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ASYMPTOTIC BEHAVIORS OF A FREE BOUNDARY ARISED FROM

CORPORATE BOND EVALUATION WITH CREDIT RATING

MIGRATION RISKS

Wanying Fu, PhD

University of Pittsburgh, 2019

In this thesis, we study asymptotic behaviors of a free boundary arised from the evaluation

of a corporate bond subject to changes of the credit rating of the underlying company. The

credit rating migration is modeled by a free boundary which separates different credit rating

regions in a state space. We first formulate the mathematical problem and then we establish

the well-posedness of the problem and the long time-to-expiry behavior of the solution. As a

result, we describe the location and asymptotic line of the free boundary. Certain numerical

simulations are also provided.
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1.0 INTRODUCTION

This thesis is concerned with a free boundary problem modeling the evaluation of a corporate

bond, where the underlying company undergoes credit rating changes.

The background of the problem is measuring financial credit risks. With the globalization

and complexification of financial markets, people pay more and more attention to credit risks.

There are two main types of credit risks: default and credit rating migration. Although the

credit rating migration is indeed of great importance in financial activities, up until now,

most research attention is focused on measuring default risks. In this thesis, we add credit

rating change risks into consideration.

The 2008 finance crisis caused global damaging of financial institutions, subsequent col-

lapse of home and stock markets, and prolonged unemployment. Failure of key business

and the followed downturn on economic activities played an important role on the European

sovereign-debt criss and the Great Recession during 2008-2012. The credit rating migration

serves as one crucial reason for these events. As a result, it is important to study credit

rating migration.

There are plenty of academic researches about measuring default risks. Two main tradi-

tional models are the structural models and the intensity models. In a structural model, a

default occurs when the value of a state variable (such as the firm’s asset value) falls below

a sovereign level. As a pioneer of applying a structural model, Merton [1] assumes that a

default of corporate bond of an underlying company may happen on the expiration time.

Two years later, Black and Cox [2] develop Merton’s model to a first-passage time model

by introducing safety covenants that give the bondholders the right to recognize a firm if

the company asset value is less than certain level. This model considers that default may

happen at anytime. In this direction, similar models have been developed; see Longstarff
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and Schwartz [3], Leland [4], Leland and Toft [5], Briys and de Varenne [6], Chance [7], and

Shimko, Tejima and vanDeventer [8]. In an intensity model, the time of default is described,

based on a probabilistic approach, by first arrived times of Possion Processes of variable

intensities depending on state variables; see Jarrow and Turnbull [9], Lando [10], Litterman

and Iben [11], Duffie and Singleton [12].

To study credit rating migration, one uses the switches of intensity matrices of Markov

chains; see Lando [13], Thomas, Allen and Morkel-Kingsbury [14], Hurd and Kuznetsov [15],

Jarrow, Lando and Turnbull [16], Das and Tufano [17]. Liang and Zeng [18], Liang, Zhao

and Zhang [19], Liang, Wu and Hu [20], for the first time, adapt structure models to price

bonds for firms undergoing credit rating migration. In their papers, they set a predetermined

migration threshold and separate firm’s asset value into high rating region and low rating

region under the assumption that firm’s value is stochastic. Hu, Liang and Wu [21] modify

the model by using the ratio of debt to firm’s value as the threshold and transfer the model

to a free boundary problem in partial differential equation system. In their papers, they give

the well-posedness of the problem and some properties of the free boundary, which separates

different credit rating regions in state space. In 2017, the smoothness and boundedness of

the free boundary are provided by Liang, Yin, Chen and Wu [22].

In this thesis, we adapt the model developed in Hu, Liang and Wu [21] and study in

more detail the solution and the free boundary. The main contributions in our study are the

following:

1. We give a proof of the well-posedness in a more general way. In particular, we simplify

the uniqueness proof in Hu, Liang and Wu[21].

2. We find two paralleled lines that bounds the free boundary, (i.e. it lies in a stripe of two

paralleled lines with explicit expressions).

3. We provide the asymptotic (long-expiration-time) behavior of the free boundary.

4. As expiry time goes to infinity, We show that the company’s ratio of debt to asset value

(the solution of the parabolic equation) presents a stack of two traveling waves. The first

wave connects 0 and γ (i.e. the threshold for the company’s ratio of debt to asset value

which separates the high and low credit rating), and the second wave connects γ and 1.

Both waves travel with different velocities.
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5. As a demonstration of our asymptotic results, we provide some numerical simulations.

For long time behavior, the scheme is so designed that it can cover an arbitrary long

expiry-time period, with any fixed amount of computing time. We find the free boundary

and the solution for any expiry-time. The numerical results agree with the theoretical

one.

The rest of this thesis is organized as follows: In chapter 2, we set up the model. Chapter

3 shows the main results. In chapter 4, the main results are proven in detail, including

the well-posedness establishment and qualitative analysis. Then in chapter 5, we perform

numerical simulations. Chapter 6 is a conclusion.
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2.0 MATHEMATICAL FORMULATION

In this chapter we first follow Hu, Liang and Wu [21] to derive a mathematical formulation

for the price of a corporate bond under credit rating change. Then we perform a dimension

reduction and get our main mathematical problem.

2.1 BASICS

A corporate bond is a debt security issued by a corporation and sold to investors. Comparing

to government bonds, it provides a higher interest rate to compensate the higher risks. It

can be a major source of capital for many businesses. The backing for the bond is usually

the payment ability of the company, which is typically money to be earned from future

operations. In this thesis, we consider the situation where the company’s physical assets are

used as collateral for bonds.

We study the price of a corporate bond subject to the change of the underlying company’s

credit rating, which rates the ability of the underlying company to pay back the borrowing.

Here we consider a simple scenario where credit rating is (uniquely) determined by the ratio

of the company’s debt to its asset value.

We assume that the debt is the market price of the bond and that the asset value of the

company undergoes a geometric Brownian motion with volatility depending on credit rating.

The relations among the credit rating, debt (bond value), and asset value are depicted in

Figure 1.
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Figure 1: Corporation bond price subject to credit rating change.

First of all, the credit rating is assumed to be determined by the ratio of debt to asset

value. Secondly, the debt is assumed to be the market price of the bond.

1. When credit rating increases, then bond price increases which means that debt increases.

In the same time, the volatility of the asset value decreases so the asset value becomes

more stable.

2. When credit rating decreases, then bond price decreases which means that debt decreases.

In the meantime, the volatility of asset value increases, so the asset value changes more

drastically.

The changes of the debt and asset value will in turn change their ratio and therefore, change

the credit rating. In the study, we shall model the dynamics of these changes in a precise
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manner.

2.2 MATH FORMULATION

2.2.1 Basic Math Set-up

We consider a company who issued a non-dividend paying bond due at an expiration date

at which the bond is paid back either at its face value or at the asset value of the company,

whichever is less. The debt of the company is regarded as the market value of the bond,

which is (partially) determined by the company’s credit rating, which, in turn, is determined

by the ratio of the debt to asset value. Following Hu, Liang and Wu [21], we construct a

mathematical model as follows.

1. We assume that there is a risk-free bond whose risk free interest rate, {rt}t>0, is described

by a Vasicek process [23]:

drt = (k − βrt)dt+ σdW 1
t ,

where σ > 0, k > 0, and β > 0 are constants and {W 1
t }06t6T is a standard Brownian

Motion process.

2. Denote by Xt the company’s assets value at time t. We assume that {Xt}06t6T is a

stochastic process under a risk-neutral environment described by:

dXt = rtXtdt+ σtXtdW
2
t ,

where {W 2
t }06t6T is a standard Brownian Motion process under a risk-neutral environ-

ment. We assue that rt and Xt are correlated by assuming the correlation coefficient:

ρ = cov(dW1
t , dW2

t )/dt,

where ρ ∈ [−1, 1] is a constant.

3. Assume that the company debt is the owing of a corporate bond of face value K due at

time T > 0. The current time is assumed to be zero. Denote the market value of the

6



bond at time t ∈ [0, T ] by Ut. Based on our assumption, at due date we have that

UT = min{XT , K}.

Note that XT is the company’s assets value at time T .

4. We assume that the credit rating depends only on Ut/Xt, the ratio of the company’s

debt value to its assets value. We further assume that the volatility of the company’s

asset value is uniquely determined by the credit rating. For simplicity, we use two rating

system. Multiple rating system can be similarly analyzed. Hence, we assume that the

volatility process is prescribed by

σt = Σ
(Ut
Xt

)
,

Σ(s) =

σH if s < γ,

σL if s > γ;

here γ, σH and σL are positive constants. Because good credit rating corresponds to low

volatility, we assume

0 < σH < σL.

Also, we assume that γ ∈ (0, 1), since the case γ > 1, together with the fact that Ut 6 Xt,

gives the trivial scenario that σt = σH for all t ∈ [0, T ].

5. Under the above assumptions and certain routine assumptions needed for Black-Scholes

theory, we can derive that Ut, the market value of bond, is a function of Xt, rt and t, i.e.

there exists a function u such that

Ut = u(rt, Xt, t), ∀t ∈ [0, T ],

and that u(·, ·, ·) is the solution of the following Black-Scholes equation with the terminal

condition: 
∂u

∂t
+N [u] = 0 ∀r ∈ R, x > 0, t ∈ [0, T );

u(r, x, t)|t=T = min{K, x} ∀r ∈ R, x > 0,

(2.1)
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where N is a non-linear operator given by

N [u] =
1

2
Σ2
(u
x

)
x2∂

2u

∂x2
+ ρσΣ

(u
x

)
x
∂2u

∂x∂r
+

1

2
σ2∂

2u

∂r2
+ xr

∂u

∂x
+ (k − βr)∂u

∂r
− ru.

In the rest of this thesis, we shall study the non-linear problem (2.1).

2.2.2 Dimension Reduction

Without loss of generality, we assume K = 1 in this thesis. In solving problem (2.1), we are

dealing with an unknown function u(x, r, t) of three variables. Since the terminal value of u

does not depend on r and since we are using the Vasicek model, we shall show below that

we can perform a dimension reduction; that is, u is indeed a function of two variables.

For this purpose, we first introduce the price of risk-free bond, {Pt}t>0. By theory of the

Vasicek Interest Rate model, we know that

Pt = p(rt, T − t),

where p(r, τ) is the unique solution of
∂p

∂τ
=
σ2

2

∂2p

∂r2
+ (k − βr)∂p

∂r
− rp, ∀r ∈ (0,∞), τ > 0;

p(r, 0) = 1;

The unique solution[23] is given by:

p(r, τ) = e−A(τ)r−B(τ),

where A(τ) and B(τ) are given by

A(τ) =
1

β
(1− e−βτ ),

B(τ) =
σ2

1

4β3

(
e−2βτ − 1

)
−
(σ2

1

β3
− k

β2

)(
e−βτ − 1

)
+
(
− σ2

1

2β2
+
k

β

)
τ.

The detailed calculation is given in Appendix (chapter 7).

Being an affine term structure model, the solution p has the property

∂ ln p

∂r
(r, τ) = −A(τ),
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which does not depend on r. This important property allows us to perform a dimension

reduction.

Using the price of risk-free bond as numerie, we introduce

τ = T − t;

y =
x

p(r, τ)
;

v(r, y, τ) =
u(r, x, t)

p(r, τ)
=
u (r, yp(r, τ), T − τ)

p(r, τ)
.

Simple computation shows that v satisfies the system
∂v

∂τ
= a
(
τ,
v

y

)
y2∂

2v

∂y2
∀y > 0, τ ∈ [0, T ];

v(0, r, y) = min{1, y} ∀y > 0, τ = 0.

(2.2)

Here a(τ, s) is a function defined by

a(τ, s) = aH(τ) + [aL(τ)− aH(τ)]H(s− γ), (2.3)

where

H(x) =

1 if x > 0,

0 if x < 0;

(2.4)

ai(τ) =
σ2

2

(
1− e−βτ

β

)2

+ ρσσi

(
1− e−βτ

β

)
+

1

2
σ2
i , for i = H,L. (2.5)

The solution of (2.2) does not depend on r. Thus, we further introduce

z = ln y;

w(τ, z) =
v(τ, r, y)

y
=
v(τ, r, ez)

ez
.

An elementary calculation leads to the main PDE problem stated in next subsection we

studied in this thesis.
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2.2.3 The Main PDE Problem

From the dimension reduction, we conclude that w is the solution of the following non-linear

PDE problem wτ = a(τ, w)(wz + wzz) ∀z ∈ R, τ ∈ (0,∞),

w(0, z) = min{1, e−z} ∀z ∈ R, τ = 0;

(2.6)

here wτ , wz and wzz stand for the partial derivatives of w with respect to τ and z.

Hence, our mathematical problem is to study (2.6) where a(·, ·) is given by (2.3)-(2.5)

with 0 < γ < 1.

Note that when σ = 0, a(·, ·) does not depend on τ . Here we write:

a(τ, s) = a∗(s) :=
σ2
H

2
+
(σ2

L

2
− σ2

H

2

)
H(s− γ). (2.7)

10



3.0 MAIN RESULTS

In this chapter, we shall first define a strong solution for our math problem 2.6. Then we list

two theorems as our main results. One is for well-posedness of the system, i.e. the existence

and uniqueness of the strong solution in Sobolev sense. The other theorem expresses the

asymptotic behaviors of the solution and the free boundary. Especially, the free boundary,

which separates different credit rating regions for the underlying company in a state space,

is located in a stripe bounded by two straight lines sharing the same slope. The detailed

proofs are presented in the next chapter.

3.1 DEFINITION OF STRONG SOLUTION

Since a(τ, s) in (2.3) is not continuous, problem (2.6) does not possessed a classical solution.

For this reason, we introduce a strong solution as follows:

Definition 1. Let a(τ, s) defined as in (2.3)–(2.5), where σ > 0, σH > 0, σL > 0, β >

0, γ ∈ (0, 1), and ρ ∈ [−1, 1] are constants. A strong solution of (2.6) is a function

w ∈ C([0,∞)× R) that satisfies wτ , wzz ∈ L2
loc([0,∞)× R) andwτ = a(τ, w)(wz + wzz) a.e. in (0,∞)× R,

w(0, z) = w0(z).

The definition is in Sobolev sense, which helps us analyze the well-posedness of the

system.

11



3.2 WELL-POSEDNESS

We state the well-posedness of the solution as in the following theorem. The detailed exis-

tence establishment and uniqueness establishment are given in chapter 4.

Theorem 1. Assume that σ > 0, σH > 0, σL > 0, β > 0, ρ ∈ [−1, 1], and γ ∈ (0, 1)

are constants and a(·, ·) is given by (2.3)–(2.5). Then system (2.6) admits a unique strong

solution.

3.3 FREE BOUNDARY’S LOCATION AND SOLUTION’S ASYMPTOTIC

BEHAVIORS

In the τ -z space, the right-half plane is divided into two open regions: one is a high credit

rating region in which w(τ, z) < γ and the other is a low credit rating region in which

w(τ, z) > γ.

The two regions are separated by a smooth and non-decreasing curve z = s(τ) where

w(τ, z) = γ on it in the τ − z plane, i.e. the state space. Technically, this curve is called the

free boundary. We denote the free boundary as

Γ := {(τ, z) | τ > 0, w(τ, z) = γ} = {(τ, z) | τ > 0, z = s(τ)}.

Clearly, the problem of finding credit rating migration is equivalent to find the free

boundary.

We would like to describe the location of the free boundary. Note that a(τ, w) does not

depend on τ when σ = 0. (i.e. The function a is given by (2.7).) For simplicity, we consider

the case σ = 0.

We can provide the following information about the location of the free boundary, as

well as the asymptotic behaviors of the free boundary and the solution of system 2.6.

Theorem 2. Assume the conditions of Theorem 1. Also assume that σ = 0. Let w be the

12



strong solution of (2.6) and Ā and A be constants defined by

Ā = max

{
ln

2

γ
, ln

1

γ
+

4σL
σL − σH

ln
4σH(1− γ)

γσL

}
,

A = min

{
ln

1

γ
, ln

1

γ
− 4σH
σL − σH

ln
2γσL

σH(1− γ)

}
.

Then there exists a function s(·) such that the free boundary Γ := {(τ, z) | τ > 0, w(τ, z) =

γ)} is given by the curve z = s(τ); more precisely, Γ = {(τ, s(τ)) | τ > 0}. In addition,

A− σHσL
2

τ 6 s(τ) 6 Ā− σHσL
2

τ, ∀τ > 0.

Furthermore, w has the following asymptotic behavior: ∀η ∈ R,

lim
τ→∞

w
(
τ,−σ

2
H

2
τ − ησH

√
τ
)

= γN(η);

lim
τ→∞

w
(
τ,−σ

2
L

2
τ − ησL

√
τ
)

= γ + (1− γ)N(η).

Here N(·) is the cumulative density function of the standard normal distribution, i.e.

N(x) =

∫ x

−∞

e−
θ2

2

√
2π
dθ, ∀x ∈ R.

Note that for w(τ, ·) resembles a stack of two travelling waves for any fixed τ � 0 as

following:

1. When z > −σHσL
2
τ ,

w(τ, z) ≈ γN
(
−
z + 1

2
σ2
Hτ

σH
√
τ

)
.

One traveling wave (from w = 0 to w = γ) appears, which nearly centers at z = −1
2
σ2
Hτ .

2. When z 6 −σHσL
2
τ ,

w(τ, z) ≈ γ + (1− γ)N
(
−
z + 1

2
σ2
Lτ

σL
√
τ

)
.

The other traveling wave (from w = γ to w = 1) appears, which nearly centers at

z = −1
2
σ2
Lτ .

The two travelling waves travel with velocities O(σH
√
τ) and O(σL

√
τ) respectively.

In short, when time-to-expiry is big, the value of w, i.e. the debt-to-asset ratio, tends

toward resemble two travelling waves. One travels from 0 to γ, centering along the straight

13



line z = −1
2
σ2
Hτ . The other one travels from γ to 1, centering along the straight line

z = −1
2
σ2
Lτ .

In Figure 2, for any fixed τ � 0, the curve of w = w(τ, ·) shows the asymptotic behaviors

described above.

1

γ

0

−σHσL
2
τ

z

w

w(τ, z) ≈ γN
(
− z+ 1

2σ
2
Hτ

σH
√
τ

)
w(τ, z) ≈ γ + (1− γ)N

(
− z+ 1

2σ
2
Lτ

σL
√
τ

)

4σL
√
τ

4σH
√
τ

w = w(τ, z)

Figure 2: For fixed big τ , the stack of two travelling waves of w(τ, ·).
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4.0 PROOFS OF MAIN RESULTS

In chapter 4, we give detailed deductions and proofs of main results. Section 4.1 establishes

the well-posedness of system 2.6, including the existence and uniqueness of the defined

strong solution. In section 4.2, we do qualitative analysis, which allows us to locate the free

boundary and know some asymptotic behaviors of the solution.

4.1 WELL-POSEDNESS ESTABLISHMENT

Section 4.1 contains two subsections. In subsection 4.1.1, we establishes the existence of

the strong solution of problem 2.6. In subsection 4.1.2, we prove that the strong solution is

unique.

4.1.1 Existence Establishment

In this subsection, we shall establish the existence of a strong solution of (2.6).

First, we regularize the system. For this, let function Φ ∈ C∞(R) be a standard mollifier,

which satisfies Φ = 0 on (−∞,−1] ∩ [1,∞), Φ > 0 on R and
∫ 1

−1
Φ(z)dz = 1. For any

positive number ε, set Φε(z) = 1
ε
Φ( z

ε
). Using convolution, we define the mollification of the

non-smooth functions H,w0 and a by

Hε(x) = H ∗ Φε(x),

wε0(z) = w0 ∗ Φε(z),

aε(τ, s) = aH(τ) + [aL(τ)− aH(τ)]Hε(s− γ).

15



Based on a standard PDE theory[24], there exists a unique smooth solution wε to the

following system: w
ε
τ = aε(τ, wε)(wεzz + wεz) in [0,∞)× R,

wε(0, z) = wε0(z) on R,
(4.1)

where lim|z|→∞w
ε
z = 0.

Now we establish a priory estimate of wε and wεz.

Lemma 1. wε and wεz satisfy:

0 ≤ wε ≤ 1, −1 ≤ wεz ≤ 0.

Proof. The assertion wε ∈ [0, 1] follows by the Maximum Principle. For wεz, note that wεz

satisfies

wεz ∈ L∞([0,∞)× R),

and w
ε
zτ = aε

(
wεzz + wεzzz

)
+ aεsw

ε
zw

ε
zz + aεs(w

ε
z)

2,

−1 6 wεz(0, z) 6 0.

So by the Maximum Principle, we have wz ≤ 0.

Since aεs > 0, dropping the non-negative term aεs(w
ε
z)

2 and using comparison, we find

that wεz > −1. This completes the proof of Lemma 1.

Lemma 2. For all fixed t > 0,∫
R
[wεz(t, z)]

2dz +

∫ t

0

∫
R

{
[wετ (τ, z)]2

a(τ, wε)
+ a(τ, wε)[wεzz(τ, z)]2

}
dzdτ 6 e‖a‖∞t

∫
R
[wε0z(z)]2dz.

Proof.
wετ√
a
−
√
awεzz =

√
awεz,

square both sides and integrate on R with respect to z, we get∫
R
(wεz)

2adz =

∫
R

[
(wετ )

2

a
+ (wεzz)

2a− 2wεzzw
ε
τ

]
dz

=

∫
R

[
(wετ )

2

a
+ (wεzz)

2a

]
dz +

∫
R

2wεzτw
ε
zdz

=

∫
R

[
(wετ )

2

a
+ (wεzz)

2a

]
dz +

d

dτ

∫
R
(wεz)

2dz.

(4.2)
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Dropping the term
∫
R

[
(wετ )2

a
+ (wεzz)

2a
]
dz, we have

d

dτ

∫
R
(wεz)

2dz 6
∫
R
(wεz)

2adz 6 ‖a‖∞
∫
R
(wεz)

2dz.

So for any t > 0, wεz satisfies∫
R
[wεz(t, z)]

2dz 6 e‖a‖∞t
∫
R
[wεz(0, z)]

2dz.

Integrating (4.2) over [0, t] with respect to τ gives∫
R
[wεz(t, z)]

2dz +

∫ t

0

∫
R

[
(wετ )

2

a
+ (wεzz)

2a

]
dzdτ =

∫
R
[wεz(0, z)]

2dz +

∫ t

0

∫
R
(wεz)

2adz

6
∫
R
[wεz(0, z)]

2dz +

∫ t

0

∫
R
(wεz)

2‖a‖∞dz

6
∫
R
[wεz(0, z)]

2dz

[
1 + ‖a‖∞

∫ t

0

e‖a‖∞sds

]
= e‖a‖∞t

∫
R
[wεz(0, z)]

2dz

= e‖a‖∞t
∫
R
[wε0z(z)]2dz.

This complete the proof of Lemma 2.

Theorem 3. Assume the conditions of Theorem 1, system (2.6) admits at least a solution

that satisfies

0 ≤ w ≤ 1, −1 ≤ wz ≤ 0 on (0,∞)× R.

Proof. By Lemma 1 and Lemma 2, for arbitrary T > 0, {wεz, wετ , wεzz}0<ε<1 is a bounded

family in L2([0, T ]×R). Hence, by integration {wε}0<ε<1 is a bounded family in L∞([0, T ]×R)

and wε ∈ Cα,α
2 ([0, T ]× R) for any fixed α ∈ (0, 1

2
).

Thus, there exists a function w ∈ Cα,α
2 ([0, T ]×R) with wz, wzz, wτ ∈ L2([0, T ]×R) such

that, along a sequence of ε→ 0,

wε −→ w in Cα,α
2 ([0, T ]× R),

wεz −→ wz in L2([0, T ]× R),

wεzz −→ wzz in L2([0, T ]× R) weakly,

wετ −→ wτ in L2([0, T ]× R) weakly.
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Define the functions eε and kε by:

eε(τ, s) =

∫ s

γ

1

aε(τ, w)
dz, and kε(τ, s) = −

∫ s

γ

aετ (τ, w)

aε(τ, w)2
dz, τ > 0, s ∈ R.

Since eε, kε ∈ L∞((0,∞) × R), eεz, k
ε
z ∈ L∞(0, T ;L2), and eετ , k

ε
τ ∈ L2([0, T ] × R), it is

easy to see that

lim
ε→0

eε(τ, s) = e(τ, s) :=


(s− γ)

a(τ, s)
if s 6= γ,

0 if s = γ,

(4.3)

lim
ε→0

kε(τ, s) = k(τ, s) :=


−(s− γ)

aτ (τ, s)

a(τ, s)2
if s 6= γ,

0, if s = γ.

(4.4)

Here k(τ, w) and e(τ, w) are in Cα,α
2 ([0, T ]× R).

Then the first equation in system (4.1) can be written to be

d

dτ
eε
(
wε(τ, z), τ

)
=

wετ
aε(τ, wε)

+ kε(τ, wε).

Hence, we have
d

dτ
eε
(
wε(τ, z), τ

)
− kε(τ, wε) = wεzz + wεz.

Sending ε→ 0, along the sequence mentioned above, we have

d

dτ
e
(
w(τ, z), τ

)
− k(τ, w) = wzz + wz a.e.

Because e(·, ·) is Lipschitz continuous, we then obtain

d

dτ
e
(
w(τ, z), τ

)
− k(τ, w) =

wτ
a(τ, w)

a.e.

Thus,we conclude

wτ = a(τ, w)(wz + wzz) a.e.

Thus, w is a strong solution of system (2.6). This complete the proof of Theorem 3
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4.1.2 Uniqueness Establishment

In this subsection, we show the uniqueness of system (2.6). More precisely, we prove the

following theorem 4. Clearly, our main result Theorem 1 follows form Theorem 3 and

Theorem 4.

Theorem 4. Assume that σ > 0, σH > 0, σL > 0, β > 0, ρ ∈ [−1, 1], and γ ∈ (0, 1) are

constants and a(·, ·) is given by (2.3)–(2.5). Then system (2.6) admits at most one strong

solution.

Proof. Let w1(τ, z) and w2(τ, z) ∀(τ, z) ∈ [0, T ]×R be two strong solutions of (2.6). Define

w = w1 − w2.

We want w ≡ 0.

Let e and k be defined as in (4.3) and (4.4) with the initial condition:

e(τ, w∗)|τ=0 = e
(

0, w0(z)
)

= e0(z) on {0} × R.

Since w1 and w2 are strong solutions of (2.6), we see that

∂

∂τ
e(τ, wi) = (wi)zz − (wi)z + k(τ, wi) (i = 1, 2) a.e.

Taking the difference of above equations with i = 1 and i = 2, we have

∂

∂τ
[e(τ, w1)− e(τ, w2)] = wzz − wz + k(τ, w1)− k(τ, w2).

Fix an arbitrary t > 0 and τ ∈ [0, t). Multiplying both sides of above equation by∫ t
τ
w(s, z)ds, and integrating over (τ, z) ∈ R× [0, t], we get∫ t

0

∫
R

{
∂

∂τ
[e(τ, w1)− e(τ, w2)]

∫ t

τ

w(s, z)ds

}
dzdτ

=

∫ t

0

∫
R

[
(wzz + wz)

∫ t

τ

w(s, z)ds

]
dzdτ+∫ t

0

∫
R

{
[k(τ, w1)− k(τ, w2)]

∫ t

τ

w(s, z)ds

}
dzdτ.

(4.5)
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The left-hand side of (4.5) can be written as, by integration by parts,∫ t

0

∂

∂τ

∫
R

{
[e(τ, w1)− e(τ, w2)]

∫ t

τ

w(s, z)ds

}
dzdτ

+

∫ t

0

∫
R

[e(τ, w1)− e(τ, w2)]w(τ, z)dzdτ

=

∫ t

0

∫
R

[e(τ, w1)− e(τ, w2)]w(τ, z)dzdτ.

The first term of the right-hand side of (4.5) is∫ t

0

∫
R

[
wzz

∫ t

τ

w(s, z)ds

]
dzdτ +

∫ t

0

∫
R

[
wz

∫ t

τ

w(s, z)ds

]
dzdτ

= −
∫ t

0

∫
R

[
wz(τ, z)

∫ t

τ

wz(s, z)ds

]
dzdτ +

∫ t

0

∫
R

[
wz

∫ t

τ

w(s, z)ds

]
dzdτ

=

∫ t

0

∫
R

1

2

∂

∂τ

[∫ t

τ

wz(s, z)ds

]2

dzdτ +

∫ t

0

∫
R

[
wz(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ

= −1

2

∫
R

[∫ t

0

wz(s, z)ds

]2

dz +

∫ t

0

∫
R

[
wz(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ.

Applying Mean Value Theorem, the second term of the right-hand side of (4.5) is equal

to ∫ t

0

∫
R

[
ks(τ, θ)w(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ,

where θ(τ, z) is between w1(τ, z) and w2(τ, z) for every (τ, z) ∈ [0, t)× R.

Thus, (4.5) can be written as

∫ t

0

∫
R

[e(τ, w1)− e(τ, w2)]w(τ, z)dzdτ +
1

2

∫
R

[∫ t

0

wz(s, z)ds

]2

dz

=

∫ t

0

∫
R

[
wz(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ +

∫ t

0

∫
R

[
ks(τ, θ)w(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ.

(4.6)

From the uniformly boundedness and positiveness of a(τ, w), we can assert

e(τ, w1)− e(τ, w2) =

∫ w1

w2

2

σ2(τ, w)
dw >

∫ w1

w2

1

sup{a(τ, w)}
dw > c0(w1 − w2) = c0w,

for some positive number c0.
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Equality (4.6) becomes an inequality:

c0

∫ t

0

∫
R
w2(τ, z)dzdτ +

1

2

∫
R

[∫ t

0

wz(s, z)ds

]2

dz

6
∫ t

0

∫
R

[
wz(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ +

∫ t

0

∫
R

[
ks(τ, θ)w(τ, z)

∫ t

τ

w(s, z)ds

]
dzdτ

=

∫ t

0

∫
R

[
w(s, z)

∫ s

0

wz(τ, z)dτ

]
dzds+

∫ t

0

∫
R

[
w(s, z)

∫ s

0

ks(τ, θ)w(τ, z)dτ

]
dzds

6
c0

4

∫ t

0

∫
R
w2(s, z)dzds+

2

c0

∫ t

0

∫
R

[∫ s

0

wz(τ, z)dτ

]2

dzds

+
c0

4

∫ t

0

∫
R
w2(s, z)dzds+

2

c0

∫ t

0

∫
R

[∫ s

0

ks(τ, θ)w(τ, z)dτ

]2

dzds

6
c0

2

∫ t

0

∫
R
w2(s, z)dzds+

2

c0

∫ t

0

∫
R

[∫ s

0

wz(τ, z)dτ

]2

dzds

+
2‖ks‖2

c0

t

∫ t

0

∫
R

∫ s

0

w2(τ, z)dτdzds.

We have

c0

2

∫ t

0

∫
R
w2(τ, z)dzdτ +

1

2

∫
R

[∫ t

0

wz(s, z)ds

]2

dz

6
2

c0

∫ t

0

∫
R

[∫ s

0

wz(τ, z)dτ

]2

dzds+
2‖ks‖2

c0

t

∫ t

0

∫
R

∫ s

0

w2(τ, z)dτdzds

6
2

c0

(1 + ‖ks‖2t)

{∫ t

0

∫
R

[∫ s

0

wz(τ, z)dτ

]2

dzds+ c0

∫ t

0

∫
R

∫ s

0

w2(τ, z)dτdzds

}
.

Set

G(t) =
c0

2

∫ t

0

∫
R
w2(τ, z)dzdτ +

1

2

∫
R

[∫ t

0

w2
z(s, z)ds

]2

dz.

We obtain

0 6 G(t) 6
4

c0

[
1 + ‖ks‖2t

] ∫ t

0

G(s)ds ∀t > 0.

By Gronwall’s inequality, we find that G(t) = 0 ∀t > 0. This means that w ≡ 0 and

complete the proof of Theorem 4.

21



4.2 QUALITATIVE ANALYSIS

In this section, we first introduce the Comparison Principle in subsection 4.2.1, which helps

us to construct the sub solutions and super solutions of problem 2.6. In subsection 4.2.2, we

construct sub-super solutions to estimate the location of the free boundary and estimate the

solution of (2.6). Then in subsection 4.2.3, we study the asymptotic behavior of the solution

and the free boundary.

In the study, we consider the case σ = 0.

We study the following system:wτ = a∗(w)(wz + wzz) ∀τ ∈ (0,∞), z ∈ R,

w(0, z) = min{1, e−z} = w0(z),

(4.7)

where a∗(w) is defined as in (2.7).

We define the free boundary as

Γ := {(τ, z) | τ > 0, w(τ, z) = γ} = {(τ, z) | τ > 0, z = s(τ)}.

Since w(τ, ·) is strictly decreasing, and

lim
z→∞

w(τ, z) = 0, lim
z→−∞

w(τ, z) = 1,

there exist a unique non-increasing and smooth function s(·) ∈ C∞[0,∞)[22] such that

Γ := {(τ, z) | τ > 0, w(τ, z) = γ} = {(τ, z) | τ > 0, z = s(τ)}. (4.8)

4.2.1 Comparison Principle

First of all, we need a comparison principle to construct the sub-super solutions of (4.7).

We give the comparison principle used in the construction of sub-super solutions as

following.

Lemma 3. Let (s̃, w̃) ∈ C∞([0,∞)) × C([0,∞) × R) be a pair of functions. Set Γ̃ :=
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{(τ, s̃(τ)) | τ > 0}. Assume that (s̃, w̃) satisfies

w̃τ − a(τ, w̃)(w̃zz + w̃z) > 0 in (0,∞)× R \ Γ̃,

w̃ = γ on Γ̃,

w̃(0, z) > w0(z) = min{1, e−z} on {0} × R,

w̃z

(
τ, s̃(τ) + 0

)
6 w̃z

(
τ, s̃(τ)− 0

)
∀τ > 0,

s̃(0) > ln 1
γ
.

Then

s̃(·) > s(·) on [0,∞) and w̃ > w on [0,∞)× R.

Proof. It is assumed that s̃(0) > ln 1
γ

= s(0).

Set τ ∗ = inf{t > 0 | s̃(t) > s(t)}. There are two cases: (1) τ ∗ =∞ and (2) τ ∗ <∞.

Case (1) τ ∗ = ∞: We have s̃(τ) > s(τ), ∀τ > 0. Denote Q̃+ =
⋃
τ>0{(τ, z)|z > s̃(τ)},

Q̃− =
⋃
τ>0{(τ, z)|z < s̃(τ)} and Q+ =

⋃
τ>0{(τ, z)|z > s(τ)}, Q− =

⋃
τ>0{(τ, z)|z < s(τ)}.

The parabolic boundary of Q̃+ is Γ̃∪ {{0} × [s̃(0),∞)}. Since w̃(0, z) > w0(z), s̃(τ) > s(τ),

w|Γ̃ 6 γ = w̃|Γ̃, so w̃ > w on the parabolic boundary of Q̃+. Then, by Comparison Principle,

w̃ > w in Q̃+. Also applying Maximum Principle, we have w 6 γ 6 w̃ in Q+∩ Q̃−. Similarly

we can get w̃ > w in Q−. Thus w̃ > w on [0,∞)× R.

Case (2) τ ∗ < ∞: We have s̃(τ ∗) = s(τ ∗) and s̃ > s in [0, τ ∗). Denote Q̃+
∗ =⋃

τ∈(0,τ∗]
{(τ, z)|z > s̃(τ)} and Q−∗ =

⋃
τ∈(0,τ∗]

{(τ, z)|z < s(τ)}. By comparison, we have

w̃ > w in Q̃+
∗
⋃
Q−∗ . Since w − w̃ = 0 at (τ ∗, s(τ ∗)], we have (w̃ − w)z(τ∗, s̃(τ∗) − 0) 6 0

and (w̃ − w)z(τ∗, s̃(τ∗) + 0) > 0. We know that wz is continuous everywhere, so we obtain

w̃z

(
τ∗, s̃(τ∗) + 0

)
− w̃z

(
τ∗, s̃(τ∗)− 0

)
> 0, which contradicts with the condition.

Thus, case (2) never happen. That is, we always have τ ∗ = ∞ and s̃ > s on [0,∞).

Then by comparison we have w̃ > w on [0,∞)× R. This complete the proof.

We call (s̃, w̃) a super-solution of system (4.7). Sub-solution can be constructed similarly.

4.2.2 Sub Solutions and Super Solutions

After introducing the comparison principle, we can start to construct a set of sub solutions

and a set of super solutions for system (4.7).
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During the process, we aim at the special super solutions {w̄}I (where I denotes the

index) with Γ̄I := {(τ, z) | τ > 0, w̄I(τ, z) = γ} and the special sub solutions {w}J (where

J denotes the index) with ΓJ := {(τ, z) | τ > 0, wJ(τ, z) = γ}, such that all Γ̄I and ΓJ are

straight lines sharing the same slope. Because we know the free boundary is bounded by

Γ̄i, ∀i ∈ I and Γj,∀j ∈ J , so in this way we can locate the free boundary in a stripe with

two straight line boundaries.

For simplification of the calculation, we consider ŵ = w − γ, where w is the strong

solution of (4.7). Then ŵ is the solution of following partial differential equation system:

ŵτ =
σ2
H

2
(ŵz + ŵzz) for ŵ < 0,

ŵτ =
σ2
L

2
(ŵz + ŵzz) for ŵ > 0,

ŵ and ŵz is continuous in R× (0,∞),

ŵ(0, z) = ŵ0(z) := min{1, e−z} − γ.

(4.9)

Notice the free boundary of (4.9), i.e. {(τ, z) | τ > 0, ŵ(τ, z) = 0} is exact the free

boundary Γ = {(τ, z) | τ > 0, w(τ, z) = γ} = {(τ, z) | τ > 0, z = s(τ)} where w is the strong

solution of (4.7).

We consider boundary value problem below first,ŵτ = σ̂2

2
(ŵz + ŵzz);

ŵ(0, z) = g(z),

where σ̂ is a positive constant and g(·) is continuous.

In order to reduce the partial differential equation into the standard heat equation, We

introduce v̂(τ, ξ) by

v̂(τ, ξ) = e−α(ξ+A+κτ)−λτ ŵ(τ, ξ + A+ κτ),

that is,

ξ = z − κτ − A,

ŵ(τ, z) = eαz+λτ v̂(τ, ξ)|ξ=z−A−κτ .

where α, κ, λ are constants to be determined in the process of constructing the sub-super
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solutions.

Assume that the following relations hold:

κ = −σ̂2(α +
1

2
),

λ =
σ̂2

2
(α2 + α).

One can easily see

ακ+ λ = (σ̂α)2 = −1

2
(
κ

σ̂
+
σ̂

2
)2.

Then (4.9) transforms into a standard heat equation systemv̂τ = σ̂2

2
v̂ξξ,

v̂(0, ξ) = e−α(ξ+A)g(ξ + A).

From the calculation about v̂, ŵ, we can get the solution of an system stated in following

lemma.

Lemma 4. The solution of the system
wτ = σ̂2

2
(wz + wzz) for z > A+ κτ, τ > 0,

w = γ for z = A+ κτ, τ > 0,

w(0, z) = g(z) for z > A, τ = 0,

(4.10)

is given by, for z > A+ κτ, τ > 0

w(τ, z) = eαz+λτ
∫ ∞

0

[g(A+ ζ)− γ]e−α(A+ζ)

[
e−

(ξ−ζ)2

2τσ̂2 − e−
(ξ+ζ)2

2τσ̂2

]
dζ√

2πτσ̂2
+ γ, (4.11)

where ξ = z − A− κτ .

In addition, wz near the straight line z = A+ κτ, τ > 0 satisfied

∂w

∂z
(τ, A+κτ+0) := lim

z↓A+κτ

∂w

∂z
= e(ακ+λ)τ

∫ ∞
0

2ζ[g(A+ζ)−γ]e−αζ−
ζ2

2τσ̂2
dζ√

2πτσ̂2τ σ̂2
. (4.12)
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Proof. System (4.10) is equal to
ŵτ = σ̂2

2
(ŵz + ŵzz) for z > A+ κτ, τ > 0,

ŵ = 0 for z = A+ κτ, τ > 0,

ŵ(0, z) = g(z)− γ for z > A, τ = 0.

That is also equal to:
v̂τ = σ̂2

2
v̂ξξ for ξ > 0,

v̂ = 0 on ξ = 0,

v̂(0, ξ) = e−α(ξ+A)[g(ξ + A)− γ].

By the initial condition expansion below

v̂0(ξ) =


v̂(0, ξ) for ξ > 0,

0 for ξ = 0,

−v̂(0,−ξ) for ξ < 0,

and the solution of standard heat equation, we derive the solution of the system is

v̂(τ, ξ) =

∫ ∞
0

v̂0(ζ)

[
e−

(ξ−ζ)2

2τσ̂2 − e−
(ξ+ζ)2

2τσ̂2

]
dζ√

2πτσ̂2
.

followed by (4.11).

Then differentiate (4.11), combined with w(τ, A + κτ) = γ and ξ → 0 as z → A + κτ , we 

can get (4.12). This complete the proof.

       Similarly, we can derive the lemma below.

Lemma 5. The solution of the system


wτ = σ̂2

2
(wz + wzz) for z < A+ κτ, τ > 0,

w = γ for z = A+ κτ, τ > 0,

w(0, z) = g(z) for z 6 A, τ = 0,
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is given by, for z > A+ κτ, τ > 0

w(τ, z) = eαz+λτ
∫ 0

−∞
[g(A+ ζ)− γ]e−α(A+ζ)

[
e−

(ξ−ζ)2

2τσ̂2 − e−
(ξ+ζ)2

2τσ̂2

]
dζ√

2πτσ̂2
+ γ,

where ξ = z − A− κτ .

In addition, wz near the straight line z = A+ κτ, τ > 0 satisfied

∂w

∂z
(τ, A+ κτ − 0) := lim

z↑A+κτ

∂w

∂z
= e(ακ+λ)τ

∫ 0

−∞
2ζ[g(A+ ζ)− γ]e−αζ−

ζ2

2τσ̂2
dζ√

2πτσ̂2τ σ̂2
.

Our target is to search for a special sub-solution w and super-solution w̄ of system (4.9),

where w̄ satisfies

w̄τ =
σ2
H

2
(w̄z + w̄zz) for z > Ā+ κτ, τ > 0,

w̄τ =
σ2
L

2
(w̄z + w̄zz) for z < Ā+ κτ, τ > 0,

w̄ = γ for z = Ā+ κτ, τ > 0,

w̄(0, z) = w̄0(z) > w0(z) for z ∈ R, τ = 0,

J∂w̄
∂z

Kz=Ā+κτ := limh↓0{∂w̄∂z (τ, Ā+ κτ + h)− ∂w̄
∂z

(τ, Ā+ κτ − h)} 6 0,

(4.13)

and w satisfies

wτ =
σ2
H

2
(wz + wzz) for z > A+ κτ, τ > 0,

wτ =
σ2
L

2
(wz + wzz) for z < A+ κτ, τ > 0,

w = γ for z = A+ κτ, τ > 0,

w(0, z) = w0(z) 6 w0(z) for z ∈ R, τ = 0,

J∂w
∂z

K
z=A+κτ

:= limh↓0{∂w∂z (τ, A+ κτ + h)− ∂w
∂z

(τ, A+ κτ − h)} > 0.

(4.14)

We define following free boundaries:

Γ := {(τ, z)|w(τ, z) = γ} = {(τ, s(τ))|s(τ) = A+ κτ};

Γ̄ := {(τ, z)|w̄(τ, z) = γ} = {(τ, s̄(τ))|s̄(τ) = Ā+ κτ}.

By Comparison Principle we can assert w 6 ŵ + γ 6 w̄ and s̄(τ) > s(τ), and we search

for a pair of w and w̄ sharing the same κ and the same ακ+ λ. That means Γ is paralleled
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to Γ̄. That is,
κ

σL
+
σL
2

= −[
κ

σH
+
σH
2

].

Then, we have

κ = −σLσH
2

αHκ+ λH = αLκ+ λL = −(σL − σH)2

8

αH = −1

2
+

σL
2σH

αL = −1

2
+
σH
2σL

λH =
σ2
L − σ2

H

8
λL =

σ2
H − σ2

L

8

where αL, λL and αH , λH are corresponding designed constants for z < A+κτ and z > A+κτ

respectively. Here A can be either Ā and A, because (4.13) and (4.14) share the same αL, λL

and αH , λH .

Lemma 6. Let κ = −σLσH
2

, then the solution of the system

wτ =
σ2
H

2
(wz + wzz) for z > A+ κτ,

wτ =
σ2
L

2
(wz + wzz) for z < A+ κτ,

w = γ for z = A+ κτ,

w(0, z) = g(z) for z ∈ R, τ = 0,

(4.15)

satisfies

J
∂w

∂z
Kz=A+κτ :=

√
2e−

(σH−σL)2

8
τ

∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
g(A+ σHθ)− γ

σH
+
g(A− σLθ)− γ

σL

]
dθ√
πτ 3

.

Proof. By Lemma (4) and Lemma (5), the solution of system (4.15) satisfies:

w(τ, z)− γ =

eαHz+λHτ
∫ ∞

0

g(A+ ζ)− γ
eαH(A+ζ)

[
e
− (ξ−ζ)2

2τσ2
H − e

− (ξ+ζ)2

2τσ2
H

]
dζ√

2πτσ2
H

if z > A+ κτ, τ > 0;

0 if z = A+ κτ, τ > 0;

eαLz+λLτ
∫ 0

−∞

g(A+ ζ)− γ
eαL(A+ζ)

[
e
− (ξ−ζ)2

2τσ2
L − e

− (ξ+ζ)2

2τσ2
L

]
dζ√

2πτσ2
L

if z < A+ κτ, τ > 0,
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where ξ = z − A− κτ .

We use ĝ(·) to stand for g(·)− γ and the jump of ∂w
∂z

over z = A+ κτ is:

J
∂w

∂z
Kz=A+κτ

=

√
2e−

(σH−σL)2

8
τ

√
πτ 3

∫ ∞
0

ζĝ(A+ ζ) exp

(
1

2
(1− σL

σH
)ζ − ζ2

2τσ2
H

)
dζ

σ3
H

−
√

2e−
(σH−σL)2

8
τ

√
πτ 3

∫ 0

−∞
ζĝ(A+ ζ) exp

(
1

2
(1− σH

σL
)ζ − ζ2

2τσ2
L

)
dζ

σ3
L

=

√
2e−

(σH−σL)2

8
τ

√
πτ 3

∫ ∞
0

θĝ(A+ σHθ) exp

(
1

2
(σH − σL)θ − θ2

2τ

)
dθ

σH

+

√
2e−

(σH−σL)2

8
τ

√
πτ 3

∫ ∞
0

θĝ(A− σLθ) exp

(
1

2
(σH − σL)θ − θ2

2τ

)
dθ

σL

=

√
2e−

(σH−σL)2

8
τ

√
πτ 3

∫ ∞
0

θ exp

(
1

2
(σH − σL)θ − θ2

2τ

)[
ĝ(A+ σHθ)

σH
+
ĝ(A− σLθ)

σL

]
dθ

=
√

2e−
(σH−σL)2

8
τ

∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
g(A+ σHθ)− γ

σH
+
g(A− σLθ)− γ

σL

]
dθ√
πτ 3

.

In this equation, we did the variable substitution that ζ = σHθ, for ζ > 0 and ζ =

−σLθ, for ζ < 0. This complete the proof.

Based on above analysis, we can derive the conditions to construct the sub-super solutions

of system (4.7), illustrated by following Lemma 7 and 8.

Lemma 7. Assume that (w̄0, Ā) is a function-constant pair satisfying the following.

1. The function w̄0(·) > w0(·) on R;

2. The pair satisfies∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
w̄0(Ā+ σHθ)− γ

σH
+
w̄0(Ā− σLθ)− γ

σL

]
dθ 6 0, ∀τ > 0;

Then the solution w̄ given by Lemma (6) with A = Ā and initial condition g(z) = w̄0(z)

is a super-solution of system (4.7).

Consequently,

s(τ) 6 Ā− σHσL
2

τ.

Similarly we derive the conditions for sub-solutions of (4.7) in the lemma below.
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Lemma 8. Assume that (w0, A) is a function-constant pair satisfying the following:

1. The function w0(·) 6 w0(·) on R;

2. The pair satisfies∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
w0(A+ σHθ)− γ

σH
+
w0(A− σLθ)− γ

σL

]
dθ > 0, ∀τ > 0;

Then the solution w given by Lemma (6) with A = A and initial condition g(z) = w0(z)

is a sub-solution of system (4.7).

Consequently,

s(τ) > A− σHσL
2

τ.

As a result, we manage to find special sub-super solutions satisfying our requirements,

given by following Lemma 9 and Lemma 10. In Lemma 9 and Lemma 10, we also state the

asymptotic behaviors of the sub-super solutions.

Lemma 9. Let (w̄0, Ā) satisfies:

w̄0(z) =


1 for z 6 ln 1

γ
,

γ for ln 1
γ
< z < Ā,

e−z for z > Ā,

(4.16)

2(1− γ)

σL
(γeĀ)

σH−σL
4σL 6

γ − e−Ā

σH
. (4.17)

Then the solution w̄ given by Lemma (6) with (w̄0, Ā) above is a super-solution of system

(4.7).

Particularly, we can pick

Ā = max

{
ln

2

γ
, ln

1

γ
+

4σL
σL − σH

ln
4σH(1− γ)

γσL

}
, (4.18)

to construct a super-solution of (4.7) that satisfies:

For any fixed η1 ∈ R, on every curve z = −σ2
H

2
τ + η1σH

√
τ + Ā,

lim
τ→∞

w̄(τ, z) = γ − γN(η1);

30



For any fixed η2 ∈ R, on every curve z = −σ2
L

2
τ − η2σL

√
τ + ln 1

γ
,

lim
τ→∞

w̄(τ, z) = γ + (1− γ)N(η2)

Here N(·) is the standard normal probability function, i.e.

N(x) =

∫ x

−∞

e−
θ2

2

√
2π
dθ, ∀x ∈ R.

Proof. By Lemma (7), a super-solution need to satisfies∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
w̄0(Ā+ σHθ)− γ

σH
+
w̄0(Ā− σLθ)− γ

σL

]
dθ 6 0, ∀τ > 0 (4.19)

The first term of (4.19) is∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
w̄0(Ā+ σHθ)− γ

σH

]
dθ

=

∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
1

σH
(e−Ā−σHθ − γ)

]
dθ

6
∫ ∞

0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
1

σH
(e−Ā − γ)

]
dθ

=
e−Ā − γ
σH

∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ dθ

The second term of (4.19) is∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ

[
w̄0(Ā− σLθ)− γ

σL

]
dθ

=

∫ ∞
Ā−ln 1

γ
σL

1− γ
σL
· θe

1
2

(σH−σL)θ− θ
2

2τ dθ

=

∫ ∞
Ā−ln 1

γ
2σL

1− γ
σL
· (θ +

Ā− ln 1
γ

2σL
)exp

[
1

2
(σH − σL)

(
θ +

Ā− ln 1
γ

2σL

)
− 1

2τ

(
θ +

Ā− ln 1
γ

2σL

)2
]
dθ

6
∫ ∞
Ā−ln 1

γ
2σL

1− γ
σL
· 2θ · e

1
4σL

(σH−σL)(Ā−ln 1
γ

)
exp

[
1

2
(σH − σL)θ − 1

2τ

(
θ +

Ā− ln 1
γ

2σL

)2
]
dθ

6
2(1− γ)

σL
exp

(
1

4σL
(σH − σL)(Ā− ln

1

γ
)

)∫ ∞
Ā−ln 1

γ
2σL

θe
1
2

(σH−σL)θ− θ
2

2τ dθ

6
2(1− γ)

σL
exp

(
1

4σL
(σH − σL)(Ā− ln

1

γ
)

)∫ ∞
0

θe
1
2

(σH−σL)θ− θ
2

2τ dθ.
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Then (4.19) provided that:

e−Ā − γ
σH

+
2(1− γ)

σL
e

1
4σL

(σH−σL)(Ā−ln 1
γ

) 6 0,

which yields to (4.18).

So we can pick

Ā = max

{
ln

2

γ
, ln

1

γ
+

4σL
σL − σH

ln
4σH(1− γ)

γσL

}
.

Let ξ = z − Ā− κτ ,

w̄(τ, z)− γ =

I = eαHz+λHτ
∫ ∞

0

w̄0(Ā+ ζ)− γ
eαH(Ā+ζ)

[
e
− (ξ−ζ)2

2τσ2
H − e

− (ξ+ζ)2

2τσ2
H

]
dζ√

2πτσ2
H

if z > Ā+ κτ, τ > 0,

0 if z = Ā+ κτ, τ > 0,

II = eαLz+λLτ
∫ 0

−∞

w̄0(Ā+ ζ)− γ
eαL(Ā+ζ)

[
e
− (ξ−ζ)2

2τσ2
L − e

− (ξ+ζ)2

2τσ2
L

]
dζ√

2πτσ2
L

if z < Ā+ κτ, τ > 0.

I = exp
(
αHz + λHτ − αHĀ

) ∫ ∞
0

[e−(Ā+ζ) − γ] exp

(
−αHζ −

(ξ − ζ)2

2σ2
Hτ

)
dτ√

2πσ2
Hτ

− exp
(
αHz + λHτ − αHĀ

) ∫ ∞
0

[e−(Ā+ζ) − γ] exp

(
−αHζ −

(ξ + ζ)2

2σ2
Hτ

)
dτ√

2πσ2
Hτ

= exp
(
αHz + λHτ − αHĀ− Ā

) ∫ ∞
0

exp

(
−(1 + αH)ζ − (ξ − ζ)2

2σ2
Hτ

)
dτ√

2πσ2
Hτ

− exp
(
αHz + λHτ − αHĀ− Ā

) ∫ ∞
0

exp

(
−(1 + αH)ζ − (ξ + ζ)2

2σ2
Hτ

)
dτ√

2πσ2
Hτ

− γ exp
(
αHz + λHτ − αHĀ

) ∫ ∞
0

exp

(
−αHζ −

(ξ − ζ)2

2σ2
Hτ

)
dτ√

2πσ2
Hτ

− γ exp
(
αHz + λHτ − αHĀ

) ∫ ∞
0

exp

(
−αHζ −

(ξ + ζ)2

2σ2
Hτ

)
dτ√

2πσ2
Hτ

= III− IV,

where among the four terms, the first two are denoted as III and the last two terms are

denoted as IV.

For the two terms in III, we do the variable substitution respectively by θ =
ζ+(αH+1)σ2

Hτ−ξ√
σ2
Hτ
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and θ =
ζ+(αH+1)σ2

Hτ+ξ√
σ2
Hτ

.

We denote the standard normal probability function as N(·). Then we get:

III = eαH(z−Ā)+λHτ−Ā

[∫ ∞
σ2
H

(αH+1)τ−ξ√
σ2
H
τ

e−
θ2

2

√
2π
dθ · e

σ2
H (αH+1)2τ

2
−(αH+1)ξ

−
∫ ∞
σ2
H

(αH+1)τ+ξ√
σ2
H
τ

e−
θ2

2

√
2π
dθ · e

σ2
H (αH+1)2τ

2
+(αH+1)ξ

]

=exp

[
αH(z − Ā) + λHτ − Ā+

σ2
H(αH + 1)2τ

2
− (αH + 1)ξ

] ∫ ∞
σ2
H

(αH+1)τ−ξ√
σ2
H
τ

e−
θ2

2

√
2π
dθ

− exp
[
αH(z − Ā) + λHτ − Ā+

σ2
H(αH + 1)2τ

2
+ (αH + 1)ξ

] ∫ ∞
σ2
H

(αH+1)τ+ξ√
σ2
H
τ

e−
θ2

2

√
2π
dθ.

From

κ = −σLσH
2

,

αH = −1

2
(1− σL

σH
), αL = −1

2
(1− σH

σL
),

λH =
σ2
L − σ2

H

8
, λL =

σ2
H − σ2

L

8
,

we get

αi(z − Ā) + λiτ +
σ2
i α

2
i τ

2
− αiξ = 0, i ∈ {H,L}.

Then

αH(z − Ā) + λHτ − Ā+
σ2
H(αH + 1)2τ

2
− (αH + 1)ξ

=− Ā+
τσ2

H(2αH + 1)

2
− ξ

=− Ā+
σLσH

2
τ − ξ.

For any fixed η1 ∈ R, on every curve η1 =
ξ−σ2

HαHτ√
σ2
Hτ

, i.e. z = −σ2
H

2
τ + η1σH

√
τ + Ā, we

have ξ = η1σH
√
τ − σ2

H

2
τ − κτ on the curve.

So

−Ā+
σLσH

2
τ − ξ = −Ā− η1σH

√
τ +

σ2
H

2
τ.
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Similarly,

αH(z − Ā) + λHτ − Ā+
σ2
H(αH + 1)2τ

2
+ (αH + 1)ξ = −Ā+ η1σL

√
τ +

σ2
L

2
τ

Additionally, by the tail bounds of the standard normal distribution, we have

III = e−Ā−η1σH
√
τ+

σ2
H
2
τ

∫ ∞
σ2
H

(αH+1)τ−ξ√
σ2
H
τ

e−
θ2

2

√
2π
dθ − e−Ā+η1σL

√
τ+

σ2
L
2
τ

∫ ∞
σ2
H

(αH+1)τ+ξ√
σ2
H
τ

e−
θ2

2

√
2π
dθ

6

√
σ2
Hτ√

2π[σ2
H(αH + 1)τ − ξ]

exp

[
−Ā− η1σH

√
τ +

σ2
H

2
τ − (ξ − σ2

H(αH + 1)τ)2

2σ2
Hτ

]
−

√
σ2
Hτ√

2π[σ2
H(αH + 1)τ + ξ]

exp

[
−Ā+ η1σL

√
τ +

σ2
L

2
τ − (ξ + σ2

H(αH + 1)τ)2

2σ2
Hτ

]
=

√
σ2
Hτ√

2π[σ2
H(αH + 1)τ − ξ]

exp

[
−Ā− η1σH

√
τ +

σ2
H

2
τ − (η1 − σH

√
τ)2

2

]
−

√
σ2
Hτ√

2π(σ2
H [αH + 1)τ + ξ]

exp

[
−Ā+ η1σL

√
τ +

σ2
L

2
τ − (η1 + σH

√
τ)2

2

]
=

√
σ2
Hτ√

2π[σ2
H(αH + 1)τ − ξ]

e−Ā−
η2
1
2 −

√
σ2
Hτ√

2π[σ2
H(αH + 1)τ + ξ]

e−Ā−
η2
1
2

→ 0, as τ →∞.

After variable substitution in IV and the fact

αi(z − Ā) + λiτ +
σ2
i α

2
i τ

2
− αiξ = 0, i ∈ {H,L},

we have

IV = γ

[
N
(ξ − αHσ2

Hτ√
σ2
Hτ

)
− e2αHξN

(
− ξ + αHσ

2
Hτ√

σ2
Hτ

)]

= γ

[
N(η1)− e2αHξN

(
− ξ + αHσ

2
Hτ√

σ2
Hτ

)]

6 γ

{
N(η1)−

√
σ2
Hτ√

2π(σ2
HαHτ + ξ)

exp

[
2αHξ −

(ξ + αHσ
2
Hτ)2

2σ2
Hτ

]}

= γ

N(η1)−
√
σ2
Hτ√

2π(σ2
HαHτ + ξ)

exp

2αHξ −

(
ξ√
σ2
Hτ

+ αH
√
σ2
Hτ
)2

2
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= γ

N(η1)−
√
σ2
Hτ√

2π(σ2
HαHτ + ξ)

exp

−
(

ξ√
σ2
Hτ
− αH

√
σ2
Hτ
)2

2




= γ

[
N(η1)−

√
σ2
Hτ√

2π(σ2
HαHτ + ξ)

e−
η2
1
2

]
→ γN(η1), as τ →∞.

In result, when z = Ā+ κτ, τ > 0

w̄(τ, z) = γ + exp

(
−Ā− η1σH

√
τ +

σ2
H

2
τ

)
N
(
− σ2

H(αH + 1)τ − ξ√
σ2
Hτ

)
− exp

(
−Ā+ η1σL

√
τ +

σ2
L

2
τ

)
N
(
− σ2

H(αH + 1)τ + ξ√
σ2
Hτ

)
− γ

[
N
(ξ − αHσ2

Hτ√
σ2
Hτ

)
− e2αHξN

(
− ξ + αHσ

2
Hτ√

σ2
Hτ

)]

and

lim
τ→∞

I = γ − γN(η1).

In other words, for any fixed η1 ∈ R, on every curve z = −σ2
H

2
τ + η1σH

√
τ + Ā,

lim
τ→∞

w̄(τ, z) = γ − γN(η1).

By similar process,

II = eαLz+λLτ
∫ ln 1

γ
−Ā

−∞
(1− γ)e−αL(Ā+ζ)

[
e
− (ξ−ζ)2

2τσ2
L − e

− (ξ+ζ)2

2τσ2
L

]
dζ√

2πτσ2
L

= (1− γ)

[
N
( ln 1

γ
− Ā+ αLσ

2
Lτ − ξ√

σ2
Lτ

)
− e2αLξN

( ln 1
γ
− Ā+ αLσ

2
Lτ + ξ√

σ2
Lτ

)]

which is the expression of w̄(τ, z) during z < Ā+ κτ, τ > 0.

For any fixed η2 ∈ R, on every curve η2 =
ln 1
γ
−Ā+αLσ

2
Lτ−ξ√

σ2
Lτ

, i.e. z = −σ2
L

2
τ−η2σL

√
τ+ln 1

γ
,

lim
τ→∞

w̄(τ, z) = lim
τ→∞

II = γ + (1− γ)N(η2)

This completes the proof.
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Lemma 10. Let (w0, A) satisfies:

w0(z) =


1 for z 6 A,

γ for A < z < ln 1
γ
,

0 for z > ln 1
γ
,

(4.20)

A 6 min

{
ln

1

γ
, ln

1

γ
− 4σH
σL − σH

ln
2γσL

σH(1− γ)

}
. (4.21)

Then the solution w given by Lemma (6) with (w0, A) above is a sub-solution of system

(4.7).

Particularly, we can pick

A = min

{
ln

1

γ
, ln

1

γ
− 4σH
σL − σH

ln
2γσL

σH(1− γ)

}
,

to construct a sub-solution of (4.7) that that satisfies:

For any fixed η1 ∈ R, on every curve z = −σ2
H

2
τ + η1σH

√
τ + ln 1

γ
,

lim
τ→∞

w(τ, z) = γ − γN(η1);

For any fixed η2 ∈ R, On every curve z = −σ2
L

2
τ − η2σL

√
τ + A,

lim
τ→∞

w(τ, z) = γ + (1− γ)N(η2).

Here N(·) is the standard normal probability function, i.e.

N(x) =

∫ x

−∞

e−
θ2

2

√
2π
dθ, ∀x ∈ R.

Proof. Similar to the proof of Lemma (9).

4.2.3 Asymptotic Behaviors of the Solution and the Free Boundary

Based on the sub-super solutions of system (4.7) mentioned in Lemma 9 and Lemma 10, we

can derive the location of the free boundary Γ and the asymptotic behaviors of the strong

solution w and the free boundary for system (4.7), as stated in the following Theorem 5.
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Theorem 5. Assume Ā, A are constants satisfied the conditions in Lemma (9) and Lemma

(10). Then the free boundary Γ = {(τ, s(τ))|w(τ, s(τ)) = γ} of w, the strong solution of

(4.7), satisfies:

A− σHσL
2

τ 6 s(τ) 6 Ā− σHσL
2

τ,

In addition, the long-time expiration behavior of w satisfies: for any fixed η1 ∈ R and

any fixed constant A1 ∈ [ln 1
γ
, Ā],

lim
τ→∞

w
(
τ,−σ

2
H

2
τ − η1σH

√
τ + A1

)
= γN(η1);

For any fixed η2 ∈ R and any fixed constant A2 ∈ [A, ln 1
γ
],

lim
τ→∞

w
(
τ,−σ

2
L

2
τ − η2σL

√
τ + A2

)
= γ + (1− γ)N(η2).

Here N(·) is the cumulative density function of the standard normal distribution, i.e.

N(x) =

∫ x

−∞

e−
θ2

2

√
2π
dθ ∀x ∈ R.

Proof. From Lemma (7) and Lemma (8) we get A− σHσL
2
τ 6 s(τ) 6 Ā− σHσL

2
τ .

By comparison principle, for the super-solution w̄ and the sub-solution A defined with Ā

and A as showed in Lemma (9) and Lemma (10). we can know w 6 w 6 w̄. The asymptotic

behaviors of w̄ and w showed in Lemma (9) and Lemma (10), combined with the fact wz 6 0

and the Squeeze Theorem, we can get the asymptotic behaviors of w as asserted in this

theorem. This completes the proof.

Theorem 2 tells us, when τ big, −σ2
H

2
τ and −σ2

L

2
τ are dominated terms, thus the z-τ plane

is nearly separated into three parts by the two lines: z = −σ2
L

2
τ+O(1) and z = −σ2

H

2
τ+O(1).

And w(τ, z) approximately equals to 1 in {z < −σ2
L

2
τ + O(1)}, γ in {−σ2

H

2
τ + O(1) > z >

−σ2
L

2
τ+O(1)}, and 0 in {z > −σ2

H

2
τ+O(1)}. We’ll verify the results by numerical simulations

later.

Clearly, our main result Theorem 2 is derived from Lemma 9, Lemma 10 and Theorem

5.
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5.0 NUMERICAL SIMULATION

In this chapter, we perform numerical simulations to verify our analytic results. We pay

attention to the asymptotic behaviors of w and the free boundary Γ = {(z, τ)|w(z, τ) = γ}.

The chapter includes two sections. Section 5.1 describes our simulation strategy, which

allows us to simulate the large time behaviors of the strong solution and the free boundary.

In section 5.2, the simulation results are presented, which exactly match the theoretical main

results in chapter 3.

5.1 SIMULATION SCHEME

In this section, we aim at a numerical strategy that can simulate the system 2.6 for time-

to-expiry of arbitrary length. For this reason, we do variable substitutions and deduce the

PDE to be simulated in the subsection 5.1.1. Then, we list all the chosen parameters in the

subsection 5.1.2.

5.1.1 PDE Simulated

To simulate the large time behavior of w in the neighborhood of the lines z = −σ2
H

2
τ +O(1)

and z = −σ2
L

2
τ + O(1), we make a change of independent variables from (z, τ) to (ϑ, s) and

38



dependent variable w(z, τ) to φ(ϑ, s) via
ϑ =

(
z − µτ − ln

1

γ

) 1

τ +M
,

s = ln
τ +M

M
,

φ(ϑ, s) = w
(
ϑesM + µτ + ln

1

γ
, (es − 1)M

)
, ∀ϑ ∈ R, s ∈ [0,∞).

(5.1)

where M,µ are constants chosen at our convenience. We simulate φ(ϑ, s) first then we can

simulate w(z, τ) later.

The differential equation (4.7) thus leading to:


φs =

a∗(φ)

esM
φϑϑ + (a∗(φ) + µ+ ϑ)φϑ ∀ϑ ∈ R, s ∈ [0,∞),

φ(ϑ, 0) = min
{

1, γe−Mϑ
}

∀ϑ ∈ R.
(5.2)

Now we describe our numerical algorithm for problem (5.2). We use uniform mesh size

h for s variable and l for ϑ variable. Here we set:

si = ih, i = 0, 1, 2, ..., I;

ϑj = jl, j = −J,−(J − 1), ..., J − 1, J ;

φij = φ(ϑj, si);

aij = a∗(φij).

Using the central difference scheme for φϑ, we can discretize the term (a∗(φ) + µ+ ϑ)φϑ

at (ϑj, si) by:

(aij + µ+ ϑj)φy(ϑj, si) =

(aij + µ+ ϑj)
φij+1−φij

l
if aij + µ+ ϑj > 0

−(aij + µ+ ϑj)
φij−1−φij

l
if aij + µ+ ϑj < 0

=
1

l
H(aij + µ+ ϑj)|aij + µ+ ϑj|(φij+1 − φij)

+
1

l
H(−aij − µ− ϑj)|aij + µ+ ϑj|(φij−1 − φij).
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Hence, we obtain an explicit scheme for (49):

φi+1
j =φij+1

[ h ∗ aij
l2esiM

+
h

l
H(aij + µ+ ϑj)|aij + µ+ ϑj|

]
+ φij

[
1−

2aij ∗ h
l2esiM

− h

l
|aij + µ+ ϑj|

]
+ φij−1

[ h ∗ aij
l2esiM

+
h

l
H(−aij − µ− ϑj)|aij + µ+ ϑj|

]
We use the boundary condition:

φiJ = 0, φi−J = 1 for i > 0.

5.1.2 Parameters Chosen

In our numerical simulation, we take the parameters as below:

Table 1: Constants Setting Up

Parameters Setting Up

Parameters value

σL 0.4

σH 0.2

γ 0.5

M 200

µ = −(σ2
H + σ2

L)/4 -0.05

h 0.0005

l 0.001

I 30000

J 750
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5.2 NUMERICAL SIMULATION RESULTS

In this section, we show our numerical results of the strong solution w and the free boundary

Γ, which match the theoretical analysis stated in section 3.3.

In subsection 5.2.1, we recover the numerical results of w from the simulated PDE solu-

tion. The results show a stack of two travelling waves as time-to-expiry is big.

In subsection 5.2.2, the free boundary is simulated and we find its asymptotic line.

5.2.1 The Simulated Strong Solution and Two Travelling Waves

The functions φ(·, s) at s =0, 2.5, 5, 7.5, 10, 12.5, 15 are shown in Figure 3. In period

s ∈ [0, 3], the corresponding w(·, τ) for τ =0, 56.8, 129.74, 223.4, 343.66, 498.07, 696.34,

950.92, 1277.8, 1697.5, 2236.5 are shown in Figure 4.

ϑ

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

φ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s=0, i.e. τ = 0

s=2.5, i.e. τ = 2,237

s=5, i.e. τ = 29,483

s=7.5, i.e. τ = 361,410

s=10, i.e. τ = 4,405,100

s=12.5, i.e. τ = 53,667,000

s=15, i.e. τ = 653,800,000

Figure 3: ϑ− φ plots at different s from 0 to 15.
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z

-300 -250 -200 -150 -100 -50 0 50

w

0

0.2

0.4

0.6

0.8

1

1.2

τ = 0

τ = 56.8

τ = 129.74

τ = 223.4

τ = 343.66

τ = 498.07

τ = 696.34

τ = 950.92

τ = 1277.8

τ = 1697.5

τ = 2236.5

Figure 4: z − w plots at different time τ from 0 to 2,237.

In Figure 3, we can see that

lim
s→∞

φ(ϑ, s) = γH(ϑ1 − ϑ) + (1− γ)H(ϑ2 − ϑ),

where γ = 0.5, ϑ1 = 0.03, ϑ2 = −0.03.

By recovering the expression in variable (z, τ) from ϑ1, ϑ2, we find the result exactly

matches the two lines z = −σ2
L

2
τ +O(1) and z = −σ2

H

2
τ +O(1) that separate the z− τ plane

into three parts where w approximately equals to 0,γ and 1 correspondingly, as mentioned

in our analytic assertion.

In Figure 4, the curve of w(·, τ) for big fixed τ shows a stack of two travelling waves

depicted in Figure 4, which are nearly centered along the two straight lines, z = −σ2
L

2
τ+O(1)

and z = −σ2
H

2
τ +O(1) respectively.

As the time τ goes by, w tends to take on three main values, i.e. 0, γ and 1. The time

for each travelling wave is in order O(
√
τ).
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5.2.2 The Simulated Free Boundary and Asymptotic Lines

We are very interested in the three curves where w(z, τ) = γ/2, γ, (γ + 1)/2 respectively. So

we give the plots of the three important boundaries in Figure 5 in z− τ plane till τ = 2, 237.

In our theoretical results, we assert that the three curves should be close to the three

straight lines

z = −σ
2
H

2
τ +O(1)

z = −σHσL
2

τ +O(1)

z = −σ
2
L

2
τ +O(1)

correspondingly and Figure 5 matches this assertion.

τ

0 500 1000 1500 2000 2500

z

-200

-150

-100

-50

0

50

w(z,τ)=γ=0.5

w(z,τ)=γ/2=0.25

w(z,τ)=(γ + 1)/2=0.75

Figure 5: The 3 curves where w = γ,i.e the free boundary and w = γ/2, (γ + 1)/2.

The data of time period τ ∈ [0, 6.5 × 108] shows that φ(0.01, 15) = 0.5 − 2.7756 ×

10−15, φ(−0.029, 15) = 0.5003, φ(−0.031, 15) = 0.9997, φ(0.029, 15) = 0.4999, φ(0.031, 15) =

0.0001, where the step size for ϑ is 0.001. Combining with the known slope of the asymptotic

43



lines, we can have φ(0.01, 15) = 0.5, φ(−0.03, 15) = 0.75, φ(0.03, 15) = 0.25. Then by (5.1)

we can get the estimated asymptotic lines for the three free boundaries in τ − z plane:

z = −0.04τ + 2.6931, the asymptotic line for w(z, τ) = 0.5;

z = −0.08τ − 5.3069, the asymptotic line for w(z, τ) = 0.75;

z = −0.02τ + 6.6931, the asymptotic line for w(z, τ) = 0.25.

The simulated asymptotic line for the free boundary is z = −0.04τ + 2.6931, which indeed 

locates in the region asserted in Theorem (2):

−0.04τ − 4.8520 6 s(τ) 6 −0.04τ + 6.2383.

For small time-to-expiry, we also simulate the three free boundaries where w = γ, γ/2, (γ +

1)/2 till time τ = 60, 12, 4.5, 2 in Figure 6-9.

τ

0 10 20 30 40 50 60

z

-6

-5

-4

-3

-2

-1

0

1

2

w(z,τ)=γ=0.5

w(z,τ)=γ/2=0.25

w(z,τ)=(γ + 1)/2=0.75

Figure 6: Three free boundaries where w = γ, γ/2, (γ + 1)/2 till time τ = 60.
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τ

0 2 4 6 8 10 12

z

-1.5

-1

-0.5

0

0.5

1

1.5

w(z,τ)=γ=0.5

w(z,τ)=γ/2=0.25

w(z,τ)=(γ + 1)/2=0.75

Figure 7: Three free boundaries where w = γ, γ/2, (γ + 1)/2 till time τ = 12.

τ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

z

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

w(z,τ)=γ=0.5

w(z,τ)=γ/2=0.25

w(z,τ)=(γ + 1)/2=0.75

Figure 8: Three free boundaries where w = γ, γ/2, (γ + 1)/2 till time τ = 4.5.
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τ

0 0.5 1 1.5 2 2.5

z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

w(z,τ)=γ=0.5

w(z,τ)=γ/2=0.25

w(z,τ)=(γ + 1)/2=0.75

Figure 9: Three free boundaries where w = γ, γ/2, (γ + 1)/2 till time τ = 2.

τ ×10
8

0 1 2 3 4 5 6 7

z

×10
7

-6

-5

-4

-3

-2

-1

0

1

w(z,τ)>0.995

0.495<w(z,τ)<0.505

w(z,τ)<0.005

w(z,τ) = 0.005

w(z,τ) = 0.495

w(z,τ)=0.505

w(z,τ)=0.995

Figure 10: 4 boundaries where w = 0.005, 0.495, 0.505, 0.995 in z − τ plane.

46



At last, in Figure 10 we plot the four curves where w(z, τ) = 0.005, 0.495, 0.505, 0.995 in

Figure 10. One can see the z − τ plane is approximately separated into three parts where

w(z, τ) is almost 0, γ, 1 respectively, which means the underlying firm’s ratio of debt to asset

value mainly takes one of the three values: 0, 1 and γ, i.e. the threshold separating different

rating regions, in the corresponding zoom in the state plane.
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6.0 CONCLUSIONS

In this thesis, we analyze the price of corporate bond of the underlying firm by connecting

its debt-to-asset ratio and credit rating change. We as well study the free boundary, across

which the underlying company’s credit rating will change. We first manage to do dimension

reduction and establish a general proof of the well-posedness, including existence and unique-

ness of the solution. Secondly, we prove that the free boundary located in a stripe bounded

by two straight line sharing the same slope. At the meantime, the asymptotic behaviors of

the debt-to-asset ratio and the free boundary are given. Especially, the debt-to-asset ratio

has a tendency of presenting a stack of two stage traveling waves as time passes by. At last,

numerical simulations are given, which match the theoretical assertions.
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7.0 APPENDIX

7.1 THE RISK FREE BOND PRICE

In the study we consider the risk free bond price under the Vasicek Interest Rate Model:

drt = (k − βrt)dt+ σ1dW
1
t

Based on the assumptions and analysis in chapter 3, the risk free bond price function Pt =

p(rt, t, T ) is the solution of the Black-Scholes equation with the terminal condition:
∂p
∂t

+ 1
2
σ2

1
∂2p
∂r2 + (k − βr)∂p

∂r
− rp = 0

p|t=T = 1

Set τ = T − t and we guess the solution p has the form p(τ, r) = e−A(τ)r−B(τ), where A(τ)

and B(τ) is undetermined functions of τ .

By the terminal condition at time T , we have A(0)r +B(0) = 0, ∀r > 0. That says

A(0) = 0, B(0) = 0

And the partial differential equation gives

p{r[A′(τ) + βA(τ)− 1] + [B′(τ) +
1

2
σ2

1A(τ)2 − kA(τ)]} = 0, ∀r > 0

It leads to A
′(τ) = −βA(τ) + 1

B′(τ) = −1
2
σ2

1A(τ)2 + kA(τ)
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Solving the equations combined with the initial conditions, we get

A(τ) =
1

β
(1− e−βτ )

B(τ) =
σ2

1

4β3
e−2βτ − (

σ2
1

β3
− k

β2
)e−βτ + (− σ2

1

2β2
+
k

β
)τ − σ2

1

4β3
+
σ2

1

β3
− k

β2

Thus

p(τ, r) = e−A(τ)r−B(τ)

where A(τ) and B(τ) showed above. And

pr
p

= −A(τ) = − 1

β
(1− e−βτ )
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