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In this thesis we investigate the neutrino portal dark matter which tries to explain non-

baryonic dark matter and the neutrino masses at the same time. Bearing in mind that

natural theories like the Minimal Supersymmetric Standard Model also provide a WIMP

type candidate for dark matter, we also calculate the sensitivities of the High Luminosity

(HL) and High Energy (HE) upgrades of the Large Hadron Collider to strong supersymmetry

signals. Firstly, we study the feasibility of the indirect detection of dark matter in a simple

model using the neutrino portal. We derive the existing constraints on this scenario from

Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxies and

Galactic Center gamma-rays observations, and AMS-02 antiprotons observations. Secondly,

by modifying our simple model, we analyze the scenario in which a thermal dark matter

annihilating to standard model neutrinos via the neutrino portal. We derive existing con-

straints and future projections from direct detection experiments, colliders, rare meson and

tau decays, electroweak precision tests, and small scale structure observations. Finally, we

evaluate the sensitivities of the High Luminosity (HL) and High Energy (HE) upgrades of the

LHC to gluinos and stops, decaying through the simplified topologies. Our HL-LHC analy-

ses improve on existing experimental projections by optimizing the acceptance of kinematic

variables.
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1.0 INTRODUCTION

This thesis is organized as follows. Chapter 1 motivates briefly the importance of physics

beyond the Standard Model (SM). Chapter 2 reviews the early universe cosmology with

an emphasis on dark matter (DM). Chapters 3 and 4 are devoted to the study of possible

interactions between dark matter and neutrino (neutrino portal dark matter) and Chapter 5

studies the sensitivity of the high-luminosity and high-energy upgrades of the Large Hadron

Collider (LHC) to signals of strongly produced supersymmetry.

1.1 QUEST FOR NEW PHYSICS AT TeV SCALE

One of the triumphs of modern science is the Standard Model of elementary particles.

According to the Standard Model the matter constituents of the subatomic universe are

elementary particles. These matter particles interact with each other via three fundamen-

tal forces (ignoring gravity), a consequence of the exchange of other particles associated

with them. One can simply say particles talk to each other by exchanging other particles.

Equipped with this physical picture, one can use Quantum Field Theory as mathematical

framework to make very precise predictions. It is remarkable that nearly every experimental

observable measured in particle physics laboratories over the past five decades agrees with

the predictions of the Standard Model. The discovery of the Higgs boson seems to complete

the Standard Model, but despite its extraordinary successes, it is known that the Standard

Model cannot be the final theory of nature. Besides some theoretical issues concerning

physics of higher energy scales, such as hierarchy problem or lack of gravity in the Stan-

dard Model, there are several observational facts which cannot be explained in the Standard
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Model. These include neutrino masses and its nature (Majorana or Dirac), the identity of

the non-baryonic dark matter, and the origin of the asymmetry of matter and antimatter. It

is necessary to go beyond the Standard Model to address these mysteries. The lightness of

the Higgs mass, theoretical motivations for a special type of dark matter candidate, etc. all

point to the existence of new physics at the TeV scale and they motivate us to keep running

Large Hadron Collider (LHC) at TeV scale with larger and larger luminosity.

1.1.1 The Standard Model

The Standard Model that describes the strong, weak, and electromagnetic interactions

of elementary particles in the framework of quantum field theory is a gauge theory based

on the local symmetry group SU(3)C × SU(2)L × U(1)Y , where the subscripts C, L and

Y denote color, weak isospin and hypercharge, respectively. The gauge structure uniquely

determines the interactions between particles and force carriers with only three independent

unknown coupling constants of the SU(3)C , SU(2)L, andU(1)Y groups, all of which must be

determined from experiments. The only constraint on the number and properties of scalar

bosons and fermions is that they must transform in a definite way under the symmetry

group, i.e. they must belong to the representations of the symmetry group, and the fermion

representations must lead to the cancellation of quantum anomalies. The scalar bosons are

chosen in order to implement, in a minimal way, the Higgs mechanism for the generation of

masses, whereas the number and properties of fermions are determined by experiments.

The Lagrangian of the Standard Model at the classical level includes four different parts:

LSM = Lgauge + Lfermion + LHiggs + LYukawa (1.1)

which refer respectively to the gauge, fermion, Yukawa, and Higgs sectors of the theory.

After quantization, ghost and gauge-fixing terms need to be added appropriately. The gauge

terms are

Lgauge = −1

4
Gi

µνG
µνi − 1

4
W i

µνW
µνi − 1

4
BµνB

µν (1.2)
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where the field strength tensors for SU(3)C , SU(2)L, andU(1)Y are respectively

Gi
µν = ∂µG

i
ν − ∂νG

i
µ − gsfijkG

j
µG

k
ν , i, j, k = 1, ..., 8

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW

j
µW

k
ν , i, j, k = 1, ..., 3

Bµν = ∂µBν − ∂νBµ (1.3)

The fermion part of the Standard Model involve three families of quarks and leptons (written

as two component left-handed Weyl spinors). Each family (with identical gauge structures)

consists of

Li =

(
νli
li

)
∼ (1,2)−1; DµLi = (∂µ +

ig

2
τ⃗ .W⃗µ −

ig′

2
Bµ)Li

l̄i ∼ (1,2)2; Dµl̄i = (∂µ + ig′Bµ)l̄i

Qi =

(
ui
di

)
∼ (3,2) 1

3
; DµQi = (∂µ +

igs
2
λ⃗.G⃗µ +

ig

2
τ⃗ .W⃗µ +

ig′

6
Bµ)Qi

ūi ∼ (3̄,1)− 4
3
; Dµūi = (∂µ −

igs
2
λ⃗∗.G⃗µ −

2ig′

3
Bµ)ūi

d̄i ∼ (3̄,1) 2
3
; Dµd̄i = (∂µ −

igs
2
λ⃗∗.G⃗µ +

ig′

3
Bµ)d̄i (1.4)

where τi, i = 1, ..., 3 and λi, i = 1, ..., 8 are Pauli and Gell-Mann matrices respectively. The

notation (SU(3)C , SU(2)L)Y denotes the color, isospin, and hypercharge assignments. The

bars on the SU(2)L-singlet fields are parts of their names, and do not denote any kind of

conjugation. Rather, the unbarred fields are the left-handed pieces of a Dirac spinor, while

the barred fields are the names given to the conjugates of the right-handed piece of a Dirac

spinor. For example, the electron 4-component Dirac field is
(
eα
ē†α̇

)
. We follow two-spinor

notation and convention in [1]. The values of the hypercharge, Y , have been adjusted so as

to satisfy the Gell-Mann-Nishijima formula,

Q = I3 +
Y

2
(1.5)

The SU(2)L, andU(1)Y representations are chiral, so no fermion mass terms are allowed.
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The fermion part of the Standard Model therefore consists entirely of gauge-covariant kinetic

energy terms

Lfermion = i

3∑
i=1

(
L†
i σ̄

µDµLi + l̄†i σ̄
µDµl̄i +Q†

i σ̄
µDµQi + ū†i σ̄

µDµūi + d̄†i σ̄
µDµd̄i

)
(1.6)

where

σ̄µ = (I2×2 ;−τ⃗) (1.7)

All gauge couplings respect chirality: left- and right-handed fermions evolve separately in the

absence of masses, but in the real world, most fermions and some of the gauge bosons have

masses. Masses can be generated dynamically, without spoiling renormalizability, through

the elegant Higgs mechanism by introducing a complex scalar field

H =

(
H+

H0

)
∼ (1,2)1; DµH = (∂µ +

ig

2
τ⃗ .W⃗µ +

ig′

2
Bµ)H (1.8)

The Higgs part of the Standard Model Lagrangian is

LHiggs = (DµH)†DµH − µ2H†H − λ

4
(H†H)2 (1.9)

Vacuum stability demands λ > 0. For µ2 < 0 there will be spontaneous symmetry breaking

and the vacuum expectation value of the Higgs field will generateW and Z masses. Fermion

masses are generated through Yukawa couplings to the Higgs doublet:

LYukawa = −
3∑

i,j=1

(
yuijūiH̃

†Qj + ydij d̄iH
†Qj + ylij l̄iH

†Lj

)
+ h.c. (1.10)

where

H̃ ≡ iτ 2H∗ =

(
H0∗

−H−

)
∼ (1,2)−1 (1.11)

and yu, yd, and yl are completely arbitrary 3 × 3 matrices which ultimately determine the
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fermion masses and mixings. It is worth mentioning that in the Standard Model neutrinos

are massless by construction. We will get back to the possibility of adding neutrino masses

to the Standard Model in 1.2.

1.1.2 Limitations of the Standard Model

The Standard Model of elementary particles is a consistent renormalizable field theory

that is in remarkably good agreement with all experimental facts. It successfully predicted

the existence of the weak neutral current, the existence and masses of the W and Z bosons,

and those of the charm quark, as necessitated by the GIM mechanism. The consistency

between theory and experiment indirectly tested the radiative corrections and ideas of renor-

malization and allowed the successful approximate prediction of the top quark and Higgs

boson masses. The discovery of Higgs boson in 2012 was the most recent astonishing triumph

of this theory. Despite its extraordinary successes in describing the low energy regimes, it is

widely known that the Standard Model cannot be the final theory of nature. Besides some

theoretical issues concerning physics of higher energy scales, there are several observational

facts which cannot be explained in the Standard Model. This thesis will try to address some

of these issues and explore their possible interconnection.

Observational evidence for physics beyond the Standard Model includes non-zero neu-

trino masses, existence of dark matter and dark energy, strong CP problem, and baryon

asymmetry in the universe. From a theoretical point of view issues such as hierarchy prob-

lem, the gauge symmetry problem, mass hierarchy of the elementary particles, flavor prob-

lem, and gravity cannot be explained by the Standard Model itself. Some of these issues are

discussed in the following.

Neutrino masses: In the Standard Model neutrinos are massless as there is no right-

handed neutrino (the mass term of a fermion in the Lagrangian involves both left- and

right-handed quantum field). But now it is clear that neutrino flavors oscillate which can

be explained quantum mechanically as the result of tiny, non-zero mass difference of mass

eigenstates of neutrino. Although neutrino masses can be introduced in the Standard Model

simply by adding right-handed singlet neutrinos and coupling them to the Higgs field, the
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smallness of the corresponding Yukawa coupling motivates physicists to look for more natural

mechanisms beyond the Standard Model to generate neutrino masses.

Existence of dark matter and dark energy: Cosmological observations including

cosmic microwave background radiation (CMB), acceleration of the Universe as determined

by Type Ia supernova observations, large scale distribution of galaxies and clusters, and

big bang nucleosynthesis has allowed precise determinations of the cosmological parameters.

The Standard Model constitutes only about 5% of the total energy budget of the Universe

today. About 23% is the cold dark matter, which is a type of matter that barely talks to the

Standard Model fields. The expected properties of dark matter, i.e. stability, darkness, and

collisionlessness, leave us with no candidate in the Standard Model. The rest of the energy

budget should be dark energy, a constant tiny energy density for the vacuum that is also not

accounted for in the Standard Model.

Strong CP problem: One can use the dual field strength tensor of gluons to add

an additional gauge-invariant term like G̃G to the Lagrangian of The Standard Model.

This term which breaks the CP symmetry would induce an electric dipole moment for the

neutron. The stringent limits on this dipole makes the contribution of this additional term

to the Lagrangian very small. It is a puzzling that why this contribution is so small.

Matter, antimatter asymmetry: The observed excess of baryons with respect to

antibaryons is presumably due to a tiny asymmetry that could have been generated dynam-

ically if the three Sakharov conditions are met. Yet, no known mechanism can generate

sufficient matter, antimatter asymmetry in the Standard Model.

Hierarchy problem: Standard Model generates particle masses through the Higgs

mechanism. Since in contrast to fermions, there is no symmetry in the Standard Model to

protect Higgs mass from large quantum corrections due to high-scales physics (which could

be as high as Planck scale), the actual mass of the Higgs boson, 125 GeV, is unnaturally

light and it must be fine tuned in such a way that almost completely cancels the quantum

corrections. The sensitivity of Higgs mass to any high energy scale in the theory is the origin

of the hierarchy problem.

Gauge symmetry problem: The Standard Model symmetry group structure is a

complicated direct product of three subgroups, SU(3)C × SU(2)L × U(1)Y , with separate
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gauge couplings. There is no explanation for why only the electroweak part is chiral and

parity-violating. Similarly, the standard model incorporates but does not explain charge

quantization. This is important because it allows the electrical neutrality of atoms. Charge

quantization may be explained, at least in part, by the absence of anomalies or the existence

of magnetic monopoles, but either of these is likely to find its origin in some kind of underlying

unification.

Gravity: Gravity is not fundamentally unified with the other interactions in the stan-

dard model. General relativity is not a quantum theory, and there is no obvious way to

generate one within the standard model context.

1.2 NEUTRINO MASS

This section reviews briefly the neutrino masses and how it introduces new degrees of

freedom to the Standard Model.

1.2.1 Mixing, oscillation, Neutrino Mass

The charged leptons can be detected from their continuous track forming from ionized

atoms as they traverse matter. On the contrary, neutrinos are directly observed through their

weak interactions, e.g., charged current and neutral current scattering processes. Different

neutrino flavors can only be distinguished by the flavors of their accompanying charged

lepton produced in charged-current weak interactions.

Until the late 1990s, our knowledge about neutrinos was limited to the facts that there

are three distinct flavors and that they are extremely light (and possibly massless). How-

ever, even at that time several experiments had reported possible anomalies in the observed

interaction rates of atmospheric and solar neutrinos. The publication of the solar and atmo-

spheric neutrino data from the Super-Kamiokande detector [2], which provided compelling

evidence for the phenomenon of neutrino flavor oscillations over very large distances changed

this picture entirely.
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In the absence of any direct evidence for their mass, neutrinos were introduced in the

Standard Model as truly massless fermions for which no gauge-invariant renormalizable mass

term can be constructed. Consequently, in the Standard Model there is no mixing in the

lepton sector. However, the evidences of neutrino oscillations were found in the Super-

Kamiokande [2], SNO [3], KamLAND [4], and other solar [5, 6] and atmospheric [7] neutrino

experiments. Observation of neutrino oscillations has opened a new window into physics

beyond the Standard Model. New physics seems to have manifested itself in the form of

neutrino masses and lepton mixing.

The observation of neutrino flavor oscillations arises from mixing between the flavor and

mass eigenstates of neutrinos (misalignment of mass and flavor states). In other words the

three neutrino states that interact with the charged leptons in weak interactions are each a

different superposition of the three (propagating) neutrino states of definite mass. Neutrinos

are created (and absorbed) in weak processes in their flavor eigenstates. Therefore neutrino

flavor oscillations is a direct sign of neutrinos being massive particles.

As we mentioned before the gauge group structure of the Standard Model fixes only the

gauge bosons of the model. The fermions and Higgs contents have to be chosen somewhat

arbitrarily. In the Standard Model, these choices are made in such a way that the neutrinos

are massless and the masslessness is maintained to all orders in perturbation theory. But

neutrinos are massive, and so one has to incorporate neutrino mass in a realistic model of

particle interactions. Thus we must seek physics beyond the Standard Model to explain

observed evidences for neutrino masses. This does not necessarily mean going beyond the

gauge group of the standard model, which fixes only the gauge bosons of the model. Even

with the same gauge group as the standard model, one can conjecture extra fermions or

Higgs bosons in the model so that the model predicts massive neutrinos. In the next section

we consider models with enlarged fermion sector.

1.2.2 Dirac and Majorana masses

One can simply treat neutrino mass on exactly the same footing as the masses of other

known fermions. The neutrinos are Dirac particles just like all other known fermions. To
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Figure 1: Seesaw mechanism with a heavy fermion that gives the left-handed neutrino a

small Majorana mass

this end we need to add right-handed neutral fields N †
l corresponding to each charged lepton,

l. Like the other right-handed fields, they are assumed to be SU(2)L singlets:

Nl ∼ (1,1)0 (1.12)

Then Yukawa part of the Lagrangian of the Standard Model can be upgraded as follows:

LYukawa ⊃ −
∑
i,j

yνijNliH̃
†Li + h.c. (1.13)

Although this model can generate the mass of neutrino after spontaneous symmetry breaking

but it cannot explain the lightness of neutrinos. Following Gell-Mann’s totalitarian princi-

ple,“Everything not forbidden is compulsory”, we can also add a bare mass term for the N

field which reads

LN ⊃ −mN

2
(NN +N †N †) (1.14)

After the Higgs gets a vev, as it is illustrated in Figure.1, we have the following mass terms

which mix ν and N
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L ⊃ −mN

2
N ′N ′ −mDν

′N ′ + h.c.

= −1

2
(ν ′N ′ )

 0 mD

mD mN

 ν ′

N ′

+ h.c., (1.15)

where mD ≡ yv/
√
2 represents the Dirac mass term with v = 246 GeV. The prime denotes

gauge eigenstates, to be distinguished from unprimed fields which will denote the mass basis.

We diagonalize the mass matrix with the following transformation: ν ′

N ′

 =

 cν sν

−sν cν

 ν

N

 , (1.16)

where we have defined

cν ≡ cos θν , sν ≡ sin θν , tan 2θν =
2mD

mN

(1.17)

the mass Lagrangian becomes

L ⊃ −1

2
(ν N)

 m1 0

0 m2

 ν

N

+ h.c.

= −(m1νν +m2NN) + h.c. (1.18)

where

m1,2 ≡
1

2

[
mN ∓

√
m2

N + 4m2
D

]
(1.19)

Note that the minus sign for the mass of the light neutrino can be absorbed in to the

definition of the fields.

It can be seen that when mN ≪ mD then the corresponding fermion masses and the

mixing angle are

m1 ∼
m2

D

mN

, m2 ∼ mN , θ ∼ mD

mN

(1.20)
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Eq. (1.18) shows we have a theory with two Majorana fermions which with a heavy Majorana

mass term, mN , one of them is very light and the other one is heavy. This is the essence of

seesaw mechanism [8], the lightness of the neutrino can be explained by introducing a heavy

scale.

1.3 SUPERSYMMETRY

As it was explained in 1.1.2, one of the theoretical issues of the Standard Model is the

hierarchy problem, the sensitivity of Higgs mass to any high energy scale. In this section we

introduce supersymmetry (SUSY), an elegant theoretical framework which not only resolves

this problem but also has several interesting outcomes such as a candidate for the dark

matter, and unification of gauge couplings.

Supersymmetry is a hypothetical symmetry between bosons and fermions. The huge

quantum corrections to Higgs mass from higher energy scales in theory can be controlled

by the interplay between these symmetrical fermionic and bosonic degrees of freedom. This

can be shown simply by comparing quantum correction to the Higgs mass originated from

a fermion and a scalar. Consider the interaction between Higgs, a Dirac fermion, f , and a

complex scalar field S:

L ⊃ −λfHf̄f − λS|H|2|S|2 (1.21)

Then we have a correction to m2
H from a loop containing f

δm2
H−f =

λ2f
16π2

[
−2Λ2 + 6m2

f ln(
Λ

mf

)

]
(1.22)

and another correction to m2
H from a loop containing S
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δm2
H−S =

λS
16π2

[
Λ2 − 2m2

S ln(
Λ

mS

)

]
(1.23)

where Λ is an ultraviolet momentum cutoff used to regulate the loop integrals. It should be

interpreted as at least the energy scale at which new physics enters to alter the high-energy

behavior of the theory. The hierarchy problem manifests itself in the quadratic dependence

of m2
H−f and m2

H−S on the cutoff. The relative minus sign of fermionic and bosonic loops

is the key factor here. If each of the fermions of the Standard Model is accompanied by

two complex scalars with λS = λ2f , then the Λ2 contributions will neatly cancel. This can

happen through a new symmetry, symmetry relating fermions and bosons that is called

supersymmetry.

It should be emphasized that if we use dimensional regularization on the loop integral

instead of a momentum cutoff, then there will be no Λ2 piece. However, even then the term

proportional to m2
S in δm2

H−S cannot be eliminated without the tuning of a counter-term

specifically for that purpose. Thereforem2
H is sensitive to the masses of the heaviest particles

that H couples to.

A supersymmetry transformation changes a bosonic state into a fermionic state, and vice

versa:

Q|boson⟩ = |fermion⟩, Q|fermion⟩ = |boson⟩ (1.24)

where Q is the generator of these transformations, a fermionic operator which is a spinor

under Lorentz transformations. By adding Q and Q† to the generators of the Poincare group,

{P µ, Jµν}, the algebra of the supersymmetry transformations can be summarized as
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[P µ, P ν ] = 0

[Jµν , P λ] = i(gνλP µ − gµλP ν)

[Jαβ, Jρσ] = i(gβρJασ − gαρJβσ − gβσJαρ + gασJβρ)

[Qα, P
µ] = [Q†

α̇, P
µ] = 0

[Qα, J
µν ] = (σµν) β

α Qβ

[Q†
α̇, J

µν ] = −Q†
β̇
(σ̄µν)β̇α̇

{Qα, Qβ} = {Q†
α̇, Q

†
β̇
} = 0

{Qα, Q
†
β̇
} = 2σµ

αβ̇
Pµ (1.25)

The fermionic nature of the generators of such symmetries and the highly restricted repre-

sentations of them in an interacting quantum field theory are the outcomes of the Haag-

Lopuszanski-Sohnius extension [9] of the Coleman-Mandula no-go theorem [10] which states

that under reasonable assumptions the space-time symmetry of a field theory cannot be ex-

tended beyond the Poincare algebra except for internal symmetry generators if the generators

obey commutation rules.

The single-particle states of a supersymmetric theory fall into irreducible representations

of the supersymmetry algebra, called supermultiplets. Each supermultiplet includes both

fermion and boson states, which are known as superpartners of each other. By using the

algebra, Eq.1.25, one can easily show that the squared-mass operator, P 2, commutes with the

operators Q and Q†, and with all spacetime rotation and translation operators, so particles

living in the same irreducible supermultiplet must have equal masses. The supersymmetry

generators also commute with the generators of gauge transformations. Therefore particles

in the same supermultiplet must also belong to the same representation of the gauge group,

and so must have the same quantum numbers such as electric charges, weak isospin, and

color degrees of freedom. By using the spin angular momentum and supersymmetry algebra

one can show that each supermultiplet contains an equal number of fermions and bosons.

The simplest supermultiplet consists of a single Weyl fermion (with two spin helicity states)
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and two real scalars. The two real scalar degrees of freedom together can be interpreted as

a complex scalar field. This combination of a two-component Weyl fermion and a complex

scalar field is called a chiral or matter or scalar supermultiplet.

The other simple possibility for a supermultiplet contains a spin-one vector boson. By

forcing the theory to be renormalizable, this must be a gauge boson that is massless, at least

before the gauge symmetry is spontaneously broken. A massless spin-one boson has two

helicity states, so the number of bosonic degrees of freedom is two. Its superpartner is there-

fore a massless Weyl fermion, with two helicity states. Since gauge bosons transform as the

adjoint representation of the gauge group, their fermionic super partners, called gauginos,

must also live in the adjoint representation. The adjoint representation of a gauge group is

always its own conjugate, therefore the gaugino fermions must have the same gauge trans-

formation properties for left-handed and for right-handed components. Such a combination

of spinor gauginos and spin-one gauge bosons is called a gauge or vector supermultiplet.

In an extension of the Standard Model that realizes supersymmetry [11, 12, 13], each

particle lives in either a chiral or gauge supermultiplet, and must have a superpartner with

spin differing by one-half unit. It is worth noticing that only chiral supermultiplets can

contain fermions whose left-handed parts transform differently under the gauge group than

their right-handed parts. All of the Standard Model fermions (quarks and leptons) have this

property, so they must be members of chiral supermultiplets. The bosonic partners of the

quarks and leptons therefore must be spin-zero scalars, and not spin-one vector bosons.

The names for the spin-zero partners of the quarks and leptons are constructed by

prepending an “s”, for scalar. So, generically they are called squarks and sleptons or some-

times sfermions. The left-handed and right-handed parts of the quarks and leptons each

must have its own complex scalar partner. The symbols for the squarks and sleptons are the

same as for the corresponding fermion, but with a tilde, (̃ ) used to denote the superpartner

of a Standard Model particle.

Since Higgs scalar boson has spin zero, it must reside in a chiral supermultiplet. It turns

out that just one chiral supermultiplet is not enough for Higgs. One reason for this is that

if there were only one Higgs chiral supermultiplet, the electroweak gauge symmetry would

suffer a gauge anomaly, and would be inconsistent as a quantum theory. This can be avoided
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Name Spin 0 Spin 1/2 SU(3)C × SU(2)L × U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) (3,2) 1
3

ū ũ∗R u†R (3̄,2)− 4
3

d̄ d̃∗R u†R (3̄,2) 2
3

sleptons, leptonss L (ν̃ ẽL) (ν eL) (1,2)−1

ē ẽ∗R e†R (1,1)2

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) (1,2)1

Hd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1,2)−1

Table 1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model

if there are two Higgs supermultiplets, one with each of hypercharges Y = ±1/2, so that the

total contribution to the anomaly traces from the two fermionic members of the Higgs chiral

supermultiplets vanishes by cancellation. The other reason for this is that because of the

structure of supersymmetric theories (the holomorphy of the superpotential), only a Y = 1/2

Higgs chiral supermultiplet can have the Yukawa couplings necessary to give masses to up-

type quarks (up, charm, top), and only a Y = −1/2 Higgs can have the Yukawa couplings

necessary to give masses to down-type quarks (down, strange, bottom) and to the charged

leptons.

All of the chiral supermultiplets of a minimal phenomenologically viable extension of

the Standard Model are summarized in Table.1, classified according to their transformation

properties under the Standard Model gauge group SU(3)C × SU(2)L × U(1)Y .

The gauge vector bosons of the Standard Model clearly belong to gauge supermultiplets.

The superpartners of the gauge and Higgs bosons are fermions, whose names are obtained by

appending “ino” to the end of the corresponding Standard Model particle name, i.e. gaugino

and Higgsino respectively. The SU(3)C color gauge interactions of QCD are mediated by

the gluon, whose fermionic color-octet supersymmetric partner is the gluino. As mentioned

before, a tilde is used to denote the supersymmetric partner of a Standard Model state.

The electroweak gauge symmetry SU(2)L ×U(1)Y is associated with spin-one gauge bosons
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Name Spin 1/2 Spin 1 SU(3)C × SU(2)L × U(1)Y

gluino, gluon g̃ g (8,1)0

winos, W bosons W̃ W (1,3)0

bino, B boson B̃ B (1,1)0

Table 2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model

W µ
1,2,3 and B

µ, with spin-one half superpartners W̃ µ
1,2,3 and B̃

µ, called winos and bino. After

electroweak symmetry breaking, the W µ
3 , B

µ gauge eigenstates mix to give mass eigenstates

Zµ and Aµ. The corresponding gaugino mixtures of W̃ µ
3 and B̃µ are called zino, Z̃µ, and

photino, Ãµ. Table.2 summarizes the gauge supermultiplets of a minimal supersymmetric

extension of the Standard Model.

The chiral and gauge supermultiplets in Tables. 1 and 2 make up the particle content

of the Minimal Supersymmetric Standard Model (MSSM). None of the superpartners of

the Standard Model particles has been discovered yet. If supersymmetry were an unbroken

symmetry of nature, then there would have to be selectrons with masses exactly equal to the

mass of the electron. A similar statement applies to each of the other sleptons and squarks,

and there would also have to be a massless gluino and photino. Because of their masses, we

would have been expected to discover them long time ago. Therefore, supersymmetry must

be a broken symmetry.

The nature of supersymmetry breaking can be better understood in the light of motiva-

tion provided by the hierarchy problem. Supersymmetry needs two complex scalar fields for

each Standard Model Dirac fermion, which is just what is needed to enable a cancellation

of the quadratically sensitive corrections. This type of cancellation also requires that the

associated dimensionless couplings should be related. The necessary relationships between

couplings actually occur in unbroken supersymmetry; unbroken supersymmetry guarantees

that quadratic divergences in scalar squared masses, and therefore the quadratic sensitivity

to high mass scales, must vanish to all orders in perturbation theory. Now, if broken su-

persymmetry is still to provide a solution to the hierarchy problem even in the presence of
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supersymmetry breaking, then the relationships between dimensionless couplings that hold

in an unbroken supersymmetric theory must be maintained. We therefore need to consider

“soft” supersymmetry breaking. This means that the effective Lagrangian of the MSSM can

be written in the form

L = LSUSY + Lsoft (1.26)

where LSUSY contains all of the gauge and Yukawa interactions and preserves supersymmetry

invariance, and Lsoft violates supersymmetry but includes only mass terms and coupling

parameters with positive mass dimension. If the largest mass scale associated with the soft

terms is denoted msoft, then the additional non-supersymmetric corrections to the Higgs

scalar squared mass must vanish in the msoft → 0 limit and they diverge logarithmically as

δm2
H = m2

soft

[
λ

16π2
ln(

Λ

msoft

) + ...

]
(1.27)

where λ represents various dimensionless couplings, and the ellipses represents terms that

are independent of Λ and also higher loop corrections. Because the mass splittings between

the Standard Model particles and their superpartners are originated from the parameters

msoft appearing in Lsoft, Eq.1.27 shows that the superpartner masses should not be too large.

Otherwise, we would end up with the hierarchy problem again. Using Λ ∼ mPl and λ ∼ 1

in Eq.1.27, one estimates that the masses of at least the lightest few superpartners, should

probably not be much greater than the TeV scale, in order for the MSSM scalar potential

to provide a Higgs vacuum expected vacuum resulting in mW ,mZ = 80.4, 91.2GeV without

fine-tuned cancellations.

There are some other implications of supersymmetry which make it a very interesting

theory, such as providing a dark matter candidate and unification of gauge couplings. Many

supersymmetric models involve or impose a discrete R-parity symmetry [13], Rp, which

requires that every allowed interaction vertex involves an even number of superpartners.

This implies that the lightest superpartner (LSP) is absolutely stable, and therefore a good

candidate for dark matter particle. Although Neutralinos are the most promising possibility,
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sneutrinos and the gravitino are viable alternatives. But the possibility of a sneutrino making

up the dark matter with a cosmologically interesting density has been largely ruled out by

direct searches.

The gauge problem described in Section 1.1.2 suggests the possibility of grand unifi-

cation [14, 15], in which the Standard Model gauge group, SU(3)C × SU(2)L × U(1)Y , is

embedded in a simple group G, with the quarks and leptons combined in the same multiplets.

Grand unified theories (GUTs) predict the unification of gauge couplings at some very high

energy scale [16]. The running of the couplings is determined by the particle content of the

effective theory that resides below the GUT scale. However, attempts to embed the Standard

Model in an unified theory such as SU(5) or SO(10) do not quite succeed. In particular,

the three running gauge couplings (the strong QCD coupling gs and the electroweak gauge

couplings g and g′) do not meet at a single point. In contrast, in the case of the MSSM

with superpartner masses of order 1 TeV, the renormalization group evolution is modified

above the SUSY-breaking scale. In this case, unification of gauge couplings, as illustrated in

Figure 2, can be (approximately) achieved [17, 18, 19].
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Figure 2: Renormalization group evolution of the inverse gauge couplings α−1
a (Q) in the

Standard Model and the MSSM. Plots are taken from Ref. [37].
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2.0 DARK MATTER

2.1 EARLY UNIVERSE IN A NUTSHELL

2.1.1 Homogeneous Isotropic Universe

To a very good approximation, our Universe is homogeneous and isotropic at sufficiently

large scales. This means that at any given moment of time, the geometry of space is the

geometry of a homogeneous and isotropic manifold. This is the basis of the cosmological

principle that there is no preferred direction or preferred position. The metric for a space with

homogeneous and isotropic spatial sections is the maximally-symmetric metric or Friedmann-

Robertson-Walker metric, which can be written as

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
(2.1)

where (t, r, θ, ϕ) are coordinates (comoving coordinates), a(t) is the cosmic scale factor and

with an appropriate rescaling of the coordinates, k can be chosen to be +1, -1, or 0 for spaces

of constant positive, negative, or zero spatial curvature, respectively. The dynamics of the

Universe is described implicitly by the scale factor a(t). To understand the evolution of the

scale factor by time, one must solve the Einstein equations:

Rµν −
1

2
Rgµν = 8πGNTµν + Λgµν (2.2)

in which the Λ term is interpreted as an effective energy-momentum tensor Tµν for the

vacuum of Λgµν/8πGN . For a Friedmann-Robertson-Walker universe containing a perfect
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fluid with energy density ρ and pressure p, the 0-0 component of this equation gives the

Friedmann’s equation:

(
ȧ

a

)2

+
k

a2
=

8πGN

3
ρ+

Λ

3
(2.3)

while the i-i component gives

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGNp+ Λ (2.4)

Equations. 2.3 and 2.4 can be accompanied by the continuity equation

d(ρa3) = −p d(a3) (2.5)

which is dependent on the other two. In fact, each of the three equations 2.3, 2.4 and 2.5 can

be obtained combining the other two. In general, to describe the dynamics of the Universe

it is convenient to choose the Friedmann equation and the continuity equation. The former

provides a link between matter and geometry, while the latter closes the dynamical problem,

fixing the behavior of the energy density in terms of the scale factor, once an equation of

state for the cosmological fluid is assigned.

The expansion rate of the Universe is determined by the Hubble parameter, H ≡ ȧ/a.

Friedmann’s equation, 2.3, can be recast as

H2 = H2
0 (Ωm,0a

−3 + ΩR,0a
−4 + ΩΛ,0 + Ωk,0a

−2) (2.6)

where

Ωi ≡
ρ

ρc
, ρk ≡ − 3k

8πGNa2
, ρc ≡

3H2

8πGN

(2.7)

and the subscript 0 indicates the value of the quantity today, or a = 1. Eq.2.6 describes

the evolution of the scale factor with time depending on the species dominating the energy

21



density of the universe. Current observations [25] show that we are living in a flat Universe,

k ∼ 0 which consists of ∼ 73% dark energy in the form of a cosmological constant, ∼ 23%

of Dark Matter which behaves as non relativistic matter component but effectively does not

interact with photons. The photon density only represents a small contribution ∼ 10−3%

while the remaining ∼ 4% are composed of standard baryonic matter, i.e. the astrophysical

structures and objects that are observable in the universe. These are the ingredients of the

Standard Cosmological Model (ΛCDM).

2.1.2 Thermal History of the Early Universe

The hot Big Bang theory describes the early Universe as a thermal bath in which all

fundamental particle species are involved and are maintained at equilibrium by interactions

with other species. The cosmological expansion implies that the thermodynamical parame-

ters of the macroscopic cosmological fluid depend only on time. Therefore, one can assume

that the Universe expansion happens through equilibrium states and that it is characterized

by a global temperature T (t), the temperature of photons, as long as non-ideal fluid effects

due to out-of-equilibrium features such as dissipative mechanisms can be neglected. Indeed,

the main part of the thermal history of the Universe can be well described as equilibrium

phases and the cosmological fluid is well-modeled by a perfect one, even if some stages of

the early evolution of the Universe are associated to phase transitions or species decays and

decoupling, which require an appropriate out-of-equilibrium representation.

Here we present a brief scheme of the main events characterizing the thermal history of

the Universe which has also been illustrated in Figure.3.

The Planck scale and Inflationary Epoch: The Planck scale, MPl ∼ 1019 GeV, is

some upper threshold in the energy, to which we can extend our classical theory of grav-

ity. Beyond that threshold, since quantum effects of gravity are expected to dominate, we

should incorporate them to describe gravity. It is expected that these issues will be properly

addressed in an as yet unknown non-perturbative string/quantum gravity theory.

The Hot Big Bang theory has its own problems. Some of them is due to the fact that

this theory needs special initial conditions to describe the early and present Universe. One
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Inflation

Electroweak  
Symmetry Breaking

QCD Transition

Neutrino Decoupling

Big Bang 
 Nucleosynthesis

Matter Dominated  
Expansion

Recombination 

100 GeV ~ 0.1 nanos

200 MeV~10 micros

2.5 MeV~ 0.1 s

1 MeV ~ 1 s

0.76 eV~ 57000 yrs

0.26 eV~370000 yrs

2.7 k~14 billion yrs Today

Figure 3: Thermal history of the early Universe.
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of these initial conditions is the huge amount of entropy (∼ 1088) of the Universe which

is almost constant during its evolution. This and other similar problems can be rephrased

qualitatively as why our Universe is so large, warm, spatially flat, homogeneous and isotropic.

Inflationary theory proposes elegant solutions to resolve these problems. According to this

theory, the hot cosmological epoch was preceded by the epoch of exponential expansion

(inflation). During the inflationary epoch, initially small region of the Universe expanded to

very large size, typically many order of magnitudes larger than the size of the part of the

Universe we see today. This rapid expansion in the end explains flatness, homogeneity and

isotropy of the observable part of the Universe.

Baryogenesis: The present Universe contains baryons (protons, neutrons) and practi-

cally no antibaryons. Presumably the Universe was baryon-symmetric in the beginning. The

same conclusion comes from inflationary theory. Baryon asymmetry was generated in the

course of the cosmological evolution due to processes that violates baryon number conserva-

tion. Today there is no unique answer to the question of the origin of this mechanism. We

note only that baryon asymmetry was generated most probably at very high temperatures,

at least 100 GeV and maybe much higher, although its generation at lower temperatures is

not completely excluded.

Electroweak phase transition: At a thermal energy of about 100 GeV and below,

the electromagnetic and weak forces start to behave distinctly. This happens because the

vector bosons W± and Z gain their masses, of roughly 80 and 90 GeV respectively, through

the Higgs mechanism. In other words, at temperatures above 100 GeV (energy scale of

electroweak interactions), the Higgs condensate is absent, and W± and Z bosons have zero

masses. The present phase with broken electroweak symmetry, Higgs condensate and massive

W± and Z bosons is the result of the electroweak transition that occurred at temperature

of order 100 GeV.

QCD phase transition: Above energy scale of strong interactions which is about 200

MeV, quarks and gluons behave as individual particles (rather strongly interacting towards

the transition epoch), while at lower temperatures they are confined in colorless bound states,

hadrons. At the same time (or almost the same time) there was the transition associated

with chiral symmetry breaking.
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Neutrino decoupling: Neutrinos maintain thermal equilibrium with the primordial

plasma through weak interactions down to a thermal energy of 1 MeV. Below this energy

neutrino interactions with cosmic plasma terminates, and they decouple and freely propagate

through the Universe. They are of the same order of magnitude as the temperature and

number density of photons.

Big Bang Nucleosynthesis (BBN): At high temperatures protons and neutrons were

free in thermal bath, but as the temperature of the Universe cooled down to the scale of

binding energies in nuclei, i.e., 1− 10 MeV due to expansion, neutrons have been captured

into nuclei to form the light elements. Besides hydrogen, there are other light nuclei in

primordial plasma: mostly helium-4 (the most tightly bound light nucleus) and also small

amount of deuterium, helium-3 and lithium-7; heavier elements were not synthesized in the

early Universe. This epoch of early Universe is the earliest epoch studied directly so far

and good agreement between BBN theory and observations is one of the foundations of the

theory of the early Universe. BBN epoch lasted from about 1 to 300 seconds after the Big

Bang, corresponds to the temperatures range from 1 MeV to 50 keV [20].

Recombination and photon decoupling: At low temperatures the visible matter in

the Universe was mainly in the state of neutral gas (hydrogen). At higher temperatures,

the binding energy was not large enough to keep electrons in atoms, and the matter was

in the state of baryon-electron-photon plasma. The temperature of the transition from

plasma to neutral gas (recombination) is determined by the binding energy in hydrogen

atom, 13.6 eV. Actually, due to the large photon-to-baryon ratio, recombination occurred

at some lower temperature, T ∼ 0.3 eV. This is a very special epoch in Universe history:

before recombination photons actively scattered off electrons and were trapped in the plasma,

while after it the neutral gas was transparent to photons and they could move freely in the

Universe. These leftover photons form the cosmic microwave background radiation (CMB)

that we see today. Therefore, it carries information about the properties of the Universe at

the epoch when its temperature was about 0.26 eV or equivalently 3000 K and an age of

about 370 thousand years.
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2.2 EVIDENCE FOR DARK MATTER

In this section we discuss various evidences and observations that confirm the existence

of a dark matter component in our Universe based on modern measurements and theoretical

developments.

Rotation curves: Under the assumption of circular motion, the dependence of velocity

of stars v(r) on distance r from galactic center follows from Newton’s law,
√

GNM
r

where

M is the enclosed mass, and GN is the gravitational constant. For distances that extend

beyond the Galactic disk, M should remain constant assuming all the mass is concentrated

in the disk, and therefore v(r) ∝ r−1/2. Instead, observations find that the circular velocity

curve flattens out at these distances, implying that M(r) ∝ r [21, 22]. Therefore one of the

strongest pieces of evidence for dark matter comes from rotation curves of galaxies.

Gravitational lensing and the Bullet cluster: One of the predictions of General

Relativity is that light can be bent by a gravitational potential and therefore does not

propagate in a straight line around a massive object. This is called gravitational lensing.

Another form of evidence for dark matter comes from utilizing gravitational lensing. if we

look at a galaxy or galaxy cluster and the light coming from distant galaxies, we can see

that the light is distorted or bent. This gives rise to multiple, distorted images of the distant

galaxies. By measuring the masses of distant objects and comparing this to estimates of the

amount of visible mass inferred from the luminosity of the object, it is possible to conclude

that there is missing mass or not. Mergers of galaxy clusters provide an excellent opportunity

to utilize this technique. In the famous case of the Bullet Cluster merger, 1E0657-558 [23, 24],

weak gravitational lensing allows us to see a vivid separation between visible matter and dark

matter. During the collision, individual galaxies within the clusters as well as dark matter

behave as collisionless objects, streaming through the collision. But most of the ordinary

matter in the clusters is in the form of hot gas within and between the galaxies, and the two

merging gas clouds can also be seen from their X-ray emission to be interacting within the

collision region. Gravitational lensing shows that most of the mass of the clusters passed

through the collision region smoothly, an expected signature of dark matter.

Cosmic Microwave Background (CMB):As we explained in section. 2.1.2, the cos-
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Figure 4: Planck 2018 temperature power spectrum, taken from Ref. [25]

mic microwave background is a relic radiation emitted around 300.000 years after the Big

Bang, after recombination epoch. Photons emitted at this time could freely stream in the

universe. The power spectrum of the CMB temperature anisotropy, the amount of fluctua-

tion in the CMB temperature spectrum at different angular scales on the sky, reveals precise

values for a host of cosmological parameters. Accurate measurements of this spectrum indi-

cate the presence of a non-negligible Dark Matter component in the matter energy budget

of the universe of the order of 85% and around 23% of its total energy density [25].

Structure Formation: To get structures like galaxies in a homogeneous and isotropic

universe, we need to introduce some small nonuniformities in the matter distribution in

the early universe. These perturbations will grow gradually in the expanding universe and

eventually become galaxies. It can be shown that in a radiation-dominated universe, density

perturbations in matter grow logarithmically with the expansion of the universe while they

become larger linearly in a matter-dominated universe. So structures really form after the

universe becomes matter-dominated. This leads to an argument for the existence of dark

matter. If perturbations in matter began growing only after recombination, at redshift
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z ≈ 1100, and perturbations grow linearly in a matter-dominated universe, then we would not

have nonlinear structure now unless we had begun with density perturbations δρ/ρ ∼ 10−3.

The CMB anisotropies, on the other hand, show us that the initial density perturbations

were δρ/ρ ∼ 10−5. Therefore the epoch of galaxy formation would occur substantially later

in the universe than is observed. Dark matter resolves this problem: it provides a form of

matter that was not coupled to the photon plasma. This allowed the Jeans instability to

begin acting on dark matter well before redshift z ≈ 1100.

2.3 PARTICLE DARK MATTER CANDIDATES

All the observational evidence of the existence of the dark matter that originate from its

gravitational interaction, can lead us to a list of properties of a proper dark matter candidate.

Indeed there is a plethora of dark matter candidates that can meet these properties. Dark

matter (or a at least a part of it) can be made of baryonic matter such as Massive Compact

Halo Objects (MACHOs) in the form of primordial black holes, faint stars or stellar remnants.

Since ordinary matter is made out of particles, therefore it is natural to make the hypothesis

that non-baryonic dark matter is also made out of elementary particles. In that case theses

particles must be:

Cold or Warm, but not hot: At the time of decoupling from the thermal bath, dark

matter should be non-relativistic (cold) or it is non-relativistic by radiation-matter equality

epoch (T ∼ 1 eV) (warm).

Dark (Dissipationless): no electromagnetic charge or color, at most weakly interacting

with the bath.

Stable: Stable or long-lived such that they did not decay until today. In fact the lifetime

should typically be much longer than the age of the universe.

Here we discuss briefly some of the non-baryonic dark matter particle candidates:

Neutrino: In the Standard Model, the only particles that can be considered as a viable

Dark Matter candidate are neutrinos as they are stable, neutral and massive. But neutrino

cannot be the only dark particle, since at the time of decoupling, it is still relativistic,
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it would be a hot dark matter [26]. The other constrain on neutrino comes from phase

space argument: it is a fermion and the occupancy number cannot be arbitrarily large, the

so-called Tremaine-Gunn bound [27]. Assuming the existence of sterile neutrino, this new

particle can play the role of the dark matter providing that its lifetime is larger than the age

of the universe. Sterile neutrinos by masses of the order of the keV scale and a mixing angle

of order of 10−9 can evade bounds from a plethora of constraints and be viable dark matter

candidates [28].

WIMP: We can assume that dark matter is a weakly interacting massive particle

(WIMP) that followed a thermal history similar to the Standard Model particles. In other

words dark matter was initially in thermal equilibrium with the Standard Model bath, and

it decoupled at some early stage of the universe. This idea that emerged in the 1980’s is still

one of the most popular dark matter candidates.

Since dark matter is stable, only annihilation and inverse annihilation processes

χχ̄ ↔ ψψ̄ (2.8)

can change the number of dark matter in a comoving volume, where χ the dark matter can-

didate and ψ is a Standard Model field which has a thermal distribution with zero chemical

potential. Then dark matter number density is given by Boltzmann’s equation:

dnχ

dt
+ 3Hnχ = −⟨σv⟩(n2

χ − n2
χ,eq) (2.9)

where ⟨σv⟩ is the velocity averaged annihilation cross section of the process χχ̄ → ψψ̄ and

nχ,eq is the expected DM density in case of thermal equilibrium with the Standard Model

bath. The left-hand side of this equation represents the evolution of dark matter number

density in the case where interaction processes are negligible, i.e. a dilution because of

expansion. The right-hand side tends to ensure thermal equilibrium between dark matter

and the bath, and lead the dark matter number density to evolve according to its thermal

distribution. However, in the non-relativistic regime, T ∼ mχ, the number density becomes

suppressed, and the Hubble expansion rate wins. The result is the freeze-out of the dark
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matter to its final abundance as illustrated in Fig.5. It can be shown that the fraction of

the critical density, ρc, contributed by the WIMP dark matter of mass mχ today is

Ωχh
2 ≃ 0.1

( mχ

100 GeV

)(10−26 cm3s−1

⟨σv⟩

)
(2.10)

The fact that a dark matter mass of the order of the electroweak scale mχ ∼ 100 GeV

and a typical electroweak cross section σ ∼ g4m2
χ/m

4
Z ∼ 10−9 GeV−2 ≃ 10−26 cm3s−1 lead

to the observed dark matter relic density is known as the WIMP miracle and has become

the dominant paradigm since many well-motivated models, such as supersymmetry, provide

such candidates. Indeed the best WIMP candidate is motivated by Supersymmetry, the

lightest neutralino in the Minimal Supersymmetric Standard Model. Another type of WIMP

exists in models of universal extra dimensions [29]. In these models flat, compactified extra

spatial dimensions with an extension of order of TeV−1 are introduced and all the Standard

Model fields are allowed to propagate in the higher dimensional bulk. Higher dimensional

momentum conservation in the bulk translates in four dimensions to Kaluza-Klein (KK)

number (with boundary conditions to KK parity). The lightest KK particle, known as the

LKP, does not decay and is a WIMP candidate [30].

It is worth mentioning that one important feature of the freeze-out mechanism is that

it does not rely on any specific assumption regarding the prior dark matter history before

thermalization with the Standard Model bath. As long as the thermalization condition

is satisfied at some stage in the radiation domination era, this mechanism can be applied

independently of the post-inflation history of the universe.

Axion: The QCD axion was first introduced by Peccei and Quinn in 1977 [31] as a

solution to the strong CP problem (see section.1.1.2). Peccei and Quinn considered a global

U(1)PQ symmetry that the spontaneous breaking of it, along with explicit breaking associated

with the anomaly and instanton effects, leads to a very light pseudo-Goldstone boson known

as an axion [32, 33]. The phenomenology of the axions is determined by the scale of the

Peccei - Quinn symmetry breaking, denoted as fa. It was initially assumed that the scale

fa would be comparable to the electroweak scale, but this was excluded experimentally. A

still viable theory is the invisible axion, involving a very large fa much larger than the weak
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Figure 5: WIMP freeze-out to its final abundance

scale, and a very light axion, with a mass

ma ∼
√
mu/md

1 +mu/md

fπmπ√
2fa

∼ 0.6

(
107 GeV

fa

)
eV (2.11)

where mu, md, mπ and fπ are up quark mass, down quark mass, pion mass, and pion

decay constant respectively. Axion couplings also scale as f−1
a . Different experimental,

astrophysical, and cosmological constraints suggest that fa is in the range 109 − 1012 GeV,

corresponding to ma ∼ (10−5 − 10−2) eV [34]. Because of its negligible interaction strength,

axion is a cold dark matter.

Axions and axion-like particles (ALPs), which are not necessarily associated with the

strong CP problem and their masses do not follow Eq. 2.11 often occur in superstring theo-

ries [35].
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Figure 6: Dark matter search strategies

2.4 DARK MATTER DETECTION

If dark matter has non-gravitational interactions with the Standard Model particle con-

tent, then it is possible, as illustrated in Figure.6 to look for dark matter in three different

directions:

Direct detection: dark matter scatters off the Standard Model particles elastically.

Indirect detection: dark matter annihilates into the Standard Model particles.

Collider searches: dark matter produces from the Standard Model particles.

In this section we review these dark matter searches briefly.

2.4.1 Direct Detection

The possibility of the dark matter interaction with ordinary matter such as nucleons is

a reasonable assumption if we assume that dark matter particles were thermally produced

in the early universe. Then dark matter particles that are flying around Earth can collide a
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particle in a ground-based detector occasionally and scattering off with some recoil energy

ER. A large enough recoil energy can be used to detect scattered particle and infer the

properties of the dark matter kinematically. This is called the direct detection of the dark

matter which was first proposed in mid-1980s [36]. In the event of dark matter scatters off

a nucleus with mass mN , the nuclear recoil energy is

ER =
q2

2mN

≃ 50keV
( mχ

100 GeV

)2(100 GeV

mN

)
(2.12)

where q ∼ mχv is the momentum transfer in the collision.

The basic quantity of interest is the scattering rate of the dark matter particle with mass

mχ off the nuclear target. The differential rate per unit detector mass is

dR

dER

=
ρχ

mχmN

∫ vmax

vmin

d3v vf(v, t)
dσ

dER

(2.13)

where ρχ is the density of dark matter in solar system, (∼ 0.3 GeV/c2/cm3), f(v, t) is the

dark matter velocity distribution in the lab frame, vmax is the escape velocity of the Milky

Way (∼ 544 km/s), vmin is the minimum velocity needed to cause a nucleus to scatter with

energy ER, and dσ/dER is the differential dark matter-nucleus scattering cross section. The

minimal velocity required for a WIMP to induce a nuclear recoil of energy ER is

vmin =

√
ERmN

2

(mN +mχ)
2

(mNmχ)
2 =

√
ERmN

2

1

µ2
(2.14)

where µ denotes the reduced mass of the nucleon-WIMP system.

2.4.1.1 Spin-Independent and Spin-Dependent Interactions Because of its large

de Broglie wavelength, the WIMP interacts coherently with all nucleons in the target nucleus.

The WIMP-nucleus scattering cross section in Eq.2.13 is velocity and recoil-energy dependent

and given by
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dσ

dER

=
mN

2v2µ2

[
σSIF

2
SI(ER) + σSDF

2
SD(ER)

]
(2.15)

Since the possible interaction of WIMPs with baryonic matter is still unknown, the cross

section consists of two terms for spin-independent (SI, which can be described by a scalar

LS ∼ χχqq or vector LV ∼ χγµχqγµq effective 4-fermion Lagrangian) and spin-dependent

(SD, axial-vector LA ∼ χγµγ5χqγ
µγ5q) couplings. At small momentum transfers, q, all

partial waves of the nucleons contribute and the WIMP scatters off the entire nucleus co-

herently. For higher q the WIMP’s de Broglie wavelength is reduced and only part of the

nucleus interacts. This loss of coherence is encapsulated in the finite form factors FSI and

FSD.

The spin-independent (SI) cross section is given by

σSI = σn
µ2

µ2
n

[fpZ + fn(A− Z)]2

f 2
n

= σn
µ2

µ2
n

A2 (2.16)

where µ is the WIMP-nucleus reduced mass, and µn is the reduced mass of the WIMP-nucleon

system. A is the nucleus mass number and Z its atomic number. To be able to compare

different target nuclei utilized in different experiments, the WIMP-nucleus cross section,

σ, is usually converted to a WIMP-nucleon cross section, σn. fp and fn are the WIMP

coupling strength to protons and neutrons, respectively. The cross section reduces to the

second expression provided fp = fn which results in the A2 dependence of the cross section:

This implies that heavier targets observe higher event rates, however, at the same time the

expected recoil energy, ER is smaller that causes challenges on the detector’s thresholds.

The current status of the search for spin-independent WIMP-nucleon scattering is shown

in Figure.7.

The differential cross section for spin-dependent (SD) interactions, where the WIMP is

assumed to be a (Dirac or Majorana) fermion coupling to nucleus of spin J is [38]

dσSD
d|q⃗|2

=
8G2

F

πv2
[ap ⟨Sp⟩+ an ⟨Sn⟩]2

J + 1

J

S(|q⃗|)
S(0)

(2.17)
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Figure 7: WIMP cross sections (normalized to a single nucleon) for spin-independent coupling

versus mass, plot taken from Ref. [37]

where GF is the Fermi constant and q⃗ is the transferred momentum. ⟨Sp⟩ and ⟨Sn⟩ are the

expectation values of the total spin operators for protons and neutrons in the the target

nucleus which are model dependent. It is clear that there is no A2-scaling from coherence

effects as in the spin-independent case, Eq. 2.16, instead the cross section depends on the

total nuclear spin J of the target nucleus and its spin-structure function, S(|q⃗|).

2.4.2 Indirect Detection

In indirect searches for dark matter, the goal is to to detect the products of dark matter

annihilation or decay at objects with large dark matter density, in our galaxy or beyond.

While WIMP dark matter annihilation is strongly suppressed after thermal freeze-out, it

can still occur today and one can maximize the chance of discovery by searching in regions

of very high dark matter density. If the dark matter particle is unstable (gravitino, sterile

neutrino, ...), one can expect seeing some of them decaying today around us. Looking for

the products of dark matter annihilations or decays are not limited to WIMPs and extend
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to any framework where dark matter interactions with the SM particle content.

Dark Matter annihilations or decays into Standard Model particles could eventually

produce quarks (q), leptons (ℓ), gauge bosons (W±, Z, γ) or Higgs bosons (h) which will

eventually decay to electrons (e−) , protons (p), nuclei (N), gamma-rays or neutrinos (ν).

In order to claim the observation of some dark matter annihilation/decay event, an excess

of these final stable particles has to be detected over the astrophysical background which is

not well understood because of large uncertainties regarding the nature of the sources and

propagation models.

In the following we discuss the most common signatures and associated detection strate-

gies for indirect detection of dark matter.

2.4.2.1 Gamma Rays To quantify the amount of gamma rays produced from annihila-

tion of dark matter content of some close region, e.g. Galactic Center, we introduce the flux

dΦ

dEγ

=
1

4π

∑
f

Bf
⟨σfv⟩
2m2

χ

dNf

dEγ

×
∫
V

ρ2χ(x⃗)dV (2.18)

where the summation is over all possible annihilation channels; Bf , is the branching fraction

of final state f , ⟨σfv⟩, is the averaged annihilation cross section times relative velocity,

dNf/dEγ, is the photon spectrum from annihilation or decay to the final state f , mχ is

the mass of the dark matter particle, and ρχ is the dark matter density. Eq.2.18 must be

multiplied by an additional factor of 1/2 if the dark matter is not its own antiparticle.

All the astrophysical uncertainties in the determination of the flux are absorbed by the

J-factor,

J ≡
∫
V

ρ2χ(x⃗)dV =

∫
∆Ω

dΩ′
∫
l.o.s

ρ2χdl (2.19)

while the particle physics input to the flux is absorbed by the factor of
⟨σfv⟩
m2

χ
dNf/dEγ.

The larger the J-factor, the more promising the astrophysical target is for dark matter

annihilation. But the size of the J-factor is not the only relevant factor, it together with the

potential backgrounds help us to determine the ideal target. For example, dwarf galaxies are
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dark matter-dominated and since they contain very few stars and little gas, therefore they are

some of the cleanest systems to search for dark matter. On the other hand, while a signal from

the center of the Galaxy enjoys enhancement due to the dark matter density and closeness,

it has to cope with large systematic uncertainties on the astrophysical backgrounds.

2.4.2.2 Antiproton Cosmic rays are composed primarily of high-energy protons mainly

originating outside the Solar System. For two reasons antiproton content of the astrophys-

ical background is rare: first, the production of antiproton in the Galaxy happens through

inelastic process of a proton hitting another proton, p + p → p + p + p + p, which costs us

a lot of energy (threshold ∼ 7 GeV). Second reason is that the energy flux of cosmic rays is

falling steeply with energy (∼ E−2.7), so compared to the maximal flux of cosmic-ray pro-

tons, observed at E ∼ 0.1 GeV, antiprotons will be under abundant, at 0.1 GeV, by about

a factor of
Φp(E)

Φp(E)

∣∣∣∣
0.1GeV

∼
(
0.1

7.5

)2.7

∼ 10−5 (2.20)

Dark matter particles could serve as a new primary component for cosmic rays. Proton

is the common product of all dark matter models; annihilation or decay into quarks, gauge

bosons, and even leptons due to ElectroWeak corrections, following by hadronization process

generates proton abundantly. These processes will produce as much antiproton as proton.

Antiprotons, as electrically charged particles, are deflected by the Galactic magnetic field

and their propagation must be accounted for as a diffusion process. Any excess of antiprotons

over the astrophysical background can be a hint of dark matter.

2.4.2.3 Neutrino Elusive weakly interacting neutrinos can travel over large distances

without being affected, therefore they carry the spectral information of the source all along.

They are detected by Cerenkov light produced by some detector material as neutrinos pass

through it. One interesting scenario is capturing and accumulating dark matter inside the

sun [39, 40], in the case where the DM-baryon scattering cross section is large enough. Then

the only way to detect annihilations of these trapped dark matter particles would be via the
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neutrino channel as only neutrinos can escape efficiently from the gravitational potential of

the Sun.

2.4.3 Collider Searches

Another possibility to attempt at observing Dark Matter is to produce it at high energy

colliders such as the Large Hadron Collider (LHC). LHC proton-proton collisions might

result in the production of WIMPs in association with one or more QCD jets, photons

as well as other detectable Standard Model debris. Since WIMPs are electrically neutral

and cosmologically stable massive particles, they manifest at colliders as missing transverse

energy. For this reason searches for dark matter are based on the observation of the visible

counterpart as trigger of the event such as charged leptons, jets or a photon, generally

referred to as mono-X searches. By selecting events with large missing energy one can

reduce the Standard Model background and potentially disentangle a dark matter signal.

However, colliders can allow to identify only missing energy, and therefore they cannot

uniquely ascertain the presence of dark matter in a signal event. They can simply confirm

the presence of a neutral and stable particle, that might have even decayed outside the

detector. Anyhow, colliders offer an exciting and complementary search strategy to identify

WIMPs. Indeed, assuming that the production of WIMPs at colliders is uniquely connected

to WIMP-nucleon scatterings at underground laboratories, one can use the non-observation

signals with large missing transverse momentum to derive limits on the WIMP-nucleon

scattering cross-section.
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3.0 INDIRECT DETECTION OF NEUTRINO PORTAL DARK MATTER

This chapter is devoted to the study of the feasibility of the indirect detection of dark

matter in a simple model using the neutrino portal. The model is very economical, with right-

handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and

simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa

couplings expected in a Type-I seesaw, direct detection and accelerator probes of dark matter

in this scenario are challenging. However, dark matter can efficiently annihilate to right-

handed neutrinos, which then decay via active-sterile mixing through the weak interactions,

leading to a variety of indirect astronomical signatures. It is based on our work in Ref. [41].

3.1 INTRODUCTION

A wide array of gravitational phenomena over a range of cosmological scales strongly

supports the hypothesis of dark matter (DM) [42, 43, 44]. There is, however, no firm evidence

that DM couples to ordinary matter other than through gravity, and the search for such

non-gravitational DM interactions has become one of the main drivers in particle physics

today. Neutrinos (ν) in the Standard Model (SM) may be identified as a component of

DM, since they are color-singlet, electrically neutral cosmic relics. However, the smallness

of the lightest neutrino mass makes them relativistic at freeze-out in the early universe, and

thus incompatible with current observations to account for the majority of the cold DM.

One therefore must seek a solution beyond the SM. Since we do not know how DM couples

(if at all) to the SM, it is important to explore a variety of models to understand in a

comprehensive manner how non-gravitational DM interactions may manifest [45].
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Since DM is presumably electrically neutral, it may be either the neutral component of an

electroweak multiplet, as in the well motivated weakly interacting massive particle (WIMP)

paradigm, or alternatively it may be a Standard Model (SM) gauge singlet state. In the

latter case of gauge singlet DM, an economical and predictive mechanism for mediating DM

interactions to the SM is provided by the so-called “portals”− renormalizable interactions of

DM through gauge singlet SM operators. There are only three such portals in the SM−the

Higgs portal [46, 47], the vector portal [48, 49], and the neutrino portal [8]. As applied to DM,

the Higgs portal [46, 50, 51, 52], and the vector portal [53, 54, 55] have been extensively

investigated, while the neutrino portal option has received comparatively little attention,

despite the strong motivation due to its connection to neutrino masses. In this chapter we

will examine a minimal model of neutrino portal DM in the simplest setup of a Type-I seesaw

scenario [8].

The neutrino portal to DM relies on DM interactions being mediated by the right-handed

neutrinos (RHNs). Since the RHNs are responsible for generating neutrino masses, one may

typically expect the DM interaction strength with the SM to be very small since it is gov-

erned by the neutrino Yukawa coupling. In this case it is challenging to probe neutrino

portal DM in accelerator experiments or in direct detection experiments. On the other

hand, the DM coupling to the RHN can be sizable, thereby facilitating the efficient anni-

hilation of DM to pairs of RHNs. This allows DM to be produced thermally in the early

universe with the observed relic abundance and furthermore presents an opportunity to test

the scenario through a variety of indirect detection channels. In this work we investigate

the indirect detection signatures of neutrino portal DM. The scenario investigated here was

first proposed in Ref. [53] and falls into the class of “secluded” DM scenarios. Some aspects

of the thermal cosmology were investigated in Ref. [56]. In regards to indirect detection

signatures, Ref. [57] explored a possible interpretation of the Fermi Galactic Center gamma

ray excess [58, 59, 60, 61, 62] in terms of the DM annihilation to RHNs. Recently, Ref. [63]

investigated the limits from gamma ray observations on DM annihilation to RHNs, although

did not explore the implications for specific particle physics models. Extensions of the sim-

plest scenario, which include additional states and/or interactions have also been discussed

in Refs. [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74]. Our work provides a comprehensive
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and updated analysis of the indirect detection phenomenology of neutrino portal DM. In

particular, we present constraints from Planck cosmic microwave background (CMB) mea-

surements, Fermi dwarf spheroidal galaxies (dSphs) and Galactic Center gamma-rays studies,

and AMS-02 antiproton observations, and also describe the future prospects for Fermi and

the Cherenkov Telescope Array. Thermal relic annihilation rates are already constrained for

DM masses below about 50 GeV. This scenario can also provide a DM interpretation of the

Fermi Galactic Center gamma ray excess, although we demonstrate that such an interpreta-

tion faces some tension from dSphs and antiproton constraints. We also describe extensions

of this scenario beyond the minimal model, including scenarios with large Yukawa and Higgs

portal couplings, and highlight the potentially rich physics implications in cosmology, di-

rect detection, and collider experiments. Besides these probes, there is also the interesting

possibility of a hard gamma-ray spectral feature that arises from the radiative decays of N ,

which could place complementary constraints in the region mχ ∼ mN , mN ≲ 50 GeV. We

will comment on this possibility below, and we refer the reader to Ref. [74] for a detailed

study.

The outline of the chapter is as follows. In Section 4.2.1 we describe a minimal neu-

trino portal DM model, outline the expected range of couplings and masses, and discuss

the cosmology. The primary analysis and results concerning the indirect detection limits

and prospects are discussed in Section 3.3. In Section 3.5 we describe several features and

phenomenological opportunities present in non-minimal neutrino portal DM scenarios. Our

conclusions are presented in Section 4.5.

3.2 NEUTRINO PORTAL DARK MATTER

The simplest construction beyond the Standard Model to account for the neutrino masses

is the introduction of right-handed neutrinos (RHN). Beside the normal Dirac mass terms

with the Yukawa interactions, the RHN can also have a Majorana mass term since it is a

SM gauge singlet. This is the traditional Type-I seesaw mechanism [8]. For the same reason

of its singlet nature, N can serve as a mediator to the dark sector via the neutrino portal. A
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simple model of neutrino portal DM based on the Type-I seesaw contains three new fields,

N,χ, ϕ, where N and χ are two component Weyl fermions and ϕ is a real scalar field. They

are charge-neutral with respect to the SM gauge interactions. The fermion N is identified as

a RHN. We will assume that χ is lighter than ϕ, and they are charged under a Z2 symmetry,

which renders χ stable and a potential DM candidate.

The Lagrangian has the following new mass terms and Yukawa interactions

L ⊃ −1

2
m2

ϕϕ
2 −

[
1

2
mNNN +

1

2
mχχχ+ yLHN + λNϕχ+ h.c.

]
, (3.1)

where L and H are the SM SU(2)L lepton and Higgs doublets, respectively. There are two

central features of this model. First, the RHN field N serves as a mediator between the dark

sector fields χ, ϕ and the SM fields, due to the couplings λ and y. This mediation allows

for non-gravitational signatures of the DM and a thermal DM cosmology. Second, after the

Higgs obtains a vacuum expectation value, ⟨H⟩ = v/
√
2 with v = 246 GeV, a small mass for

the light SM-like neutrinos is generated via the seesaw mechanism:

mν ∼ y2v2

2mN

. (3.2)

Given the observed neutrino masses1, the Yukawa coupling y depends on the RHN mass,

mN . For instance, fixing mν ∼
√

(∆mν)atm ∼ 0.05 eV suggsts a small neutrino Yukawa

coupling of order

y ≃ 10−6 (mN/v)
1/2. (3.3)

As we will discuss in more detail shortly, the requirement of thermal freeze-out of the DM

puts an upper bound on the DM and RHN mass less than 20 TeV. Therefore, the Yukawa

couplings that we will be interested in will generally be quite small. It will thus be extremely

difficult to produce the DM at accelerators, or directly detect it through its scattering with

SM particles. However, there is an opportunity to probe this type of DM via indirect

detection, and this will be the primary focus of this chapter.

As alluded to already we will be interested in DM that is thermally produced in the

early universe. The RHN mediator allows for the dark sector to couple to the SM thermal

1In principle, we would need at least two right-handed states to generate the observed neutrino mass
pattern. For our current interest, we will only focus on the lower-lying one N .
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Figure 8: The Feynman diagrams for the DM particle annihilation to RHN pair and the

decay of N to SM particles

bath in the early universe. Then, provided that mχ > mN and that all of the particles are

sufficiently light, say below O(10 TeV), the DM can efficiently annihilate to RHNs, Fig. 8,

χχ→ NN, (3.4)

and achieve the correct relic abundance. The process Eq. (3.4) is governed by the coupling

λ, which is a priori a free parameter. The thermally averaged annihilation cross section is

⟨σv⟩ =
[
Re(λ)2(mχ +mN) + Im(λ)2(mχ −mN)

]2
16π[m2

ϕ +m2
χ −m2

N ]
2

(
1− m2

N

m2
χ

)1/2

. (3.5)

We observe that the annihilation cross section Eq. (3.5) depends on the coupling λ and

the masses mχ, mN , mϕ. However, the indirect detection signatures that we will investigate

will depend in a detailed way only on the size of the annihilation cross section ⟨σv⟩, which

determines the rate, as well as the masses mχ and mN , which will affect the energy spectrum

of the SM annihilation products. Thus, it will be more convenient to simply work with

the three parameters {⟨σv⟩,mχ,mN}. Note that for a given set of masses, one can always
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obtain the desired cross section by an appropriate choice of the coupling λ through Eq. (3.5),

provided the coupling remains perturbative. We will discuss this point in detail shortly.

We can restrict the parameter space further if we demand that the DM saturates the

observed relic density. For Majorana fermion DM the observed relic abundance is obtained

for [75]

⟨σv⟩thermal = 2.2× 10−26 cm3 s−1. (3.6)

Once we fix the annihilation cross section to saturate the observed relic abundance, then

all of the physics can be characterized in terms of the two masses mχ and mN . Parameter

choices that predict cross sections smaller than (3.6) overproduce the DM.

We now discuss the expected range of masses and couplings of the new states in the

model. A first constraint comes from demanding that the coupling λ be perturbative and

thus the theory be predictive. Assuming mN ≪ mχ, the partial-wave perturbative unitarity

bound for the DM annihilation amplitude requires that λ <
√
4π. The over-closure and

perturbative unitarity constraints lead to the bound

mχ ≲
√

π

4⟨σv⟩thermal

≈ 20 TeV, (3.7)

which is in broad agreement with the general analysis of Ref. [76]. Furthermore, there are

a variety of limits on the right-handed neutrinos N , which depend on its mass and mixing

angle with active neutrinos. In particular, for seesaw motivated mixing angles, the lifetime

of N is typically longer than O(1 s) for mN ≲ 1 GeV, and is thus constrained by Big Bang

Nucleosynthesis [77, 78]. Then, considering mχ > mN in order to obtain and efficient DM

annihilation cross section we will consider in this chapter masses in the range

1 GeV < mN < mχ ≲ 20 TeV. (3.8)

The discussion above assumes a standard thermal history for the DM particle χ, which

relies on χ being in equilibrium with the plasma. Since the dark sector particles χ and ϕ

have no direct couplings to the SM, it is the RHN that is ultimately responsible for keeping

χ and ϕ in equilibrium. It is therefore important that N remain in equilibrium with the

SM during the freezeout process. The relevant processes to consider are the decay and
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inverse decays of N to the SM. This question has been investigated recently in Ref. [57]2.

For Yukawa couplings dictated by the naive seesaw relation, these process are very efficient

when mN ≳ mW , since N decays through a two body process. However, if N is light,

mN ≲ mW , the three body decays of N become inefficient and N can fall out of equilibrium.

As a consequence, this fact requires an annihilation cross section that is larger than the

canonical thermal relic value by some order one factor in the early universe to efficiently

deplete the χ abundance, as explored in detail in Ref. [57]. A detailed investigation of the

cosmology is beyond the scope of this work, but we will take the standard thermal value for

the annihilation cross section as a motivated benchmark.

Besides the terms in Eq. (3.1), an additional Higgs portal coupling, ϕ2|H|2 is allowed in

the model. This interaction provides an alternative means to keep ϕ, χ, and N in thermal

equilibrium with the SM. We will assume for now that this coupling is small so that the

phenomenology is dictated by the minimal neutrino portal interaction. However, a large

Higgs portal coupling can lead to a variety of interesting effects, and we will discuss this

topic in Section 3.5.

3.3 INDIRECT DETECTION CONSTRAINTS AND PROSPECTS

We now come to the main subject of this work: the constraints and prospects for indi-

rect detection of neutrino portal DM. We will investigate several indirect signatures of DM

annihilation in this scenario, including observations of the CMB, gamma rays, and antipro-

tons. For each of these indirect probes the relevant underlying reaction is DM annihilation

to RHNs as in Eq. (3.4), followed by the weak decays of the RHNs to SM particles due to

mixing. We will thererfore require the energy spectrum dN/dE per DM annihilation in the

photon, electron and antiproton channels as an input to our further analysis below. To com-

pute these spectra we first simulate the decay of RHNs to SM particles in the N -rest frame

using MadGraph5 aMC@NLO [225] in conjunction with the SM HeavyN NLO model files [81, 82].

These partonic events are then passed to Pythia 8 [83] for showering and hadronization,

2See Ref. [79] for a similar discussion in the context of right-handed sneutrino DM.
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thereby yielding the prediction for the resulting photon, electron, and antiproton spectrum

coming from the N decay, dN ′
i/dE

′ for i = γ, e−, p̄. These events are then boosted to the DM

rest frame according to the formula (see, e.g., Refs. [84, 85, 86, 87] for the case of massless

particles):

dNi

dE
=

∫ γ(E+β
√
E2−m2)

γ(E−β
√
E2−m2)

dE ′

2βγ
√
E ′2 −m2

dN ′
i

dE ′ , γ = (1− β2)−1/2 = mχ/mN , (3.9)

where m is the mass of the boosted particle, i.e., photons, or electrons, antiprotons; see

Appendices A and B for a derivation of Eq. (3.9). This gives the prediction for the required

spectrum in each channel. We note that spin correlations are not accounted for in our

simulation, but these are expected to have only a modest effect on the broad continuum

spectra of interest to us (see Ref. [86] for an explicit example where this expectation is borne

out).

We display in Figure 9 examples of the predicted continuum γ-ray, electron, and antipro-

ton spectra for (E2
i dNi/dEi versus Ei for i = γ, e−, p̄), where we have fixed the DM mass to

be mχ = 200 GeV and chosen three values for the RHN masses mN = 20 GeV (solid), 50

GeV (dashed), 100 GeV (dotted). Here we have assumed that N couples solely to the first

generation (electron-type) lepton doublet. In the case of the γ-ray and antiproton spectrum,

one observes a broad spectrum that peaks in the O(10 GeV) range. The location of the

peak is largely dictated by the DM mass, which controls the total injected energy. There is

a mild sensitivity to the RHN mass, with harder spectra resulting from a larger mass gap

between the DM and RHN. For the electron case, in addition to the continuum component,

there is a hard component resulting from the primary N → We decay, which is clearly seen

in Figure 9.

In this work we will restrict to the case in which N couples to the electron-type lepton

doublet, but it is worth commenting on the cases of couplings to muon and/or tau flavor. In

these cases, we have checked that the continuum spectra is very similar to the electron-flavor

case, as is expected since these particles dominantly originate from decay of the electroweak

bosons. The primary difference for muon or tau-flavor couplings will be the absence of the

hard electron component from the primary N decay. The electron spectrum will be used
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below as an input to the CMB bounds, so one may expect a mild difference in the resulting

limits in the case of muon or tau flavor couplings.

We now present in turn the constraints on neutrino portal DM from the Planck cosmic

microwave background measurements, Fermi observations of gamma rays from the Galactic

Center and from dwarf spheroidal galaxies, and AMS-02 observations of antiprotons. A

summary of these constraints, as well as a discussion of other indirect searches not considered

here, and an analysis of the future prospects, is presented below in Section 3.3.5.

3.3.1 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) provides a sensitive probe of DM annihila-

tion around the epoch of recombination. In particular, if the annihilation products include

energetic electrons and photons, the photon-baryon plasma can undergo significant heating

and ionization as these particles are injected into the bath, modifying the ionization history

and altering the temperature and polarization anisotropies. Using precise measurements of

the CMB by a number of experiments, including WMAP [88], SPT [89, 90], ACT [91], and

Planck [92], robust, model-independent constraints on DM annihilation have been derived

by several groups [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107].

The relevant quantity of interest for DM annihilation during recombination is the energy

absorbed by the plasma per unit volume per unit time at redshift z,

dE

dV dt
= ρ2c Ω

2
χ (1 + z)6

[
f(z)

⟨σv⟩
mχ

]
, (3.10)

where ρc is the critical density of the Universe today and Ωχ is the DM density parameter

today. Production of neutrinos as daughter particles and free-streaming of electrons and pho-

tons after creation until their energy is completely deposited into the intergalactic medium

(IGM) (via photoionization, Coulomb scattering, Compton processes, bremsstrahlung and re-

combination) affect the the efficiency of energy deposition. This is accounted for in Eq. (3.10)

by the efficiency factor, f(z), which gives the fraction of the injected energy that is deposited

into the IGM at redshift z and depends on the spectrum of photons and electrons arising

from DM annihilations. Furthermore, since the CMB data are sensitive to energy injection
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Figure 9: Continuum γ-ray, electron, and antiproton spectra E2
i dNi/dEi versus Ei (i =

γ, e−, p̄) for DM mass mχ = 200 GeV and RHN masses mN = 20 GeV (solid), 50 GeV

(dashed), 100 GeV (dotted). The RHN is assumed to couple to the electron-type lepton

doublet.
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over a narrow range of redshift, i.e., 1000−600, f(z) can be well-approximated by a constant

parameter feff.

The additional energy injection from DM annihilation in Eq. (3.10) alters the free elec-

tron fraction (the abundance ratio of free electrons to hydrogen), which in turn affects the

ionization history. These effects are quantitatively accounted for with new terms in the

Boltzmann equation describing the evolution of the free electron fraction. The additional

terms are added to the baseline ΛCDM code and used to derive limits on the energy release

from DM annihilation. Planck sets a limit on the particle physics factors in Eq. (3.10)

feff(mχ)
⟨σv⟩
mχ

< 4.1× 10−28 cm3 s−1GeV−1, (3.11)

which is obtained from temperature and polarization data (TT,TE,EE+lowP) [92].

To apply the Planck constraints of Eq. (3.11) to the neutrino portal DM model, it remains

to compute the efficiency factor feff(mχ) in our model. We use the results of Ref. [106], which

provides f
γ(e−)
eff (E) curves for photons and electrons to compute a weighted average with the

photon/electron spectrum (dN/dE)γ,e− predicted in our model according to

feff(mχ) =
1

2mχ

∫ mχ

0

dE E

[
2f e−

eff (E)

(
dN

dE

)
e−

+ fγ
eff(E)

(
dN

dE

)
γ

]
. (3.12)

The photon and electron spectra for each DM and RHN mass point are computed with

Monte Carlo simulation described at the beginning of this section and are displayed for a

few benchmarks in Figure 9. Using these spectra and Eqs. (3.11) and (3.12), we obtain a limit

on the annihilation cross section from the CMB as a function of mχ and mN . These limits

are displayed in Figure 10 as contours of the 95% C.L. upper limit on log10 [⟨σv⟩/(cm3 s−1)]

(black curves) from the CMB from Planck [92] in the mχ − mN plane. The thick (red)

line indicates the region where the cross section limit is equal to the thermal relic value of

Eq. (3.6). The constraints on the annihilation cross section are translated to limits on the

minimum value of the coupling constant λ (which occurs for mϕ = mχ) as shown by the

vertical (blue) lines. The shaded (blue) region indicates where the perturbative unitarity

bound is violated, λ >
√
4π. Since the efficiency factor feff is essentially constant over a

broad range of mχ, Eq. (3.11) implies that the limit on ⟨σv⟩ scales with mχ irrespective of
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the value of mN , and this feature is clearly present in Figure 10. We observe that Planck is

able to constrain the thermal relic value based on Eq. (3.6) for DM masses below about 20

GeV. A small feature in the limit contour is apparent in the region near mW ≲ mN ≲ mZ .

This is a consequence of the dominance of the two body decay to N → Wℓ in this small

mass window.

3.3.2 Gamma rays from the galactic center

One of the primary signatures of DM annihilation are high-energy gamma rays. In

comparison to other cosmic ray signatures involving electrically charged particles, gamma

rays are essentially unperturbed by magnetic fields and the astrophysical environment as

they travel to us from their source, yielding information about both the energy and location

of the underlying DM reaction. One can search for both gamma ray line signatures as well

as a continuum signal. While a line signature is unfortunately not present in the neutrino

portal DM model, there can be a distinct continuum gamma ray signal, and this will be

the subject of investigation here. Significant advances in our study of the gamma-ray sky

have been achieved over the past several years by the Fermi Gamma Ray Space Telescope,

and data from the Fermi collaboration can be used to probe DM annihilation over a wide

range of models and DM masses. In this section we will consider gamma ray signatures from

the center of the Milky Way. The Galactic Center has long been recognized as the brightest

source of DM induced gamma rays, a consequence of its proximity and the rising DM density

in this region. At the same time extracting a signal from this region is challenging due to

significant and not well-understood astrophysical backgrounds. Below we will also investigate

gamma ray signals from dwarf spheroidal galaxies, which provide a cleaner, albeit dimmer,

source of gamma rays.

The quantity of interest for gamma ray signals of DM annihilation is the gamma ray flux

per unit energy per unit solid angle in a given direction, Φγ(E, n̂), where E is the energy and

n̂ is a unit vector along the path of the line of sight. The gamma ray flux can be written as

Φγ(E, n̂) =
1

4π

[
⟨σv⟩
2m2

χ

dNγ

dE

]
J(n̂). (3.13)
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Figure 10: Contours of the 95% C.L. upper limit on log10 [⟨σv⟩/(cm3 s−1)] in the mχ −mN

plane (black curves) from Planck [92]. The thick (red) line indicates the region where the

cross section limit is equal to the thermal relic value of Eq. (3.6). The vertical (blue) lines

show the limits on the minimum value of the coupling constant λ. The shaded (blue) region

indicates the perturbative unitarity bound.
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The term in square brackets in Eq. (3.13) above depends only on the underlying particle

physics properties of the DM model, including mχ, ⟨σv⟩, and the spectrum of photons

emitted per DM annihilation dNγ/dE. This spectrum is shown in Figure 9 for the channel

χχ→ NN for several choices of χ and N masses.

The quantity J(n̂) in Eq. (3.13), also called the J-factor, depends only on astrophysics

and involves an integral over the DM density profile ρχ(r) that runs along the path of the

line of sight defined by n̂:

J(n̂) =

∫
l.o.s.

ρ2χ(r) dl. (3.14)

In practice, the J-factor is averaged over a particular region of interest relevant for the

analysis. The J-factor depends sensitively on the DM distribution and can vary by several

orders of magnitude depending on this assumption, which translates into a substantial un-

certainty in the derived annihilation cross section limit. At present, there is no consensus on

the expected DM halo profile. Cuspy profiles such as NFW [108, 109] or Einasto [110] find

support from N -body simulations [111, 112]. These simulations only involve DM, and the

inclusion of baryonic processes may significantly impact the shape of the profile, especially

towards the inner region of the Milky Way. However, even the qualitative nature of the

resulting DM distribution is a matter of debate, and it is possible that the resulting profile

is either steepened [113, 114, 115, 116] or flattened [117] due to baryonic effects. Besides

the assumption of the DM distribution, a separate, smaller O(1) uncertainty arises from the

overall normalization of the profile, which is fixed to match the local DM density ρ0 [118].

The current situation regarding the observed gamma ray flux from the Galactic Center

is somewhat murky. A number of analyses, starting from the works of Goodenough and

Hooper [59, 60] and culminating most recently in the Fermi analysis [58], have found a broad

excess of gamma rays from the Galactic Center, which peaks in the 1 − 3 GeV range. All

analyses conclude that there is a highly statistically significant excess above the currently

accepted diffuse background models (see for example Refs. [61, 62]). However, the origin

of these gamma rays is still not clear. While there has been a significant effort devoted

to possible DM interpretations, recently it has been argued that the excess is more likely

to be a new population of unresolved point sources, which would disfavor the simplest DM
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interpretations [119, 120, 121, 122] (see however [123]). It is certainly interesting to speculate

on a possible DM origin, and we will carry out this exercise below in Section 3.4. Here we

will instead take a conservative approach and use the Fermi data to place limits on DM

annihilation.

To obtain limits on the neutrino portal DM scenario, we use the model independent

results of Ref. [124]. In that work, four years of data from the Fermi Large Area Telescope

was used to construct maps of the gamma ray flux in the region around the Galactic Center in

four energy bins in the range from 300 MeV−100 GeV. Backgrounds templates from known

point sources and emission from the Galactic Disk are then subtracted to yield the residual

flux. Assuming that DM annihilation accounts for the remaining emission, the authors

then place limits on DM annihilation for several choices of halo profiles. This procedure

yields conservative limits since it is expected that additional background sources, such as

the central supermassive black hole, unresolved point sources, and cosmic ray interactions

with the gas, also contribute significantly to the residual emission. Limits on the the particle

physics factor that governs the gamma ray flux, (⟨σv⟩/m2
χ)
∫
dE dNγ/dE, are provided in

Ref. [124].

For the neutrino portal DM model, we can use these results to derive a limit on the

annihilation cross section for the process χχ → NN as a function of the DM and RHN

mass. In Figure 11 we show contours of the 95% C.L. upper limit on the annihilation cross

section in the mχ −mN plane labelled by the black curves. These limits are derived under

the assumption of an NFW profile and local DM density ρ0 = 0.3 GeV cm−3. We see that

under these assumptions, the Fermi data probes the thermal relic cross sections of Eq. (3.6)

for mχ ≲ 10 GeV (thick red contour). The constraints on the annihilation cross section are

again translated to limits on the minimum value of the coupling constant λ as shown by the

vertical (blue) lines. The shaded (blue) region indicates the perturbative unitarity bound.

However, we again emphasize that there are significant uncertainties associated with halo

profile, and the limits will become stronger (weaker) by a factor of a few to 10 (depending

of course on the detailed shape) if one assumes a contracted (cored) DM distribution [124].

We observe a small feature near mW ≲ mN ≲ mZ where the two body decay N → Wℓ

dominates.
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Figure 11: Contours of the 95% C.L. upper limit on log10 [⟨σv⟩/(cm3 s−1)] in the mχ −mN

plane (black curves) from Fermi observations of gamma-rays from the Galactic Center, using

the model independent results of Ref. [124]. The thick (red) line indicates the region where

the cross section limit is equal to the thermal relic value of Eq. (3.6). The vertical (blue)

lines show the limits on the minimum value of the coupling constant λ. The shaded (blue)

region indicates the perturbative unitarity bound.
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3.3.3 Gamma rays from dwarf spheroidal galaxies

Gamma ray observations of dwarf spheroidal satellite galaxies (dSphs) of the Milky Way

offer a promising and complementary indirect probe of DM annihilation. There are several

reasons to consider dSphs. They are DM-dominated, having mass to light ratios in the 10-

2000 range. Being satellites of the Milky Way, the dSphs are nearby. There are many of

them, O(40), allowing for a joint analysis to increase statistics. And, crucially, while the

Galactic Center provides a significantly brighter source of DM, the dSphs are known to have

substantially smaller astrophysical gamma-ray backgrounds in comparison to the Galactic

Center, making them very clean sources for indirect searches. The Fermi-LAT collaboration

has analyzed 6 years of gamma ray data from Milky Way dSphs, finding no significant excess

above the astrophysical backgrounds [125]. Here we will discuss the implications of these

null results for the neutrino portal DM scenario.

The Fermi analysis [125] is based on a joint maximum likelihood analysis of 15 dSphs

for gamma ray energies in the 500 MeV - 500 GeV range. The quantity of interest in the

likelihood analysis is the energy flux,

φk,j =

∫ Ej,max

Ej,min

E Φγ,k(E) dE, (3.15)

for kth dwarf and jth energy bin. For each dwarf and energy bin, Fermi provides the likeli-

hood, Lk,j as a function of φk,j. The likelihood function accounts for instrument performance,

the observed counts, exposure, and background fluxes. For a given DM annihilation chan-

nel, the energy flux depends on mχ, ⟨σv⟩, and Jk (the J-factor of the dSph – see Eq. (3.14))

according to Eqs. (3.13,3.14,3.15), i.e., φk,j = φk,j(mχ, ⟨σv⟩, Jk). The likelihood for a given

dwarf, Lk, is

Lk(mχ, ⟨σv⟩, Jk) = LN (Jk|J̄k, σk)
∏
j

Lk,j(φk,j(mχ, ⟨σv⟩, Jk)), (3.16)

where LN accounts for statistical uncertainty in the J-factor determination (from the stellar

kinematics in the dSphs), incorporated as a nuisance parameter in the likelihood. The

Fermi-LAT collaboration employs a log-normal distribution parameterized by J̄k, σk :

LN (Jk|J̄k, σk) =
1

ln(10)Jk
√
2πσk

e−(log10(Jk)−log10(J̄k))
2/2σ2

k , (3.17)
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where Jk is the true value of the J-factor and J̄k is the measured J-factor with error σk on

the quantity log10 J̄k. The combined likelihood for all the dwarfs is then

L(mχ, ⟨σv⟩, {Ji}) =
∏
k

Lk(mχ, ⟨σv⟩, Jk), (3.18)

where {Ji} is the set of J-factors.

Given that no significant excess is observed, a delta-log-likelihood method is used to

set limits on DM model parameters, treating the J-factors as nuisance parameters. The

delta-log-likelihood ∆ lnL is given by

∆ lnL(mχ, ⟨σv⟩) = lnL(mχ, ⟨σv⟩, {J̃i})− lnL(mχ, ⟨̂σv⟩, {Ĵi}) (3.19)

where ⟨̂σv⟩ and {Ĵi} are the values of ⟨σv⟩ and {Ji} that jointly maximize the likelihood at

the given mχ, and {J̃i} = {J̃i(mχ, ⟨σv⟩)} are the values of the J-factors that maximize the

likelihood for a given mχ and ⟨σv⟩. A 95% C.L. upper limit is then defined by demanding

−∆ lnL(mχ, ⟨σv⟩) ≤ 2.71/2.

We follow a similar approach to the Fermi prescription defined above, with one minor

modification to speed up the numerical optimization. Rather than optimize over each of the

15 nuisance J-factors for each dSph, we introduce a single parameter, δ, which represents

the deviation of the J-factor of the dwarfs from their central values according to log10(Jk) =

log10(J̄k) + δ σk. Since no gamma-ray excess is observed in any indiviudual dSph, it is

reasonable to expect that the fit tends to move all J-factors up or down simultaneously

depending on the assumed values of mχ and ⟨σv⟩, and this effect that is captured well by

our δ prescription. As a validation, we have checked that our prescription reproduces the

Fermi limits on DM annihilation in the bb̄ channel [125] at the 10-20% level throughout the

entire mass range.

Using the gamma ray spectra produced with the Monte-Carlo simulation described at the

beginning of this section (examples are shown in Figure 9), we derive limits on the neutrino

portal DM model for the channel χχ→ NN . In Figure 12 we show contours of the 95% C.L.

upper limit on the annihilation cross section in the mχ−mN plane. The Fermi data from the

Milky Way dSphs are able to probe thermal relic cross sections (3.6) for mχ ∼ 40− 80 GeV
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Figure 12: Contours of the 95% C.L. upper limit on log10 [⟨σv⟩/(cm3 s−1)] in the mχ −mN

plane (black curves) from Fermi observations of gamma-rays from the Milky Way dSphs.

The thick (red) line indicates the region where the cross section limit is equal to the thermal

relic value of Eq. (3.6). The vertical (blue) lines show the limits on the minimum value of the

coupling constant λ. The shaded (blue) region indicates the perturbative unitarity bound.
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as shown by the thick (red) line, depending on the mass of the RHN 3. The vertical (blue)

lines and the associated numbers show the limits on the minimum value of the coupling

constant λ. The shaded (blue) region indicates the perturbative unitarity bound. In the

region mW ≲ mN ≲ mZ the two body decay N → Wℓ opens up and saturates the branching

ratio, which is clearly seen in Figure 12.

3.3.4 Antiprotons

Antiprotons (p̄) have long been recognized as a promising indirect signature of DM.

While DM annihilation typically produces equal numbers of protons and antiprotons, the

astrophysical background flux of antiprotons is very small in comparison to that of protons.

On the other hand, describing the production and propagation of these charged hadrons

is a challenging task, and any statement regarding DM annihilation rests on our ability to

understand the associated astrophysical uncertainties. The Alpha Magnetic Spectrometer

(AMS-02) experiment has provided the most precise measurements of the cosmic ray proton

and antiproton flux to date [126], and here we will explore the implications of this data on our

neutrino portal DM scenario. Since DM annihilates to RHNs, which subsequently decay via

W , Z, and Higgs bosons, the resulting cascade decay, showering and hadronization produce

a variety of hadronic final states including antiprotons. AMS-02 will therefore provide an

important probe of the model.

The propagation of antiprotons through the galaxy to earth is described by a diffusion

equation for the distribution of antiprotons in energy and space (see, e.g., Ref. [127] and ref-

erences therein). The transport is modeled in a diffusive region taken to be a cylindrical disk

around the galactic plane and is affected by several physical processes. These include diffu-

sion of the antiprotons through the turbulent magnetic fields, convective winds that impel

antiprotons outward, energy loss processes, solar modulation, and a source term describing

the production and loss of antiprotons. The source term accounts for astrophysical sources

such as secondary and tertiary antiprotons, and antiproton annihilation with the interstellar

3Our annihilation cross section limits are weaker than those dervied in Ref. [63] by roughly a factor of two.
We have not been able to find the source of the discrepancy, although it is perhaps possible to attribute the
difference to the uncertainties in the dSph J-factors. We are grateful to Farinaldo Queiroz for correspondence
on this issue.
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gas, as well as primary antiprotons produced through DM annihilation. The propagation

depends on a number of input parameters, and a set of canonical models, called MIN, MED,

MAX are often employed [128]. The diffusion equation is solved assuming the steady state

condition to find the flux of antiprotons from DM annihilation at earth,

Φp̄,χ(K) =
vp̄
4π

(
ρ0
mχ

)2

R(K)
1

2
⟨σv⟩dNp̄

dK
, (3.20)

where dNp̄/dK is the kinetic energy (K) spectrum of antiprotons per DM annihilation, vp̄

is the antiproton velocity, and ρ0 is the local DM density. The propagation function R(K)

accounts for the astrophysics of production and propagation, and we use the parameterization

provided in Ref. [129].

AMS-02 has provided precise measurements of the proton flux, Φp(K) [130], and the

antiproton-to-proton flux ratio, r(K) [126], which can be used to place constraints on DM

annihilation. To proceed, we require an estimate of the secondary background antiproton

flux originating from astrophysical sources. For this purpose we use the best-fit secondary

flux, Φp̄,bkg(K), from [131], which provides an acceptable fit to the AMS-02 data. With the

total antiproton flux, Φp̄,tot(K,mχ, ⟨σv⟩) = Φp̄,bkg(K)+Φp̄,χ(K,mχ, ⟨σv⟩), and the measured

proton flux from AMS-02, Φp(K), in hand, we form the ratio of these two fluxes and fit it

to the observed ratio. The test statistic is

χ2(mχ, ⟨σv⟩) =
∑
i

[r(Ki)− (Φp̄,tot(Ki,mχ, ⟨σv⟩)/Φp(Ki))]
2

σ2
i

, (3.21)

where i runs over energy bins, and σi is the reported uncertainty of the flux ratio [126].

Following Ref. [131], we define a limit on ⟨σv⟩ as a function of mχ, mN according to the

condition

χ2(mχ, ⟨σv⟩)− χ2
0 ≤ 4. (3.22)

where χ2
0 is the best fit chi-squared statistic assuming no primary DM antiproton source

from Ref. [131]. The limit is derived under the assumption of a Einasto profile and using

the MED propagation scheme. Contours of the limit on the annihilation cross section in the

mχ − mN plane are displayed in Figure 13. For DM masses in the range of 20 - 80 GeV,

AMS-02 is able to probe the thermal cross section Eq. (3.6), as indicated by the thick (red)
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Figure 13: Contours of the upper limit on log10 [⟨σv⟩/(cm3 s−1)] in the mχ − mN plane

(black curves) from the AMS-02 measurement of the antiproton-to-proton flux ratio [126].

The thick (red) line indicates the region where the cross section limit is equal to the thermal

relic value of Eq. (3.6). The vertical (blue) lines show the limits on the minimum value of the

coupling constant λ. The shaded (blue) region indicates the perturbative unitarity bound.
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line. The vertical (blue) lines show the limits on the minimum value of the coupling constant

λ. The shaded (blue) region indicates the perturbative unitarity bound. It is important to

note again that there are significant uncertainties associated with the DM halo profile and

the propagation scheme, which can lead to a variation in the cross section limits by one

order of magnitude or more [131]. Note that for a fixed mχ, the limits in Figure 13 become

stronger as mN is increased. This is because for fixed mχ, heavier RHNs tend to produce

more low energy antiprotons (see Figure 9). However, the ratio r(K) shows good agreement

with the astrophysical background model at low value of kinetic energy K and a slight excess

at larger values of K, explaining the behavior seen in Figure 13.

3.3.5 Summary of limits and future prospects

In Figure 14 we show the combined limits on the neutrino portal DM model for the case

in which the annihilation cross section is fixed to the thermal value, ⟨σv⟩ = 2.2 × 10−26

cm3 s−1. Constraints from Planck CMB measurements, Fermi observations of gamma-rays

from the Galactic Center and dSphs, and AMS-02 antiproton measurements are shown. We

remind the reader that the Fermi Galactic Center limits are derived for the choice of an NFW

halo profile, while the AMS-02 antiproton limits are based on an Einasto profile and MED

propagation scheme. Under the stated assumptions, we conclude that thermal annihilation

is constrained for DM masses up to 50−70 GeV depending on RHN mass. AMS-02 provides

the best probe in the case mN ≲ mχ, while Fermi dSphs provides the superior constraint

for mN ≪ mχ. We have also illustrated the impact of astrophysical uncertainties on the

antiproton and dSphs limits in Figure 14. For antiproton constraints, we show Burkert

profile and MED propagation (green dotted line) and Einasto profile and MAX propagation

(green dashed line). For dSphs, we show log10(Jk) = log10(J̄k)− 2σk (blue dotted line) and

log10(Jk) = log10(J̄k) + 2σk (blue dashed line).

There are several other notable indirect DM searches that we wish to comment on here.

AMS-02 has provided detailed measurements of the cosmic ray positron spectrum [132].

Much attention has been paid to these results (and those of its forerunner PAMELA [133])

due to the observation of a striking rise in the fractional positron flux, which potentially
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Figure 14: Constraints on the neutrino portal DM model in the in the mχ−mN plane from

the CMB (Planck), Galactic Center gamma rays (Fermi), dSphs gamma rays (Fermi), and

antiprotons (AMS-02). A thermal annihilation cross section ⟨σv⟩ = 2.2 × 10−26 cm3 s−1 is

assumed throughout. See the text and Figures 10,11,12,13 for further details. Dotted and

dashed lines illustrate the impact of DM-related astrophysical uncertainties.
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points to a new primary source of positrons. While it is true that DM annihilation in

our scenario produces a significant positron flux, the cross section limits from Fermi dSphs

gamma rays and AMS-02 antiproton observations are expected to be stronger than those

from AMS-02 positron measurements by an order of magnitude or more, and thus we have

chosen to focus on these stronger tests.

Another well-known indirect DM probe is high energy neutrinos from DM annihilation

in the sun, which can be probed with the IceCube experiment [134]. But under the minimal

assumption of typical seesaw values for the neutrino Yukawa coupling (see Eq. (3.3)) the

DM-nucleon scattering rate will be too small to allow for the efficient capture of DM in the

sun, so we do not consider this possibility further.

Along with the continuum gamma-ray signatures studied here, there is also the possibility

of a harder gamma-ray spectral feature that arises from the radiative decay N → γν [74].

This signature will be relevant in the region mχ ∼ mN , mN ≲ 50 GeV. For the benchmark

thermal relic cross section, there are already relevant limits in this region from AMS-02 (see

Figure 14), which however are subject to sizable astrophysical uncertainties. In that regard,

the spectral “triangle” feature would provide a complementary probe. On the one hand, the

hard spectral feature has the advantage of being more easily discernible over the power law

background, while at the same time it is expected that the overall rate will be significantly

less than the gamma-ray continuum signal due to its radiative origin. A full quantitative

study of this signature goes beyond our scope here and we refer the reader to Ref. [74] for

further details.

As we have demonstrated, the data collected so far by Fermi-LAT already leads to strin-

gent limits on DM parameter space, and the sensitivity will improve significantly in the

coming years. The projected sensitivities for 10 and 15 years of data taking has been studied

in detail by the collaboration in Ref. [135]. The fast discovery of new dSphs is the primary

upcoming change in dSph targeted DM searches. The identification of new dSph candidates

by the Dark Energy Survey (DES) [136] over the past two years, if confirmed, will double

the number of known dSphs. Following on important discoveries of the Sloan Digital Sky

Survey (SDSS) [137], which covered 1/3 of the sky and discovered 15 ultra-faint dSphs, sur-

veys like DES and especially the Large Synoptic Survey Telescope (LSST) [138] will cover
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complementary regions of the sky which are expected to discover potentially O(100) dSphs.

Ref. [135] takes 60 total dSphs as an estimate of the number of dSphs that can be used

for LAT searches. They find that the sensitivity of searches targeting dwarf galaxies will

improve faster than the square root of observing time. Following Ref. [135] we expect an im-

provement on the cross section limit from Fermi-LAT 15 years dSph observations by a factor

of a few, which will probe thermal relic DM with masses mχ ≳ 100 GeV in the neutrino

portal DM scenario. Due to their large effective areas, ground-based imaging air Cherenkov

telescopes (IACTs), such as H.E.S.S. [139], VERITAS [140], and MAGIC [141], and in the

future CTA [142] and HAWC [143], are well suited to search for higher energy gamma rays

originating from heavy DM annihilation. In particular, H.E.S.S. has presented a search for

DM annihilation towards the Galactic Center using 10 years of data [139]. Assuming a cuspy

NFW or Einasto profile the search sets the strongest limits on TeV mass DM that annihi-

lates to WW or quarks, and almost reach thermal annihilation rates. Taken at face value,

the H.E.S.S. limits are indeed stronger than the Fermi dSphs limits for DM masses above

a few hundred GeV, but are however less robust due to the inherent astrophysical uncer-

tainties associated with the central region of the Milky way, both in terms of conventional

gamma-ray sources and the DM distribution. The H.E.S.S data is not publicly available, so

unfortunately we are not able to properly recast their limit. However, for a fixed DM mass,

the continuum photon spectrum produced in our model from χχ → NN is qualitatively

similar to the spectrum produced by χχ→ WW . We can therefore obtain a rough estimate

of the H.E.S.S. sensitivity by translating their limits in the WW channel to our parameter

space The H.E.S.S. limits are approaching the canonical thermal relic annihilation rate for

DM masses around 1 TeV.

In the future, the Cherenkov Telescope Array (CTA) will be able to further probe heavy

TeV-scale DM annihilation, with the potential to improve by roughly an order of magnitude

in cross section sensitivity over current instruments depending on the annihilation mode and

DM mass. Here we estimate the sensitivity of future CTA gamma-ray observations of the

Galactic Center using a “Ring” method technique [144]. Our projections are based on a

simplified version of the analysis carried out in Ref. [145] that we now briefly describe. The

analysis begins with the definition of signal (referred to as “ON”) and background (“OFF”)
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regions. A binned Poisson likelihood function is constructed in order to compare the DM

model µµµ to a (mock) data set n :

L(µµµ|n) =
∏
i,j

µ
nij

ij

nij!
e−µij . (3.23)

where µij is the predicted number of events for a given model µµµ in the ith energy bin

and the jth region of interest, corresponding to ON (j = 1) and OFF (j = 2) regions.

These model predictions are compared to the corresponding observed counts nij. We use

15 logarithmically-spaced energy bins, extending from 25 GeV to 10 TeV. The number of

gamma-ray events predicted by each model consists of three components: a DM annihilation

signal, an isotropic cosmic-ray (CR) background, and the Galactic diffuse emission (GDE)

background:

µij = µDM
ij + µCR

ij + µGDE
ij . (3.24)

The details for the regions of interest that have been used in our analysis, including the

corresponding solid angles and J-factors, can be found in Ref. [142]. Furthermore, we have

used the effective area produced by MPIK group [146] and fixed the time of observation to

be 100 hours.

We account for differential acceptance uncertainties (i.e. acceptance variations across

different energy bins and regions-of-interest) by rescaling the predicted signals µij by pa-

rameters αij and profiling the likelihood over their values. Following Ref. [145] we assume

Gaussian nuisance likelihoods for all α with respective variance σ2
α independent of i and

j. Our limits correspond to differential acceptance uncertainties of 1%. The mock data n

we employ includes a fixed isotropic cosmic-ray background component in all bins, and no

signal from DM annihilation. We derive 95% CL upper limits (sensitivity) on the annihi-

lation cross-section ⟨σv⟩ in the usual way by requiring −∆ lnL ≤ 2.71/2. Our projections

are shown in Figure 15. We have not included systematic uncertainties for the background

components, which can be as large as order one and thus significantly degrade the CTA

sensitivity. However, this can be partially overcome through a more sophisticated morpho-

logical analysis, which leverages the shape differences between the galactic diffuse emission

and DM signal [145]. In the end, we expect that Figure 15 provides a reasonable ballpark
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estimate of the CTA sensitivity, which can improve over H.E.S.S. by a factor of a few to

ten in the 100 GeV - TeV DM mass range. We expect Fermi dSphs observations to provide

superior limits for lower mass DM, mχ ≲ 100 GeV.

3.4 GALACTIC CENTER GAMMA RAY EXCESS INTERPRETATION

As mentioned in Section 3.3.2, various analyses of Fermi-LAT data show a spherically

symmetric excess of gamma rays coming from the central region of the Milky Way peaking

in the 1-3 GeV energy range [59, 60, 61, 62, 58]. Since DM annihilation to RHNs abundantly

produces gamma rays, it is interesting to explore a possible interpretation of this excess in the

context of the neutrino portal DM model. In fact, this possibility was previously investigated

in Ref. [57], which found that DM annihilation to RHNs could indeed provide a good fit to the

Galactic Center excess. Here we will additionally confront this interpretation with existing

constraints from other indirect probes, and notably Fermi gamma-ray observations from

dSphs and AMS-02 antiproton observations.

We fit the neutrino portal DM model parameters to the Galactic Center excess spectrum

given in Ref. [62]. We adopt Navarro-Frenk-White (NFW) profile with γ = 1.2. Following

[62] we define the χ2 as

χ2(θ) =
∑
ij

[Φi(θ)− (Φi)obs] · Σ
−1
ij ·

[
Φj(θ)− (Φj)obs

]
, (3.25)

where θ={⟨σv⟩,mχ,mN}, Φi ((Φi)obs) is the predicted (observed) γ-ray flux (see Eq. (3.13))

in the ith energy bin, and Σ is the covariance matrix. We find that the best-fit point is

{⟨σv⟩ = 3.08 × 10−26 cm3 s−1,mχ = 41.3 GeV,mN = 22.6 GeV} with χ2 = 14.12 for

23 degrees-of-freedom. Figure 16 depicts the best-fitted spectrum induced from the right-

handed neutrinos. Figure 17 displays 1σ, 2σ, and 3σ CL regions in the mN −mχ parameter

space. We see that neutrino portal DM can provide an acceptable fit over a significant range

of mass parameters.

Next, we would like to confront this interpretation with the other constraints derived

in Section 3.3. To this end, we perform the Galactic Center excess while fit fixing the
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Figure 15: Contours of the 95% C.L. projected sensetivity on log10 [⟨σv⟩/(cm3 s−1)] in the

mχ − mN plane (black curves) from CTA γ-ray observations of the Galactic Center using

Ring method, assuming 100hr of observation [145].
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Figure 16: The best-fitted gamma-ray spectrum together with the observed central values

and the error bars. The data and error bars are from Ref. [62].
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annihilation cross section to its thermal value, and overlay the limits derived from Planck

CMB, Fermi dSphs, and AMS-02 antiproton observations. The result is displayed in the

right panel of Figure 17. We see that this interpretation faces some tension with limits from

dSphs and antiprotons. However, it is too early to conclude from this analysis that the DM

interpretation of the excess is not viable given the significant astrophysical uncertainties in

the local DM density, dSphs DM densities, and the modeling of the antiproton propagation.

3.5 BEYOND THE MINIMAL SCENARIO

We have explored what is perhaps the simplest scenario of neutrino portal DM. The

primary probe of this model comes from indirect detection, and we have presented a com-

prehensive picture of the current constraints. However, it is possible that the neutrino mass

model is more complex than the simplest Type-I seesaw, or that there are additional inter-

actions of the scalar mediator with the Higgs, in which case a much richer phenomenology

is possible. In this section we will highlight some of these possibilities.

3.5.1 Large neutrino Yukawa coupling

Taking the naive seesaw relation in Eq. (3.2) as a guide, one generally expects very small

active-sterile mixing angles, θ ∼
√
mν/mN ≃ 10−6 × (mN/100GeV)−1/2, suggesting poor

prospects for direct detection and accelerator experiments. However, the neutrino Yukawa

coupling and active sterile-mixing angle can be much larger if one goes beyond the simplest

Type-I seesaw. For example, in the inverse seesaw model [147], the RHNs are pseudo-Dirac

fermions, with splitting governed given by a small Majorana mass. The SM neutrino masses

are light due to the same small Majorana mass, while the Yukawa coupling can in principle

be as large as y ∼ 0.1, while being compatible with experimental constraints.

Such large Yukawa couplings not only offer increased chances to probe the RHNs directly

(see, e.g., Ref. [148, 149] for a revew), but will also enhance the detection prospects of the DM

sector. For instance, one can induce sizable DM couplings to the Z and Higgs boson at one
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Figure 17: Interpretation of the Galactic Center gamma ray excess. The left panel displays

the 1σ, 2σ, and 3σ preferred regions in the mχ−mN plane, with the best-fit point of {⟨σv⟩ =

3.08 × 10−26 cm3 s−1,mχ = 41.3 GeV,mN = 22.6 GeV} with χ2 = 14.12 for 23 degrees of

freedom. The right panel shows the best-fit region for the case of a fixed thermal annihilation

cross section, ⟨σv⟩ = 2.2 × 10−26 cm3 s−1, as well as the existing limits from Planck CMB,

Fermi dSphs, and AMS-02 antiproton observations.
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loop that mediate large scattering rates with nuclei, which is relevant for direct detection

experiments and capture of DM in the sun. One can also potentially produce the RHNs

directly in accelerator experiments.

This also opens up the possibility for the RHN to be heavier than the dark sector particles,

while still having a thermal cosmology. Due to the large mixing angle, it is possible for DM

to annihilate efficiently into light active neutrinos, and furthermore the DM may annihilate

to other SM particles through the loop-induced Z and h couplings. We refer the reader to

Refs. [73, 68, 69] for recent investigations of these issues.

3.5.2 Higgs portal coupling

The scalar particle ϕ can couple to the Higgs portal at the renormalizable level

L ⊃ λϕH
2
ϕ2|H|2. (3.26)

We have so far assumed that this coupling is small. The reason we have made this assumption

is primarily for simplicity, as then the phenomenology and cosmology is solely dictated by

the neutrino portal link to the SM. However, this assumption can certainly be questioned.

Restricting to the fields and interactions of our scenario in Eq. (3.1), we observe that

the Higgs portal coupling (3.26) will be induced at one loop with strength of order λϕH ∼

λ2y2/16π2, which is very small due to the small neutrino Yukawa coupling. Still, one may

expect unknown UV physics to generically induce a larger coupling. This is because there

is no enhanced symmetry in the limit λϕH → 0, and so even though the operator (3.26)

is marginal, we cannot rely on technical naturalness ensure a small value without further

information about the UV physics. That being said, one can certainly imagine completions

in which the Higgs portal coupling is suppressed. For example if ϕ is a composite scalar

state of some new strong dynamics, then the Higgs portal operator would fundamentally be

a higher dimension operator and could be therefore be naturally suppressed.

Another good reason to consider the Higgs portal operator is that it provides additional

opportunities to probe the dark sector in experiment. A one loop coupling of the DM to the

Higgs will be induced and this can mediate scattering of DM with nuclei, or invisible decays

of the Higgs to DM [68, 69, 70, 71].
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An even more distinctive signature at colliders can arise if the Higgs could decay into a

pair of light scalars, h → ϕϕ. These scalars, once produced would then cascade decay via

ϕ → Nχ. The resulting RHN N , being lighter than the W boson, will have a macroscopic

decay length and could leave a striking displaced vertex signal (see, e.g., [150]). The signature

would thus be an exotic Higgs decay with two displaced vertices.

3.6 SUMMARY AND OUTLOOK

In this chapter we have investigated a simple model of neutrino portal DM, in which the

RHNs simultaneously generate light neutrino masses via the Type-I seesaw mechanism and

mediate interactions of DM with the SM. The model, presented in Section 4.2.1, is quite

minimal and contains a dark sector composed of a fermion χ (the DM candidate) and scalar

ϕ, along with the RHN N . Given the generic expectation of tiny neutrino Yukawa couplings,

testing this model with direct detection or accelerator experiments is likely to be challenging.

However, it is possible in this model that DM efficiently annihilates to RHNs, which allows

for a number of indirect probes of this scenario.

We have carried out an extensive characterization of the indirect detection phenomenol-

ogy of the neutrino portal DM scenario in Section 3.3. Restricting to an experimentally and

theoretically viable mass range, 1 GeV ≲ mN < mχ ≲ 10 TeV, we have derived the con-

straints on the χχ→ NN annihilation cross section from Planck CMB measurements, Fermi

gamma-ray observations from the Galactic Center and from dSphs, and AMS-02 antipro-

ton observations. Currently, the dSphs and antiproton measurements constrain DM masses

below 50 GeV for thermal annihilation rates. In the future, Fermi dSphs observations will

be able probe DM masses above the 100 GeV range for thermal cross sections, while CTA

will be able to approach thermal cross section values for DM masses in the 100 GeV - 1TeV

range.

This model can also provide a DM interpretation of the FermiGalactic Center gamma ray

excess as discussed in Section 3.4. We have verified that the predicted spectrum of gamma

rays is compatible with the observed excess for RHN and DMmasses in the 20−60 GeV range
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and annihilation rates close the the thermal value. However, we have also shown that this

interpretation faces some tension with the existing constraints from Fermi dSphs and AMS-02

antiprotons (subject of course to various astrophysical uncertainties). It will be interesting to

see how this situation develops as Fermi and AMS-02 collect more data. However, at least

in the simplest model explored here, it will be challenging to find complementary probes

outside of indirect detection.

It is possible that the neutrino mass generation mechanism is more intricate than the

simplest Type-I seesaw, as discussed in Section 3.5. If so, the implications for neutrino

portal DM could be dramatic, particularly if the neutrino Yukawa coupling is large, as this

could lead to direct detection prospects, accelerator probes, and new annihilation channels.

Additionally, it is possible in this scenario for additional Higgs portal couplings to be active,

which could yield further phenomenological handles.

Portals provide a simple and predictive theoretical framework to characterize the allowed

renormalizable interactions between the SM and DM. Furthermore, the existence of neutrino

masses already provides a strong hint that the neutrino portal itself operates in nature. These

two observations provide a solid motivation for testing the neutrino portal DM scenario,

both through the generic indirect detection signals investigated in this chapter, and also

the additional signals present in more general models. It is worthwhile to broadly explore

these scenarios and their associated phenomenology in detail, and we look forward to further

progress in this direction in the future.

73



4.0 THERMAL DARK MATTER THROUGH THE DIRAC NEUTRINO

PORTAL

This chapter is devoted to the study of a simple model of thermal dark matter annihilating

to standard model neutrinos via the neutrino portal. A (pseudo-) Dirac sterile neutrino serves

as a mediator between the visible and the dark sectors, while an approximate lepton number

symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter

annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar,

charged under a symmetry that ensures the stability of the dark matter. A generic prediction

of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily

invisibly. The existing constraints and future projections from direct detection experiments,

colliders, rare meson and tau decays, electroweak precision tests, and small scale structure

observations are derived. It is based on our work in Ref. [151].

4.1 INTRODUCTION

The search for non-gravitational dark matter (DM) interactions is one of the chief enter-

prises in modern experimental particle physics and observational astrophysics [42, 43, 44, 45].

While not required on general grounds, such interactions find strong motivation in the con-

text of a cosmological origin of the dark matter abundance. Indeed, a compelling hypothesis

is that DM is a thermal relic from the hot Big Bang, which requires non-gravitational cou-

plings between DM and the Standard Model (SM) to ensure thermal contact and deplete the

DM abundance. These couplings in turn predict a variety of novel phenomena associated

with DM that can be sought through experiment and observation, offering the prospect of
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testing the thermal relic hypothesis. The most popular possibility for the non-gravitational

couplings is the ordinary electroweak gauge interactions. This scenario is theoretically at-

tractive due to the coincidence of the predicted and observed DM abundance for a TeV-mass

relic with electroweak interactions and its potential connection to the Higgs naturalness

problem, and has inspired an expansive and diverse experimental search program that has

probed a significant portion of the parameter space.

Nevertheless, thermal relic DM need not have SM gauge interactions. It is quite plausible

that DM is instead a new electroweak gauge singlet particle, in which case an additional

mediator particle is generally required to couple the dark and visible sectors [152, 153].

While there are in principle many ways that this mediation can occur, three renormalizable

portal couplings stand out on account of their economy and uniqueness. These are the

well-known vector portal [154, 48, 49], Higgs portal [46, 47], and neutrino portal [8]:

Bµν V
µν , H†H S, L̄HN + h.c., (4.1)

where Vµ, S, and N are new vector, scalar, and fermionic mediators, respectively, which can

be straightforwardly coupled to the singlet DM particle. It is possible to distinguish two

cases according to the dominant DM annihilation channel [53]. The first case is secluded an-

nihilation, in which dark matter annihilates directly to mediator particles. This occurs when

DM is heavier than the mediator. The second, more predictive case, is direct annihilation, in

which the dark matter annihilates through the mediator to SM particles. This occurs when

DM is lighter than the mediator. In the secluded regime, the annihilation rate is set entirely

by dark sector couplings. The mediator need only have a minuscule coupling to the SM to

ensure kinetic equilibrium between the sectors, making it challenging to robustly test the

scenario.1 In contrast, efficient direct annihilation necessitates a substantial mediator-SM

coupling to avoid DM overproduction, leading to a predictive and experimentally testable

scenario. For the predictive case of thermal DM directly annihilating to SM particles, a

broad experimental effort is developing that will decisively test vector portal mediation [55],

while the case of Higgs portal mediation is already strongly constrained [156].

1Departing from kinetic equilibrium can have change the standard relationship between DM annihilation
and its relic abundance. For a detailed study of this, see Ref. [155].
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Neutrino portal DM has been studied only a handful of times, despite sterile neutrinos

N being arguably the best motivated mediator candidate due to their role in neutrino mass

generation. One likely reason for this is a theoretical prejudice for tiny neutrino Yukawa

couplings, which in the simplest Type I seesaw with Majorana sterile neutrinos are generally

far too small to allow efficient direct DM annihilation to SM neutrinos. Most studies have

therefore focused on the secluded regime, in which DM annihilates directly to the sterile

neutrino mediators [53, 57, 56, 70, 71, 72, 63, 41]. In this case the most robust signatures

are indirect, and include cosmic gamma-rays antiprotons, and imprints of DM annihilation

on the cosmic microwave background (see e.g., the recent study of Ref. [41]).

However, the case of direct annihilation to SM neutrinos can also be viable if the Yukawa

couplings are large. Small neutrino masses are easily compatible with large neutrino Yukawa

couplings provided sterile neutrinos are pseduo-Dirac states and an approximate U(1)L global

lepton number symmetry is present. A model incoporating these basic ingredients was first

studied in Ref. [73], where the implications of a large neutrino-DM interaction for small

scale structure were investigated. A similar model was analyzed in Ref. [68, 69], where the

focus was on heavy DM phenomenology. It is also worth mentioning that direct annihilation

to light neutrinos allows for thermal relic DM lighter than ∼ 10 GeV that does not disturb

cosmic microwave background (CMB) observations without resorting to velocity suppression,

as opposed to annihilation into electromagnetically interacting final states [106]. For other

dark matter studies utilizing the neutrino portal, see Ref. [64, 66, 67].

Our aim in this work is to provide a systematic analysis of thermal neutrino portal DM

in the direct annihilation regime, over the entire cosmologically viable DM mass range from

1 MeV−1 TeV. The basic model consists of a dark sector containing a Dirac fermion DM χ

and a complex scalar ϕ, along with a Dirac sterile neutrino mediator N , and is essentially

the one constructed in Ref. [73]. Beyond the particular motivation of Ref. [73], this model is

of interest more generally as a scenario in which dark sector interactions with light neutri-

nos lead to thermalization and annihilation. We derive the existing constraints and future

sensitivity projections from direct detection experiments, colliders, rare meson and tau de-

cays, electroweak precision tests, cosmology. We also indicate the parameter regions that are

favored by perturbativity and technical naturalness. In analogy with predictive vector and
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Higgs portal models, we also present a transparent strategy to compare these constraints

and projections with the thermal relic target, under minimal and conservative assumptions

on model parameters. We identify new probes of this model that can be undertaken with

existing or near future experiments, including 3-body decays of stopped kaons and transverse

momentum distributions of charged leptons in W boson production at colliders. Further-

more, we emphasize the impact that a high statistics τ+τ− sample at a future B-factory

could have on testing this scenario.

The rest of this chapter is organized as follows. In Sec. 4.2, we outline the basic ingre-

dients of the model, discuss its simple cosmology, and the decay modes of the new states.

Section 4.3 describes constraints and probes of the heavy, mostly sterile neutrino in this

scenario. The phenomenology of the DM in this model and ways to test it are in Sec. 4.4.

In Sec. 4.5 we conclude and discuss future prospects.

4.2 FRAMEWORK

In this section we begin by defining a simple model in which DM couples to SM neutrinos

through mixing generated with a neutrino portal coupling. We then discuss the cosmology

and define the thermal relic target. We also discuss some basic features of the model that will

be needed to understand the phenomenology, including the decays of the new heavy states,

and the radiative couplings. We conclude this section with a brief discussion of technical

naturalness in this scenario.

4.2.1 Model

As discussed in the introduction, the basic scenario we have in mind is thermal DM

annihilating directly to SM neutrinos through the neutrino portal.2 To allow for a large

neutrino Yukawa coupling, and in turn an efficient annihilation rate, we take our mediator

N to be a Dirac particle. The dark sector is very minimal, and consists of a Dirac fermion

2More precisely, the dark matter annihilates into very light, mostly SM flavor neutrinos which we refer
to here as “SM neutrinos” for simplicity.
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DM candidate χ and a complex scalar ϕ. Along with the kinetic terms, the Lagrangian is

given by [73]

−L ⊃ m2
ϕ |ϕ|2 +mχ χ̄χ+mN N̄N

+
[
λℓ L̄ℓĤNR + ϕ χ̄ (yLNL + yRNR) + h.c.

]
, (4.2)

where H (Ĥ = iτ2H
∗) is the Higgs doublet, Lℓ = (νℓL, ℓL)

T are SM lepton doublets with

ℓ = e, µ, τ labeling the charged lepton mass eigenstates, λℓ are the neutrino Yukawa cou-

plings, and yL,R are couplings of the sterile neutrino mediator to the dark sector fields. The

Lagrangian of Eq. (4.2) respects a global U(1)L lepton number symmetry, under which Lℓ,

N and ϕ∗ have equal charges, as well as a ZD
2 dark matter parity under which χ and ϕ are

odd while all other fields are even. This ZD
2 could be the remnant of a gauge symmetry

broken at a high scale [157]. At the level of Eq. (4.2), the lepton number symmetry forbids

light SM neutrino masses, allowing us to take λℓ as free parameters and in particular much

larger than the usual naive Type I seesaw expectation.

We will assume mχ < mϕ, such that the ZD
2 symmetry ensures the stability of χ. If,

instead, mχ > mϕ then the ZD
2 symmetry would render ϕ stable and it would be a good

DM candidate. The phenomenology in this case would be essentially the same. The main

difference is that the DM annihilation cross section is velocity-suppressed (in the limit that

either yL or yR dominates), requiring larger couplings to provide efficient annihilation. Since

the fermionic DM scenario can tolerate smaller couplings, it is more conservative. For this

reason, we specify that mχ < mϕ and the fermion is the DM for definiteness in our detailed

study.

In the electroweak vacuum, ⟨H⟩ = v = 174 GeV, the SM neutrinos νi mix with N .

Diagonalizing the Lagrangian, we find a heavy sterile Dirac neutrino state, which we label

ν4. The physical mass of this state is m4 =
√
m2

N +
∑

ℓ λ
2
ℓv

2, and its left chiral component

is a combination of sterile and active flavors,

ν4 =

 U∗
N4NL +

∑
ℓ U

∗
ℓ4νℓL

NR

 , (4.3)
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where the mixing angles are given by

Uℓ4 =
λℓv

m4

, |UN4| =
mN

m4

=

√
1−

∑
ℓ

|Uℓ4|2. (4.4)

This is the crucial feature of the model: the mixing angles are not proportional to the light

neutrino masses (in this limit, zero) and can be viewed as more or less free parameters.

The linear combinations of NL and νℓL that are orthogonal to ν4L are the light neutrinos,

νiL with i = 1, 2, 3, which remain massless at this level. NL contains an admixture of light

neutrinos, and so the light neutrinos interact with the DM via Eq. (4.2):

yL ϕ χ̄RNL + h.c. (4.5)

→ yL |UN4|ϕ χ̄R ν4L − yL

√
1−|UN4|2 ϕ χ̄R νlL + h.c.

where νl is an admixture of light neutrinos ν1,2,3 with unit norm. The active neutrinos get

an orthogonal admixture of heavy and light neutrinos,

νℓL =
∑

i=1,2,3

UℓiνiL + Uℓ4ν4L (4.6)

for ℓ = e, µ, τ .

The 4×4 matrix U describes the relationship between gauge and mass eigenstates. Since

the light neutrinos are all degenerate (i.e. massless) at the level we are dealing with them

now, we can ignore mixing amongst the active neutrinos. Thus, the upper-left 3 × 3 block

of this matrix, corresponding to the usual Pontecorvo-Maki-Nakagawa-Sakata matrix [158]

and which governs ordinary neutrino oscillations, is unimportant for our purposes and the

phenomenology is determined by the active-sterile mixing angles Uℓ4.
3

There are a few simple ways to extend the model to incorporate light neutrino masses.

The most interesting possibility is to endow N with couplings that violate lepton number.

For example, one can add the Majorana mass term, µ N̄ c
RNL+h.c. as in the “inverse seesaw”

scenario [147, 159], or the Yukawa couplings, λ′ℓ L̄ℓĤN
c
R + h.c. as done in [160]. This will

lead to small neutrino masses, of order λ2ℓv
2µ/m2

N or λ′ℓλℓv
2/mN respectively, governed by

U(1)L breaking interactions, while the ∆L = 0 neutrino Yukawa coupling, λℓ, in Eq. (4.2)

3See Sec. 4.3.4, however, for a discussion of atmospheric neutrino oscillations in the context of a large
τ -sterile mixing.
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may still be large. These possibilities give N the dual responsibility of generating neutrino

masses and mediating DM interactions. In fact, only one Dirac sterile neutrino (made up

of two Weyl fermions) is required to produce phenomenologically viable neutrino masses

and mixings. Another possibility is that there are additional states N ′ that participate

in the mass generation, in either lepton-number–preserving or –violating ways with some

other UV dynamics. In any event, generating realistic neutrino masses while keeping the

Yukawa couplings λℓ large requires that N is a Dirac or pseudo-Dirac state; in the latter

case, the small mass splitting between the mass eigenstates will, however, have no significant

phenomenological consequences for the parameter choices of interest to us.

Note that we have not written the renormalizable operator λϕH |ϕ|2|H|2 which is allowed

by the symmetries in Eq. (4.2) and is generated radiatively. After electroweak symmetry

breaking, this operator contributes to the ϕ mass and to decays of the Higgs boson to ϕϕ∗

(which as we show in Sec. 4.2.3 are invisible at colliders). In a natural theory, we would

expect the coefficient of this operator to be at least as large as the radiative contributions

λϕH ≳ δλϕH
∼ (y2Lλ

2
ℓ/16π

2) log(Λ2
UV/m

2
4) where ΛUV is a cutoff of the theory. The current

limit on the invisible Higgs width translates to the upper bound λϕH ≲ 0.01. We describe

the implications from potential fine-tuning of mϕ and the limit on the invisible Higgs width

further in Secs. 4.2.2 and 4.3.5, respectively. We find that the effects of a value of λϕH near

the radiative estimate (in fact, up to factor ∼ 1/|Uℓ4|2 larger) are always subdominant to

other contributions.

4.2.2 Cosmology

As is well-known, the relic density obtained through thermal freezeout is determined by

the thermally averaged DM annihilation cross section ⟨σv⟩. The relevant process in this case

is annihilation into light neutrinos, χχ̄ → νν̄, and the cross section can be computed from
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the interaction Lagrangian, Eq. (4.5):

⟨σv⟩ = y4L
32π

(∑
ℓ

|Uℓ4|2
)2

m2
χ

m4
ϕ

(
1 +

m2
χ

m2
ϕ

)−2

(4.7)

≃ 1 pb

yL
√∑

ℓ |Uℓ4|2

0.2

4(10GeV

mχ

)2(
3

mϕ/mχ

)4
,

where in the second step we have normalized the cross section to the canonical value ⟨σv⟩ =

3×10−26 cm3/s ≃ 1 pb, which yields a DM abundance that is in close agreement with the

measured value.

In analogy with simple vector portal DM scenarios [55, 161], it is useful to define a

dimensionless parameter Y that governs the annihilation rate,

Y ≡ y4L

(∑
i

|Ui4|2
)2

m4
χ

m4
ϕ

. (4.8)

In terms of this parameter Eq. (4.8), ⟨σv⟩ ≈ Y/(32πm2
χ) and constraints on the model can

be conveniently compared to the thermal relic target in the mχ − Y plane. In Fig. 18 we

show in this parameter space where the cross section Eq. (4.7) is 3 × 10−26 cm3/s = 1 pb

as a function of DM mass mχ with solid, dark gray diagonal lines. Along this line, the

DM thermal relic density is close to the observed value. Above this line, the relic density

is smaller than the measured density if DM is symmetric (equal populations of particles,

χ, and antiparticles, χ̄), but it is easy to imagine obtaining the correct abundance in this

region through an initial asymmetry (i.e., exactly what happens in the baryon abundance

case). Below this line, if the DM is in thermal equilibrium then it naively overcloses the

Universe, and obtaining the correct DM density here requires a more complicated nonthermal

cosmology. From this point of view, parameter space above the ⟨σv⟩ = 1 pb line is a well

motivated target. Accordingly, we shade the region where ⟨σv⟩ < 1 pb to indicate that it

is disfavored in a simple thermal cosmology. Our goal in this work is to place conservative

bounds and projections on the cosmologically motivated region of parameter space, which

suggests a particular set of benchmark model parameter choices.

We also display a variety of experimental constraints in Fig. 18, which will be surveyed

in detail below. The first class of constraints, including direct detection experiments and
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Figure 18: Limits and constraints on the parameter Y = y4L
(∑

i |Ui4|2
)2

(mχ/mϕ)
4 as a

function of the DM mass mχ, assuming mixing dominantly with the e, µ, τ flavors from top

to bottom. We have fixed the mediator mass to be mϕ = 3mχ. On the left we take the

heavy neutrino’s mass to be m4 = 10mχ and on the right we fix it to m4 = 400 GeV. The

solid gray line shows where the annihilation cross section is 1 pb, roughly the value required

for a thermal relic. We also show direct detection limits through the effective DM coupling

to the Z (red, solid), as well as the direct detection cross sections corresponding the the “ν

floor” (red, dotted).
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the small scale structure of dark matter, scale in approximately the same way on Y , mχ as

the annihilation cross section and can be compared to the thermal target without further

assumption on the model parameters. However, there are a number of other constraints

on sterile neutrinos which limit the mixing angle as a function of the heavy neutrino mass

and thus require further assumptions about the model parameters to obtain a constraint

on Y . Noting Eq. (4.8), we see that for this class of constraints, the weakest (and thus

most conservative) constraint on Y as a function of mχ is obtained by 1) saturating the

experimental bound on the mixing angle, 2) taking yL close to nonperturbative values, and

3) maximizing the ratio of masses mχ/mϕ while keeping mχ < mϕ. For these limits, we

therefore fix a set of conservative benchmark values of yL = 4π and mχ/mϕ = 1/3.

Note that to represent the constraints on the invisible heavy neutrino in the mχ − Y

plane, we further require an assumption about the heavy neutrino mass. There are two

important comments in this regard, First, these constraints become stronger in the low m4

regime. Thus to place conservative bounds we should take m4 to be heavy. Second the dark

scalar ϕ suffers from then usual naturalness problem associated with light scalar particles.

The scalar receives a quadratically divergent correction to its mass coming from the same

Yukawa coupling that enters into the DM annihilation cross section, δm2
ϕ ∼ y2LΛ

2
UV/16π

2.

To conservatively implement a naturalness “bound,” we choose to cut this off at the scale

ΛUV = m4 (typically the heaviest particle in the low energy theory). Further UV contri-

butions could be screened in a low scale UV completion which stabilizes the ϕ mass, e.g.

supersymmetry or compositeness. The operator λϕH |ϕ|2|H|2 gives a contribution λϕHv
2 to

m2
ϕ. Given the radiative estimate of λϕH above, this contribution is suppressed by the relative

factor (|Uℓ4|2m2
4/Λ

2
UV) log(Λ

2
UV/m

2
4) so we do not include it in our “bound.”

The naturalness “constraint” becomes weaker as m4 is lowered. It is clear that the nat-

uralness consideration is complementary to the invisible neutrino experimental constraints,

since the latter prefer large m4 while the former prefer small m4. We thus show two sets of

plots in Fig. 18 with the following assumptions: 1) light ν4, fixing mχ : mϕ : m4 = 1 : 3 : 10,

in the left column and 2) heavy ν4, fixing m4 = 400 GeV, in the right column.

We also derive limits under the assumption that one of the mixing angles |Ue4|, |Uµ4|, |Uτ4|

dominates, while the others are negligible. This assumption is not necessarily conservative
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in terms of constraining the thermal target, since some of the limits may be weakened by

O(1) factors while still obtaining a viable DM cosmology if two or more sizable mixing

angles are present. This concern is relatively minor in our view, and is outweighed by the

transparency of this assumption, which allows us to clearly display the flavor dependence

inherent in certain limits. In this case we specify the flavor content of the coupling relevant

for DM annihilation in Eq. (4.8) via Yℓ ≡ y4L|Uℓ4|4m4
χ/m

4
ϕ for ℓ = e, µ, τ .

Only the coupling yL enters the annihilation cross section Eq. (4.7). The coupling yR

does not lead to a tree-level DM-SM interaction, and for most DM masses plays no role

in the cosmology. For simplicity, we therefore will assume in this work that yR is small

and can be neglected. However, we note that for mχ ∼ mZ/2 or mχ ∼ mh/2, DM can

annihilate at one loop through an s-channel Z or Higgs to the SM, which can potentially

compete with the tree level process due to the resonant enhancement. It is easy to see that

the radiative coupling of DM to the Higgs, hχ̄χ, vanishes in the limit yR → 0. As discussed

further below, a radiative Zχ̄χ coupling, proportional to y2L, is still generated in this limit.

For the benchmark choices described above, we have checked that annihilation through the

Z on resonance is subdominant to the tree level annihilation process Eq. (4.7). It would

be worthwhile to explore in more detail these resonance regions under different parameter

assumptions, as this may allow certain constraints to be relaxed. However, these are fairly

special regions of parameter space and their detailed exploration goes beyond our scope here.

See Ref. [68, 69] for work in this direction.

Light DM that is in thermal equilibrium with neutrinos can affect the number of relativis-

tic degrees of freedom, Neff , as inferred by measurements of the CMB [162] and primordial

light element abundances. The agreement of these with standard CMB and big bang nucle-

osynthesis (BBN) expectations can be used to set a lower limit on the DM mass of around

10 MeV [163, 164] which we show in Fig. 18 with vertical dot-dashed lines.
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4.2.3 Decays of new states

From the interactions in Eq. (4.5) we can obtain the partial decay widths of the new

unstable particles. The dark scalar ϕ decays to χ and a light anti-neutrino with a rate

Γϕ→χν̄l =
y2L
16π

∑
i

|Ui4|2mϕ

(
1−

m2
χ

m2
ϕ

)2

. (4.9)

The heavy neutrino ν4 decays (invisibly) to χ and ϕ through either yL or yR. Assuming that

yR is negligible, the rate for this is

Γν4→χϕ∗ =
y2L
32π

|UN4|2m4

(
1−

m2
ϕ

m2
4

+
m2

χ

m2
4

)
× λ1/2

(
1,
m2

ϕ

m2
4

,
m2

χ

m2
4

)
,

(4.10)

where λ(a, b, c) ≡ a2+b2+c2−2ab−2ac−2bc. This rate should be compared with the usual

weak decay rate that occurs due to active-sterile mixing. The weak decay rate is negligible

for m4 ≪ mW , as it must proceed via off-shell weak bosons. For m4 > mW , two body weak

decays are kinematically allowed, and the rate for ν4 → ℓ−W+ is

Γν4→ℓ−W+ =
GFm

3
4

8π
√
2
|Uℓ4|2

(
1− m2

W

m2
4

)2(
1 +

2m2
W

m2
4

)
≃ λ2ℓm4

32π
, (4.11)

where in the second step we have assumed mW ≪ m4 and used the mixing angle relation

Eq. (4.4). Comparing Eqs. (4.10) and (4.11), we see that weak decays can be competitive

if λℓ is as large as yL. However, given the mixing angle relation in Eq. (4.4), this only

occurs in practice when m4 is very large, of order 1 TeV or more. Therefore, weak decays

of ν4 are subdominant over the entire parameter space consistent with thermal dark matter.

To illustrate this, in Fig. 18 we show contours where the weak branching fraction of the

heavy neutrino is 10−3, fixing yL to either its perturbative maximum, yL = 4π (orange,

solid curves), or to its “bound” from naturalness, yL = 4πmϕ/m4 (orange, dashed curves).

Below these lines, values of the weak branching fraction can be chosen to be less than 10−3,

which is sufficient to reduce the limits derived from visible decays of the heavy neutrino (see,

e.g. [148, 149, 165]) to be subdominant. In this setup, where N is Dirac or pseudo-Dirac,
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∆L = 2 decays of the heavy neutrino are either absent or highly suppressed. In the two

specific possibilities mentioned in Sec. 4.2.1 where the light neutrino masses are due to either

a lepton-number–violating Majorana mass µ or Yukawa coupling λ′ℓ, the ∆L = 2 decay rate

is suppressed relative to the ∆L = 0 rate by the factor (µ/mN)
2 or (λ′ℓv/mN)

2, respectively.

4.3 STERILE NEUTRINO CONSTRAINTS

As discussed in the previous section, the sterile neutrino mediator ν4 decays invisibly

into the dark sector in our scenario. In Ref. [73], the limits on the mixing angle for invisibly

decaying heavy neutrinos were presented (see also Ref. [166]). These limits impact the

cosmologically motivated DM parameter space since the annihilation cross section Eq. (4.7)

(or equivalently the Y parameter in Eq. (4.8)) depends on this mixing angle. In this section

we briefly review the existing limits and take note of a few updates due to recent searches.

The limits are summarized in the m4 − |Ui4|2 plane in Fig. 19.

4.3.1 µ, τ decays

A massive neutrino with non-vanishing |Ue4| and/or |Uµ4| leads to a modified value of

the Fermi constant extracted from the muon lifetime. Because the Fermi constant governs

a host of precision electroweak and high-energy observables, the general agreement of this

data [167, 168] with the SM predictions constrains these mixing angles (labelled τµ/EWPT

in Fig. 19). Similarly, the Fermi constant enters into the semi-leptonic weak decays used to

measure the CKM elements, Vud and Vus, and CKM unitarity can therefore be used to derive

limits on |Uµ4| [73, 168]. Furthermore, the lack of distortions in the e+ energy spectrum in

µ+ decays measured by the TWIST collaboration [169] can be used to constrain |Ue4| and

|Uµ4| for masses m4 < mµ −me [73, 166, 170].

The constraints on mixing in the τ sector are generally much weaker than in the e and µ

sector. Relevant limits on |Uτ4| can be derived from τ decays, including the leptonic decays

τ → eν̄ν, τ → µν̄ν [168, 171, 172], as well as certain hadronic modes like τ → ν3π [73, 173].
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4.3.2 Rare meson decays

Rare meson decays, M+ → ℓ+ν4, provide some of the best probes of an invisible heavy

neutrino. One striking signature is a peak in the energy spectrum of the outgoing lepton

in the meson rest frame due to the two-body kinematics. Strong limits on |Ue4| arise from

peak searches in π → eν [174], K → eν [175], and B → eν [176] decays, while similar

searches in the decays π → µν [177], K → µν [178], and B → µν [176] decays constrain

|Uµ4|. Furthermore, a comparison of the experimental value of the ratio Γπ→eν/Γπ→µν to its

SM prediction can be used to set constraints on |Ue4| and |Uµ4| [179].

4.3.3 Three body decays

One of the most sensitive probes of sterile neutrinos comes from decays of a charged

meson, M+, to a charged lepton, ℓ+, and heavy, mostly sterile neutrino, as discussed in

Sec. 4.3. If the mass of the heavy neutrino,m4, is larger thanmM−mℓ, this two-body decay is

kinematically forbidden from happening. However, in this model, ifmχ+mϕ < mM−mℓ, then

three-body decays M+ → ℓ+χϕ can proceed through off-shell (heavy and light) neutrinos.

In the limit that m4 ≫ mM , the rate for this decay is

1

ΓM+→ℓ+νℓ

dΓM+→ℓ+ϕχ

dx
=
y2L |Uℓ4|2

32π2

(
1− |Uℓ4|2

)
√
x2 − 4xℓ

xℓ (1− xℓ)
2

(1− x)x+ 2xℓ

(1 + xℓ − x)3
(1 + xℓ − x− xϕ + xχ)

× λ1/2 (1 + xℓ − x, xϕ, xχ) , (4.12)

where x = 2Eℓ/mM is the energy fraction carried by the charged lepton in the meson rest

frame and xχ,ϕ,ℓ = m2
χ,ϕ,ℓ/m

2
M .

The signature of this decay is a charged lepton recoiling against something unobserved

(χ and ϕ are both invisible) with a momentum different from the value expected for the

standard decay into a charged lepton and massless neutrino, just as in the two-body case

(where the decay products of the heavy neutrino are unobserved). The ℓ+ momentum is

distributed over a range of values in the three-body case instead of being monochromatic as

in the two-body case.
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Armed with the expression in Eq. (4.12) (including terms that survive with finite m4)

for the decay rate, we can use the search for heavy neutrinos in K+ → µ+ + inv. by the

E949 experiment [180] to set an upper limit on y2L |Uµ4|2 or, equivalently, Yνµ. To perform

this estimate we assume that the µ+ momentum distribution in the K+ rest frame measured

by E949 is well described by a power law background (dominantly from the radiative decay

K+ → µ+νγ) and ask what level of signal, K+ → µ+χϕ, is allowed. We show the resulting

90% CL upper limits on Yνµ as a function of mχ (assuming mϕ = 3mχ) for both the light

m4 and large m4 cases in Fig. 18. In both cases, E949 data appear to be sensitive to

an interesting region of parameter space close to thermal relic annihilation cross sections.

The NA62 experiment plans to collect about 1013 kaon decays [181, 182] and could, assuming

systematic errors can be kept under control, probe values of Yνµ about an order of magnitude

smaller than E949.

4.3.4 Neutrino oscillations

Given the rather weak direct constraints on mixing in the τ sector, it is interesting to

consider the consequences of mixing on neutrino oscillations. Notably, atmospheric neutrino

oscillations are affected by ντ −ν4 mixing due to a suppression of the matter potential by the

factor (1−|Uτ4|2) (see [73] for a detailed discussion). An analysis by Super-Kamiokande using

the atmospheric muon neutrino zenith angle distribution leads to constraints on |Uτ4| [183].

If the heavy neutrino is light, it can affect the number of relativistic species present

during BBN. This sets a lower bound of m4 ≳ 10 MeV [164] which we show in Fig. 19,

labelled “Neff”.

4.3.5 Invisible Higgs and Z decays

In addition to the flavor-specific constraints discussed above, invisible Higgs and Z boson

decays can be used to constrain the mixing angles. These are most relevant for larger values

of m4 where they become competitive with other constraints. We show the limit on the

mixing angles from the constraint that the invisible branching of the Higgs is less than 0.24

at 95% C. L. [184] as solid blue lines in Fig. 19. We also show the reach that a future limit
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of 5% [185] on this branching could achieve as dotted blue lines. In setting these limits,

we only consider decays of the Higgs to neutrinos through the Yukawa coupling with a rate

proportional to λ2ℓ . Since ϕ decays invisibly, h → ϕϕ∗ decays generated by the operator

λϕH |ϕ|2|H|2 also contribute to the invisible Higgs width. However, this mode is suppressed

relative to the neutrino mode by at least a further factor of λ2ℓ given the radiative estimate

of the coefficient λϕH and we therefore ignore it.

The effect on the invisible branching of the Z due to heavy sterile neutrinos that mix

with the active neutrinos is well-known. The 90% C. L. limits on the mixing angles that

comes from the measurement of the invisible Z width of 499.0± 1.5 MeV [168] are shown in

Fig. 19 as solid, orange lines.

4.3.6 LHC searches

Furthermore, a heavy neutrino with a relatively large admixture of active flavors can

be produced in large numbers in leptonic W± decays. Since, in the case we consider here,

the heavy neutrino decays invisibly into the dark sector the only effect is a distortion of

the kinematics of this decay. In particular, at a hadron collider, the W transverse mass

(MW
T ) endpoint or the transverse momentum (pT ) spectra of electrons and muons measured

in Drell-Yan production of W± would be affected. For heavy neutrinos light enough to be

produced on-shell in W± → ℓ± decays, this would appear as a kink in the lepton pT at ppeakT

with the MW
T endpoint, Mpeak

T , shifted as

Mpeak
T =MW

(
1− m2

4

M2
W

)
, ppeakT =

1

2
Mpeak

T . (4.13)

The relative size of the kink in this spectrum is at the level ∼ |Uℓ4|2 for neutrinos kinemati-

cally allowed in W decay. Neutrinos that are heavier than the W simply dilute the rate by

the factor 1 − |Uℓ4|2. Lepton pT spectra in W± production and decay at a hadron collider

are very well studied because accurate measurements of these spectra, in particular their

endpoints, are crucial in determining the W± mass. Since the recent ATLAS measurement

of the W± mass [186] has e± and µ± pT spectra that agree with theoretical expectations

at the subpercent level, we can reasonably expect a sensitivity to mixing angles of O(10−2)
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or smaller. This would be comparable to the limit from electroweak precision tests and

therefore very interesting.

To estimate the sensitivity of the measurement of lepton pT spectra at the LHC to |Ue4|

and |Uµ4|, we generated samples of pp→ W+ → e+, µ++inv. including massless and massive

neutrinos [81, 82] corresponding to 4.1 fb−1 of 7 TeV pp collisions using MadGraph5 [225],

interfaced with Delphes [187] to model the detector response. We examine the resulting e±

and µ± pT distributions between 30 GeV and 50 GeV with bins of 0.5 GeV. Assuming that

the standard model expectation describes these data and that statistical errors dominate

(which are O(few× 0.1%) as in Ref. [186]) aside from the overall normalization, we perform

a fit to the underlying theory expectation (a function of |Ue4| and |Uµ4|) at each value of m4.

We allow the overall measured cross section to vary by 2% from the theoretical prediction

to take the systematic error on the overall normalization, which comes mainly from the

measurement of the total luminosity, into account.

In Fig. 19 we show the resulting regions of parameter space ruled out at 90% C.L. with

dashed brown lines labeled “W → e” and “W → µ”. As anticipated, the limit on the mixing

angle for heavy neutrinos that can be produced on-shell is at the level of the statistical errors

which dominate the shape of the pT spectra while for m4 > mW the limit corresponds to

the uncertainty on the overall cross section. For lighter neutrino masses the difference in the

lepton pT is difficult to distinguish from that for a massless neutrino so the limit is weakened.

4.4 DARK MATTER PHENOMENOLOGY

4.4.1 Direct Detection

At one loop χ picks up an effective coupling to the Z boson, which can be written after

EWSB as

L ⊃ aZ
g

cW
Zµ χ̄γ

µPRχ, (4.14)
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Figure 19: 90% C.L. upper limits on the mixing angles |Uℓ4|2 as functions of the heavy

neutrino mass m4 in the case that the heavy neutrino decays invisibly.
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where the coupling aZ is given by

aZ = |UN4|2(1− |UN4|2)
y2L
16π2

G

(
m2

ϕ

m2
4

)
, (4.15)

with G(x) = (x − 1 − log x)/(4(1 − x)2). In Eqs. (4.14) and (4.15) we work in the limit

mχ ≪ mϕ,m4 and zero external momentum (we use the full loop integral for our numerical

results). This coupling mediates spin-independent scattering of DM with nuclei vis Z boson

exchange, and therefore direct detection experiments provide an important probe of the

model. The effective DM-nucleon spin-independent scattering cross section is given by

σn =
µ2
n

π

(Zfp + (A− Z)fn)
2

A2
(4.16)

where fn = GFaZ/
√
2, fp = −(1− 4s2W )GFaZ/

√
2.

The strongest constraints in the high DM mass region come from recent results of

XENON1T [188] and PandaX-II [189] searching for spin-independent scattering of DM on

nuclei, and are shown as a solid red curve in Fig. 18. These constraints rule out the thermal

DM benchmark for DM masses heavier than about 15 GeV. We also show projections from

SuperCDMS SNOLAB [190], which will cut further into mχ ∼ GeV mass region, as a dashed

red curve. In addition, to get a sense of what region of parameter space can potentially be

probed with direct detection, we show values of the coupling that correspond to a direct

detection cross section at the “neutrino floor” [191] as a dotted red curve.

Clearly, direct detection experiments provide a powerful probe of the high DM mass

region in this scenario, but it is important to note that these limits can be weakened or

evaded altogether if the DM obtains a mass splitting. This can be implemented by adding

a Majorana mass terms for the chiral components of χ. In this case upper limits on the

DM mass are provided by constraints on the mixing angles for heavy, invisibly decaying

neutrinos, notably electroweak precision tests as well as decays of electroweak bosons. Thus,

these searches provide a complimentary probe of this scenario to direct detection.

There has been a significant effort devoted to exploring new methods of direct detection

to probe low mass DM candidates [192], although in our scenario the scattering cross section

with electrons is unfortunately too small to be detected.
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4.4.2 DM structure

There has been growing evidence that observations of dark matter structure on sub-

galactic scales differs from the expectation from N -body simulations that assume that dark

matter only interacts gravitationally (which, with respect to structure formation, essentially

corresponds to the expectation for standard cold DM candidates). One of the longstanding

problems in this area is the so-called “missing satellites” [193] problem—the apparent obser-

vation of fewer satellite galaxies of the Milky Way than expected. While the gravitational

feedback of normal matter at small scales, resulting from complicated astrophysics, could

resolve this discrepancy, it is also possible to address these issues with nongravitational in-

teractions of dark matter. One such possibility is if the dark matter is relatively strongly

coupled to the light neutrinos as in this scenario [194].

A large coupling of dark matter to light (relativistic) neutrinos produces a pressure that

that resists the gravitational collapse of the dark matter. Because both the number density

of light neutrinos and the interaction cross section are larger at high temperatures, this

pressure is important at early times when the Universe is hotter and eventually becomes

unimportant at some critical temperature determined by the strength of the dark matter-

neutrino interaction. Structures in the Universe form hierarchically, with smaller structures

forming before larger ones, since only density perturbations with wavelengths smaller than

the (expanding) horizon size can grow. The structures formed gravitationally by dark matter

before matter-radiation equality provide the seeds for the growth of objects containing normal

matter that we later observe. At early times when the dark matter-neutrino interactions are

important, the pressure felt by the dark matter means that structures do not efficiently

grow due to gravity, while, after the dark matter-neutrino interactions become unimportant,

structures can form [195].

In other words, dark matter-neutrino interactions can address the missing satellites prob-

lem by suppressing the growth of small scale structures. The scale below which structures do

not efficiently form in this scenario can be characterized in terms of a cutoff mass,Mcut, which

is the mass of dark matter inside the horizon at the critical temperature when DM-neutrino

interactions become unimportant (for detailed discussion of these issues, see, e.g., [196]).
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This mass is a useful heuristic expected to correspond roughly to the size of the smallest

gravitationally bound objects at late times. In this model the cutoff mass is estimated to

be [73]

Mcut ≃ 108M⊙

( g∗
3.36

)−7/8
(
0.1 GeV

mχ

)−14/4

Y 3/4, (4.17)

assuming mϕ ≫ mχ. In this expression, g∗ refers to the effective number of relativistic

degrees of freedom at the time of decoupling which we will always take to be 3.36 which is

relevant for the phenomenologically interesting case where the decoupling happens when the

Universe’s temperature is around a keV.

We take values of the cutoff, Mcut, between about 107 and 109M⊙ to roughly represent

DM-neutrino interactions strong enough to explain the missing satellites problem. An upper

bound on Mcut of around 109M⊙ can be obtained analyzing Milky Way satellites [197],

looking for small scale structures in the Lyman-α forest [198], or through gravitational lensing

of small, distant objects [199].

4.5 SUMMARY AND OUTLOOK

We have presented a general analysis of thermal relic DM that annihilates directly to SM

neutrinos through the neutrino portal. This possibility is very well motivated theoretically

but has been relatively less well studied than other scenarios involving vector or scalar

mediators. Indeed, directly annihilating to light neutrinos can allow for thermal relic dark

matter below roughly 10− 50 GeV without spoiling CMB measurements.

The model described in Sec. 4.2.1 is simple and economical, adding just three new states,

fermions N and χ and a scalar ϕ, with masses from about 10 MeV to O(100 GeV). It al-

lows for a very simple cosmological history, detailed in Sec. 4.2.2, with the DM number

density being set either by annihilation to light neutrinos or by an initial asymmetry, with

annihilation reducing the number density to the measured level. The relatively large dark

matter-light neutrino coupling needed for annihilation requires that the sterile neutrino me-

diator N be (pseudo-)Dirac. We discussed the impact of radiative corrections to the scalar

mass, identifying regions of parameter space that do not require fine-tuning.
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In Sec. 4.2.3, we pointed out an interesting feature of this scenario: the fact that the heavy

(mostly N) neutrino decays primarily invisibly into the dark sector, allowing for relatively

larger active-sterile mixing angles. Sections 4.3 and 4.4 were devoted to fully exploring the

model. We discussed and updated limits on the sterile neutrino in this scenario where it

decays invisibly in Sec. 4.3. The direct detection signature of this model was examined in

Sec. 4.4.1 and we find that it sets an upper limit on the DM mass of around 10 GeV in the

simplest scenario. The impact on the small scale structure of DM, which could signal strong

interactions between light neutrinos and DM, was also presented in Sec. 4.4.2. Addressing

this would likely imply a large mixing with the τ neutrino.

We identified several new measurements or analyses that can be done to probe large

regions of viable parameter space in this setup. First, we discussed the possibility that the

heavy, invisibly decaying neutrino required for this scenario can affect the kinematics of

charged leptons in Drell-Yan W± production at the LHC. The sizable active-sterile mixing

angle needed as well as the large number of W bosons produced at the LHC could allow for

unconstrained regions of viable parameter space to be probed by such a measurement. In

our simple mock analysis, we only considered e+ and µ+ transverse momenta above 30 GeV

as in the ATLAS measurement of the W mass [186]. Including smaller pT values in this

analysis would extend sensitivity to smaller values of the heavy neutrino mass m4 and we

urge any experimental analysis to push the lepton pT threshold as low as possible while still

being able to deal with, e.g., issues from pile up.

Secondly, we discussed the sensitivity of three-body decays of kaons into the dark sector

to this scenario. One virtue of this search is that it scales on the parameters of the model in

the same way as the DM annihilation cross section and can therefore probe the parameter

space without having to assume particular values of some parameters. We estimated the

region of parameter space ruled out by the E949 experiment which collected around 1012

stopped kaon decays–this includes a large region of parameter space consistent with thermal

relic DM that is unconstrained by other experiments. The NA62 experiment will collect

around an order of magnitude more kaons and will therefore be able to probe even more of

the viable thermal relic parameter space, providing a excellent test of this scenario.

Additionally, the active-sterile mixing angle is relatively less well constrained when it
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involves the τ flavor, particularly for m4 ≲ 300 MeV, which can allow for DM-neutrino

interactions to be strong enough to affect small scale structure. In this region, the domi-

nant constraint comes from the impact of nonstandard matter effects on the oscillation of

atmospheric neutrinos as measured by Super-Kamiokande [183]. It is important to note that

this measurement is statistics limited and further data will probe a very interesting region,

especially from the point of view of small scale structure effects. Models in which dark

matter annihilates directly to light neutrinos are well-motivated, simple and far-reaching

phenomenologically, in both particle physics and cosmology. New ideas to probe this class

of models should be strongly encouraged. It could well herald a discovery that uncovers the

particle nature of dark matter.
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5.0 SUSY SIGNALS FROM QCD PRODUCTION AT THE UPGRADED

LHC

This chapter is devoted to evaluating the sensitivities of the High Luminosity (HL) and

High Energy (HE) upgrades of the LHC to gluinos and stops, decaying through the simplified

topologies g̃ → qq̄χ0, g̃ → tt̄χ0 and t̃→ tχ̃0. It is based on our work in Ref. [200].

5.1 INTRODUCTION AND METHODOLOGY

As one of the leading resolutions of the hierarchy problem associated with the weak scale

and the Planck scale, supersymmetry (SUSY) has attracted enormous attention as an exper-

imental target for past, present, and future colliders. The lamppost of naturalness suggests

that super-partners should appear near the electroweak scale [201]. Although experimental

searches have not established any observable signal thus far, it is conceivable that the SUSY

scale may still be just out of reach or that SUSY experimental signatures are unconventional

in nature. With this in mind, it is essential to develop and quantify the impact of SUSY

search strategies at the Large Hadron Collider (LHC) and its potential successors.

At the end of Run 2 of the LHC, preparations for the luminosity upgrade of the LHC

are well underway [202]. In addition, there has been significant interest in the possibility

of augmenting the LHC energy with new stronger magnets [203]. The energy upgrade of

the LHC could take us to the next energy frontier. We thus find it timely to reexamine

SUSY searches. In this chapter, we describe the ability of luminosity- and energy-upgraded

versions of the LHC to probe supersymmetry.

Supersymmetric theories are broad in scope, and even if one is to focus solely on collider
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searches, there is much model-dependence in signature space (see, e.g., [204]). A variety

of search strategies are necessary to cover the multitude of potential signatures of SUSY.

In this work we consider two well-motivated and leading channels, namely, pair production

of the gluinos and top-quark partners (stops). Once kinematically accessible, gluino pair

production will be the leading channel because of its octet representation under QCD. On

the other hand, owing to the large top-quark Yukawa coupling and the resulting stop soft-

mass evolution over scales, it is motivated to consider the stops as the lightest quark partners

and thus the most kinematically favored for production. Specifically, we evaluate the leading

decay modes of hadronic jets plus large missing transverse energy (��ET ), resulting from the

missing neutral lightest SUSY partner (LSP), taken to be the neutralino (χ0). We also

include flavor tagging, requiring that some of the jets be b-tagged. Thus the standard decay

chains of gluinos and stops under consideration are

g̃ → qq̄χ0, g̃ → tt̄χ0, and t̃→ tχ0.

From a bottom-up perspective, the stop and gluino are important to search for because

they affect the Higgs mass parameter at one and two loops respectively, and with their

strong couplings are expected to be some of the most important super-particles with respect

to tuning of the electroweak scale1. Throughout, we consider simplified models [205, 206]

wherein the new particle production is entirely due to gluinos and stops which decay through

the above modes to a bino LSP [207, 208]. We note that while the analyses which we consider

are some of the most common collider SUSY searches, their relevance depends on SUSY

breaking scenarios and parameter assumptions, including the mass splitting between the

colored super-partners and the LSP. Nevertheless, they give a representative starting point

and a perspective for well-motivated channels.

We estimate the potential reach of these searches at both the High Luminosity LHC

(HL-LHC), with 3 ab−1 of 14 TeV proton collisions, and the High Energy LHC (HE-LHC),

with the energy and integrated luminosity increased to 27 TeV and 15 ab−1, respectively.

While over the past several years HL-LHC and 100 TeV analyses have sought to project

1The Higgsino affects the Higgs mass at tree level, but is uncolored and thus more challenging to produce
at a hadron collider. We note that while we consider models with bino LSPs, there is an implicit tuning at
large LSP mass because the Higgsino must be even heavier than the LSP.
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the potential of future colliders to search for the same superparticles as we consider (see,

e.g., [209, 210, 211, 212] for reviews), HE-LHC studies are less common (though some 33 TeV

studies exist [213]), and have considered different final states with varying motivations [214,

215]. This work is most closely related to the ATLAS HL-LHC studies [216, 217], which

we have both improved upon with cut optimization and the inclusion of currently accepted

detector projections, and extended to the HE-LHC. One of the gluino searches presented here

has appeared in the report of the Beyond the Standard Model Physics Working Group [218]

in the Workshop on Physics at the HL-LHC, and perspectives on HE-LHC, while the other

extended results appear here for the first time.

The rest of this chapter is organized as follows. In Section 5.2, we project the HL-LHC

and HE-LHC gluino reach in the 4 jets plus��ET final state, both in the cases where the gluino

decays through light-flavor or heavy-flavor off-shell squarks. In Section 5.3, we estimate the

reach of the luminosity- and energy-upgraded LHC for the stop in the b-jets plus jets plus

��ET final state. Section 5.4 contains a discussion of our results and our conclusions.

5.2 GLUINOS

While the gluino only affects the Higgs mass at two loops, it nevertheless plays an impor-

tant numerical role in contributing to Higgs mass corrections [219], and enjoys a relatively

large production cross section as a fermionic color octet. The total production cross section

including NLO and NLL QCD corrections [220] is, for gluinos of mass 2 TeV,

1.7 fb at 14 TeV and 68 fb at 27 TeV.

The latter figure is estimated using the K-factor from 33 TeV gluino production, and shows an

increase of a factor of 40 by going to the HE-LHC. In our study, we evaluate the sensitivity of

future proton colliders to gluino pair production with gluinos decaying to the LSP through

off-shell squarks, using standard jets + ��ET searches. Given the simplified model we are

considering as signal with SUSY masses as free parameters, we elect to optimize search

regions requiring four jets and missing energy.
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Before moving to the details of our studies, we comment briefly on our choice of final

state. First, if light flavor squarks are kinematically accessible, q̃ ¯̃q, q̃q̃, and q̃g̃ production

would lead to events with only two or three hard jets. In addition, if a squark is present in

the spectrum which weighs less than the gluino, the cascade decay g̃ → qq̃, q̃ → qχ̃0 can lead

to somewhat different kinematics with a squark two-body decay, depending on the masses

of the intermediate squark and the LSP. We have chosen the particular topology g̃ → qq̄χ̃0

for two main reasons. First, from a bottom-up perspective there is less reason to expect

the light flavor squarks to be very closely related to the weak scale, and indeed in the limit

of decoupled squarks final states with light-flavor quarks can be important. In addition,

adding more particles such as intermediate squarks would increase the dimensionality of

the parameter space to consider, and we prefer to avoid this complication here. Finally, in

the compressed region where the gluino and LSP masses are similar, a search region with

fewer jets is expected to be somewhat more effective [221]. We will nevertheless find that

by loosening our cuts on ��ET and related kinematic variables, we can achieve reasonable

sensitivity in this scenario. Typically, the four jets plus missing energy final state is the

most powerful in constraining this simplified model [222].

Similar considerations apply in the case of gluinos decaying through off-shell 3rd gener-

ation squarks. It is useful to separate this topology both because of the motivation from

naturalness for the stop to be close in mass to the electroweak scale, and because the b-quarks

from top and bottom decays can be tagged, yielding different experimental signatures than

for gluinos decaying through off-shell light flavor squarks. We thus choose to also consider

the decay topology g̃ → tt̄χ̃0. Due to the different decay modes of the tops, multiple final

states can occur, including same-sign dileptons plus missing energy [223, 224], but common

to all of the possibilities are multiple b-jets. We will follow the authors of [215] and consider

purely hadronic top decays, performing a search in a jets plus missing energy final state

where leptons are vetoed and some of the jets are required to be tagged as originating from

b quarks. In principle there can be up to 12 hard jets in the final state when gluino decays

proceed through off-shell stops and the resulting tops decay hadronically, but we consider

only the first four jets in our analysis. We expect that with this choice, gluino decays through

off-shell sbottoms will enjoy a similar limit.
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5.2.1 g̃ → qq̄χ̃0

The main SM backgrounds in the 4j +��ET final state are Z(→ νν) + jets, W (→ ℓν) +

jets, and tt̄ production. There are additional small contributions to the background from

single top and diboson production, which we ignore. We generate signal and background

using MadGraph 5 [225] at parton level and Pythia 8 [226] to perform showering with MLM

matching [227]. At parton level, the background is generated in bins of HT , where HT is

the scalar sum of the pT of all jets, to ensure sufficient statistics. We simulate the detector

response using Delphes 3 [187], which employs FastJet [228] to cluster jets using the anti-kT

algorithm [229], with the commonly accepted HL-LHC card corresponding to the upgraded

ATLAS and CMS detectors. For the signal, we normalize the cross sections to NLL+NLO

calculations [220]. To encapsulate higher-order effects for background, we apply a universal

K-factor of 1.25.

Following previous works [221, 216, 217], we apply a set of baseline cuts

pT (j1) > 160 GeV, Njets(pT > 60 GeV , |η| < 5.0) ≥ 4, ��ET > 160 GeV. (5.1)

We further require that signal events contain no isolated electrons (muons) with pT above

10 (10) GeV and |η| below 2.47 (2.4). We reject events with ∆ϕ(j,��ET )min < 0.4, where

∆ϕ(j,��ET )min is the minimum transverse angle between ��ET and the first three leading jets,

to avoid contamination from QCD background with mismeasured jets. To further reduce the

background, we demand ��ET/
√
HT > 10 GeV1/2 and pT (j4)/HT > 0.1, and j4 indicates the

fourth leading jet. After this baseline selection, a two dimensional optimization over cuts on

��ET and HT is performed to obtain the maximum significance. The latter cuts are optimized

at each signal point to maximize the significance defined as

S =
S√

B + σ2
BB

2 + σ2
SS

2
, (5.2)

where S and B are the number of signal and background events, respectively, and σB = 20%

and σS = 10% are our assumed background and signal systematic uncertainties. To assure a

reasonable description of the statistical significance, we require at least 8 background events

throughout our studies. For the HL-LHC (HE-LHC), we vary ��ET in steps of 0.5 (0.5) TeV
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from 0.5 (0.5) up to 3.0 (7.0) TeV and HT in steps of 0.5 (0.5) TeV from 0.5 (0.5) up to 5.0

(7.0) TeV. Because of our cut optimization, our search is predicted to enjoy better sensitivity

than the existing ATLAS HL-LHC study [216].

To present the qualitative features of our analyses, we choose two gluino benchmark

points

m(g̃, χ̃0) = (1020 GeV, 1000 GeV) and (2000 GeV, 300 GeV). (5.3)

The first benchmark represents the nearly-degenerate (compressed) mass spectrum − a chal-

lenging scenario for collider searches. The second set has a typical light LSP, implying large

missing energy in the final state. In Table 3, we show the cut flow for two benchmark points,

using our baseline selection cuts in addition to the optimal ��ET and HT cuts that we have

found for each point. We also show sample kinematic distributions of HT for both signal

and background in Figure 20, after all cuts except for the last cut are applied. We see that

the value of HT is broadly peaked at mg̃ as expected. The tail of the HT distribution ex-

tends further for a lighter LSP due to larger ��ET . With our preferred cuts, the significance

is maximized.

We show exclusion and discovery contours in Figure 21 (left panel), indicating where

the significance reaches 2σ (exclusion) and 5σ (discovery), respectively. We find that, for a

massless LSP, a gluino of approximately 3.2 TeV can be probed by the HL-LHC with 3 ab−1

of integrated luminosity. At 27 TeV with 15 ab−1 of integrated luminosity, the exclusion

(discovery) reach is roughly 5.7 (5.2) TeV. We see that for a nearly-degenerate gluino and

LSP, the exclusion (discovery) reach of HL-LHC and HE-LHC approximate 1.5 (1) TeV and

2.2 (2) TeV respectively. For comparison, a 100 TeV collider with 3 ab−1 of data would

be able to discover gluinos with the same decay topology up to 11 TeV, again assuming a

massless LSP [221].

5.2.2 g̃ → tt̄χ̃0

For the simplified model with heavy flavor quarks in the final state, we still require four

jets plus missing energy, as explained above, but now impose the additional demand that two

of the jets be b-tagged, reducing the backgrounds of the previous subsection considerably.
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m(g̃, χ̃0) (1020, 1000) (2000, 300) Background

Generator-level cuts 396 1.70 3.43 · 104

Lepton veto 396 1.69 1.93 · 104

Jet pT > (160, 60, 60, 60) GeV 30.8 1.64 5.45 · 103

��ET > 160 GeV 27.8 1.59 1.73 · 103

∆ϕ(j1,2,3,��ET ) > 0.4 23.1 1.27 1.10 · 103

��ET/
√
HT > 10 GeV1/2 18.6 0.97 358

pT (j4)/HT > 0.1 8.82 0.48 246

��ET > 500 GeV 2.82 – 17.6

HT > 1000 GeV 1.65 – 5.21

��ET > 500 GeV – 0.46 17.6

HT > 3500 GeV – 0.09 0.004

Table 3: Cut flow for the two gluino benchmark points in Eq. (5.3) at HL-LHC. At each

step, the cross section remaining after the indicated cut is shown in fb. The baseline cuts

are identical for both points as stated in the text.
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Figure 20: The HT distribution after all cuts except for that on the HT are applied, at HL-

LHC. In the left/right panel, the signal corresponds to the benchmark points in Eq. (5.3).

The arrows indicate the final cuts on HT for the chosen signal regions.
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Figure 21: The expected reach of LHC upgrades in probing gluinos decaying through off-

shell squarks g̃ → qq̄χ̃0
1 (left panel) and g̃ → tt̄χ̃0

1 (right panel), in the gluino-LSP mass

plane. The plots show the gluino mass reach at the LHC for 14 (27) TeV with 3 ab−1 (15

ab−1) of data.
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Instead, the main sources of background events are tt̄, tt̄Z and bb̄Z production. We use the

same event generation pipeline as for the g̃ → qq̄χ̃0 topology.

We initially veto on leptons with pT above 10 GeV and |η| below 2.5. We then apply a

set of baseline cuts

Njets(pT > 50 GeV, |η| < 3.0) ≥ 4, ��ET > 100 GeV (5.4)

For the HL-LHC (HE-LHC), we then search for events where the first two jets have pT >

200 (600) GeV and the third and fourth jets have pT > 80 (80) GeV. Furthermore, we ask

that at least two jets are b-tagged. To discriminate signal events from QCD dijet events, we

reject events with ST < 0.1 where ST is the the transverse sphericity. We also reject events

with ∆ϕ(j,��ET ) < π/18 where ∆ϕ(j,��ET )is the transverse angle between ��ET and the closest

jet, to reduce enhancement of ��ET due to mismeasurement of jet energies. In addition, we

reduce background further by requiring pT (j4)/HT > 0.1. After these baseline cuts, further

cuts on pT (j1) and��ET/
√
HT are optimized at each signal point to maximize the significance,

which is calculated in the same fashion as above. For the HL-LHC (HE-LHC), we vary pT (j1)

in steps of 0.1 (0.1) TeV from 0.2 (0.4) up to 1 (1.6) TeV and ��ET/
√
HT in steps of 1 (1)

GeV1/2 from 10 (10) up to 27 (27) GeV1/2.

We show exclusion and discovery contours in Figure 21 (right panel), indicating where the

significance reaches 2σ and 5σ, respectively. For a massless LSP, a gluino of approximately

2.3 TeV can be discovered by the HL-LHC with 3 ab−1 of integrated luminosity. At 27 TeV

with 15 ab−1 of integrated luminosity, we find that the exclusion (discovery) reach is roughly

5.7 (4.8) TeV. The latter result is somewhat weaker than that of [215], with respect to which

we find larger bb̄Z and tt̄ backgrounds, though comparable to the reach in the direct gluino

decay simplified model of the previous subsection. In both cases, the HE-LHC represents a

significant gain over the HL-LHC in our ability to probe gluinos. A 100 TeV collider with 3

ab−1 of integrated luminosity would be able to discover gluinos up to 6.4 TeV decaying as

g̃ → tt̄χ̃0, again assuming a massless LSP [221].
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5.3 STOPS

The stop is arguably the most sought-after SUSY state because of its unique role in

cancelling the quadratic sensitivity to the new physics scale in the Higgs boson mass correc-

tions from top quarks [219]. In addition, if the soft scalar masses are unified at some high

scale, the stops are often the lightest accessible squarks. We thus study the reach of future

colliders in probing stops. Because of its color and spin quantum numbers, the stop has

a lower production cross section than the gluino. Including NLO + NLL QCD corrections

[220], for a stop mass of 1.5 TeV it is

0.4 fb at 14 TeV and 9.2 fb at 27 TeV.

As in the previous section, the 27 TeV NLO + NLL K-factor has been estimated from the

33 TeV cross section and the rate is enhanced by a factor of 23 from 14 TeV to 27 TeV.

We restrict ourselves to the case where t̃ → t + χ̃0 with 100% branching fraction. Owing

to the different possible decay modes of the tops, there are several possible final states,

involving b-jets and missing energy with either 0, 1 or 2 leptons. Because of the ≈ 20%

leptonic branching fraction of the W boson produced in each top decay, the final states with

more leptons are more rare despite being cleaner to search for experimentally due to lower

backgrounds. Guided by existing limits [230, 231, 232], we choose to estimate the reach of

an all-hadronic stop search with similar methodology to [233]. Our final state of interest

is thus six jets and missing energy, including two b-tagged jets, and with two triplets of

jets each forming tops. The background from SM processes in this state is dominated by tt̄

and tt̄Z production, with smaller contributions from tt̄W and V + jets which we neglect.

We generate signal and background events using the same pipeline as for the gluino search

above.

To extract the signal, we begin by imposing the baseline cuts as in Eq. (5.1). We once

again reject events with leptons by requiring that signal events contain no electrons (muons)

with pT above 20 (10) GeV and |η| below 2.5 (2.4). We further require the leading two

(next four) jets to have pT > 80 (35) GeV and |η| < 2.5, with at least two b-tagged jets.

Next, we require a minimum angular separation between the three leading jets and the ��ET

106



m(t̃, χ̃0) (500, 300) (1500, 300) Background

Generator-level cuts 662 0.40 2.92 · 105

Lepton veto 473 0.31 1.44 · 105

Jet pT > (80, 80, 35, 35, 35, 35) GeV 34.2 0.07 3.14 · 103

2 b-jets 17.3 0.05 1.69 · 103

∆ϕ(j1,2,3,��ET ) > 0.2π 10.1 0.04 843

Top reconstruction 4.7 0.01 301

mT (b) > 300 GeV 0.09 – 0.61

��ET > 300 GeV 0.03 – 0.43

mT (b) > 400 GeV – 0.005 0.15

��ET > 800 GeV – 0.002 0.002

Table 4: Cut flow for the two stop benchmark points in Eq. (5.5) at HL-LHC. At each step,

the cross section remaining after the indicated cut is shown in fb. The baseline cuts are

identical for both points.
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of ∆ϕ(j,��ET ) > 0.2π. We then reconstruct hadronic top quarks as follows [234]. The two

closest jets in ∆R =
√
∆ϕ2 +∆η2 are considered as a W candidate from the top decay, and

the next-closest jet to theW candidate is combined to form a top candidate. Then, the same

technique is applied to the remaining jets in the event, to extract the second top. If the mass

of either top candidate is outside the region [80, 270] GeV, the event is rejected. Following

the preceding selections, we optimize further cuts on ��ET over the interval [300, 1000] ([300,

2500]) GeV, and the bottom transverse mass mb
T over the interval [200, 600] ([200, 1500])

GeV, where the latter is constructed using the b-jet with the least angular separation from

the ��ET .

To present the qualitative features of our analyses, we once again choose two benchmark

points, with stop and LSP masses

m(t̃, χ̃0) = (500 GeV, 300 GeV) and (1500 GeV, 300 GeV). (5.5)

Again, the first point represents the nearly-degenerate (compressed) mass spectrum–a chal-

lenging scenario for collider searches. The second set has a standard light LSP, yielding large

missing energy. Table 4 shows the cut flows for two benchmark stop scenarios. Once again,

the more compressed point benefits from looser cuts. Figure 22 then shows the kinematic

distributions after applying all cuts except for the optimized cut on��ET for these benchmarks,

demonstrating that at the expense of allowing more background, we achieve better signif-

icance for more compressed stops by retaining events with low ��ET . It is primarily due to

the optimization of our cuts that we are able to achieve greater sensitivity than the ATLAS

study, which varied the ��ET and mT (b) cuts simultaneously with the stop mass.

The results are shown in Figure 23, demonstrating that for a massless LSP, a stop of

approximately 1.5 TeV can be probed by the HL-LHC with 3 ab−1 of integrated luminosity.

At 27 TeV with 15 ab−1 of integrated luminosity, the exclusion (discovery) reach is roughly

2.7 (2.3) TeV. Unlike the gluino case, a direct comparison with an even higher potential

collider is more difficult because of the challenges in reconstructing boosted top quarks.

However, discovery of 5.5 TeV stops may be achieved at a 100 TeV collider with 3 ab−1 of

data using new top tagging techniques [235], or even 8 TeV stops with 30 ab−1 of data [236].
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Figure 22: The ��ET distribution after all cuts except for that on the ��ET are applied, at HL-

LHC. In the left/right panel, the signal corresponds to the benchmark points in Eq. (5.5).

The arrows indicate the final cuts on ��ET for the chosen signal regions.
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Figure 23: The expected reach of LHC upgrades in probing stops decaying through t̃→ tχ̃0
1

in the stop-LSP mass plane. The plot shows the stop mass reach at 14 (27) TeV with 3 ab−1

(15 ab−1) of data. The shaded region indicates the current observed limits from the LHC.
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5.4 DISCUSSION AND CONCLUSIONS

In this work, we have evaluated the reach of the high-luminosity and high-energy upgrades

of the LHC in searching for signals of strongly produced supersymmetry. Using simplified

models based on production of gluinos and stops, two of the new particles most closely

tied to the tuning of the electroweak scale in supersymmetry, we have adapted the existing

experimental analyses, optimizing cuts to maximize the sensitivity to both conventional

and compressed mass spectra. For gluinos, we find that the HL-LHC and HE-LHC have

discovery reach up to masses of 2.8 and 5.2 TeV, respectively. Similarly, our study shows

that the HL-LHC and HE-LHC can discover stops with masses up to 1.3 and 2.3 TeV.

Our results for HL-LHC are slightly better than those in existing experimental projec-

tions. The main reason for the improvement is that we have adjusted two cuts in each of

our analyses to aid in discerning signal from background, which is expected to yield better

reach than applying a fixed set of cuts for all potential super-partner masses, or even than

performing a one-dimensional optimization. Conversely, it is possible that changing more

cuts or even more sophisticated search strategies could improve the results that we have

found. As an example, a recent ATLAS search for the same gluino simplified model as we

have considered excluded gluinos at 2.0 TeV with 36 fb−1 of integrated luminosity. This

analysis used a combination of an meff-based search as we have performed but with addi-

tional cuts, as well as signal regions constructed using the recursive jigsaw reconstruction

technique. Extrapolating this gluino exclusion up to the HE-LHC by scaling the gluon par-

ton distribution function would yield an expected exclusion of over 7 TeV, suggesting that

further refinements could be made to our search. Nevertheless, our results provide a useful

estimate of the practical reach that an upgraded LHC could achieve in searching for stops

and gluinos. Our procedure should serve as useful guidance for future analyses.

Finally, we comment that while we have considered only simplified models with two

particles, in a more complicated scenario it would be more involved to determine the reach

of a future collider. For instance, intermediate electroweak gauginos between the strongly

produced particle and the LSP would give final states with leptons, which we have not

considered, and a variety of different cascade decays would be possible depending on the
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super-partner mass splittings and mixings.

As the LHC continues to acquire more data, it is important to assess the sensitivity of its

potential successors to BSM theories. Here, we have studied the reach of the high luminosity

and high energy upgrades of the LHC in probing gluinos and stops in supersymmetry. Further

work is warranted to continue the exploration of the ability of these machines and beyond

to explore new physics at the energy frontier.
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6.0 CONCLUSIONS

We study the neutrino portal dark matter which explains non-baryonic dark matter and

the neutrino masses at the same time and explores their connection. We also calculate the

sensitivities of the High Luminosity (HL) and High Energy (HE) upgrades of the Large

Hadron Collider (LHC) to strong supersymmetry signals.

In Ref [41], we have investigated a simple model of neutrino portal DM, in which the

RHNs simultaneously generate light neutrino masses via the Type-I seesaw mechanism and

mediate interactions of DM with the SM. The model is quite minimal and contains a dark

sector composed of a fermion χ (the DM candidate) and scalar ϕ, along with the RHN N .

Given the generic expectation of tiny neutrino Yukawa couplings, testing this model with

direct detection or accelerator experiments is likely to be challenging. However, it is possible

in this model that DM efficiently annihilates to RHNs, which allows for a number of indirect

probes of this scenario. We have carried out an extensive characterization of the indirect de-

tection phenomenology of the neutrino portal DM scenario. Restricting to an experimentally

and theoretically viable mass range, 1 GeV ≲ mN < mχ ≲ 10 TeV, we have derived the con-

straints on the χχ→ NN annihilation cross section from Planck CMB measurements, Fermi

gamma-ray observations from the Galactic Center and from dSphs, and AMS-02 antiproton

observations. This model can also provide a DM interpretation of the Fermi Galactic Center

gamma ray excess as discussed. We have verified that the predicted spectrum of gamma

rays is compatible with the observed excess for RHN and DM masses in the 20 − 60 GeV

range and annihilation rates close the the thermal value. However, we have also shown that

this interpretation faces some tension with the existing constraints from Fermi dSphs and

AMS-02 antiprotons (subject of course to various astrophysical uncertainties).

In Ref. [151], We have presented a general analysis of thermal relic DM that annihilates
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directly to SM neutrinos through the neutrino portal. This possibility is very well motivated

theoretically but has been relatively less well studied than other scenarios involving vector or

scalar mediators. Indeed, directly annihilating to light neutrinos can allow for thermal relic

dark matter below roughly 10 − 50 GeV without spoiling CMB measurements. The model

is simple and economical, adding just three new states, fermions N and χ and a scalar ϕ,

with masses from about 10 MeV to O(100 GeV). It allows for a very simple cosmological

history, with the DM number density being set either by annihilation to light neutrinos or by

an initial asymmetry, with annihilation reducing the number density to the measured level.

The relatively large dark matter-light neutrino coupling needed for annihilation requires that

the sterile neutrino mediator N be (pseudo-)Dirac. We discussed the impact of radiative

corrections to the scalar mass, identifying regions of parameter space that do not require

fine-tuning. we pointed out an interesting feature of this scenario: the fact that the heavy

(mostly N) neutrino decays primarily invisibly into the dark sector, allowing for relatively

larger active-sterile mixing angles. We discussed and updated limits on the sterile neutrino

in this scenario where it decays invisibly. The direct detection signature of this model was

examined and we find that it sets an upper limit on the DM mass of around 10 GeV in the

simplest scenario. The impact on the small scale structure of DM, which could signal strong

interactions between light neutrinos and DM, was also presented. We identified several new

measurements or analyses that can be done to probe large regions of viable parameter space

in this setup. First, we discussed the possibility that the heavy, invisibly decaying neutrino

required for this scenario can affect the kinematics of charged leptons in Drell-Yan W±

production at the LHC. The sizable active-sterile mixing angle needed as well as the large

number of W bosons produced at the LHC could allow for unconstrained regions of viable

parameter space to be probed by such a measurement. In our simple mock analysis, we only

considered e+ and µ+ transverse momenta above 30 GeV as in the ATLAS measurement of

the W mass. Secondly, we discussed the sensitivity of three-body decays of kaons into the

dark sector to this scenario. One virtue of this search is that it scales on the parameters of

the model in the same way as the DM annihilation cross section and can therefore probe the

parameter space without having to assume particular values of some parameters.

In Ref. [200], we have evaluated the reach of the high-luminosity and high-energy up-
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grades of the LHC in searching for signals of strongly produced supersymmetry. Using

simplified models based on production of gluinos and stops, two of the new particles most

closely tied to the tuning of the electroweak scale in supersymmetry, we have adapted the

existing experimental analyses, optimizing cuts to maximize the sensitivity to both conven-

tional and compressed mass spectra. For gluinos, we find that the HL-LHC and HE-LHC

have discovery reach up to masses of 2.8 and 5.2 TeV, respectively. Similarly, our study

shows that the HL-LHC and HE-LHC can discover stops with masses up to 1.3 and 2.3 TeV.

Our results for HL-LHC are slightly better than those in existing experimental projections.

The main reason for the improvement is that we have adjusted two cuts in each of our analy-

ses to aid in discerning signal from background, which is expected to yield better reach than

applying a fixed set of cuts for all potential super-partner masses, or even than performing

a one-dimensional optimization. Conversely, it is possible that changing more cuts or even

more sophisticated search strategies could improve the results that we have found. Overall,

our procedure should serve as useful guidance for future analyses.
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APPENDIX A

BOOSTED SPECTRUM FOR MASSLESS PARTICLES

A.1 BOOSTING THE SPECTRUM OF A MASSLESS PARTICLE

If the spectrum of a massless particle is monoenergetic in frame O with energy E0, then

the energy spectrum can be shown as

f(E) = δ(E − E0),

∫ ∞

0

dE f(E) = 1. (A.1)

Now we want to apply a boost, β, to go to another frame, O′, and find the energy

spectrum in that frame. We use our freedom to choose particle direction to be along z axis

and boost velocity to lie in x− z plane. Therefore:

pµ = (E, 0, 0, E), β = (β sin θ, 0, β cos θ). (A.2)

The corresponding Lorentz transformation from O to O′ is given by

Λ =


γ −γβsθ 0 −γβcθ

−γβsθ 1− (γ − 1)s2θ 0 (γ − 1)sθcθ

0 0 1 0

−γβcθ (γ − 1)sθcθ 0 1− (γ − 1)c2θ

 (A.3)

thus, the energy in O′, E ′, is related to energy in O, E, as

E ′ = γ(1− β cosθ)E. (A.4)
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In order to obtain the energy spectrum in O′, we need to average over cos θ to preserve

the isotropicity of original spectrum in O. This means that

1 =

∫ ∞

0

dE f(E) =

∫ ∞

0

dE ′
∫ 1

−1

d cos θ

2

1

γ(1− β cosθ)
δ

[
1

γ(1− β cosθ)
− E0

]
(A.5)

The integral over cos θ can be done by using the properties of delta function:

∫
dx g(x) δ[h(x)] =

∫
dx g(x)

∑
i

δ(x− xi)

|h′(xi)|
=
∑
i

g(xi)

|h′(xi)|
(A.6)

where xi’s are those x’s for which

h(xi) = 0. (A.7)

In this case:

h(cθ) =
E ′

γ(1− β cθ)
− E0, h′(cθ) =

βE ′

γ(1− β cθ)2
, g(cθ) =

1

2

1

γ(1− β cθ)
(A.8)

and cθ0 is the angle that makes f(cθ) zero:

h(cθ0) =
E ′

γ(1− β cθ0)
− E0 = 0, cθ0 =

γE0 − E ′

βγE0

. (A.9)

Therefore, we have

g(cθ0)

|h′(cθ0)|
=
E0/2

βγE2
0

=
1

2βγE0

. (A.10)

The new spectrum can be obtained from

1 =

∫ ∞

0

dE ′

2βγE0

θ[E ′ − γ(1− β)E0] θ[γ(1 + β)E0 − E ′] ≡
∫ ∞

0

dE ′ f(E ′) (A.11)
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A.1.1 Generalization to a Continious Energy Spectrum

We know the boosted monoenergetic spectrum is related to the original spectrum as

1 =

∫ ∞

0

dE δ(E − E0)
boost−−−→

1 =

∫ ∞

0

dE ′

2βγE0

θ[E ′ − γ(1− β)E0] θ[γ(1 + β)E0 − E ′]. (A.12)

A general spectrum can be boosted accordingly by using the sifting property of delta function:

1 =
∫∞
0
dE f(E) =

∫∞
0
dE
∫∞
0
dE0 δ(E − E0)f(E0) =

∫∞
0
dE0 f(E0)

∫∞
0
dE δ(E − E0) (A.13)

boost−−−→ 1 =

∫ ∞

0

dE0 f(E0)

∫ ∞

0

dE ′

2βγE0

θ[E ′ − γ(1− β)E0] θ[γ(1 + β)E0 − E ′]

=

∫ ∞

0

dE ′
∫ ∞

0

dE0

2βγE0

f(E0)θ[E
′ − γ(1− β)E0] θ[γ(1 + β)E0 − E ′]. (A.14)

Two step functions give us the range of E0 for a fixed value of E ′ as:

E ′

γ(1 + β)
< E0 <

E ′

γ(1− β)

γ2(1−β2)=1−−−−−−−→ γ(1− β)E ′ < E0 < γ(1 + β)E ′. (A.15)

We can apply the limits of integration to rewrite the boosted spectrum

1 =

∫ ∞

0

dE f(E) =

∫ ∞

0

dE ′
∫ γ(1+β)E′

γ(1−β)E′

dE0

2βγE0

f(E0) ≡
∫ ∞

0

dE ′ f(E ′). (A.16)

Therefore

f(E ′) =

∫ γ(1+β)E′

γ(1−β)E′

dE

2βγE
f(E). (A.17)
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APPENDIX B

BOOSTED SPECTRUM FOR MASSIVE PARTICLES

B.1 BOOSTING THE SPECTRUM OF A MASSIVE PARTICLE

If the spectrum of a massive particle with mass m is monoenergetic in frame O with

energy E0, then the energy spectrum can be shown as

f(E) = δ(E − E0),

∫ ∞

m

dE f(E) = 1. (B.1)

Now we want to apply a boost, β, to go to another frame, O′, and find the energy spectrum

in that frame. We use our freedom to choose particle direction to be along z axis and boost

velocity to lie in x− z plane. Therefore:

pµ = (E, 0, 0,
√
E2 −m2), β = (β sin θ, 0, β cos θ). (B.2)

The corresponding Lorentz transformation from O to O′ is given by
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Λ =


γ −γβsθ 0 −γβcθ

−γβsθ 1− (γ − 1)s2θ 0 (γ − 1)sθcθ

0 0 1 0

−γβcθ (γ − 1)sθcθ 0 1− (γ − 1)c2θ

 . (B.3)

Thus, the energy in O′, E ′, is related to energy in O, E, as

E ′ = γ(E − β cosθ
√
E2 −m2). (B.4)

Or equivalently

E =
E ′ + βcθ

√
E ′2 + γ2m2(β2c2θ − 1)

γ(1− β2c2θ)
, (B.5)

dE =
1

γ(1− β2c2θ)

[
1 +

βcθE
′√

E ′2 + γ2m2(β2c2θ − 1)

]
dE ′. (B.6)

In order to obtain the energy spectrum in O′, we need to average over cos θ to preserve

the isotropicity of original spectrum in O. This means that

1 =
∫∞
m
dE f(E) =

∫∞
γm
dE ′ ∫ 1

−1
d cos θ

2
1

γ(1−β2c2θ)

[
1 + βcθE

′√
E′2+γ2m2(β2c2θ−1)

]
δ

[
E′+βcθ

√
E′2+γ2m2(β2c2θ−1)

γ(1−β2c2θ)
− E0

]
. (B.7)

The integral over cos θ can be done by using the properties of delta function:

∫
dx g(x) δ[h(x)] =

∫
dx g(x)

∑
i

δ(x− xi)

|h′(xi)|
=
∑
i

g(xi)

|h′(xi)|
(B.8)
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where xi’s are those x’s for which

h(xi) = 0. (B.9)

In this case:

h(cθ) =
E′+βcθ

√
E′2+γ2m2(β2c2θ−1)

γ(1−β2c2θ)
− E0, g(cθ) =

1
2γ(1−β2c2θ)

[
1 + βcθE

′√
E′2+γ2m2(β2c2θ−1)

]
(B.10)

and cθ0 is the angle that makes h(cθ) zero:

c2θ0 =
(β2γ2m2−β2E′2+2γβ2E′E0−2γ2β2E2

0)±
√

(β2γ2m2−β2E′2+2γβ2E′E0−2γ2β2E2
0)

2−4(β4γ2m2−β4γ2E2
0)(−E2+2γEE0−γ2E2

0)

2(β4γ2m2−β4γ2E2
0)

.(B.11)

After simplification we have

c2θ0 =


2γ2(E2−m2)

2β2γ2(E2−m2)
= 1

β2 , +

2(γE0−E′)2

2β2γ2(E2−m2)
= (γE0−E′)2

β2γ2(E2−m2)
, −

There are four solutions, we choose that solution which is in agreement with massless case,

cθ0 =
γE0−E′

βγE0
. Therefore,

cθ0 =
γE0 − E ′

βγ
√
E2

0 −m2
, (B.12)

and we have

g(cθ0)

|h′(cθ0)|
=
E ′2
√
E2

0 −m2 − γE ′E0

√
E2

0 −m2 + γ
√
E2

0 −m2
√

(γm2 − E ′E0)2

2βγ(E2
0 −m2)(E ′2 − γ2m2)

. (B.13)
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Because of square root of perfect squared expression, we have

g(cθ0)

|h′(cθ0)|
=


√

E2
0−m2(E′2−γE′E0+γ2m2−γE′E0)

2βγ(E2
0−m2)(E′2−γ2m2)

= (E′2−2γE′E0+γ2m2)

2βγ
√

E2
0−m2(E′2−γ2m2)

, +
√

E2
0−m2(E′2−γE′E0−γ2m2+γE′E0)

2βγ(E2
0−m2)(E′2−γ2m2)

= 1

2βγ
√

E2
0−m2

, −

Again, we choose that solution which is in agreement with massless case,
g(cθ0 )

|h′(cθ0)|
= 1

2βγE0
.

Therefore

g(cθ0)

|h′(cθ0)|
=

1

2βγ
√
E2

0 −m2
. (B.14)

The new spectrum can be obtained from

1 =
∫∞
γm

dE′

2βγ
√

E2
0−m2

θ[E ′ − γ(E0 − β
√
E2

0 −m2)] θ[γ(E0 + β
√
E2

0 −m2)− E ′] ≡
∫∞
γm
dE ′ f(E ′) .(B.15)

B.1.1 Generalization to a Continious Energy Spectrum

We know the boosted monoenergetic spectrum is related to the original spectrum as

1 =
∫∞
m
dE δ(E − E0)

boost−−−→ 1 =
∫∞
γm

dE′

2βγ
√

E2
0−m2

θ[E ′ − γ(E0 − β
√
E2

0 −m2)] θ[γ(E0 + β
√
E2

0 −m2)− E ′] .(B.16)

A general spectrum can be boosted accordingly by using the sifting property of delta

function:

1 =
∫∞
m
dE f(E) =

∫∞
m
dE
∫∞
m
dE0 δ(E − E0)f(E0) =

∫∞
m
dE0 f(E0)

∫∞
m
dE δ(E − E0) (B.17)
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boost−−−→

1 =

∫ ∞

m

dE0 f(E0)

∫ ∞

γm

dE ′

2βγ
√
E2

0 −m2
θ[E ′ − γ(E0 − β

√
E2

0 −m2)]

× θ[γ(E0 + β
√
E2

0 −m2)− E ′]

=

∫ ∞

γm

dE ′
∫ ∞

m

dE0

2βγ
√
E2

0 −m2
f(E0)θ[E

′ − γ(E0 − β
√
E2

0 −m2)]

× θ[γ(E0 + β
√
E2

0 −m2)− E ′] (B.18)

Two step functions give us the range of E0 for a fixed value of E ′ as:

γ(E0 − β
√
E2

0 −m2) < E ′ Eq. (B.5)−−−−−→
cθ=1

E0 <
E ′ + β

√
E ′2 + γ2m2(β2 − 1)

γ(1− β2)
γ2(1−β2)=1−−−−−−−→ E0 < γ(E ′ + β

√
E ′2 −m2), (B.19)

E ′ < γ(E0 + β
√
E2

0 −m2)
Eq. (B.5)−−−−−→
cθ=−1

E0 >
E ′ − β

√
E ′2 + γ2m2(β2 − 1)

γ(1− β2)
γ2(1−β2)=1−−−−−−−→ E0 > γ(E ′ − β

√
E ′2 −m2). (B.20)

Altogether

γ(E ′ − β
√
E ′2 −m2) < E0 < γ(E ′ + β

√
E ′2 −m2). (B.21)

We can apply the limits of integration to rewrite the boosted spectrum

1 =

∫ ∞

m

dE f(E) =

∫ ∞

γm

dE ′
∫ γ(E′+β

√
E′2−m2)

γ(E′−β
√
E′2−m2)

dE0

2βγ
√
E2

0 −m2
f(E0)

≡
∫ ∞

γm

dE ′ f(E ′). (B.22)
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Therefore

f(E ′) =

∫ γ(E′+β
√
E′2−m2)

γ(E′−β
√
E′2−m2)

dE

2βγ
√
E2 −m2

f(E), (B.23)

which in the massless limit returns the correct result

lim
m→0

f(E ′)massive = lim
m→0

∫ γ(E′+β
√
E′2−m2)

γ(E′−β
√
E′2−m2)

dE

2βγ
√
E2 −m2

f(E)

=

∫ γ(1+β)E′

γ(1−β)E′

dE

2βγE
f(E)

Eq. (A.17)−−−−−−→ f(E ′)massless. (B.24)
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