature of the fermionic

liquids (TLL) that we are interested in, we now move on to the first “key” focus in this

thesis–n-component one dimensional quantum liquids.

Recently our experimental collaborators (Jeremy Levy’s group at University of Pitts-

burgh) observed an interesting phenomena in their LAO/STO quantum wire devices: elec-

trons from different bands come together and form pairs, even trions (electron from three

bands come together and form bound states). In section 4.6 of this chapter we will present

details of the experiemental data.

The nature of interactions between electrons in different bands in the LAO/STO material

is unclear but we know that they are attractive44. To simulate the behavior of electrons for

this material, we use mutli-component Hubbard-like model and assume onsite attractive

interactions. We first analyze the two species case and later extend the discussions to three-

species case. We aslo investigate models without SU(N) symmetry and comment on the

stabilities of our results in each case.

In this chapter we first present the model Hamiltonian for our work, and discuss previous

studies of this type of model. Next we discuss recent experimental progress which serves as

a motivation for this work. Then we show some results at the low-filling fraction limit based

on our numerical studies, which provides guidance for more detailed numerical analysis later

in this chapter.

We separate our results into two categories: two-species and three-species case. In each

of these category, we first investigate the SU(N) symmetric case1. Then we discuss the case

1I will discuss the meaning of SU(N) symmetry in each section.
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in which the SU(N) symmetry being broken, which can be achieved by changing either the

hopping amplitudes, the interaction strengths, or chemical potentials/magnetic fields. We

plot out the phase diagrams for models with and without SU(N) symmetry, and discuss each

phase in detail. We also comment on nature of the phase transitions.

Finally, we present the connections of our results with the recent experimental results

of our collaborators in Prof. Jeremy Levy’s group at University of Pittsburgh. We compare

the experimental results to our numerical simulations, and find qualitative agreement. Then

we analyze the transport properties of the n-component fermion liquids based on previous

studies45;46 and show that the conductance is quantized regardless of the nature of the liquids.

4.1 model Hamiltonian and SU(N) symmetry

The general form of the model we are considering for the n-component one-dimensional

quantum liquids is the multiple-component Hubbard-like model: where ci,σ is the destruction

H = −
∑
i,σ

tσ

(
c†i,σci+1,σ + h.c.

)
−
∑
iσ

(µσ − 2tσ)c†i,σci,σ +
∑
i,α>β

Uαβni,αni,β, (4.1)

operator for a with species (spin) σ on site i. The first term describes the kinectic term, i.e.

the hopping of the fermions and tσ is the hopping matrix element for fermion with species

σ. The second term describes the on-site energy of the fermions depending on the chemical

potential µσ
2. We shifted µσ by half the bandwidth 2tσ to align the bottom of the bands at

zero energy. The last term is the on-site interaction term which describes the interactions

between fermions of different species. α, β denotes species indices of two distinct fermion

species.

The Hamiltonian shown above describes a general model for one-dimensional fermions

with onsite interactions. In practice, the interactions between electrons in different bands

2Here we assume that the chemical potential is uniform (doesn’t depend on lattice site) for each species.
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are much more complex than point interactions, and this model can serve as a qualitative

model for analyzing the experimental results in one-dimensional electron systems3.

Here we comment on the SU(N) symmetry of the model Hamiltonian. If we ignore

the chemical potential term4, then the parameters are hopping amplitudes t1, t2, . . . and

interaction strength Uα,β. If all the hopping parameters are the same (t1 = t2 = . . . ) and

the two-body interactions are of the same strength for any two pairs (Uα,β = Uγ,δ), then

the Hamiltonian is invariant under the following transformations: where U are the unitary


ci,1

ci,2
...

 = U


ci,1

ci,2
...

 (4.2)

matrixes, which are generators of the Lie Algebra of the corresponding SU(N) group. As

an example, for the 2 species case, U are the Pauli matrices and for three species U are the

Gell-Mann matrices.

Having discussed the meaning of SU(N) symmetry, we can readily see that there are

various ways to break the SU(N) symmetry. The first way is to make the hopping ampli-

tudes different for different species, i.e. mass imbalance5. The second way is to introduce

inhomogeneous interaction strength. We can also break the SU(N) symmetry by changing

the chemical potential terms for different species.

In this chapter we focus on the 2-species and 3-species case, where in each case we

present numerical results for the SU(N) symmetric case, and discuss the breaking of SU(N)

symmetry in various ways and corresponding results.

3We will discuss in more detail about the validity of this model in section 4.7 in this chapter
4which is true in our numerical simulations as we run DMRG on fixed filling fractions.
5As the band mass is determined by the hopping amplitude via m = 1/(2t)
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4.2 results in the low filling fraction limit

In this section we consider a finite lattice with just 2 or 3 electrons, we then calculate the full

spectrum of such systems, from which we extract the ground state energy for the paired and

trion state. Based on this we calculate the band mass for both pair and trion as a function

of the interaction strength.

The Mathematica code for calculations in this section can be found in the appendix at

the end of this chapter.

The basic idea is to consider a finite lattice of length L and the basis wavevectors are

2π
L
× {0, 1, . . . , L− 1}. The functions above builds up the diagonal and offdiagonal elements

for the Hamiltonian for both 2 species case and 3 species case. The script for calculating the

pairing gap (2 species) is:

1 NN = 600;

2 E0 = Sort[Transpose[Eigensystem[pairgetH0[NN]]]][[1, 1]];

3 getDelta [NN_, U_] := Module[{es},

4 es = Sort[Transpose[Eigensystem[pairgetHH[NN, U]]]];

5 2*E0 - es[[1, 1]]

6 ];

7 DeltaTable =

8 Table[{ii, getDelta[NN, ii]}, {ii,

9 0., -0.5, -0.05}]; // AbsoluteTiming

where NN is the lattice size, E0 is the energy for 1 particle, es stands for the full spectrum

for two particles with interaction strength U and es[[1, 1]] is the energy of the ground state.

2E0 − es[[1, 1]] then represents the pairing gap (the energy difference between paired state

and unpaired state).

The last line of code calculates a table of the pairing energy as a function of the interaction

strength U , the resulting pairing gap are shown in Fig. 6, where the gap scales quadratic

with interaction strength.

We can also calculate the band mass of pairs by calculating the energies for pairs with

finite wavevectors and fit to E(k) = E0 + k2/(2m) to get the effective band mass. The code

is as follows:

1 kplist = Table[(ii - 1)*2*2. \[Pi]/NN, {ii, 1, 10}];
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Figure 6: Pairing gap (left) and pair band mass (right) as a function of the interaction

strength U . Dots are calculated data points and line is the fitted quadratic function.

2 NN = 600;

3 allTable = Table[

4 U = U0;

5 bmlist = Table[

6 triE = Sort[Transpose[Eigensystem[pairgetHH2[NN, U, kp]]]][[1, 1]];

7 {kp, triE}, {kp, kplist}];

8 b0 = bmlist[[1, 2]];

9 pbfit = FindFit[bmlist, a*x^2 + b0, {a}, x];

10 {U0, 1/(2 a) /. pbfit}

11 , {U0, 0, -2, -0.1}

12 ]

where we calculate the ground state energy for a list of interaction strengths (from −2 to

0) and a list of momentum (from 0 to 2× 2π/NN × 9). For a fixed interaction strength we

can calculate the band mass through the qudratic fitting mentioned above. Fig. 6 plots the

band mass as a function of interaction strength U , showing a quadratic relation.

We can aslo calculate the pairing gap analytically. For the case of the Hubbard model,

the most efficient way to find the binding energy is to look for zeros of the T-matrix. The

equation for the zeros (at zero center of mass momentum) is where εk = 2t(1 − cos(k)) is

U−1 +

∫ π

−π

dk

2π

1

2εk −∆
= 0, (4.3)
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Figure 7: Comparison of Pair and Trion binding energies as a function of interac-

tion strength. For the case of trions, we consider three cases: {U1,2, U2,3, U1,3} =

{U,U, U}, {U, 0, U}, {U,−U,U} as labeled. The trion binding energies were computed on

a 55-site Hubbard model lattice with periodic boundary conditions.

the kinetic energy of a fermion with momentum k. Solving this equation, we find For weak

∆ = 4t−
√

16t2 + U2 (4.4)

attractive interactions ∆ ≈ −U2/8t, which is consistent with our numerical calculation.

For the case with three species there are no analytical solutions. We repeat the same

numerical calculation process as with the 2 species case. The results of different interaction

combinations are shown in Fig. 7 in comparison with the pair gap. From the plots we

compare the trion and pair binding energy for several values of interaction parameters (as

we do not know these ab initio). We observe that in all cases, for weak interactions the

binding energy scales with U2/t. For the case of weak symmetric attractive interactions

({U12, U23, U13} = {U,U, U}) the trion binding energy is approximately four times stronger

than the pair binding energy. Interestingly, we find that even if two components of the trion

repel each other ({U12, U23, U13} = {U,−U,U}), the trion still has a lower binding energy

than the pair, indicating that there is a stable trion phase. We also calculate the band

mass for trions by quadratic fitting as in the pair case, the calculated band mass for trion is

mtrion = 3m(1 + 0.14U2/t2) for {U,U, U} type interactions.
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Figure 8: Schematic picture of the labeling of the particles on site i. Particles inside the

same circle are located in the same lattice site.

4.3 Jordan-Wigner transformation and numerical setup

Throughout this chapter we use the TenPy2 package and dual ising model and tri ising

model6 for the 2 species and 3 species calculations, respectively. To connect from our Hamil-

tonian to the models used in the TenPy2 package, we need to perform Jordan-Wigner trans-

formation (the package has a spin model where we have a lattice model). In this section we

present the general Jordan-Wigner transformation for n-species fermions.

Suppose we have n species of particles. As shown in Fig. 8, we can label the sites on the

chain by (i, j) such that the order of each site is n ∗ (i− 1) + j. Here i stands for the lattice

site labeling while j stands for the species labeling and 1 ≤ j ≤ n.

We can do the following transformation:

c†i,j = ((
i−1∏
i′=1

n∏
j′=1

σzi′,j′)

j−1∏
k=1

σzi,k)σ
+
i,j

ci,j = ((
i−1∏
i′=1

n∏
j′=1

σzi′,j′)

j−1∏
k=1

σzi,k)σ
−
i,j

One can readily verify the anti-commutation relations of fermions, keeping in mind that

Pauli matrix on different sites commute, while on the same site:

Having verified the commutation relations, we can start to apply the Jordan-Wigner

6which Prof. David Pekker and I wrote as a general extension of the dual ising model
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[σ+, σz]+ = 0

[σ−, σz]+ = 0

[σ+, σ−]+ = I2

transform to the desired terms in the Hamiltonian:

c†i,jci+1,j = −σ+
i,j

(
n∏

j′=j+1

σzi,j′

j−1∏
k=1

σzi+1,k

)
σ−i+1,j

c†i+1,jci,j = −σ−i,j

(
n∏

j′=j+1

σzi,j′

j−1∏
k=1

σzi+1,k

)
σ+
i+1,j

c†i,jci,j = σ+
i,jσ
−
i,j =

I2 + σzi,j
2

We can also write out the correlation functions:

〈c†i+r,jci,j〉 = −σ−i,j

 (i+r,j−1)∏
(i′,j′)=(i,j+1)

σzi′,j′

σ+
i+r,j

〈c†i+r,kci+r,kc
†
i,jci,j〉 =

I2 + σzi,j
2

 (i+r,k−1)∏
(i′,j′)=(i,j+1)

I2

 I2 + σzi+r,k
2

〈c†i+r,jc
†
i+r,kci,kci,j〉 = σ−i,j

(
k−1∏

j′=j+1

σzi,j′

)
σ−i,k

 (i+r,j−1)∏
(i′,k′)=(i,k+1)

I2

σ+
i+r,j

(
k−1∏
l′=j+1

σzi+r,l′

)
σ+
i+r,k

Here we have presented the general Jordan-Wigner transformation for n-species fermions.

Later in the 2-species and 3-species section, we will show in details how to connect from the
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lattice model parameters to the parameters used in the TenPy2 package.

4.4 2 species

4.4.1 numerical setup and expected phases

In this section we investigate on the 2 species case with Eq. (4.1), which we reproduces here:

where the first line is the kinectic hopping term plus chemical potential term for fermion of

H =−
∑
i

t1

(
c†i,1ci+1,1 + h.c.

)
−
∑
iσ

(µ1 − 2t1)ni,1

−
∑
i

t2

(
c†i,2ci+1,2 + h.c.

)
−
∑
iσ

(µ2 − 2t2)ni,2

+
∑
i

U1,2ni,1ni,2, (4.5)

species 1, the second line represents the corresponding such terms for fermion of species 2.

The last term denotes the onsite interaction term.

4.4.1.1 Numerical setup Recall the Jordan-Wigner transformation in the previous

section, consider a chain with two species A/B (n = 2), We can model the system using four

sites ABAB. Then the Hamiltonian is

Note that σ+σ− + σ−σ+ = 1
2
(σxσx + σyσy), in the code we use the following line to

represent the hopping term:

1 hop_list = [ (’pXZ’,’pXI’,-t1/2), (’pYZ’,’pYI’,-t1/2), (’pIX’,’pZX’,-t2/2),

(’pIY’,’pZY’,-t2/2) ]

where pXZ stands for tensor product of σX and σZ matrices.

For the onsite interaction term, we use the following parameters:

1 Mpar = {
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H =t1 ∗ (σ+ ⊗ σz ⊗ σ− ⊗ I2 + σ− ⊗ σz ⊗ σ+ ⊗ I2)

+ t2 ∗ (I2 ⊗ σ+ ⊗ σz ⊗ σ− + I2 ⊗ σ− ⊗ σz ⊗ σ+)

+ (2t1 − µ) ∗ (
I2 + σz

2
⊗ I2 ⊗ I2 ⊗ I2 + I2 ⊗ I2 ⊗

I2 + σz

2
⊗ I2)

+ (2t2 − µ) ∗ (I2 ⊗
I2 + σz

2
⊗ I2 ⊗ I2 + I2 ⊗ I2 ⊗ I2 ⊗

I2 + σz

2
)

+ U ∗ (
I2 + σz

2
⊗ I2 + σz

2
⊗ I2 ⊗ I2 + I2 ⊗ I2 ⊗

I2 + σz

2
⊗ I2 + σz

2
) (4.6)

2 ’L’: 1,

3 ’verbose’: 1,

4 ’gzz’: U,

5 ’hSz’: -2 * t1 - U/2,

6 ’hTz’: -2 * t2 - U/2,

7 ’constant offset’: t1 + t2 + U/4,

8 ’extra_hoppings’: [hop_list],

9 }

where g zz stands for the term σz⊗σz⊗I2⊗I2 and I2 is the two-dimensional identity matrix.

Note here there is no definition of µ in our code. The reason is that we run the simulations

at certain filling fractions n1, n2 with paricle number conservation. The procedure is as

follows:

• Set parameters t1, t2 and U1,2.

• Run the simulations at fixed filling fractions (n1, n2 constant) and obtain the ground

state energy E(n1, n2).

• Set parameters g1, g2 and for given chemical potential µ and magnetic field B, first

calculate E(µ,B) = E(n1, n2)− (µ+ g1B)n1 − (µ+ g2B)n2 for every filling fractions of

n1, n2. Then choose the minimum energy and corresponding n1, n2.

• Given µ and B obtain the phase diagram determined by corresponding n1, n2 pairs.

In the previous procedure we only need to calculate E(n1, n2) once for every pair of

n1, n2. In our simulations we use filling fraction unit of 1/29 and n1,2 ranges from 0 to 1 in
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steps of 1/29.

4.4.1.2 Expected phases Before presenting the phase diagram, we first talk about

the expected phases in our simulations and how to identify them.

• Vacuum phase.

In this phase both species are empty: n1 = n2 = 0, this is a trivial phase.

• Fully fillied phase.

In this phase both species are completely filled: n1 = n2 = 1.

• 1 Fermi Sea (1FS) phase.

In this phase one of the species is either empty or completely filled while the other speces

is partially filled. n1 = 0 or n1 = 1.

• Paired phase.

In this phase the filling fractions for two species are the same and due to the attractive

interactions they form pairs: n1 = n2.

• FFLO phase/ 2 Fermi seas (2FS) phase.

In this phase n1 6= n2.

4.4.2 attractive interaction case

In this subsection we present the phase diagram for t1 = t2 = 1. The interaction strength

is U1,2 = −3, g1 = 1, g2 = −1. The filling fraction is in unit of 1/29. The phase diagram is

shown in Fig. 9.

From the phase diagram we see that at low chemical potential and small magnetic field

we get vacuum phase. As we increase the chemical potential, the total filling fraction will

increase and ultimately reach to the Fully Filled phase at small magnetic field. As we increase

the absolute value of magnetic field, the difference of filling fractions of species 1 and 2 also

increases. As a result, we get FFLO/2FS phase next to the Paired phase, 1FS phase next to

vacuum phase. Vacuum 2 here represents another kind of vacuum where one of the species
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Figure 9: Phase diagram for 2 species fermion with attractive interaction U1,2 = −3. Vacuum

2 stands for n1 = 0, n2 = 1 or n1 = 1, n2 = 0. Here g1 = 1, g2 = −1.

is empty and the other is completely filled. Note here the SU(2) symmetric results can be

obtained by taking a vertical cut along the B = 0 axis.

Having presented the phase diagram for t1 = t2, we now present the phase diagram for

t1 6= t2. This is called mass imbalance because hopping amplitude is related to the band

mass of the fermions: mband = 1
2t

.

In Fig. 10 we show the phase diagram at t2 = 2.1t2. Compared to the mass-balanced

case in Fig. 9 we see that we obtain all the phases, but the phase diagram is skewed because

of the mass imbalance. Here the parameters are t1 = 1, t2 = 2.1, U1,2 = −3, g1 = 1, g2 = −1.

4.4.3 repulsive interaction case

Having presented the phase diagram for the attractive interaction case, we now discuss what

happens if the interaction is repulsive (U1,2 > 0).

It turns out that there exists an exact mapping from the attractive interaction to the

repulsive interaction. The mapping is as follows:

The basic idea is to transform one of the fermion species into holes such that the hole is
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Figure 10: Phase diagram for 2 species fermion with attractive interaction U1,2 = −3 and

mass imbalance t2 = 2.1t1. We get all the phases as shown in Fig. 9 but are skewed because

of the mass imbalance.

Figure 11: Phase diagram for 2 species fermion with repulsive interaction U1,2 = 3 and

hopping parameters t1 = t2 = 1. Compared to Fig. 9 the phase diagram is rotated by 90

degree and the Mott phase is when n1 = n2 = 1, which corresponds to the pair phase after

the transformation in Eq. (4.7).
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c†i,1 → (−1)ici,1; ci,2 → ci,2

µ→ 2t2 −B − U1,2/2

B → 2t2 − µ+ U/2

E → E + t1 + t2 − µ−B (4.7)

now attractive to the other fermion. The phase diagram for the repulsive case with U1,2 = 2t

is shown in Fig. ??. Compared to the phase diagram with attractive interaction Fig. 9, we

see that the phase diagram for repulsive case is rotated by 90 degree and shifted, which is

consistent with the transformation in Eq. (4.7). The Mott phase represents n1 + n2 = 1,

which corresponds to the pair phase n1 = n2 after the transformation (the transformation

makes n1 → 1− n1).

4.4.3.1 correlators in FFLO phase and paired phase Having presented the phase

diagrams for the 2 species model, we now discuss the FFLO (2FS) phase in detail. In this

phase the filling fraction for two species are different and the interaction is attractive to

promote pairing. We first measure the central charge and obtain 2, which means there are

two gapless mode in such phase. Because of the unmatched Fermi sea, unlike the paired

phase where there exists a gap for adding one particle, there is no such gap in the FFLO

phase. The single correlators and pairing correlators are plotted in Fig. 12, where we obtain

algebraicaly decay for both correlators.

So far the results are consistent with 2 independent Fermi Seas, where the single correlator

decay algebraically and pair correlator also decay algebraically because it is simply the

product of two single correlators. Because of the attractive interaction, the decay exponent

for the pair correlator is smaller than the sum of the decay exponents of two single correlators.

In this regard, one might view this FFLO phase as 2 Fermi Sea (2FS) phase.

In the paired phase the filling fractions for both species are the same n1 = n2. Due to
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Figure 12: Single correlator (left) and pair correlator (right) in the FFLO phase. Data is

taken at t1 = t2 = 1, n1 = 6/13, n2 = 5/13, U = −3. Black vertical line represents the

correlation length.
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Figure 13: Single correlator (left) and pair correlator (right) in the paired phase. Data is

taken at t1 = t2 = 1, n1 = n2 = 6/13, U = −3. Black vertical line represents correlation

length.

the attractive interaction, the two types of fermions are attracted to each other and form

pairs. In this phase the central charge is 1, which means there is only one gapless mode in

such phase. In Fig. 13 we plot out the single and pair correlators in such phase. We observe

exponential decay for the single correlator and algebraically decay for the pair correlator,

which means two-particle excitation is gapless while adding a single type of particle requires

a finite amount of energy.
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Figure 14: (left) Magnetization as a function of B field. The zig-zag structure is an artifact

of the finite filling fraction. (right) Energy of various mz sectors as a function of B field.

The ground state energy is plotted in red.

4.4.4 pair to FFLO transition

After identifying the various phases, we now investigate the phase transition from fully paired

phase to FFLO phase. Fig. 14 shows the magnetization as a function of magnetic filed B.

We see that the magnetization changes linearly along the transition from FP and FFLO

phase. Fig.4b shows energy v.s. B plot for various mz sectors. From these two plots we

conclude that the transition is a cross-over.

4.4.5 strong repulsion and mass imbalance

In this subsection we investigate the case with strong mass imbalance. Specifically we focus

on the filling ratio of n1 = n2 = 5/12 and interaction strength U ranges from −1 to 4 in

steps of 0.25. The mass imbalance is defined as j = t1/t2, ranges from 0.01 to 0.2 in steps

of 0.01. We perform iDMRG on bond dimensions of 40, 80, 160, 300 and extrapolate the

central charge, shown in Fig. 15.

From Fig. 15 we observe that for negative U we get central charge 1. Based on the

correlation functions measurement we observe exponential decay for single correlator and

power law decay for pair correlator. This indicates that these two species have been paired

up and this is the pair phase.

At large postive U > 2 and small j < 0.1 (large mass-imbalance) we observe a region

with arbitrary central charge. Further investigation in this region shows that the DMRG
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Figure 15: Phase (central charge) diagram of a mass-imbalanced mixtures with n1 = n2 =

5/12. j = t1/t2 measures the mass imbalance and U is the interaction between the two

species. The top-left corner are regions where the code fails to converge, leading to arbitrary

central charge numbers.

fails to converge in this region and the correlation length we get from the DMRG is unusually

small. This indicates a region of phase separation.

At small positive U and small j < 0.1 we see a region of central 1. From the correlation

mesurement we observe exponential decay for both the single correlators as well as the pair

correlator. We speculate that this phase is spin density wave (SDW), but still needs further

investigation to confirm this.

At large j and positive U we observe a region with central charge 2. The correlation

measurement shows that all the correlators decay algebraically, indicating there is no gap in

either the spin sector or the charge sector. This is the 2TLL phase where the two species

with repulsive interactions act independently.

Compared with Ref.47, the Pair phase, SDW phase, 2TLL and Phase Separation are

observed. However, we fail to observe the crystal phases mentioned in Ref.47.

4.5 3 species

In this section we investigate on the 3 species case of Eq. (4.1), which we reproduces here:

where the first three lines are the kinetic terms plus chemical potential terms for these
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H =−
∑
i

t1

(
c†i,1ci+1,1 + h.c.

)
−
∑
iσ

(µ1 − 2t1)ni,1

−
∑
i

t2

(
c†i,2ci+1,2 + h.c.

)
−
∑
iσ

(µ2 − 2t2)ni,2

−
∑
i

t3

(
c†i,3ci+1,3 + h.c.

)
−
∑
iσ

(µ3 − 2t3)ni,3

+
∑
i

(U1,2ni,1ni,2 + U1,3ni,1ni,3 + U2,3ni,2ni,3) , (4.8)

three species of fermions. The last line denotes the onsite 2-body interaction terms among

these three species.

4.5.0.1 Numerical setup We use DMRG algorithm and the TenPy2 package from

Professor Roger Mong for the numerical calculations. Similar to the 2-species case, the

sample code using the TenPy2 package is as follows:

1 onsite_list = [ (’pIII’,t1 + t2 + t3 + U12/4 + U13/4 + U23/4),

2 (’pZII’, -t1 - U12/4 - U13/4),

3 (’pIZI’, -t2 - U12/4 - U23/4),

4 (’pIIZ’, -t3 - U13/4 - U23/4),

5 (’pZZI’, U12/4),

6 (’pZIZ’, U13/4),

7 (’pIZZ’, U23/4)]

8 hop_list = [ (’pXZZ’,’pXII’,-t1/2), (’pYZZ’,’pYII’,-t1/2),

(’pIXZ’,’pZXI’,-t2/2), (’pIYZ’,’pZYI’,-t2/2), (’pIIX’,’pZZX’,-t3/2),

(’pIIY’,’pZZY’,-t3/2)]

9 Mpar = {

10 ’L’: 1,

11 ’verbose’: 1,

12 ’extra_onsite’: [onsite_list],

13 ’extra_hoppings’: [hop_list]

14 }

The numerical running procedure is also similar to the 2-species case:

• Set parameters t1, t2, t3 and U1,2, U1,3, U2,3.
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• Run the simulations at fixed filling fractions (n1, n2, n3 constant) and obtain the ground

state energy E(n1, n2, n3).

• Set parameters g1, g2, g3 and for given chemical potential µ and magnetic field B, first

calculate E(µ,B) = E(n1, n2, n3)−(µ+g1B)n1−(µ+g2B)n2−(µ+g3B)n3 for every filling

fractions of n1, n2, n3. Then choose the minimum energy and corresponding n1, n2, n3.

• Given µ and B obtain the phase diagram determined by corresponding n1, n2, n3 pairs.

In the previous procedure we only need to calculate E(n1, n2, n3) once for every pair of

n1, n2, n3. In our simulations we use filling fraction unit of 1/17 and n1,2,3 ranges from 0 to

1 in steps of 1/17.

4.5.0.2 Expected phases Before presenting the phase diagram, we first talk about

the expected phases in our simulations and how to identify them.

• Vacuum phase.

In this phase all three species are empty: n1 = n2 = n3 = 0, this is a trivial phase.

• Fully fillied phase.

In this phase all species are completely filled: n1 = n2 = n3 = 1.

• 1 Fermi Sea (1FS) phase.

In this phase two of the species are either empty or completely filled while the third

species is partially filled. e.g. n1 = n2 = 0 or n1 = 0, n2 = 1.

• Paired phase.

In this phase the filling fractions for two of the three species are the same while the third

species is either empty or fully filled. e.g. n1 = n2, n3 = 0/1.

• FFLO phase/ 2 Fermi seas (2FS) phase.

In this phase one of the species is either empty or fully filled while the other two species

are partially filled with different filling fractions. e.g. n1 6= n2, n3 = 0/1.

• trion phase.

In this phase the filling fractions for all three species are the same. e.g. n1 = n2 = n3.

• 1FS+1Pair (1Fermi Sea plus 1 pair) phase.
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Figure 16: Phase diagram for 3 species fermion: t1,2,3 = 1, U1,2 = U1,3 = U2,3 = −2. Data is

calculated using fill fraction step of 1/17. g1 = 0.5, g2 = 0, g3 = −0.5.

In this phase all three species are partially filled and two of them have the same filling

fraction. i.e. n1 = n2, n1 6= n3.

• 3FS (3 Fermi Sea)

In this phase all three species are partially filled with different filling fractions. i.e.

n1 6= n2, n1 6= n3, n2 6= n3.

4.5.1 isotropic interaction case

We first present the phase diagram for the isotropic interaction Hamiltonian and the pa-

rameters are t1 = t2 = t3 = 1, U1,2 = U1,3 = U2,3 = −2. The phase diagram is shown in

Fig. 16.

In the phase diagram again at low chemical potential and small magnetic field we obtain

the vacuum phase. At larger magnetic field, we get 1FS phase neighboring the vacuum phase.

As we increase the chemical potential, we start to get more filling fractions for all species.

At small magnetic field, we get trion phase and fully filled phase. At larger magnetic field,

we observe 1FS+1Pair phase neighboring the trion phase and 3FS phase. The wiggled lines

are artifacts of the finite filling fractions of our numerical simulations.
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Figure 17: Phase diagram of three species case as filling and U2,3 varies with U1,2 = U1,3 = −2

and t1 = t2 = t3 = 1. Red points stand for trion phase, blue points stand for 3-LL phase

and green points are in between (undetermined).

4.5.2 trion with anisotropic interactions

In the 3 species case there are two ways to break the SU(3) symmetry other than the chemical

potential/magnetic field. The first is to introduce mass imbalance. As mentioned in the two-

species case, the effects of mass-imbalance is quite complex so we omit it here. The other

way to break SU(3) symmetry is to introduce unisotropic interactions.

In order to reduce the parameter space, we keep U1,2 = U1,3 = −2t while varying U2,3.

We also focus on three filling fractions for these three species n1 = n2 = n3 = (1, 4, 8)/17.

In this study we want to observe the robustness of trion versus a repulsive U2,3. The bond

dimension in this study goes up to 600 and both central charge calculation and correlation

functions are investigated to determine the phase of the ground state.

As shown in Fig. 17, we use different color to represent different phases. The red dots

represent trion phase, blue dots represent 3TLL phase and green dots represent undetermined

phase. At low filling (n = 1/17), we see that trion phase persists up to repulsive interaction

U2,3 = 10. As we increase the filling fractions, the repulsive interaction needed to break

trions decreases. For filling fraction of n = 4/17, trion survives up to U2,3 = 1 while trion

only survives up to U2,3 = 0.5 for filling fraction of n = 8/17.

From the discussion above see that trions are stable against repulsive U2,3 at small filling

fractions and tend to be less stable at higher filling fractions. However, even near half-filling,

trions can be achieved with one of the interactions being negative. This shows that trion

67



Figure 18: (A) Depiction of the sketched waveguide. Green lines indicate conductive paths

at the LaAlO3/SrTiO3 interface. Device dimensions are indicated: barrier width LB, barrier

separation LS, total length of the channel between the voltage sensing leads LC , and nanowire

width as measured at room temperature typically w ≈ 10 nm. (B) Conductance G through

Device A at T = 50mK and B = 6.5T . A series of quantized conductance steps appears at

(1, 3, 6, 10, )e2/h.

can be obtained in a wide range of interactions and are quite stable.

4.6 connections with LAO/STO experiments

In this section we present the connections between this work and the LAO/STO experiments

performed by our collaborators. We first show the experimental setup and their key results.

Then we show how we simulate the experimental system using our model Hamiltonian and

compare the results to the experiental data. We also analyze the stability of trion phase by

calculating the band mass of the trion. Finally, we discuss the transport properties.

4.6.1 experimental setup and results

The experiments was done on a thin film of LaAlO3
44 where an electron waveguide (Fig. 18) is

created using ”sketched” approach. The conductance of the waveguide depends principally

on the chemical potential µ and magnetic field B. The chemical potential is controlled

by a local side gate votage Vsg and the magnetic field is external magnetic field which is

perpendicular to the film.
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For typical quantum point contacts we expect the conductance to be a linear sequence:

2×(1, 2, 3 . . . )e2/h, where the factor 2 relects the spin degeneracy. In the presence of magnetic

field, the elctron states are Zeeman split and resolve into sequences of (1, 2, 3 . . . )e2/h. In

the experiment the conductance was measured as a function of Vsg (chemical potential) and

magnetic field B. As shown in Fig. 18, however, for certain values of magnetic field, the

conductance steps follow the sequence (1, 3, 6, 10 . . . )e2/h, or Gn = n(n+ 1)/2e2/h.

In order to better understand the origin of this sequence, it is helpful to examine the

transconductance dG/dµ and plot it as an intensity map as a function of B and µ. Transcon-

ductance maps for one of device is shown in Fig. 19. A peak in the transconductance de-

marcates the chemical potential at which a new sub-band emerges; these chemical potentials

occur at the minima of each subband, and as such we refer to them as subband bottoms

(SBB). The peaks generally shift upward as the magnitude of the magnetic field is increased,

sometimes bunching up and then again spreading apart. Near a special value of the magnetic

field, the peaks merge to produce the Pascal series of conductance plateaus as a function of

chemical potential.

4.6.2 numerical models and results

4.6.2.1 single-particle model To model the waveguide we start with a single-particle

picture where electrons are confined by the waveguide in the vertical and lateral directions

and an external magnetic field affects the electron via Zeeman and orbital effects. The

waveguide Hamiltonian can be written as: where m∗x,m
∗
y,m

∗
z are the effective masses along

H =
(px − eBzy)2

2m∗x
+

p2
y

2m∗y
+

p2
z

2m∗z
+
m∗yω

2
y

2
y2 +

m∗zω
2
z

2
z2 − gµBBzs, (4.9)

the x, y, z directions, ωy, ωz are the frequencies associated with parabolic confinements in

the lateral (y) direction and half-parabolic confinement in the vertical (z > 0) direction,

rspectively. Eigenenergies corresponding to the SSBs (subband bottoms) are given by: where
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Figure 19: Transconductance data for one device. White lines are fits of the peak locations

for the n = 2 and n = 3 Pascal states and correspond to contribution of additional subbands

in the transconductance data.
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Enz ,ny ,s = ~Ω(ny + 1/2) + ~ωz ((2nz + 1) + 1/2)− gµBBzs, (4.10)

nz, ny, s are the orbital quantum numbers and spin quantum number. Ω =
√
ω2
y + ω2

c ,

ωc = eBz/
√
m∗xm

∗
y is the magnetic field-dependent frequency.

To obtain the equispaced energies observed in the quantized conductance steps we need

the ”Pascal condition”: Ω = 4ωz = 2gµBBz/~, which requires fine tuning of the magnetic

field as well as the geometry of the waveguide. However, the Pascal series has been observed

in multiple devices and single-particle picture cannot explain the locking begavior observed

in the experiments. Therefore we need to include the electron-electron interactions.

4.6.2.2 Effective 1D lattice model with interactions Our analysis here is not

intended to be ab-initio. In constructing our model, we make a number of simplifying

assumptions about the nature of the attractive electron-electron interaction, and therefore

our numerical results should be seen as qualitative and not quantitative. Direct comparison

to experimental data would require putting some complexity back into the modellike long-

ranged interactionsas well as fitting of the model parameters. Rather, we aim to get the

correct set of phases and the rough shape of the phase boundaries to justify our interpretation

of the experimental data.

Our analysis begins with a derivation of a multi-band 1D continuous model starting from

our 3D continuous Hamiltonian. We then introduce interactions and specify simplifying

assumptions to ultimately arrive at an effective 1D lattice model. Importantly, the lattice

spacing, and hence U and t, in this model do not correspond to the actual microscopic values

associated with LaAlO3/SrTiO3 but are rather effective parameters.

We start with Eq. (4.9), in which we define the 3D continuous model of the electron

waveguide without an interaction term.

Next, we solve this model to find the one-electron eigenstates (i.e. the waveguide modes):
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where index α = {ny, nz, s} combines the quantum numbers. We can then rewrite Hamil-

Φα,kx(x, y, z) = eikxxΦα,kx(y, z), (4.11)

tonian as a one-dimensional, multi-band model: where m′x = m∗xΩ
2/ω2

y is the effective mass

H =
∑
α,kx

(
Eα +

~2k2
x

2m′x

)
c†α,kxcα,kx , (4.12)

and the energy Eα follows Eq. (4.10).

Next, we introduce the electron-electron interactions. As we do not know the microscopic

origin, we begin with the most general form of the interactions:

Hint =
∑

α,β,γ,δ,k1,k2,k3,k4

Ũα,β,γ,δ(k1, k2, k3, k4)c†α,k1
c†β,k2

cγ,k3cδ,k4 . (4.13)

At this point, we make some simplifying assumptions. First, we assume the system is

translationally invariant and hence Ũα,β,γ,δ(k1, k2, k3, k4) ∝ δ(k1 + k2 − k3 − k4). Second

we ignore sub-band mixing Ũα,β,γ,δ(k1, k2, k3, k4) ∝ δα,δδβ,γ. Finally, while Ũ is generally a

function of momentum, we assume that for the range of momenta that we are interested in

Ũ is momentum independent. Under these assumptions, Hint greatly simplifies:

To perform numerical simulations we need to map the model onto an effective lattice

model. Introducing an effective lattice length-scale a (or equivalently momentum cutoff

2π/a) we obtain the lattice Hamiltonian: where the first term denotes the chemical potential

term, the second term denotes the hopping and the last term denotes the effective onsite

interactions. Compared to the general Hamiltonian in Eq. (4.1), we see that these two
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Hint =
∑

α,β,k1,k2,k3

Ũα,βc
†
α,k1

c†β,k2
cβ,k3cα,k1+k2−k3 . (4.14)

H =
∑
α,j

(−µ+ Eα − 2tα)c†α,jcα,j −
∑
α,j

(tαc
†
α,jcα,j+1 + h.c.) +

∑
α,β,j

Uα,βc
†
α,jc

†
β,jcβ,jcα,j, (4.15)

Hamiltonian are effectively the same.

4.6.2.3 numerical results The DMRG phase diagram in the vicinity of the n = 2

Pascal liquid is shown in Fig. 20A. Distinct phases are illustrated by regions of solid color

and identified with text in each representative region. In addition to a vacuum phase (V;

no electrons) and a one-Fermi-sea phase (F; one mode is occupied), we also find a two-

Fermi sea phase (2F; both modes occupied) and an electron-pair phase (P) in which single

electron excitations are gapped out and both modes have equal electron density. Boundaries

between phases are of two types: phase boundaries in which the number of fermion modes is

unchanged (indicated by dashed lines) and phase boundaries in which the number of fermion

modes changes (indicated by solid white lines). The solid white line boundaries correspond

to peaks in the transconductance, which are also highlighted in the experimental data in

Fig. 20A. Experimentally, DC measurements cannot distinguish between phases that have

the same conductance (e.g., P and 2F). We expect the pairing strength to scale as U2/t,

where U is the attractive interaction strength and t = 2/ma2 is the bandwidth (where m

is the band mass and a is the lattice spacing). This energy scale determines the range of

magnetic field over which electrons are locked together.

Extending this calculation to three electron modes with attractive interactions maps

out the n = 3 Pascal liquid and associated phases (Fig. 20B). The n = 3 Pascal liquid
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Figure 20: DMRG phase diagrams calculated for two (A) and three (B) fermions with

attractive interactions in one dimension. Abbreviations for various phases: mF: m distinct

fermi surfaces, P: paired phase, T: trion phase, V: vacuum, A+B: phase composed of A and

B. The black numbers on the plots indicate the strength of the locking for the pair (A) and

trion (B) phases. Similar to what is observed in fits of the experimental data, the trion phase

is locked over a larger range of magnetic field values.

is comprised of trions, bound states of three electrons (T) that form a one-dimensional

degenerate quantum liquid. In this phase, all one- and two-electron excitations are gapped

out, but three-electron excitations are gapless. Adjacent to the trion phase are two related 3-

electron phases: one in which a single electron breaks free, leaving behind a pair (F+P), and

another in which all three fermions are independent (3F). The three phases are distinguished

by the number of gapless modes but all contribute three conductance quanta to the DC

conductivity. Other phases exist at lower chemical potentials (P, 2F, F, V), rounding out

the entire phase diagram. We explore the stability of the phase diagram as we deviate from

the Pascal Condition and find that the trion phase is remarkably stable, as compared to the

competing phases (see next section).

4.6.3 transport properties analysis

In this section we analyze the transport properties of TLL when connected to normal leads.

This section follows from Ref.45 that use Green’s function to calculate the conductivity for
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Luttinger liquid7.

We use a simple model such that K for the Luttinger liquid changes stepwise from leads

value KL (x > |L/2|) to KW in the wire. The electric field is assumed to be 0 outside the

wire but can take any value in the wire.

The charge current can be written as: where σω(x, x′) is the non-local ac conductivity. In

I(x, t) =

∫ L/2

−L/2
dx′
∫

ω

2π
σω(x, x′)Eω(x′) (4.16)

the Matsubara representation, σω(x, x′) can be expressed via the current-current correlation

function by the usual Kubo formula

σω(x, x′) =
ie2

~ω

∫ β

0

dτ < T ∗τ j(x, τ)j(x′, 0) > e−iω̄τ |ω̄=−iω+ε (4.17)

In the Bosonized form, the current is given by j = −i∂τφ/
√
π and we get where Gω̄ is

σω(x, x′) =
e2

~
iω̄2

πω
G0
ω̄(x, x′)|ω̄=−iω+ε (4.18)

Gω̄(x, x′) =

∫ β

0

dτ < T ∗τ φ(x, τ)φ(x′, 0) > e−iω̄τ (4.19)

the propagator of the boson field. The general form of action for spin/charge part is

Expand the cos 2
√

2φ term as 1−4φ2, we can readily get the equation for the propagator

(assume v(x) = v):

For convenience purpose, we define: and similarly for ΩW =
√
ω̄2 + 8|g|vKW .

7Ref.46 also gives the same result
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S =
1

2π

∫
dx

∫ β

0

dτ [
1

K(x)
(

1

v(x)
(∂τφ(x, τ))2 + v(x)(∂xφ(x, τ))2) + g cos 2

√
2φ] (4.20)

(−∂x(
v

K(x)
∂x) +

ω̄2

vK(x)
+ 8|g|)Gω̄(x, x′) = δ(x, x′) (4.21)

ΩL =
√
ω̄2 + 8|g|vKL

=


√

8|g|vKL − ω2 for ω <
√

8|g|vKL

−i
√
ω2 − 8|g|vKL otherwise

(4.22)

Note ω̄ = −iω+ ε and Gω̄(∞, x′) = 0. The Green’s function thus has the following form:

Gω̄(x, x′) =



Ae
ΩL
v
x for x ≤ −L/2

Be
ΩW
v
x + Ce−

ΩW
v
x for − L/2 < x ≤ x′

Ce
ΩW
v
x +De−

ΩW
v
x for x′ < x ≤ L/2

Fe−
ΩL
v
x for x > L/2

(4.23)

For the boundary conditions:

1. Gω̄(x, x′) is continuous everywhere.

76



2. − v
K(x)

Gω̄(x,x′) is continuous everywhere and has a jump at x = x′.

We can match the boundary conditions at x = −L/2, x = x′ and x = L/2: where

A′ =
1

c1

B + c1C

c2A
′ =

1

c1

B − c1C

c3B +
1

c3

C = c3D +
1

c3

E

c3B −
1

c3

C = c3D −
1

c3

E +
KW

ΩW

c1D +
1

c1

E = F ′

−c1D −
1

c1

E = c2F
′ (4.24)

c1 = e
ΩWL

2v , c2 = KWΩL
KLΩW

, c3 = e
ΩW
v
x′ and A′ = Ae−

ΩLL

2v , F ′ = Fe−
ΩLL

2v .

We can solve the equations and notice that F ′ = Gω̄(L/2, x′) and A′ = Gω̄(−L/2, x′),

respectively. After solving these equations, we get

F ′ = 2
KW

2ΩW

cosh[ΩW
v

(L
2

+ x′)] + KW
KL

ΩL
ΩW

sinh[ΩW
v

(L
2

+ x′)]

2KW
KL

ΩL
ΩW

cosh[ΩW
v
L] + (1 + (KW

KL

ΩL
ΩW

)2) sinh[ΩW
v
L]

(4.25)

Use equation (3) and integrate x′ from −L/2 to L/2 and get

1

L

∫ L/2

−L/2
dx′σω(x, x′)|x=L/2 =

e2

h

2v(−iω)

Ω2
WL

sinh[ΩW
v
L] + KW

KL

ΩL
ΩW

(cosh[ΩW
v
L]− 1)

2KW
KL

ΩL
ΩW

cosh[ΩW
v
L] + (1 + (KW

KL

ΩL
ΩW

)2) sinh[ΩW
v
L]

(4.26)
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Figure 21: a.c. conductivity for two sets of parameters. For both plots KW = KL = 1,

L = 10.

In Fig.21 we present the results for two sets of parameters gW = gL = 0 and gW =

0.1, gL = 0. If we take the ω → 0 limit from previous equation, we observe that the d.c.

conductivity depends entirely on the lead, which is always quantized. This is exactly what

have been observed in the LAO/STO experiments by our collaborators in Jeremy Levy’s

group. To investigate the properties of the TLL in the wire, one needs to perform a.c.

measurement, where we can gain more information based on the frequency dependence of

the conductivity.

4.7 Mathematica code for section 4.2

1 pairgetElem[klist1_, klist2_, U_, NN_] := Module[{k1, k2},

2 If[klist1 == klist2,

3 k1 = klist1;

4 -4. Cos[k1] + U/NN,

5 k1 = klist1;

6 k2 = klist2;

7 U/NN

8 ]];

9 pairgetk1k2[nn_, NN_] := 2 \[Pi]/NN*nn;

10 pairgetHH[NN_, U_] := Module[{klist1, klist2},

11 Table[

12 klist1 = pairgetk1k2[ii, NN];

13 klist2 = pairgetk1k2[jj, NN];

14 pairgetElem[klist1, klist2, U, NN]

15 , {ii, 1, NN}, {jj, 1, NN}]];

16 pairgetElem2[klist1_, klist2_, kp_, U_, NN_] := Module[{k1, k2},

17 If[klist1 == klist2,

18 k1 = klist1;
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19 -2. Cos[k1] - 2. Cos[kp - k1] + U/NN,

20 k1 = klist1;

21 k2 = klist2;

22 U/NN

23 ]];

24 pairgetHH2[NN_, U_, kp_] := Module[{klist1, klist2},

25 Table[

26 klist1 = pairgetk1k2[ii, NN];

27 klist2 = pairgetk1k2[jj, NN];

28 pairgetElem2[klist1, klist2, kp, U, NN]

29 , {ii, 1, NN}, {jj, 1, NN}]];

30

31 pairgetE0[klist_, klist2_, NN_] := Module[{k1},

32 If[klist == klist2,

33 k1 = klist;

34 -2.*Cos[k1],

35 0]

36 ];

37 pairgetH0[NN_] := Module[{klist1, klist2},

38 Table[

39 klist1 = pairgetk1k2[ii, NN];

40 klist2 = pairgetk1k2[jj, NN];

41 pairgetE0[klist1, klist2, NN]

42 , {ii, 1, NN}, {jj, 1, NN}]];

43

44 trigetElem[klist1_, klist2_, U_, NN_] := Module[{k1, k2, k3, k4},

45 If[klist1 == klist2,

46 {k1, k2} = klist1;

47 -2. Cos[k1] - 2 Cos[k2] - 2 Cos[k1 + k2] + 3 U/NN,

48 {k1, k2} = klist1;

49 {k3, k4} = klist2;

50 If[Mod[(k1 + k2 - k3 - k4)/(2. \[Pi]), 1] ==

51 0 || (k1 == k3) || (k2 == k4),

52 U/NN, 0]

53 ]];

54 trigetk1k2[nn_, NN_] := Module[{n1, n2},

55 {n1, n2} =

56 If[Mod[nn, NN] == 0, {Quotient[nn, NN],

57 NN}, {Quotient[nn, NN] + 1, Mod[nn, NN]}];

58 2 \[Pi]/NN*{n1, n2}

59 ];

60 trigetHH[NN_, U_] := Module[{klist1, klist2},

61 Table[

62 klist1 = trigetk1k2[ii, NN];

63 klist2 = trigetk1k2[jj, NN];

64 trigetElem[klist1, klist2, U, NN]

65 , {ii, 1, NN^2}, {jj, 1, NN^2}]];
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66 newgetk1k2[nn_, NN_] := 2 \[Pi]/NN*nn;

67 trigetE0[klist_, klist2_, NN_] := Module[{k1},

68 If[klist == klist2,

69 k1 = klist;

70 -2.*Cos[k1],

71 0]

72 ];

73 trigetH0[NN_] := Module[{klist1, klist2},

74 Table[

75 klist1 = newgetk1k2[ii, NN];

76 klist2 = newgetk1k2[jj, NN];

77 trigetE0[klist1, klist2, NN]

78 , {ii, 1, NN}, {jj, 1, NN}]];

79 trigetElem2[klist1_, klist2_, kp_, U_, NN_] := Module[{k1, k2, k3, k4},

80 If[klist1 == klist2,

81 {k1, k2} = klist1;

82 -2. Cos[k1] - 2 Cos[k2] - 2 Cos[kp - k1 - k2] + 3 U/NN,

83 {k1, k2} = klist1;

84 {k3, k4} = klist2;

85 If[Mod[(k1 + k2 - k3 - k4)/(2. \[Pi]), 1] ==

86 0 || (k1 == k3) || (k2 == k4),

87 U/NN, 0]

88 ]];

89 trigetk1k2[nn_, NN_] := Module[{n1, n2},

90 {n1, n2} =

91 If[Mod[nn, NN] == 0, {Quotient[nn, NN],

92 NN}, {Quotient[nn, NN] + 1, Mod[nn, NN]}];

93 2 \[Pi]/NN*{n1, n2}

94 ];

95 trigetHH2[NN_, U_, kp_] := Module[{klist1, klist2},

96 Table[

97 klist1 = trigetk1k2[ii, NN];

98 klist2 = trigetk1k2[jj, NN];

99 trigetElem2[klist1, klist2, kp, U, NN]

100 , {ii, 1, NN^2}, {jj, 1, NN^2}]];
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5.0 EMERGENT MODE AND BOUND STATES IN ONE-COMPONENT

ONE-DIMENSIONAL LATTICE FERMIONIC SYSTEMS

5.1 Introduction

In the previous chapter we talked about bound state formed from fermions of different bands.

In this chapter we discuss an even simpler model which consists of a single fermionic channel.

The original goal for studying this model was to see if bound states of multiple fermions can

form in the single-component lattice fermion system.

To do this we consider a Hamiltonian with finite range interactions (as discussed in the

model Hamiltonina section), at shorter range the interaction is attractive to promote the

formation of bound states, at larger distances the interaction is repulsive to avoid phase

separation1. In section 5.3 (Numerical details) we present the numerical details of our cal-

culation: the parameter range we choose, the method we use (DMRG) and the quantities

we measure.

Next in section 5.4, we present the main numerical results, specifically the phase diagram

and Fourier spectra through two cuts of our phase diagram. We analyze each of the phases

in the phase diagram. One of the phases has an emergent mode and its explanation goes

beyond the standard TLL. We discuss in detail on the central charge and correlators in each

phase later in section 5.6.

Based on the numerical findings we come up with a 2-mode theory which explains the

results we get. In section 5.5 We describe in details the construction of the theory as well

as the predictions of theory which agree with our numerical data. In section 5.6 we present

the central charge calculation as well as the correlators in each phase.

1Phase separation means that all the particles come together and form a cluster.
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Figure 22: Schematic picture of the model Hamiltonian. V1, V2 < 0 and V3 > 0 to promote

the formation of bound states of multiple fermions (pairs and trions).

In section 5.7 we discuss the phases transitions in the phase diagram. We construct a

collapse method for measuring the central charge right at the transition point for single to

pair transition. We also speculate on the nature of other transitions and provide DMRG

data at the interface of single and trion phase. Finally in section 5.8 we present numerical

data for quaternion phase (bound states of four fermions) as an extension to our results.

5.2 Bound states of multiple fermions

5.2.1 model Hamiltonian

In this chapter we consider the one-component one-dimensional lattice model with finite

range interactions. The Hamiltonian is of the following form: where ci and c†i are the fermion

H =
∑
i

[
−1

2

(
c†ici+1 + c†i+1ci

)
+

3∑
m=1

Vmnini+m

]
, (5.1)

annihilation and creation operators at lattice site i, ni = c†ici is the number operator, and

Vm defines the shape of the fermion-fermion interaction potential. Notice here we omit the

definition of the hopping parameter t which is common in most lattice models2.

Fig. 22 shows a schematic picture of the parameter setup. We choose short-ranged

attractive interactions (V1 < 0 and V2 < 0) to promote the formation of pairs and trions,

2We can view this as t = 1 and our paramters are in units of t
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but with V3 > 0 to prevent phase-separation48. In order to decrease the parameter space

we restrict our attention to the subspace V1 = V2
3. We expect that extending the range

of attractive interactions will result in liquid phases of multi-fermion bound states. As an

example We provide the numerical evidence for quaternion phase where we introduce another

V4 into the model.

In our numerical simulations we focus on the low filling ratios (primarily 1/5 filling),

where the expected phases are single phase (TLL of a single fermion), pair phase (TLL of

pair fermions) and trion phase (TLL of bound states of three fermions).

5.3 Numerical details

5.3.1 how we run DMRG

Throughout this chapter we use Prof. Roger Mong’s implementation49;50 the standard two-

sites iDMRG34;51;52 to study the ground state properties of the Hamiltonian (5.1) with focus

on the 1/5 filling with a unit cell of 30 fermion sites (lower filling fraction would require

larger unit cell for our computation and introduce more computational cost). The number

of particles in conserved in the DMRG calculation and package np conserved is used.

As discussed in the DMRG chapter, the accuracy is controlled by the bond dimension

χ, where the result becomes exact as χ → ∞. In our calculations we use various bond

dimensions χ for the purpose of checking convergence and doing finite χ scaling. The central

charge diagram Fig. 23 is computed using χ = {40, 80, 160, 300}. The Fourier spectra Fig. 24

is plotted using the χ = 300 data. The parameter range we use for V1 = V2 are −1 to −0.65

and the range for V3 is 1 to 1.7.

Another important quantities we calculate in the DMRG is the correlation length ξ,

which is used to compute the central charge c and also determine whether correlators are

algebraically or exponentially decaying. χ also depends on bond dimension and we denote its

dependence as ξ(χ). In the DMRG calculation we can seperate quantities into various charge

sectors and for each charge sector q, we can compute ξq(χ)–the length scale for correlators of

3We have also run data points at V1 = 2V2 and reproduce the same phases as discussed in this chapter.
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form 〈A†(0)B(r)〉 where A,B are charge-q operators. As χ increases, ξq(χ) goes to infinity

as long as that charge-q sector is gapless. If instead, the charge-q sector is gapped, then

ξq(χ) saturates to its physical value ξq(∞).

As discussed in the following sections, we find for Tomanaga Luttinger liquids of qmin-

bound states, the charge q-sectors are gapless only if q is a multiple of qmin. In practice

if ξq=jqmin
(χ), j = 0, 1, 2... reach some values significantly larger than other charge sectors

whose ξq(χ) tend to saturate, we claim the formation of liquid of qmin-bound states. The

neutral sector (q = 0) is always gapless in our calculation and the corresponding ξ0(χ) is

used to extract c39, which we we discuss in details in the following subsection.

One last aspect regarding our DMRG calculation is that translational invariance is not

preserved exactly by iDMRG at finite χ. Instead, the magnitude of violation decays alge-

braically with increasing χ. When we compute correlators, we average over sites r1 in one

unit cell: G(r) = 1
unit cell size

∑
r1
G(r1, r1 +r). We also do this when calculating entanglement

entropy. The averaging improves the quality of the data.

5.3.2 entanglement entropy and central charge

To analyze the properties of the ground states that we obtain through DMRG, we calculate

physical quantities such as bi-partite entanglement entropy S, central charge c and various

correlators.

The entanglement entropy serves as a measure of quantum-mechanical nature of corre-

lations39. The entanglement entropy of a pure state of a bipartite system AB is defined as:

where ρA/B are the reduced density matrix of subsystem A(B).

S = −TrρA log ρA = −TrρB log ρB, (5.2)

In our numerical calculations we study the bipartite entanglement entropy S, i.e., the

von Neumann entropy of DMRG ground state traced over either half the system. Both S
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and the correlation length ξ are infinite for the true ground state, but are cut off by finite

χ. The manner in which these two variables diverge gives the central charge39;53 4:

S =
c

6
log(ξ) + const (5.3)

Numerically the calculation of correlation length is given by ξ = −1/(log(λ1)), where

λ1 is largest eigenvalue of the normalized density matrix of the system and
∑

i λ
2
i = 1. In

practice, we perform numerical calculations on various bond dimensions and linear fit the

relation between entanglement entropy S and the log of correlation length ξ to extrapolate

the central charge. We will show the fitting of central in each phase later in the chapter.

One important fact about central charge is that it is related to the degree of freedom of

the system. The system we are working on are Tomanaga-Luttinger liquids and the expected

phases are 1 mode phases (single, pair, trion) with central charge 1 and 2-mode phase (2M)

with central charge 2. Therefore the central charge serves as a measure of the number of

distinct gapless mode in our numerical calculation.

In our numerical calculations we use bond dimensions of 40, 80, 160, 300 and linear fit the

relation between entanglement entropy S and correlation length ξ to extract central charge

c. In the following discussions we will show the overall central charge plot and centra charge

fit in each phases.

5.3.3 correlators

The other important quantities that we calculate through DMRG are the correlators. More

specifically we compute the single, pair and trion two-point correlators: The qualitative

behavior of correlators tell whether the corresponding mode are gapped or gapless. In the

single phase all correlators decay algebraically; in the pair phase only G2 decays algebraically

4This formula was derived in the context of a CFT, where there is a single velocity. For two-component
phases, we still use this formula as an operational definition of the central charge despite the likely possibility
of mismatched Fermi velocities.
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G1(r) =
〈
c†i ci+r

〉
, (5.4a)

G2(r) =
〈
(cici+1)† ci+rci+r+1

〉
, (5.4b)

G3(r) =
〈
(cici+1ci+2)† ci+rci+r+1ci+r+2

〉
. (5.4c)

while G1 and G3 decay exponentially; in the trion phase G3 is algebraic while G1 and G2 are

exponential. This behavior implies that there is a gap to adding a single fermion into the

pair/trion phase however there is no gap to adding two/three fermions.

In our numerical calculations we calculate the correlators up to five times of the correla-

tion length. The decay character are obtained through a log-log plot of the correlators as a

function of distance r and algebraically decay manifest as a linear feature in such plots. We

show the plots of correlators in different phases in the discussion of corresponding phases.

5.3.4 sample code

In this subsection we present the sample code for this chapter. We present the sample code

in several parts where we explain the usage of each parts.

1 def model_longsc(t, V1, V2, V3):

2 t, V1, V2, V3 = float(t), float(V1), float(V2), float(V3)

3 Jcouplingz = np.hstack([[0], [V1], [V2], [V3]])

4 Jcouplingpm = np.hstack([[0], [- t]])

5 #print Jcouplingz

6 #print Jcouplingpm

7 #plt.plot(J)

8 #plt.yscale(’log’)

9 #plt.show()

10 Mpar = {

11 ’verbose’: 2,

12 ’L’: 1,

13 ’S’: 0.5,

14 ’Jz’: Jcouplingz,

15 ’Jpm’: Jcouplingpm,

16 ’Veps’: 1e-6,
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17 ’ignore_herm_conj’:False,

18 ’parstring’: ’t{}_V{},{},{}’.format(t, V1, V2, V3),

19 }

20 return Mpar

21

22

23 default_sim_par = {

24 ’VERBOSE’: True,

25 ’STARTING_ENV_FROM_PSI’: 1,

26 ’N_STEPS’: 20,

27 ’MAX_ERROR_E’: 1e-10,

28 ’MAX_ERROR_S’: 1e-8,

29 ’MIN_STEPS’: 40,

30 ’MAX_STEPS’: 5000,

31 ’LANCZOS_PAR’ : {’N_min’: 2, ’N_max’: 20, ’e_tol’: 5*10**(-15),

’tol_to_trunc’: 1/5.},

32 # ’mixer’: (1e-3, 1.5, 5, ’id’),

33 }

This is the part where we define the model Hamiltonian. We use long range spin chain model

in the TenPy2 package. The parameters are t, V1, V2, V3.

1 def run_dmrg(sim, dmrg_par, model_par=None, chi=None, min_steps=None,

save_sim=False):

2 if sim is None:

3 print ’Initializing "{}"...’.format(model_par[’parstring’])

4 M = mod.spin_chain_model(model_par)

5 psi = iMPS.product_imps(M.d, [M.up, M.up, M.up, M.up, M.up, M.up,

M.up, M.up, M.up, M.up, M.up, M.up, M.dn, M.dn, M.dn, M.dn,

M.dn, M.dn, M.up, M.up, M.up, M.up, M.up, M.up, M.up, M.up,

M.up, M.up, M.up, M.up], dtype=np.float, conserve = M,

bc=’periodic’)

6 sim = simulation.simulation(psi, M)

7 sim.model_par = model_par

8

9 else:

10 if model_par is not None:

11 print ’Updating simulation

"{}"...’.format(model_par[’parstring’])

12 sim.update_model(model_par)

13 else:

14 print ’Running simulation

"{}"...’.format(model_par[’parstring’])

15 try:

16 del sim.canon_psi

17 except:

18 pass
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19

20 sim_par = deepcopy(dmrg_par)

21 if chi is not None: sim_par[’CHI_LIST’] = {0:chi}

22 if min_steps is not None: sim_par.update[’MIN_STEPS’] = min_steps

23 sim.dmrg_par = sim_par

24 print ’DMRG parameters:\n’ + ’\n’.join([ " {} : {}".format(k,v) for k,v

in sim.dmrg_par.items() ])

25 sim.ground_state()

26

27 try:

28 sim.append

29 except AttributeError:

30 sim.append = {}

31 if ’xi’ in sim.append: del sim.append[’xi’]

32

33 sim.append[’GS Energy’] = sim.sim_stats[-1][’Es’][-1]

34 sim.canon_psi = sim.psi.copy()

35 sim.canon_psi.canonical_form()

36 if save_sim:

37 filename = outroot + model_par[’parstring’] +

’_chi{}’.format(max(sim_par[’CHI_LIST’].values()))

38 uncanon_psi = sim.psi

39 sim.psi = sim.canon_psi

40 print ’Presaving simulation to "{}"...’.format(filename)

41 sim.save(filename)

42 sim.append[’xi’] = sim.canon_psi.correlation_length()

43 print "xi = {}".format(sim.append[’xi’])

44

45 sim.append[’Sbond’] = np.average(sim.canon_psi.entanglement_entropy())

46 print "Sbond = {}".format(sim.append[’Sbond’])

47

48 if save_sim:

49 print ’Saving simulation to "{}"...’.format(filename)

50 sim.save(filename)

51 sim.psi = uncanon_psi

52 print

53 return sim

This is the part where we run DMRG. We set the initial state in a unit cell of 30 and use

periodic boundary condition. In the end, we save the energy, entanglement entropy and

correlation length of the ground state.

1 if 1:

2 t = 1.0

3 V1 = float(sys.argv[1])

4 V2 = float(sys.argv[2])
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5 V3 = float(sys.argv[3])

6 for V1 in [V1]:

7 for V2 in [V2]:

8 for V3 in [V3]:

9 for ii in range(8):

10 model_par = model_longsc(t, V1, V2, V3)

11 sim = load_sim(model_par, [40, 80, 120, 160,

200, 240, 300, 400, 500, 550, 600,

840][ii])

12 if sim is None:

13 sim_par = deepcopy(default_sim_par)

14 CHI_LIST = dict([(0,14), (60,20),

(120,28), (200,40), (260,80),

(320,120), (380,160), (460, 200),

(560, 240), (700, 300), (600,

400), (700,500), (900, 550),

(1000, 600), (1200, 840)][:ii+4])

15 logfile = outroot2 +

model_par[’parstring’] +

’_chi{}.out’.format([40, 80, 120,

160, 200, 240, 300, 400, 500, 550,

600, 840][ii])

16 pipe_output(logfile)

17 sim_par.update({’CHI_LIST’:CHI_LIST,

’MIN_STEPS’:1.2*max(CHI_LIST.keys())})

18 sim = run_dmrg(None, sim_par,

model_par=model_par, save_sim=True)

19 else:

20 continue

21 ##########################################################################################

22 if 1:

23 t = 1.0

24 datalist = []

25 for V1 in [-0.901,-0.9016,-0.902,-0.903,-0.904]:

26 for V2 in [V1]:

27 for V3 in [1.4]:

28 model_par = model_longsc(t, V1, V2, V3)

29 for chi in [40, 80, 120, 160, 200, 240, 300, 400,

600, 840][6:7]:

30 sim = load_sim(model_par,chi)

31 if sim is None: continue

32 if hasattr(sim, ’canon_psi’):

33 psi = sim.canon_psi

34 else:

35 psi = sim.psi

36 M = sim.M

37 xi = sim.append[’xi’]
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38 dist = int(5 * xi)

39 site_n1 = 0.5 -

psi.site_expectation_value(M.Sz)

40 corr_c1d_c1 =

psi.string_correlation_function([M.Sm[0]],

[M.Sp[0]], dist + 20, OpStr=2*M.Sz[0])

41 corr_pairing =

psi.string_correlation_function([M.Sm[0],

M.Sm[0]], [M.Sp[0], M.Sp[0]], dist + 20,

OpStr=None)

42 corr_nn =

psi.string_correlation_function([M.Sm[0],

M.Sp[0]], [M.Sm[0], M.Sp[0]], dist + 20,

OpStr=None)

43 corr_tring =

psi.string_correlation_function([M.Sm[0],

M.Sm[0], M.Sm[0]], [M.Sp[0], M.Sp[0],

M.Sp[0]], dist + 20, OpStr=2*M.Sz[0])

44 datalist.append([t,V1,V2,V3,site_n1,

sim.append[’xi’],sim.append[’Sbond’],sim.append[’GS

Energy’], corr_c1d_c1, corr_pairing,

corr_nn, corr_tring])

45 file = open("lsctestTri6in30v314line.txt", "w")

46 file.write(to_mathematica_lists(datalist))

47 file.close()

In the first part we run the DMRG for a set of parameters t, V1, V2, V3 on different bond

dimensions. In the second part we load the saved calculations. In the loading procedure, we

also measure various correlation functions: single correlator (corr c1d c1), pairing correlator

(corr pairing), density-density correlator (corr nn) and trion correlator (corr tring). In the

end we save all the measured data into a text file for further analysis.

5.4 Numerical results

5.4.1 phase diagram

Using the central charge data and the correlators we can readily generate the phase diagram.

Specifically we first calculate the central charge and identify the number of modes in each

region. Then we analyze the decay behavior of correlators to distinguish between one-mode
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phases (single, pair and trion).

Figure 23 shows c as a function of the interaction parameters V1 = V2 and V3. The blue

regions denote the single-mode phases with c = 1, we identify these as single, pair, and trion

phases based on their two-point correlators [Eq. (5.4)]. While we observe a direct transition

between the pair and single phases1;48, we do not find a direct transition between the pair

and trion phases; instead we find an intermediate phase with c ≈ 2 which we call the 2M

(2-mode) phase (we will discuss in detail about this 2M phase later in this chapter). The

2M phase neighbors all other phases and indicates a parent theory with an emergent mode,

which enables a unified description of the multi-fermion bound-state phases and their phases

transitions, wchich I will discuss in the next section.

The phase transition regions in Fig. 23 have central charge larger than 2. In such regions

our previous formula Eq.(5.3) doesn’t work and exact calculation of central charge require

data collapse which we will discuss in the phase transition section later in this chapter.

5.4.2 Fourier spectra

Having obtained the phase diagram we want to gain more information about each individual

phase. We achive this by analyzing the properties of various correlators in Eq.(5.4). The

long-distance behavior of the correlation functions of gapless operators can be written as a

sum of algebraically decaying terms of the form

cos(kosc|r|+ ϕ)

|r|η
. (5.5)

Note here the correlators have power law decay as a function of r and we need to perform

Fourier transform with derivatives to compensate the pow law decay: the “nth” derivative

of Fourier transform on the correlation functions G1,2,3(r): where the value of rtrunc is set to

be several times of the correlation length ξ0(χ).

Any harmonic component (Eq. (5.5)) of correlators with algebraic decay exponent η <
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Figure 23: Central charge as a function of interactions in the lattice model (5.1) computed

at filling fraction 1/5. We have identified single, pair and trion phase based on the central

charge and correlators. Besides these three phases there is a region with c ≈ 2 which we call

2M phase. The two dashed lines represent the linecuts for our Fourier spectra analysis.
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Figure 24: Spectra G1, G2 and G3 (from top to bottom) as a function of wavevector and

interaction strength (V1 = V2), showing agreement of peak locations between DMRG and

theory. The data is taken at cuts shown in Fig. 23. Plots (a–c) taken at V3 = 1.56 show

the trion, 2M, and pair phases; plots (d–f) taken at V3 = 1.3 show the trion and single

phases (with a possible 2M phase in between). Darker (Blue) colors represent larger values

of amplitudes. The peak in the data of G1, which continuously varying between 0 and kF/3

in the 2M/single phase is identified as k′. The lines added to the color plot are theoretic pre-

dictions with the determined parameter k′. The solid lines denote several long distance kosc

associated with algebraic-decay; the dotted lines denote several exponential-decay “peaks”,

which are possibly visible if the decay-length-scale is large. The peak smaller than the kF

in the single phase in panel (d) is not expected in the single phase and can be viewed as a

precursor of the trion phase.
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G̃n
1,2,3(q) =

1√
2rtrunc

rtrunc∑
r=−rtrunc

eiqr|r|nG1,2,3(r), (5.6)

n + 1 will in principle show a divergent peak at the corresponding kosc. In our numerics to

make the subleading kosc visible, we choose n = 2, 2.5, 2.8 for G1, G2 and G3.

The Fourier spectra is shown in Fig.24. In panels (d-f) we see the linecut goes through

single and trion phase: in the single phase all correlators decay algebraically and we see the

strongest peaks for G1 and G3 is kF , for G2 is 0, there are second order peaks which are

reminiscent of possible 2M phase in between (I will discuss about this in the later section

of this chapter); in the trion phase only G3 decays algebraically and we observe no features

on panel (d-e). In panel (f) we see distinct peaks at kF/3, kF , 5kF/3. The peak at kF/3 is

expected based on the conservation of particle number. Other peaks are odd multiples of

kF/3 which matches the results of a Tomanaga Luttinger liquid theory of bound states of

trions(I will discuss in details in the 2-mode theory section).

Panels (a-c) shows the linecut at V3 = 1.56 which goes through trion, 2M and pair phase.

The trion phase shows the same behavior as in panel (f). In the pair phase only G2 has power

law decay and show visible peaks on Fouerier spectra. The peaks are at 0 and kF , which

is in agreement with a TLL of pairs. In the 2M phase we observe something interesting:

From panel (a) we see two distinct peaks: one fixed at kF and one moving from kF/3 to

0, connecting the trion and pair phase. The appearance of an additional moving peak is

beyond standard single-mode TLL theory and the interpretation requires a new theory.

5.5 2-mode theory

Motivated by Ref.1;48 and our numerical data, we introduce a theory with two modes. In

this theory, the charge-1 operators in the lowest harmonic are: where η = +1/−1 de-

notes a right/left mover; θµ is dual field of the compact bosonic field φµ and satisfies
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ψ
(±)
0,η = e±iθ1eiθ0+iη(φ0+kFx),

ψ
(±)
1,η = eiθ0e±iθ1±iη(φ1+k′x),

(5.7)

[∂xθµ(x), φν(x
′)] = iπδµνδ(x− x′). The charge is carried by the θ0 mode, while θ1 is neutral,

as a result kF is fixed by the density of electrons while k′ is a free parameter.

The set of local physical operators can be generated via products of operators from

Eq. (5.7), i.e.,
(
ψ+

0,1

)l(
ψ+

0,−1

)m(
ψ−1,1
)n · · · . (Note that the generators Eq. (5.7) are over-

complete.) As a result, primary operators of charge q take the form: Due to the restrictions

c(x)q ∼
∑

q1,r0,r1

ei(qθ0+q1θ1+r0(φ0+kFx)+r1(φ1+k′x)),

where q1 ≡ r0 + r1 ≡ q (mod 2).

(5.8)

on the coefficients q1, r0, and r1 of physical operators, we cannot simply treat this theory as

a product of θ0/φ0 and θ1/φ1 theories.

The theory must obey charge conservation, and is invariant under both parity (φ0,1 →

−φ0,1 and x → −x) and time-reversal (θ0,1 → −θ0,1, i → −i and t → −t). Generically,

the kinetic part of the Hamiltonian takes the form: HKE describes a 2-mode TLL, which we

HKE =
∑
µ,ν

[
Aµν(∂xθµ)(∂xθν) +Bµν(∂xφµ)(∂xφν)

]
. (5.9)

later demonstrate to be consistent with the 2M phase found in the numerics.
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5.5.1 single mode phase as a descent of the 2-mode theory

Having talked about the 2M theory, we now discuss how we can achieve single-mode phase

from the 2-mode theory.

The single-mode phases (single, pair, trion, ...) are constructed by introducing locking

terms, shown in Table 1, to the Hamiltonian Eq. (5.9). For a term to appear, it must be of the

form of Eq. (5.8) with q = 0, and also respect parity and time-reversal. At large interaction

strength, some of these terms may ‘lock’28; taking an expectation value and reducing the

theory to a 1-component TLL.

Our analysis for the locking terms is as follows54. For an interaction term to lock it should

have no oscillation (i.e., x dependence), which places constraints on the Fermi momenta.

For each locking term of the form cos Λ, we find linear combinations of the θs and φs that

commute with Λ. Among this set we find a conjugate pair which we denote as θ+ and φ+.

The set of gapless operators are then generated by eiΛ, eiθ+ and eiφ+ and must be a subset of

Eq. (5.8) 5. We show that the minimal (unit) charges for these operators are indeed qmin = 1,

2, 3 for the single, pair, and trion phases respectively, with the given locking terms. We will

show the locking terms and the corresponding phases in the next section.

5.6 Data and theory in each phases

Having obatined the numerical data and constructed the theory, we now examine the agree-

ment of theory predictions and data in each phase that appeared in our phase diagram

Fig. 23.

5.6.1 single phase

Single phase is the standard Tomanaga Luttinger liquid. We find this phase when the

attractive interaction is not strong enough to form bound states of multiple particles. In this

5Although the operators eibΛ are not gapless, they are long-ranged correlated (ordered).
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Figure 25: Entanglement entropy v.s. correlation length on a linear-log scale in the single

phase. From the linear fit we obtain c = 1.04. The data is taken at V1 = −0.7, V3 = 1.3.

subsection we first show the numerical data for this phase: central charge fit, correlators,

Fourier spectra, then we discuss how to get the single phase from the 2-mode theory, and

the agreement of theory and numerics.

5.6.1.1 central charge and correlators In the single phase the central charge is

calculated by linear fitting entanglement entropy S and the log of correlation length ξ as in

Eq. (5.3). As an example we pick a point V1 = V2 = −0.7, V3 = 1.3 in the phase diagram

and the fit is shown in Fig. 25. From the fit we get a central charge of 1.04.

Next we analyze the correlators and their Fourier spectra, shown in Fig. 26. We see that

all the correlators decay as power law at r < ξ where ξ is the correlation length, shown as

the dashed lines on the left three plots of Fig. 26. The right three figures plot the Fourier

spectra of all the correlators: for G1 and G3 we see the spectra peaks at kF = π/5 and for G2

the spectra shows peaks at 0 and 2kF , which is exactly what we would expect for a standard

Tomanaga Luttinger liquid.

5.6.1.2 single phase as a descent of the 2-mode theory Having presented the

numerical results, we now discuss how to get the single phase from our 2-mode theory. Here
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Figure 26: Correlators G1(r), G2(r), G3(r) and theirs Fourier spectra in the single phase at

V1 = −0.7, V3 = 1.3 and filling ratio of 1/5. The dashed lines on the left figures denote the

correlation length ξ, and all the correlators decay exponentially after r > ξ. On the right

figures we see kF peak for G1 and G3, and 0 and 2kF peaks for G2.

the locking term is cos(Λ) where Λ = 2θ1. To get the gapless mode, we need to find θ+

and φ+ such that they commute with Λ. We can readily write down θ+ = θ0 and φ+ = φ0.

Then the set of gapless operators are generated by eiΛ, eiθ+ and eiφ+ and must be of the

form Eq. (5.8). The general form of gapless operators is where n is an integer and a an odd

integer. Note that Λ = 2θ1 is locked, eiθ1 is a constant, c(x) reduces to which is the standard
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c(x) ∼
∑

eiaθ1eiθ0ei(2n+1)(φ0+kFx) (5.10)

c(x)1 ≈
∞∑

n=−∞

eiθ0ei(2n+1)(φ0+kFx), (5.11)

bosonization form of a fermion mode28;55.

5.6.2 pair phase

Pair phase is the Tomanaga Luttinger liquid of pairs, we find this phase when the attractive

interaction is strong enough to form pairs, but not strong enough to form trions. In this

subsection we first show the numerical data for this phase: central charge fit, correlators,

Fourier spectra, then we show how to obtain the pair phase from the 2-mode theory, and

discuss the agreement of theory and numerics.

5.6.2.1 central charge and correlators In the pair phase the central charge is cal-

culated by linear fitting the entanglement entropy S and the log of correlation length ξ as

in Eq. (5.3). As an example we pick a point V1 = V2 = −0.8, V3 = 1.3 in the phase diagram

and the fit is shown in Fig. 27. From the fit we get a central charge of 1.03.

Next we analyze the correlators and their Fourier spectra, shown in Fig. 28. We see that

only G2(r) decays as power law with repect to r while G1(r) and G3(r) decay exponentially.

This means that only excitations of 2-particles are gapless, adding a single particle or 3

particles would require a finite energy. From this we identify the phase as pair phase.

Because G1(r) and G3(r) decay exponenetially, we cannot extract the Fourier spectra from
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Figure 27: Entanglement entropy v.s. correlation length on a linear-log scale in the pair

phase. From the linear fit we obtain c = 1.04. The data is taken at V1 = −0.8, V3 = 1.3.
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Figure 28: Correlators G1(r), G2(r), G3(r) and the Fourier spectra of G2 in the pair phase at

V1 = −0.8, V3 = 1.3 and filling ratio of 1/5. We see that only G2 decays algebraically while

G1 and G3 decay exponentially. The Fourier spectra of G2 is shown, with peaks at 0 and kF .
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Fourier transform with derivatives, so we only present the Fourier spectra of G2. We see

that the spectra peaks at kF , which is different compared the the spectra of G2 in the single

phase. We will discuss about this peak in the following subsubsection.

5.6.2.2 pair phase as a desecnt of the 2-mode theory Having presented the

numerical results, we now discuss how to get the pair phase from our 2-mode theory. Here

the locking term is cos(Λ) where Λ = 2φ1 + 2k′x. Recall that the locking term cannot have

any x dependence, we immediately get k′ = 0. As θ1 is disordered, it cannot appear in the

exponent of a gapless operator, i.e., q1 = 0. From the parity relation (5.8), we see that q

must be an even integer and thus the single and trion correlators decay exponentially, which

agrees with our numerical findings.

To get the gapless mode, we need to find θ+ and φ+ such that they commute with Λ.

We can readily write down θ+ = 2θ0 and φ+ = φ0/2. Then the set of gapless operators are

generated by eiΛ, eiθ+ and eiφ+ and must be of form Eq. (5.8). The general form of gapless

operators are where n is an integer and kB = kF/2. This is the standard bosonization form

c(x)2 ∼ b(x) ≈
∑

eiθ+ei(2n)(φ++kBx), (5.12)

of a boson mode28;55. We interpret the descendant theory as a TLL of fermion pairs, with

the density of pairs being half of the density of elementary fermions.

5.6.3 trion phase

Trion phase is the Tomanaga Luttinger liquid of trions, we find this phase when the attractive

interaction is strong enough to form trions. In this subsection we first show the numerical

data for this phase: central charge fit, correlators, Fourier spectra, then we talk about how

to get the trion phase from the 2-mode theory, and the agreement of theory and numerics.
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Figure 29: Entanglement entropy v.s. correlation length on a linear-log scale in the trion

phase. From the linear fit we obtain c = 1.0. The data is taken at V1 = −0.95, V3 = 1.3.

5.6.3.1 central charge and correlators In the trion phase the central charge is also

calculated by linear fitting entanglement entropy S and the log of correlation length ξ as in

Eq. (5.3). As an example we pick a point V1 = V2 = −0.95, V3 = 1.3 in the phase diagram

and the fit is shown in Fig. 29. From the fit we get a central charge of 1.0, which means

there are only one gapless mode in such phase.

Next we analyze the correlators and their Fourier spectra, shown in Fig. 30. We see that

only G3(r) decays as power law with repect to r while G1(r) and G2(r) decay exponentially.

This means that only excitations of 3-particles are gapless, adding a single particle or 2

particles would require a finite energy. From this we identify the phase as trion phase.

BecauseG1(r) andG2(r) decay exponenetially, we omit their Fourier spectra and only present

the Fouerier spectra of G3. We see that the spectra peaks at kF/3 and kF , which is different

as compared to the the spectra of G3 in the single phase.

5.6.3.2 trion phase as a desecnt of the 2-mode theory Having presented the

numerical results, we now discuss how to get the trion phase from our 2-mode theory. Here

the locking term is Λ = 3(φ1 + k′x) − (φ0 + kFx) which yields the trion phase while fixing

k′ = kF/3. As Λ commutes with θ+ = 3θ0 + θ1 and φ+ = φ1, the gapless operators take
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Figure 30: Correlators G1(r), G2(r), G3(r) and the Fourier spectra of G3 in the trion phase at

V1 = −0.8, V3 = 1.3 and filling ratio of 1/5. In the trion phase only G3 decays algebraically

while G1 and G2 decay exponentially. The Fourier spectra of G3 show peaks at kF/3 and

kF .

the form c(x)q ∼
∑
ei(q/3)θ+eia(φ++k′x)+ibL. Mapping the expression to Eq. (5.8), we get

q1 = q/3, r0 = −b, and r1 = a + 3b; we determine the consistency conditions q/3, a, b ∈ Z

and a ≡ q (mod 2). Hence for any gapless operator, q must be a multiple of 3, which implies

exponential decay of G1 and G2. As Λ takes on an expectation value, the trion operator

expansion reduces to: c(x)3 ∼
∑
eiθ+ei(2n+1)(φ++k′x), where k′ = kF/3 is the Fermi wavevector

of the trions and n is an integer.

5.6.4 summary of locking terms and validation of decaying expo-
nents

5.6.4.1 summary of locking terms and resulting phases Having discussed the

locking terms in the single-mode phases we now summarize the results. Within the low
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Locking term cos(2θ1) cos(2k′x+ 2φ1) cos[(3k′ − kF)x+ 3φ1 − φ0]

Resulting phase single pair trion

Single correlator G1(r)
∑

n

sin[(2n+ 1)kF|r|]
|r|(1/K+(2n+1)2K)/2

Pair correlator G2(r)
∑

n

cos[(2n)kF|r|]
|r|2/K+2n2K

∑
n

cos[(2n)kF

2
|r|]

|r|(1/K+(2n)2K)/2

Trion correlator G3(r)
∑

n

sin[(2n+ 1)kF|r|]
|r|(9/K+(2n+1)2K)/2

∑
n

sin[(2n+ 1)kF

3
|r|]

|r|(1/K+(2n+1)2K)/2

Table 1: Locking terms and correlators of single-mode phases. The first line lists interaction

terms and the second line shows the corresponding phases when interaction terms get locked.

The remaining rows show the algebraic decay form of correlators G1,2,3; the coefficient of each

term is neglected for simplicity. In Fig. 31, we show the numeric data verifying the predicted

dependence.

energy theory for each of the three single TLL mode phases, c(x)qmin admits a standard

bosonization expansion in terms of θ+ and φ+. The effective Hamiltonian is thus where K

H+ =
v+

2π

[
K(∂xθ+)2 +

1

K
(∂xφ+)2

]
, (5.13)

is the Luttinger parameter.

We summarize various locking terms and the resulting phases in Table. 1. We aslo present

the forms of algebraically decaying correlators in each phase. Next we validate the decaying

exponents in the table in the pair phase and trion phase.

5.6.4.2 validation of decaying exponents in the pair and trion phases We

demonstrate that the pair and trion phases are well-described by a single-mode TLL theory.

We do this by extracting the decay exponents of the correlators from our data, and comparing

them to prediction from TLL theory. In particular, we first extract the Luttinger parameter

K from the scaling dimension of the leading oscillatory term in the density operator. We then
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compute the leading decay exponent (η2,3) of G2,3, and show that they follow the relation

η(K) as predicted by TLL theory.

We first show that K can be read out from charge-density wave quasi-order. The density-

density correlator is defined as: where ni = c†ici. TLL theory predicts n(x) ∼ 〈n〉+∂xφ+/π+

G0(r) = 〈nini+r〉 − 〈ni〉2 , (5.14)

∑
m 6=0 e

i2m(φ++kF x/qmin) + . . . and thus the long-distance behavior of G0(r) reads: where the

G0(r) =
1

r2
+
∑
m 6=0

cos(2mkFr/qmin)

|r|2m2K
+ . . . , (5.15)

coefficient of each term is neglected. The term with m = 1 is the leading oscillatory (quasi-

CDW order) term with decay exponent 2K. Thus the leading scaling dimension of the

quasi-CDW order is K.

While it is possible to extract K by computing G0 from our data, we choose to fit K by

taking advantage of the artificial long-range charge-density-wave order induced by iDMRG.

The method 6 is as follows. When the unit cell of iDMRG is commensurate to the oscillatory

vector(s) of the quasi-charge-density-wave order, there is a corresponding artificial long-

range density-wave order induced from finite bond dimension χ, the amplitude of which

decays with χ and the correlation length ξ0(χ). Specifically, its amplitude scales as where

〈
n
(2kF
qmin

)〉
χ

∝ ξ0(χ)−K , (5.16)

6The method works for any quasi-orders which are not forced to vanish by the MPS ansatz
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Figure 31: Verification of predicted decay exponents. Left figure: leading decay exponent

(η2) of pair correlator in pair phase. Right figure: leading decay exponent (η3) of trion

correlator in trion phase. The two lines are prediction from TLL theory. According to

Table 1, η2 = 1
2K

, η3 = 1
2
(K + 1

K
). The values of Luttinger parameter K are extracted from

the information of neutral sector. In order to cover larger range of K, we use DMRG data

from fillings (left to right) 1
5
, 1

6
,... 1

10
. The parameters for the left figure are V1 = V2 = −0.8,

V3 = 1.4; the parameters for the right figure are V1 = V2 = −1, V3 = 1.4.

〈n(2kF/qmin)〉 =
∑

j e
2ikF /qminj 〈nj〉. For our plots, we use the peak-to-peak amplitude of the

density profile as a substitute for 〈n(2kF/qmin)〉.

TLL theory [cf. Tab. 1] gives the prediction of leading term of G2,3 of pair and trion

phases respectively as: with We numerically fit η2,3 directly from the data of G2,3.

G2(r) =
1

|r|η2
+ . . . ,

G3(r) =
sin(kF|r|/3)

|r|η3
+ . . . ,

(5.17)

η2 =
1

2K
,

η3 =
1

2

(
K +

1

K

)
.

(5.18)
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Figure 32: DMRG data for the 2M phase at V1 = V2 = −0.9936, V3 = 1.6: central charge

fit with bond dimensions 40, 57, 80, 120, 160, 200, 240, 300, 450, 600, 800, 1200; Corre-

lators G1(r), G2(r), G3(r) in the same data point with bond dimension 1200, all showing

algebraically decay.

Figs. 31(a) and (b) show η2,3 vs. K for the pair and trion phases respectively. We see

that the data points (red) agree with Eqs. (5.18) (blue line), which shows that the liquids

are well described by single-mode TLL theory. We also note that the extracted Luttinger

parameters K are all smaller than 1; this indicates the effective interaction between pairs or

trions is repulsive.

5.6.5 2M phase

The 2M phase is a direct prediction of our 2-mode theory: there are no locking terms and

we natually get the phase with two gapless mode. In this subsection we first present the

central charge calculation, then we present the correlators in the 2-mode theory. We also
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discuss the nature of the two gapless modes in the 2M phase.

5.6.5.1 central charge in the 2M phase To calculate the central charge, we use

the same fitting method where we linear fit the relation between entanglement entropy and

the log of correlation length. The result is shown in Fig. 32. We see that linear fitting gives

c = 2.24. The reason that it is not exactly at 2 is an artifact of the finite bond dimensions

we use and the central charge moves towards 2 as we add higher bond dimension data.

5.6.5.2 correlators in the 2M phase The correlators in the 2M phase are shown

in Fig. 32. We observe pow law decay for all the correlators, indicating that all the modes

are gapless. Combining the fact that we have two wavevectors and all the correlators decay

algebraically, we readily see the necessity of our 2-mode theory.

A key feature of the DMRG data in the 2M phase is that k′ is not fixed; it varies

continuously between the two limiting values k′ = kF/3 on the trion side and k′ = 0 on the

pair side (while k = kF remains fixed). The variation of this wavevector is a clear signature

of a neutral emergent mode and confirms our effective two-mode TLL.

5.7 phase transitions

There are five potential phase transitions in our phase diagram, which we discuss here. The

locking mechanisms give hints about the phase transitions, we shall now discuss our data for

each of these transitions. Later we provide numerical evidence for single-pair transition and

DMRG data at the interface of single and trion phases.

• Single-pair transition. The transition is controlled by the competition between the terms

cos(2θ1) and cos(2φ1), and results in a quantum Ising transition1;48;56–58. In the next

subsection, we provide the definitive evidence that the single-pair transition is Ising via

finite-χ scaling.

• 2M-single transition. This transition is driven by the term cos(2θ1), and is likely a

Berezinskii-Kosterlitz-Thouless (BKT) transition.
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Figure 33: single to pair transition collapsing: (left) collapse of the entanglement entropy (S)

data computed as a function of the tuning parameter (V1 = V2) for various bond dimensions

(χ – indicated by different color points as labeled) using the scaling ansatz Eq. (5.19); (right)

collapse of the disorder parameter (Φ) computed as a function of the tuning parameter

(V1 = V2) for various bond dimensions (χ – indicated by different color points as labeled)

using the scaling ansatz Eq. (5.21).

• 2M-pair/trion transition. The 2M-to-pair and 2M-to-trion transitions are accompanied

by k′ reaching a commensurate value. This suggests a commensurate-incommensurate

(CIC) transition

• Single-trion transition. We are unable to determine if there is a direct transition between

the trion and single phase, or whether there is an intervening 2M phase which extends

down as V3 is decreased. In both cases, our numeric analysis suggests a (at least one)

first-order transition, the DMRG data is shown in subsection 5.7.2.

5.7.1 sinlge-pair transition

In this section we investigate the single-pair phase transition. We establish that this is an

Ising transition by (1) measuring the central charge at the critical point, (2) measuring the

correlation length critical exponent ν, and (3) identifying the order parameter for the pair

phase and finding its scaling dimension β. Our technical approach is to perform a two-

parameter scaling collapse on our DMRG data, where the parameters are detuning V1 − VC
and bond dimension χ.
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We begin by extracting the central charge at the critical point and the correlation length

critical exponent by analyzing the entanglement entropy in the vicinity of the critical point.

Using the finite χ scaling of CFT states39, we collapse the entanglement entropy data from

various χ near the pair-single transition. The collapse ansatz is as follows: where κ =

S − cκ

6
log(χ) = f

(
(V1 − Vc)χκ/ν

)
, (5.19)

6

c(1+
√

12
c

)
and ν is the correlation-length critical exponent and f is the universal function for

this collapsing. We note that ν = 1 and c = 1/2 for the Ising transition. The best collapse of

our DMRG data yields ν = 0.95 and c = 1.44. These values differ by less than 5% from the

Ising critical point values, once we realize that in addition to the CFT that corresponds to

the Ising transition, there is a background free boson CFT with central charge 1, and thus

c = 1 + 1/2 = 3/2. We suspect that the 5% deviation is due to the subleading corrections

to the entanglement entropy scaling, which have been ignored in the collapse anstaz.

We also analyze the expectation value of the vortex operator Φ(x) and perform the

corresponding collapse of the finite χ data (Fig. 33). The vortex operator Φ(x), is neutral

and incurs a π phase upon braiding (in spacetime) with fermions; i.e., it anticommutes with

fermion operators on its left and commutes with fermion operators on its right. Expanding

in terms of primary fields, Φ(x) has the following operator expansion: The operator cos(φ1 +

Φ(x) ∼
∑
r0,r1

ei(r0(φ0+kFx)+r1(φ1+k′x)),

where r0 + r1 is odd.

(5.20)

k′x), which is one of the lowest harmonic terms in Φ(x), acquires long-range order in the

pair phase, because cos(2φ1) is locked and k′ = 0. In the context of the Ising transition,

cos(φ1) corresponds to the disordered parameter, which gains an an expectation value on
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the disordered side of the transition with the magnetization critical exponent β.

In our lattice model, the vortex operator corresponds to: Φ(x) =
∏

j<x(−1)nj . Its two-

point correlator is well defined and measurable in iDMRG. Its large distance limit gives:

limr→∞ 〈Φ(i+ r)Φ(i)〉 = 〈Φ〉2. We measure 〈Φ〉2 near the phase transition point for various

bond dimensions χ and the collapse the data using the following ansatz: In Fig. 33, we plug

〈Φ〉2 χ2βκ = g
(
(V1 − Vc)χκ/ν

)
. (5.21)

in the exact Ising exponents β = 1
8
, ν = 1, and κ = 6

c(1+
√

12
c

)
with c = 3/2 to obtain good

collapse of the iDMRG data near the Ising transition.

5.7.2 DMRG data at the interface of single and trion phases

We also analyze the iDMRG data along the cut V3 = 1.02 which goes from the trion to

the single phase. In Fig. 34 we plot ∆E(V1) = E(V1) − (aV1 + b), the ground state energy

minus a linear component, as a function of the tuning parameter V1. We subtract the linear

component to make the kink in the ground state energy easier to visualize. We see that

∆E has different slopes on trion/single side, which is a signature of a first-order transition.

However, we cannot rule out the possibility that there is an intermediate 2M phase between

the trion and the single mode phases.

5.8 quaternion phase

The Hamiltonian Eq. (5.1) can be extended to have longer ranges of attractive interaction,

which is expected to give rise to more qmin-bound state. We use the same numeric method to

study the range-four model with V1 = V2 = V3 < 0, V4 > 0 at 1/5 filling to find a quaternion

phase.
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Figure 34: DMRG ground state energy (after subtracting a linear function, see text) along a

cut at the interface of single (right) and trion (left) phases. The bond dimension is χ = 300.

These two sets of data points correspond to the energy of two phases on either of the

transition. There is a region where the two curves have overlap in the parameter (V1) space.

In this region, the data point with lower energy is the ground state, while the data point

with higher energy indicates a metastable states. This metastability is an artifact of DMRG

which occurs near a first-order transition.
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Figure 35: DMRG data in the quaternion phase: (left) Correlators in quaternion phase. The

parameters of Hamiltonian are V1 = V2 = V3 = −0.7, V4 = 1.7. The DMRG bound dimension

χ = 600. The data indicates that G1(r), G2(r) and G3(r) decay exponentially while G4(r)

decays algebraically. (right) Fourier spectra of quaternion correlator (G4 of Fig. ??) in a

quaternion phase. The oscillatory wavevectors (kosc) are located at even multiples of π/20.

With a choice “derivative” n = 2, the first three kosc can be seen in this plot as peaks or

step.

To show the minimal charge (qmin) for gapless charged sector is 4, we plot the correlators

G1,2,3,4 of a state in the quaternion phases in Fig. 35, where G4 is the quaternion correlator:
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G4(r) =
〈
(cici+1ci+2ci+3)† ci+rci+r+1ci+r+2ci+r+3

〉
. (5.22)

𝑘0𝑘1
𝑘0𝑘1

−𝜋 𝜋
𝜋−𝜋

Figure 36: Band bending pictures from Ref.1 where k0 and k1 are the right moving wavevec-

tors. To satisfy Luttinger’s theorem we need k0 + k1 = kF (left) and k0 + k1 + π = kF

(right).

In Fig. 35, we also show the Fourier spectrum of G4 with the choice of derivative n = 2

(see the last section). As the filling is 1/5, the quaternion density is 1/20. As quaternions

are bosons, the spectrum shows peaks or steps at the even multiples (0, 2, 4) of π/20.

5.9 Why our numerical data is inconsistent with the

band bending theory of Ref.1

In the effective theory of Ref.1 two distinct Fermi-vectors appear due to the bending of the

band (as shown in Fig. 36). The two Fermi-vectors k0 and k1 should satisfy Luttinger’s

theorem: k0 + k1 = kF or k0 + k1 + π = kF . In our numerical calculations we focus on

filling fraction of 1/5 and kF = π/5. However, our numerical data shows that in the 2M

phase one of the Fermi-vectors moves from k1 = 0 to k1 = kF/3 while the other Fermi-vector

stays constant at k0 = π/5. The band bending picture would suggest that both Fermi points

move together, either k0 + k1 = π/5 or k0 + k1 + π = π/5. Hence, our numerical results are

inconsistent with the predictions of the effective theory of Ref.1. It should be noted that

Ref.1 deals with a different microscopic model, which may have a different effective field
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theory.

5.10 summary

In summary we find conclusive evidence for an emergent mode in one dimensional attractive

fermion chain. This emergent mode results in the formation of a stable 2M phase with two

Fermi surfaces. We argue that the multi-fermion bound state liquids are not descendants of

the single-mode TLL phase but are rather descendants of this 2M phase. The 2M parent

theory may be interpreted as a mixture of single and pair particles48. Curiously, we can

also rewrite the theory in terms of a mixture of pairs/trions, or trions/quarternions, etc.;

however, we fail to find interpretations in terms of mixtures such as singles/trions.

The two ingredients required to realizing the proposed phenomenology is (1) confining the

fermions to one-dimension and (2) controlling the form of the interaction potential between

the fermions. In the setting of solid states systems the two ingredients could be realized in

nanowires made of superconducting semiconductors59–64.

In ultracold atoms confinement could be provided by either optical lattices5;8;65 or atom

chips7 and tunable long-range interaction by the use of dipolar interactions66;67 or Rydberg

state-mediated interactions68.

The 1D systems studied here can also be used to construct higher dimensional topological

phases via the coupled-wire construction11;48;69;70. TLL enriched by emergent mode(s) may

give a pathway to a wide range of new phases in condensed matter.
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6.0 LANDAU LEVELS IN STRAINED OPTICAL LATTICES [PAPER]

In this section we present a published paper about previous project which is not related to

the bound states of fermions in one dimension. This is the first project of my PhD research

and we provide it here as a appendix to my thesis. I separate the different parts of the paper

into different sections.

6.1 Introduction

We propose a hexagonal optical lattice system with spatial variations in the hopping matrix

elements. Just like in the valley Hall effect in strained Graphene, for atoms near the Dirac

points the variations in the hopping matrix elements can be described by a pseudo-magnetic

field and result in the formation of Landau levels. We show that the pseudo-magnetic field

leads to measurable experimental signatures in momentum resolved Bragg spectroscopy,

Bloch oscillations, cyclotron motion, and quantization of in-situ densities. Our proposal can

be realized by a slight modification of existing experiments. In contrast to previous methods,

pseudo-magnetic fields are realized in a completely static system avoiding common heating

effects and therefore opening the door to studying interaction effects in Landau levels with

cold atoms.

6.2 Synthetic field in cold atoms

The Lorentz force, which acts on charged particles moving in a magnetic field, results in a

number of fundamental phenomena in condensed matter systems including the Hall effect
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in metals, Abrikosov lattices in superconductors, and the integer and fractional quantum

Hall effects in ultra-pure two-dimensional electron gases. While phenomena, such as the

quantized conductance plateaus of the integer and fractional quantum Hall effects have been

both observed experimentally and described theoretically71, many properties, such as the

non-abelian nature of excitations in the fractional quantum Hall effects72–74, remain subjects

of active research.

These problems are difficult – they involve strongly interacting systems that are resis-

tant to conventional theoretical and numerical tools. The current theoretical state of the

art involves comparisons of trial wave functions and numerical calculations on small systems

using exact diagonalization and DMRG73;74. Ultra cold atom experiments offer an alterna-

tive route, in which, potentially, the interplay of gauge fields, band structure, interactions,

and disorder can be studied by engineering and controlling these effects independently75.

Moreover, by engineering these properties one could generate novel phases that have not yet

been observed in condensed matter systems76;77.

Various groups have recently experimentally demonstrated ‘synthetic gauge fields’ –

methods for driving neutral atoms using laser beams in such a way that they behave as

if they were charged particles moving in a magnetic field78–82. A number of effects, such

as Abrikosov lattice formation83, Hall deflection81;84;85, and chiral currents86, have been ob-

served. However, an important limitation of these methods, that use either periodic lattice

modulations or Raman transitions, seems to be significant heating of the atom clouds. For

optical lattice experiments, this limits the timescale in which experiments can be performed

to several tens of milliseconds (later section in this chapter), in contrast to experiments in

static lattices which allow for several hundreds of milliseconds2. Further, experiments so

far have been performed with noninteracting or weakly interacting atoms. An extension

of synthetic gauge fields experiments to the strongly interacting regime would require low

heating rates in combination with low initial temperatures.

In this Letter, we propose an alternative method for generating synthetic magnetic fields

in ultracold atom systems that relies on a completely static optical lattice, and leads to

the formation of relativistic Landau levels. Inspired by pseudo-magnetic fields observed in

strained graphene87;88, molecular graphene89, and photonic systems90, we propose a method
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Figure 37: (a) Schematic of the setup: the optical lattice is produced by three Gaussian laser

beams intersecting at 120◦ with offset d – lattice orientation is depicted in the upper right.

The cross marks the center of the harmonic trap, and the star marks the position associated

with the displaced Dirac cones depicted in (b). (b) Schematic of the displacement of the

Dirac cones in momentum space associated with stretching type 1 bond. First Brillouin zone

is indicated with the dashed line. (c) Pseudo-vector potential ~A as a function of position.

(d) Pseudo-magnetic field ~B = ∇× ~A as a function of position. The hexagon in (c) and (d)

marks the sample area with 80% uniformity in the pseudo-magnetic field.

for generating spatially varying hopping matrix elements in a hexagonal optical lattice.

Starting from a standard configuration of three Gaussian laser beams intersecting at 120◦, our

method relies on simply displacing the beams [Fig. 37a]. We show that pronounced Landau

levels are generated close to the original Dirac points corresponding to almost homogeneous

magnetic fields in real space with opposite sign at the nonequivalent Dirac points. This

leads to a host of observable phenomena, such as the valley Hall effect, quantization of in-

situ densities, Landau-Zener effects in Bloch oscillations, and the emergence of gap structure

in Bragg spectroscopy. Since our method relies on fully static optical lattices, it forms an

attractive starting point for investigating interaction effects in Landau levels76;77;91–96 with

ultracold atoms.

6.2.1 Pseudo magnetic fields in optical lattices

Consider an optical lattice that is created by the intersection of three blue-detuned laser

beams at 120◦ angles97;98. The resulting honeycomb potential has the form where ~km is

the wave vector of the m-th laser beam and Im(~r) is it’s position dependent intensity that
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V (~r) =

∣∣∣∣∣
3∑

m=1

√
Im(~r)e−i

~km·~r

∣∣∣∣∣
2

(6.1)

accounts for the Gaussian nature of the beams. We consider the case that the lattice is

sufficiently deep so that the tight binding model is applicable. If all three beams have

identical intensities the resulting band structure (in the lowest band) is identical to that

of graphene with two degeneracy points in the first Brillouin zone described by the Dirac

equation. Changing the intensity of one of the beams corresponds to applying a uniform

strain to graphene99, which can be captured by modifying the hopping matrix elements in

the tight binding model and results in the shift of the Dirac cones in the Brillouin zone [see

Fig. 37b]. This shift can be encoded in terms of the Dirac equation by adding a vector gauge

field ~A: where vf is the group velocity near the Dirac point, and σµ are the Pauli matrices.

HDirac = ~vf (−i∂µ + Aµ)σµ, (6.2)

Allowing for the intensities of all three beams to vary in space, we can obtain a non-uniform

~A(~r).

The tight binding model with non-uniform hopping matrix elements on the honeycomb

lattice is 1 where tij are the hopping matrix elements, Vi = 1
2
matω

2
effr

2
i is the on-site potential

that is a combination of the trap potential and the anti-trapping effect of the blue lattice

ω2
eff = ω2

trap − ω2
anti-trap with mat the atomic mass, and a†i and ai are the creation and an-

nihilation operators. There are three types of hopping matrix elements tij associated with

the three hopping directions in a honeycomb lattice. We label these as tij = tu(~r), where

~r = (~ri+~rj)/2 and u is the index of the laser beam that is perpendicular to the vector ~ri−~rj
1Since we are interested in the case Im & 2ER we only need to consider nearest neighbor hopping

(tnnn = 0.02tnn at 2ER).
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H = −
∑
〈i,j〉

tija
†
iaj +

∑
i

Via
†
iai, (6.3)

(see Fig. 37a). Using this notation, and making the approximation that t1(~r) ' t2(~r) ' t3(~r)

and all are slowly varying functions of ~r, we find Here, λ is the wavelength of the laser,

 Ax(~r)

Ay(~r)

 = ±
√

3

2λt0(~r)

 2t3(~r)− t1(~r)− t2(~r)
√

3(t2(~r)− t1(~r))

 . (6.4)

t0(~r) = (t1(~r) + t2(~r) + t3(~r))/3, and ± corresponds to the gauge field at the two distinct

Dirac points. We note that this form of the vector gauge is identical to that obtained in

strained graphene, but the origin of the variation in the hopping matrix elements is dif-

ferent – here it is induced by spatial variation of the lattice depth as opposed to strain in

graphene100;101.

We connect the tight binding parameters tu(~r) and V (~r) to the laser light intensity Iu(~r)

at point ~r using a simple analytical model that accurately captures a precise numerical

calculation102. Our model assumes that the connection is completely local [valid when Iu(~r)

varies slowly in space on the length-scale of a unit cell] and that the laser beam intensities

are close to isotropic [I1(~r) ' I2(~r) ' I3(~r)] – precisely the assumptions required for the

validity of the pseudo-magnetic field description.

6.2.2 A prescription for a uniform pseudo-magnetic field

To introduce spatial variations of beam intensities, we propose to use three Gaussian beams

with the same intensity and beam waist and to align them such that the beam axis form
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Figure 38: (a) Local Density of States as a function of energy and position in the trap for

various trap frequencies. ωtrap = 11.7 (2πHz) – trap cancels the anti-trapping potential of

lattice beams. ωtrap = 16.4 (2πHz) – bending of distinct Landau. ωtrap = 21.1 (2πHz) –

strong smearing of Landau levels. (b) Density of a fermionic fluid as a function of position

in the trap showing incompressible plateaus [corresponding chemical potentials are indicated

with dashed lines in (a)].

an equilateral triangle Fig. 37a. This choice results in a symmetric gauge field depicted in

Fig. 37c, and a nearly uniform pseudo-magnetic field depicted in Fig. 37d. We note that

this prescription does not introduce an offset between A and B sub-lattices. We can tune

the strength and uniformity of the pseudo-magnetic field by varying the beam waist size w0

and the displacement parameter d [Fig. 37a]. In order to probe uniform phases of matter,

such as the quantized Hall effects, one typically requires a uniform magnetic field over the

sample area. We have tabulated the optimal choice of w0 and d for a range of sample sizes

R0 that ensure a uniform pseudo-magnetic field.

The maximum pseudo-magnetic field is limited because the description in terms of the

Dirac equation with ~A breaks down when the displacement of the Dirac cones becomes

comparable to the the size of the Brillouin zone | ~A| ∼ 1/λ. For the symmetric gauge

choice | ~A| varies linearly across the sample, and hence the maximal pseudo-magnetic field is

inversely proportional to the sample size. From Table II of the supplement we find Bmax =

∇× ~A ≈ 2.7/λR0.
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Figure 39: (a) Snap shots of the in-situ density of an atom cloud undergoing cyclotron

motion, where N0 is the total number of atoms in the cloud. Trajectory of the center of

mass of the cloud is superimposed on top (red dots – tilt α/h = 0.84kHz/µm, blue – no tilt,

green – current frame). (b)-(c) Momentum resolved Bragg-spectroscopy: transition rate as

a function of frequency ν = ω/2π and momenta kx and ky. (b) Slice at fixed ky=0. (c) Slices

at fixed ω (as indicated by the dashed white lines in (b)). The location of the Dirac cone is

indicated with dashed magenta line in (b) and (c).

6.2.3 Proposed experimental setup

To make a concrete connection to experiment, we focus on a particular realization similar

to the one in Ref.98, which we will use throughout the remainder of the letter. We consider

87Rb atoms in an optical lattice with λ = 700nm, and hence a recoil energy of ER =

2π2~2/(mλ2) ≈ h × 4.685kHz. We choose the laser beam intensity such that the potential

is 4ER (per beam, in the beam center) which ensures that the lattice is sufficiently deep to

make the tight binding model applicable but sufficiently shallow that the hopping timescales

are acceptably fast [tij/h ≈ 868Hz]. Finally, we focus on the case R0 = 23µm, which

corresponds to a hexagonal sample with 15, 000 sites. For this setup, the maximum uniform

pseudo-magnetic field of B = 0.17µm−2 [Fig. 37d] is obtained by setting w0 = 150µm and

d = 45µm.
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6.2.4 Landau levels in a harmonic trap

The effective trapping frequency ωeff must be large enough to ensure that the atoms are

confined, but not so large as to smear out the discrete Landau levels. Without a trapping

potential, we expect to see ‘relativistic’ Landau levels at energies En = sign(n)~vF
√

2|n|B,

where vF = λtij/(
√

3~) and n is an integer103;104. The corresponding Landau level wave

functions have a length scale set by the cyclotron radius rc =
√

(2n+ 1)/B. The length

scale for the ground state of the trapped lattice system is λSHO = [2tijλ
2/(9mRbω

2
eff)]

1/4
, hence

the ground state wave function will be confined if λSHO . R0, which sets a lower bound on

ωtrap. On the other hand, a Landau level will avoid being smeared out if the shift of the

trap potential on the scale of rc is small compared to the spacing to the next Landau level

1
2
mRbω

2
effr

2
c . E|n|+1−E|n|, which sets an upper bound on ωeff. Putting these considerations

together, we find a window for observing Landau Levels where in the last expression we have

2λ2tij
9mRbR4

0

. ω2
eff .

7.2tij

mRbR
3/2
0 λ1/2

(√
|n+ 1| −

√
|n|

2|n|+ 1

)
,

used the relation between R0 and B. For our realization 0.2Hz . ωeff/2π . {91Hz, 12Hz}

for n = 0,±1.

To visualize the Landau Levels in a trapped system we plot ρ(E, r), the local density

of states (LDOS), as a function of position and energy [Fig. 38a]. In the absence of a trap,

we expect to see sharp peaks in the LDOS as a function of energy that are independent of

position. For |∇V (r)| � |En−En−1|/rc, the LDOS is simply shifted ρ(E, r) ≈ ρ(E−V (r), 0)

while for large |∇V (r)|, this picture breaks down and the peaks in ρ(E, r) become smeared.

6.2.5 Experimental signatures

One of the defining characteristics of the quantum Hall effect is the formation of incom-

pressible plateaus associated with the Landau levels. We propose that these plateaus can
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be observed with ultra cold fermionic atoms by measuring the atom density as a function

of distance away from the center of the trap [Fig. 38b]. In principle, it should be possi-

ble to observe multiple plateaus in a “wedding cake” structure. Due to the limitations on

experimentally accessible optical lattice sizes we expect to see only one or two plateaus.

Another important limitation of the present generation of experiments with fermions in

optical lattices is that the lowest temperatures that one can achieve T ∼ 0.5tij
105;106 are

similar to the spacing of the Landau levels that we predict for the smallest samples. An

attractive alternative is to use bosonic atoms that can be Bose-Einstein condensed (BEC)

in the lattice.

To detect the pseudo-magnetic field we propose observing cyclotron motion of a cloud

of condensed atoms. Starting with the cloud in the ground state in the center of the trap,

we remove the trap (set ωeff = 0) and accelerate the cloud towards one of the Dirac points

by applying a tilt Htilt = −α q̂ · ~r (q̂ is a unit vector indicating tilt direction, and α is the

tilt ‘force’). When the momenta of the atoms approaches the Dirac point, we remove the

tilt and observe the evolution of the cloud in situ. As the atom cloud is moving with a

momentum close to the Dirac momentum, it is well described by the Dirac equation, and

hence its trajectory is curved by the pseudo-magnetic field [Fig. 39a]. The effective Lorentz

force changes sign if the cloud is accelerated towards a non-equivalent Dirac point.

In order to directly observe the Landau levels, we propose to use Bragg spectroscopy.

In this setup, a BEC that is originally prepared in the ground state ψ0 is transferred to

excited states ψi using a Bragg spectroscopy setup107 described by the perturbation potential

V (r, t) = V1 cos(~k · ~r) cos(ωt). In Fig. 39(b), (c) we plot the transition rate for a range of ~k

and ω. As a function of ω, we see clear maxima that correspond to the various Landau levels.

Moreover, we can extract the momentum structure of the Landau level wave functions by

varying ~k (i.e. performing momentum resolved Bragg spectroscopy). Without the complexity

of a Bragg spectroscopy setup, Bloch-Zener spectroscopy108 offers an alternative that can

detect the separation between the n = 0 and n = ±1 Landau levels.
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6.2.6 Observing interaction effects

Pseudo-Landau levels are particularly susceptible to the effects of interactions as the kinetic

energy of the atoms within a single pseudo-Landau level is quenched. Previous theoreti-

cal investigations showed that the interplay of short and long range interactions in strained

hexagonal lattices can drive the formation of a number of exotic phases76;77;91–96. Specifically,

at 1/2-filling of the zeroth Landau level, long range interactions prefer the formation of the

quantum anomalous Hall effect (that spontaneously breaks time reversal symmetry)91;92;94–96

while short range interactions prefer the formation of charge-density-wave phases93;96. De-

tailed numerical analysis of the 1/2 filling case with on-site interactions alone suggests the

formation of an exotic mixture of ferro- and anti-ferromagnetism77. At 2/3 filling of the

zeroth Landau level, tuning the ratio of long and short range interactions is predicted to

drive the formation of a triplet superfluid, a fractional topological insulator and the 2/3

fractional quantum Hall effect76. In comparison to natural graphene, our proposal gives the

advantages of (1) better control over the strain patterns and (2) control over both short75

and long-rang interactions (using methods based on Rydberg atoms109, dipolar atoms110,

or dipolar molecules111) and (3) control over filling factors and (4) the availability of low

disorder potentials, making it particularly promising for realizing these exotic phases.

6.2.7 Outlook

We have proposed a scheme for generating a pseudo-magnetic field in ultra cold atom sys-

tems that relies on spatial variations of the hopping matrix in analogy to the case of strained

graphene. The typical timescales for conventional synthetic gauge field experiments in optical

lattices is several tens of milliseconds mostly limited by drive induced heating. Our approach

could extend this to several hundreds of milliseconds as typical in static lattices2, thus im-

proving timescales for investigating the interplay of pseudo-magnetic fields and interactions.

Generally, our work could establish a new, very explicit link between solid state physics and

ultracold quantum gases connecting ongoing experimental work in strained graphene and

novel, strained optical lattices.
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6.3 supplement

This supplement is organized as follows: (1) we summarize timescales reported in conven-

tional synthetic gauge field experiments on a lattice; (2) we summarize the intensity profile

that we used for Gaussian beams; (3) we present the details of our tight binding model

and its relation to the light intensity in the lattice beams; (4) we tabulate optimal beam

parameters for a range of sample sizes; (5) we show explicit details for the constraints on

trap frequency presented in the main manuscript; (6) we define the local density of states;

(7) we write out the transition rate for Bragg spectroscopy and (8) we present additional

data on Bloch-Zener spectroscopy.

6.3.1 Timescales in experiments with optical lattices and syn-
thetic gauge fields

To compare conventional synthetic gauge field in lattice experiments to the proposed setup

we would like to compare the heating rates in the two cases. Unfortunately (with the

exception of Ref.81) heating rates are not typically reported. Hence, we use the longest

reported experimental timescale as a proxy for how long the atoms remain cold within the

lattice (see Table. 2). We expect our proposed setup to extend the timescales to several

hundreds of milliseconds, which is the typical timescale for experiments in static lattices2.
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Experiment Method Timescale [ms]

Aidelsburger et al.79 Raman 13

Atala et al.86 Raman 2

Aidelsburger et al.112 Raman 50

Jotzu et al.81 Shaking 10

Struck et al.113 Shaking 50

Kennedy et al.114 Raman 71

Table 2: Timescales in conventional synthetic gauge field experiments on a lattice, typical

timescale for static optical lattice experiments are several hundreds of milliseconds2.

6.3.2 Gaussian beams

In modeling the Gaussian lattice beams we use the following intensity profile: where zR =

Igaussian(r, z) = I0

(
1 + z2/z2

R

)−1
e
− 2r2

w2
0(1+z2/z2

R) (6.5)

πw2
0/λ, w0 is the beam waist, r = | (~r − ~r0)× ~v0| is the radial distance from the beam axis,

z = | (~r − ~r0) · ~v0| is the axial distance to the beam focal point ~r0, and ~v0 is a unit vector

along the beam axis.

6.3.3 Model relating laser intensity to the tight binding parame-
ters

To relate the intensities of the three lattice beams I1(~r), I2(~r), and I3(~r) to the tight binding

parameters t1(~r), t2(~r), t3(~r), and V (~r) at a given point in space ~r, we make two assumptions:

(1) the beam intensities vary slowly in space on the length-scale of a unit cell and (2) the

beam intensities are close to uniform I1(~r) ' I2(~r) ' I3(~r).

For the case of the hopping matrix elements tu(~r), the assumptions allow us to use the
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a0 1.13 b0 2.21 b1 -4.64 b2 5.01 c2 -0.17

d1 0.002 e1 3.13 f1 -1.18 g1 0.71 h1 -0.17

Table 3: Fitting parameters for Eq. (6.6) and (6.7).

model

tu = a0I
3/4
avge

−
√
Iavg(b0+b1δu+b2δ2

u+c2
∑
v 6=u δ

2
v), (6.6)

where we have dropped the index ~r for clarity, Iavg = 1
3

∑3
u=1 Iu, δu = (Iu/Iavg − 1), and

{a0, b0, b1, b2, c2} are the fitting parameters. To obtain values for {a0, b0, b1, b2, c2}, we numer-

ically computed tu’s for a series of spatially uniform but anisotropic lattices and then fitted

the resulting data set [see Table 3]. The numerical computations were performed using the

Wannier function method102 with a sufficiently large basis to ensure convergence. As for the

data set, we used various values of Iu’s ranging from 2.2ER to 3.6ER and keeping |δu| < 0.3 –

which is the appropriate range of light intensities for the proposed setup with displaced 4ER

beams. We find good agreement between our model and the numerically computed hopping

matrix elements as long as the beams have approximately the same intensity |δu| < 0.3. In

Fig. 40 we show this comparison along a particular slice through the data set, in which we

set I2 = I3 = 3ER while varying I1. The maximal logarithmic error over our dataset was∣∣∣log
tu,numerical

tu,fitted

∣∣∣ = 0.016.

Using the two assumptions on I1(~r), I2(~r), and I3(~r), we can model the onsite potential

due to the optical lattice using the expression

V = d1Iavg + e1

√
Iavg + f1 +

g1√
Iavg

+ h1Iavg

∑
v

δ2
v , (6.7)

where {d1, e1, f1, g1, h1} are the fitting parameters. Fitting the same data set as the one we

used for the hopping matrix elements, results in values for the fitting parameters listed in

Table 3. The maximal error over the dataset was |Vnumerical − Vfitted| /Vnumerical = 0.004.

6.3.4 Optimal beam parameters

In order to achieve a uniform pseudo-magnetic field over the sample area we can tune two

parameters – Gaussian beam waist ω0 and beam axis displacement d. We tabulate these
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parameters for a range of sample sizes in Table 4]. The parameters were chosen to ensure that

the pseudo-magnetic field varies by less than 20% over the sample area. The corresponding

gap between n = 0 and n = 1 Landau levels is listed for 87Rb atoms in a 700 nm, 4ER lattice

with tij/h ≈ 870 Hz. While the pseudo-magnetic field strength is determined by the geometry

[see main text], the Landau level gap scales with the hopping strength E1−E0 = λtij
√

2B/3.

6.3.5 Constraints on trap frequency

In order to observe the Landau levels in the presence of a trap potential, we want ωeff =√
ω2

trap − ω2
anti-trap to be large enough to confine the atoms but not so large as to smear out

the Landau levels. These two constraints provide us the upper and lower bound for ωeff.

For the lower bound, we begin with the lengthscale of the simple harmonic oscillator

λSHO. First, we find the band mass to be:

mband =
9~2

2t0λ2
, (6.8)

where t0 = 〈tij〉 represents the average value of the nearest neighbor hopping matrix element.

Using the band mass, we can write down the continuum Hamiltonian for low energy states

of our trapped system: Defining ω̃ =
√

mRb

mband
ωeff, we find that the radius of the lowest

H =
p2

2mband

+
1

2
mRbω

2
effx

2

=
p2

2mband

+
1

2
mband

(√
mRb

mband

ωeff

)2

x2. (6.9)

energy state of the harmonic the system is approximately In order to ensure that at least

the ground state is trapped, we require that λSHO ≤ R0 where R0 is the characteristic radius

of our lattice system – i.e. the radius over which the pseudo magnetic field is uniform. Thus

we obtain the lower bound for ωeff: For sample size R0 = 23.1µm, ωeff ≥ 0.211× 2πHz.

To find the upper bound on ωeff, we first evaluate the Landau level energy To avoid

128



λSHO =

√
~

mbandω̃
. (6.10)

ω2
eff &

2t0λ
2

9mRbR4
0

(6.11)

En = ~vF
√

2|n|B

=
λt0√

3

√
2|n|B. (6.12)

smearing the nth Landau level, we want 1
2
mRbω

2
effr

2
n . E|n|+1−E|n|, where rn = (2n+1)/B is

the typical radius of nth Landau level. Using the relation B = 2.7/λR0 obtained from Table

I of the main text, we find For R0 = 23.1µm, ωeff . 91×2πHz for n = 0 and ωeff . 12×2πHz

ω2
eff .

7.2tij

mRbR
3/2
0 λ1/2

(√
|n+ 1| −

√
|n|

2|n|+ 1

)
. (6.13)

for n = ±1.

6.3.6 Local Density of States

We define the local density of states ρ(E, r) as as a function of position and energy, where
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ρ(E, r) = N
∑

i,|Eµ−E|<δ

|ψ(~ri, Eµ)|2e−|~ri−r|2/(2r2
0), (6.14)

{Ej} and {ψ(~ri, Ej)} are the single-particle eigenvalues and eigenfunctions of Eq. 3 in the

main text, N−1 = δ
∑

i e
−|~ri−r|2/(2r2

0) is a normalization factor, and r0 specifies the range over

which we measure the local density of states.

6.3.7 Bragg spectroscopy

For Bragg spectroscopy setup107 described by the perturbation potential V (r, t) = V1 cos(~k ·

~r) cos(ωt), the transition rate is given by Here, ψ0 is the initial state with energy E0 and ψi

∑
i

|〈ψi(~r)| cos(~k · ~r) |ψ0(~r)〉|2δ(Ei − E0 − ω). (6.15)

is the excited states with energy Ei.

6.3.8 Bloch-Zener spectroscopy

Bloch-Zener spectroscopy108 offers an alternative to Bragg spectroscopy that can detect the

separation between the n = 0 and n = ±1 Landau levels without the complexity of the

Bragg setup. We begin with a BEC in the ground state of the trap and then apply a tilt in

the direction of one of the Dirac cones in order to induce Bloch oscillations 2. The character

of the Bloch oscillations strongly depends on the lattice tilt α [see Fig. 41]. The change in

character is controlled by the Landau-Zener process across the largest gap in the system –

2In contrast to cyclotron motion experiment, we do not stop at the Dirac point but pass through it.
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the separation between n = 0 and n = 1 Landau levels – allowing us to measure this gap.

If (E1 − E0)/αλ � 0.5 [� 0.5] the atoms remain on the lower branch [jump to the upper

branch]. The change in character can be observed directly in the in-situ motion of the atom

cloud via a change of the direction of the group velocity: If the tilt angle is small, atoms

will be reflected back by the gap. On the other hand, if the tilt angle is large the atoms will

jump across the gap to the upper band. The presence/absence of reflection can be detected

by monitoring the motion of the center of mass of the atoms along the direction of the tilt,

as depicted in Fig. 42. We identify the critical tilt by a plateau in the motion of the center

of mass (half the atoms stay at the lower band and half go to the upper band) as depicted

in Fig. 42b.

To verify the ability of Bloch-Zener spectroscopy to measure the gap, we calculate the

critical tilt for various values of the pseudo-magnetic field and hence gap. We plot the

relation between the gap and the critical tilt in Fig. 43. We observe a linear relation between

the critical tilt and the largest energy gap E1 − E0

E1 − E0

αcritλ
≈ 0.5. (6.16)
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Figure 40: Comparison of (exact) hopping matrix elements obtained numerically and fitted

matrix elements obtained using Eq. (6.6). For this plot, we fixed I2 = I3 = 3ER.

R0 [µm] w0 [µm] d [µm] B field [µm−2] LL gap [h · Hz]

5.6 40 13 0.68 410

11 75 22.5 0.34 290

17 112 35 0.24 240

23 150 45 0.17 210

28 185 58 0.15 190

33 220 72 0.13 180

Table 4: Optimal beam waist w0 and displacement d for different sample sizes R0.
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Figure 41: Bloch-Zener spectroscopy: spectral density of the atom cloud as a function of

time for small tilt (top) and large tilt (bottom).

α [h � kHz/µm]

α=0.84 [h � kHz/µm]α=0.21 [h � kHz/µm] α=0.55 [h � kHz/µm]

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

x *
α 

[2
πħ

 k
H

z]

0.84

0.21
0.55

(a) (b) (c) (d)

τ*α/ħ [µm-1]

Figure 42: Tilt spectroscopy: (a-c) Center of mass position of an atom cloud as a function

of time for three different values of tilt α. (d) Same data as (a-c) with both axis rescaled by

α.
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Figure 43: Relation between the critical tilt αc (rescaled by the wavelength of optical lattice

light λ) and the gap between the n = 0 and n = 1 Landau levels for various values of the

pseudo-magnetic field. The line represents best fit to the linear law E1 − E0 = c λαc where

c is the constant of proportionality.
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[113] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock,
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