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LOW COMPLEXITY, TIME ACCURATE, MODEL ACCURATE

ALGORITHMS IN COMPUTATIONAL FLUID DYNAMICS

Haiyun Zhao, PhD

University of Pittsburgh, 2019

Computational fluid dynamics is an essential research area that is of crucial importance in

comprehending of fluid flows in mechanical and hydrodynamic processes. Accurate, efficient

and reliable simulation of flows occupies a central place in the development of computational

science. In this work, we explore various numerical methods and utilize them to improve

flow predication. Four research projects are conducted and show evidence in enhancement

of accuracy, efficiency and reliability of prediction of fluid motion.

We first propose a low computationally complex, stable and adaptive method for time ac-

curate approximation of the evolutionary stokes Darcy system and Navier-Stokes equations.

The improved method post-processes the solutions of the Backward Euler scheme by adding

no more than three lines to an existing program. Time accuracy is increased from first to

second order and the overdamping of the Backward Euler method is removed. The second

project is to develop an efficient method to describe magnetohydrodynamic flows at low mag-

netic Reynolds numbers. The decoupled method is based on the artificial compression and

partitioned schemes. Computational efficiency is greatly improved because we only need to

solve linear problems at each time step with systems decouple by physical processes. Last but

not least, we introduce a way to correct the Baldwin-Lomax model for non-equilibrium tur-

bulence, which is often considered impossible to simulate due to backscatter. The corrected

Baldwin-Lomax model not only shows that effects of fluctuations on means are dissipative

on time average but also can have bursts for which energy flow reverses. For each project,

we present comprehensive error and stability analysis and provide different numerical exper-
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iments to further support theoretical theories.
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1.0 INTRODUCTION

Accurate, reliable and efficient forecast of fluid flow is very important for scientific and en-

gineering breakthroughs and advances. Meteorologists utilize numerical simulation of fluid

flow to predict the weather and warn of natural disasters; oil and gas engineers can design

and maintain optimal pipes network; doctors can prevent and cure arterial diseases by com-

putational hemodynamics. In fact, the basic model of fluid prediction can be traced back

to 1922, which was raised by L. Richardson for weather forecasting. In 1933, the earliest

numerical solution for flow past a cylinder was developed by A. Thom [42]. In 1967, the first

3D model based on panels discretization was published by Douglas Aircraft. Nowadays, CFD

is still one of the central scientific frontiers, and there are increasing number of researchers

in this field seeking to obtain better understanding of fluid motion. However, fundamental

barriers to accurate fluid predictions exist in many CFD applications. The thesis goal is to

consider three fluid models from the basic Navier-Stokes equations, to equations of magne-

tohydrodynamic(MHD) flows which includes both NSE and Maxwell equation, to the more

complex turbulence model where the velocity field is random, and develop low complexity,

time accurate, model accurate methods that have the potential to break down the barriers

in accuracy, reliability, and efficiency in fluid prediction, to establish mathematical founda-

tions to provide theoretical support and to conduct numerical tests to confirm the obtained

results.

In this dissertation, we first presents a low complexity, stable and time accurate method

for the Stokes-Darcy system and the Navier-Stokes equations. The improved method requires

a minimally intrusive modification to an existing program based on the fully implicit /

backward Euler time discretization, does not add to the computational complexity, and

is conceptually simple. The backward Euler approximation is simply post-processed with

1



a linear time filter composed of no more than three steps. The time filter additionally

removes the overdamping of Backward Euler while remaining unconditionally energy stable,

proven herein. The second project is to develop a more computational efficient method to

solve the time-dependent magnetohydrodynamic (MHD) flows at low magnetic Reynolds

numbers. The constructed decoupling method is based on the artificial compression method

(uncoupling the pressure and velocity) and partitioned method (uncoupling the velocity and

electric potential). It allows us at each time step to solve linear problems, uncoupled by

physical processes, per time step, which can greatly improve the computational efficiency.

Last but not least, it is considered a challenge in many aspects to simulate complex turbulent

flows not at statistical equilibrium. Because the most common approach, eddy viscosity

model, fails to capture backscatter– intermittent energy flow from turbulent fluctuations

back to the mean velocity. We present a way to correct the Baldwin-Lomax model to capture

the non-equilibrium effects and prove the corrected models preserve important features of

the true Reynolds stresses.
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2.0 MATHEMATICAL PRELIMINARIES

This section introduces some widely used notations, inequalities and lemmas. The standard

notations Hk(Ω), Hk
0 (Ω), W k,p(Ω) denote Sobolev spaces, and Lp(Ω) denotes Lp spaces, see

[108]. The Hk(Ω) norm and Lp(Ω) (p 6= 2) norm are denoted by ‖·‖k and ‖·‖Lp , respectively.

The L2(Ω) norm is denoted by ‖ · ‖ and its corresponding inner products by (·, ·). Denote

the dual space of Hk
0 (Ω) by H−k(Ω) and its norm by ‖ · ‖−k. Furthermore, ‖ · ‖`p is the `p−

norm of vectors in Rd, see [117]. Constants C are different in different places throughout the

paper, which do not depend on mesh size and time step but may depend on some known

data such as Ω, ν, f , · · · , and so on. We introduce the following spaces and their norms:

Lp(0, T ;Lq(Ω)) := {v(x, t) : (

∫ T

0

‖v(·, t)‖pLqdt)
1
p <∞},

L∞(0, T ;Lq(Ω)) := {v(x, t) : sup
0≤t≤T

‖v(·, t)‖Lq <∞},

‖v‖Lp(0,T ;Lq) = (

∫ T

0

‖v(·, t)‖pLqdt)
1
p , ‖v‖L∞(0,T ;Lq) = sup

0≤t≤T
‖v(·, t)‖Lq .

Here, 1 ≤ p < ∞, 1 ≤ q ≤ ∞. The velocity space X and pressure space Q are defined as

follows.

X := H1
0 (Ω)d = {v ∈ H1(Ω)d : v|∂Ω = 0},

Q := L2
0(Ω)d = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

The divergence free space V 2 of X = W 1,2
0 (Ω) is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q)}.

and the divergence free subspace of W 1,3
0 (Ω) is similarly denoted V 3. Define

B(u,v) := u · ∇v +
1

2
(∇ · u)v, b(u,v,w) := (B(u,v),w), ∀ u,v,w ∈ X.

3



Then, we have

b(u,v,w) =
1

2
[b(u,v,w)− b(u,w,v)], b(u,v,v) = 0,

b(u,v,w) = (u · ∇v,w), if u ∈ V.

Let Πh be a set of triangulations of Ω with Ω =
⋃

K∈Πh

K (h = sup
K∈Πh

diam(K)). It is

uniformly regular when h → 0. Xh ⊂ X,Qh ⊂ Q are finite element spaces that satisfy the

discrete inf-sup condition: inf
q∈Qh

sup
v∈Xh

(q,∇·v)
‖∇v‖‖q‖ ≥ C > 0. The subspace Vh of Xh is defined by

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

Next, we present some inequalities and lemmas which will be used in later sections.

Lemma 1. (The discrete Gronwall’s inequality) Suppose that n and N are nonnegative

integers, n ≤ N . The real numbers an, bn, cn, dn,4t are nonnegative and satisfy that

aN + ∆t
N∑
n=0

bn ≤ ∆t
N∑
n=0

(cnan + dn).

Then,

aN + ∆t
N∑
n=0

bn ≤ exp(∆t
N∑
n=0

cn
1−∆tcn

)(∆t
N∑
n=0

dn),

provided that ∆tcn < 1 for each n.

Lemma 2. (Strong monotonicity and local Lipschitz-continuity) There exist positive

constants C and C such that for all u′,u′′,v ∈ (W 1,3(Ω))d, we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× (u′ − u′′))

≥ C‖l
2
3 (x)∇× (u′ − u′′)‖3

L3 ,
(2.1)

and

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ Cγ‖l
2
3 (x)∇× (u′ − u′′)‖L3‖l

2
3 (x)∇× v‖L3 ,

(2.2)

where l : x ∈ Ω 7→ R is a non-negative function with l ∈ L∞(Ω), and γ = max{‖l 2
3 (x)∇×

u′‖L3 , ‖l 2
3 (x)∇× u′′‖L3}.

4



Remark 1. Inequalities (A1) and (A2) can be found in [108, 116, 130]. Lemma 1 can be

found in [138]. The proof of Lemma 2 is given in the Appendix.

Lemma 3. There exists C > 0 such that

b(u, v, w) ≤ C‖∇u‖‖∇v‖‖∇w‖, ∀ u, v, w ∈ X

b(u, v, w) ≤ C‖u‖‖v‖2‖∇w‖ ∀u,w ∈ X, v ∈ X ∩H2(Ω).

Proof. See Lemma 2.1 on p. 12 of [105].

We use the following discrete Gronwall inequality found in [94, Lemma 5.1].

Lemma 4 (Discrete Gronwall Inequality). Let ∆t, H, an, bn, cn, dn (for integers n ≥ 0) be

non-negative numbers such that

al + ∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

dnan + ∆t
l∑

n=0

cn +H, ∀ l ≥ 0 (2.3)

Suppose ∆tdn < 1 ∀n, then,

al + ∆t
l∑

n=0

bn ≤ exp
(

∆t
l∑

n=0

bn
dn

1−∆tdn

)(
∆t

l∑
n=0

cn +H
)
, ∀ l ≥ 0 (2.4)

Multiplying (6.1) by test functions (v, q) ∈ (X,Q) and integrating by parts gives

(ut, v) + b(u, u, v) + ν(∇u,∇v)− (p,∇ · v) + (∇ · u, q) = (f, v), (∇ · u, q) = 0. (2.5)

To discretize the above system in space, we choose conforming finite element spaces for

velocity Xh ⊂ X and pressure Qh ⊂ Q satisfying the discrete inf-sup condition and the

following approximation properties:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖

≥ β > 0,

inf
v∈Xh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d

inf
v∈Xh

‖u− v‖1 ≤ Chk+1‖u‖k, u ∈ Hk+1(Ω)d

inf
r∈Qh
‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω)

(2.6)
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h denotes the maximum triangle diameter. Examples of finite element spaces satisfying these

conditions are the MINI [76] and Taylor-Hood [106] elements. The discretely divergence free

subspace Vh ∈ Xh is defined

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

The dual norms of Xh and Vh are

‖w‖X∗h := sup
vh∈Xh

(w, vh)

‖∇vh‖
, ‖w‖V ∗h := sup

vh∈Vh

(w, vh)

‖∇vh‖
.

The following Lemma from Galvin [87, p. 243] establishes the equivalence of these norms on

Vh.

Lemma 5. Suppose the discrete inf-sup condition holds, let w ∈ Vh, then there exists C > 0,

independent of h, such that

C‖w‖X∗h ≤ ‖w‖V ∗h ≤ ‖w‖X∗h .

Lemma 5 is used to derive pressure error estimates with a technique shown in Fiordilino

[86]. We will use the following, easily proven, algebraic identity.

Lemma 6. The following identity holds.(
3

2
a− 2b+

1

2
c

)(
3

2
a− b+

1

2
c

)
= (2.7)(

a2

4
+

(2a− b)2

4
+

(a− b)2

4

)
−
(
b2

4
+

(2b− c)2

4
+

(b− c)2

4

)
+

3

4
(a− 2b+ c)2

6



3.0 LOW COMPLEXITY, TIME ACCURATE ALGORITHMS IN

CFD-ADAPTIVE PARTITIONED METHODS FOR STOKES-DARCY

SYSTEM

3.1 INTRODUCTION

The coupling of a fluid flowing between a porous media and a free flow region is a typical

multi-physics and multi-domain problem, which plays an important role in many industrial

and engineering applications and in transport between ground water and surface water. The

Stokes-Darcy model is a fundamental model of this proem. Numerical methods for the

coupled model have been extensively studied and tested, including finite element methods

[74], spectral methods [70], discontinuous Galerkin methods [64], discontinuous finite volume

methods [69], mortar element methods [46], boundary integral methods [68], hybrid discon-

tinuous Galerkin methods [54], least square methods [57], optimization based methods[53],

weak Galerkin methods [49], various domain decomposition methods [58], two grid methods

[65], multigrid methods [44], and time partitioned methods [62].

Most recently research has focused on partitioned methods for the non-stationary Stokes-

Darcy model. See [60],[61],[66],[67] for a first-order partitioned methods, [47],[62] for second

order partitioned method and [48] for a third-order partitioned method. Current directions

include methods using different timesteps in different subdomains [62] and higher order

methods [47],[62], [48]. The aim of this research is to develop a fast partitioned method

that provides time accurate approximations by time adaptive partitioned methods using

time filters. Time filters are effective tools to offset the weakness of lower-order partitioned

methods. Partitioning can be accomplished by using an IMEX method with explicit dis-

cretization of interface coupling terms. If this induces oscillations, time filters can also be
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used to damp non-physical oscillations here, as in GFD. Recently it was noted in [55] that

time filters also can increase the time accuracy of simple, lower accuracy methods. This

yields, at low cost, two approximations of different accuracy. Thus, it also gives a low cost

error estimator for adapting the timestep to ensure time accuracy. This report develops,

analyzes and tests adaptive algorithms, based on this idea, for the coupled, evolutionary

Stokes-Darcy problem. The method herein is based on finite element discretization in space.

The subdomain/subphysics terms are discretized in time by the usual (first order) fully im-

plicit Backward Euler method. The coupling terms are discretized by the explicit second

order’s extrapolation method. These terms are skew symmetric (express conservation of

material flowing from one subdomain into the other), must be treated explicitly to produce

a partitioned method and represent the critical physical effect. For all these reasons we

discretize by a second order extrapolation formula (rather than forward Euler). Adding 3

lines of code (time filtering the flow variables) increases the accuracy to O(∆t2) and gives

(as noted above) an error estimator to adapt the time step.

The paper is organized as follows. Section 2 gives the coupled Stokes-Darcy model and the

associated weak formulation. The BETF algorithm and the long time stability are given in

Section 3. Section 4 is devoted to the error analysis of the fully discretized scheme. In Section

5, we introduce BE and BETF algorithm for variable time stepsize and construct adaptive

algorithm with performing stepsize selections to control time accuracy and computational

efficiency.We presented the numerical tests to illustrate the time accuracy of our numerical

methods in Section 6. Final conclusions are given in Section 7.

3.1.1 PREVIOUS WORK ON TIME FILTERS

The first time filter called RA time filter was constructed by Robert[59] and analyzed by

Asselin[45]. The combination of RA filter with leapfrog is used to control the leapfrog

method’s computational mode[73]. Williams [71][72] made an important modification to the

RA filter, by proposing RAW time filter which increases the numerical accuracy for amplitude

errors from the first order to the third-order accuracy. Li and Trenchea[63] proposed a higher-

order Robert-Asselin (hoRA) type time filter which is non-intrusive, easily implementable
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and achieves third-order accuracy. The approach of using time filters, as herein, is quite

recent but has already been shown to increase time accuracy in other flow problems. These

include the fully coupled and nonlinear Navier-Stokes equations[52], slightly compressible

flow problem [51] and shows promise for variable order, time adaptive method [50].

3.2 THE STOKES-DARCY MODEL AND WEAK FORMULATION

We consider the time-dependent Stokes-Darcy model consisting of Stokes equations and

Darcy equations. The Stokes equations which describe the motion of free flow are given by:

find the fluid velocity u: Ωf × [0, T ]→ Rd, the pressure p: Ωf × [0, T ]→ R satisfying

∂u
∂t
− ν4u+∇p = f1 in Ωf , (3.1)

∇ · u = 0 in Ωf . (3.2)

In the porous medium region Ωp, the Darcy equations which describe the behavior of the

porous media flow is given by: find hydraulic head φ: Ωp × [0, T ]→ Rd satisfying

S0
∂φ
∂t

+∇ · up = f2 in Ωp, (3.3)

up = −K∇φ in Ωp. (3.4)

Combining the continuity equation (3.3) with Darcy
′
s law (3.4), we can get the following

equation

S0
∂φ
∂t
−∇ · (K∇φ) = f2 in Ωp, (3.5)

Here, in Figure 1, Ω ∈ Rd(d = 2 or 3) is a bounded domain and Ω = Ωf ∪ Ωp. Ωf and Ωp

are the fluid region and the porous medium region, respectively. And Γ = ∂Ωf ∩ ∂Ωp is the

interface between the fluid and the porous media regions. Both Ωf and Ωp have Lipschitz

continuous boundaries. Define Γi = ∂Ωi\Γ for i = f, p. Moreover, we denote by nf and np

the unit outward normal vectors on ∂Ωf and ∂Ωp , and τf the unit tangential vectors on the

interface Γ. It is clear that np = −nf on Γ. Here, u and up denote the fluid velocity and the
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Figure 1: A global domain Ω consisting of the fluid region Ωf and the porous media region

Ωp separated by the interface Γ.

specific discharge rate in the porous medium, p denotes the kinematic pressure, and f1 and

f2 denote a general body force in Stokes equations and a source term in Darcy equations,

φ denotes the hydraulic head, K is the hydraulic conductivity tensor, and S0 is the soil

compressibility. For simplicity, we assume that K = {Kii}d×d is a symmetric and positive

definite matrix with the smallest eigenvalue Kmin > 0. It is important to note that in many

applications these are not O(1) parameters.

We impose homogeneous Dirichlet boundary conditions and the initial condition:

u = 0 on Γf , (3.6)

φ = 0 on Γp, (3.7)

u(x, 0) = u0 in Ωf , (3.8)

φ(x, 0) = φ0 in Ωp. (3.9)

The coupling conditions on the interface are the conservation of mass, the balance of

normal forces and the Beavers-Joseph-Saffman condition:

10



u · nf + up · np = 0 on Γ, (3.10)

p− νnf · ∂u∂nf = gφ on Γ, (3.11)

−ντf · ∂u∂nf = αν
√
d√

trace(Π)
τf · u on Γ. (3.12)

Here, d is the space dimension, g is the gravitational acceleration, α is a positive parameter

depending on the properties of the medium and must be experimentally determined, and

the permeability Π = Kν
g

. Equation (3.12) is the Beavers-Joseph-Saffman condition.

We introduce the following spaces

Hf = {v ∈ (H1(Ωf )
d : v = 0 on ∂Ωf\Γ},

Hp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\Γ},

Q = L2
0(Ωf ).

For the domain D, (·, ·)D refers to the scalar inner product in D for D = Ωf or Ωp . In

particular, we denote the H1(Ωf/p) norm by ‖ · ‖Hf/Hp , the L2(Γ) norm by ‖ · ‖Γ and the

L2(Ωf/p) norm by ‖ · ‖f/p, and define the corresponding norms and the notation hereafter:

‖u‖f = ‖u‖L2(Ωf ), ‖u‖Hf = ‖∇u‖L2(Ωf ),

‖φ‖p = ‖φ‖L2(Ωp), ‖φ‖Hp = ‖∇φ‖L2(Ωp).

With these notations, the weak formulation of the coupled Stokes-Darcy problem is given as

follows: find (u, φ) ∈ Hf ×Hp and p ∈ Q such that, ∀t ∈ (0, T ],

(ut, v)Ωf + gS0(φt, ψ)Ωp + af (u, v) + ap(φ, ψ) + cΓ(v, φ)− cΓ(u, ψ) + b(v, p)

= (f1, v)Ωf + g(f2, ψ)Ωp ∀v ∈ Hf , ψ ∈ Hp, (3.13)

b(u, q) = 0 ∀q ∈ Q, (3.14)
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where

af (u, v) = ν(∇u,∇v)Ωf + aΓ(u, v),

ap(φ, ψ) = g(K∇φ,∇ψ)Ωp ,

cΓ(v, ψ) = g

∫
Γ

ψv · nf ,

b(v, q) = −(p,∇ · v)Ωf .

aΓ(u, v) =
d−1∑
i=1

∫
Γ

α
√
νg√

trace(Π)
(u · τi)(v · τi).

For further investigation, we also recall the Poincaré, trace and Sobolev inequalities that

are useful in the following analysis. There exist constants Cd, Cs, which depend only on the

domain Ωf , and C̃d, C̃s, which depend only on the domain Ωp, such that, for all v ∈ Hf and

φ ∈ Hp,

‖v‖f ≤ Cd‖v‖Hf , ‖φ‖p ≤ C̃d‖φ‖Hp . (3.15)

‖v‖Γ ≤ Cs‖v‖
1
2
f ‖∇v‖

1
2
f , ‖φ‖Γ ≤ C̃s‖φ‖

1
2
p ‖∇φ‖

1
2
p . (3.16)

Lemma 7. [62] There exist constants C1 = C2
s C̃

2
s ≥ 0 and C2 = CdC̃d ≥ 0, such that for all

(v, φ) ∈ Hf ×Hp and ε, ε1, ε2 > 0, we have

cΓ(v, φ) ≤ εν‖v‖2
Hf

+
g2C1C2

4εν
‖φ‖2

Hp , (3.17)

cΓ(v, φ) ≤ εg‖K
1
2∇φ‖2

p +
gC1C2

4εKmin

‖u‖2
Hf
, (3.18)

cΓ(v, φ) ≤ ε1ν‖v‖2
Hf

+ ε2‖K
1
2∇φ‖2

p +
g4C2

1C
2
d

64ε21ε2ν
2Kmin

‖φ‖2
p, (3.19)

cΓ(v, φ) ≤ ε1‖K
1
2∇φ‖2

p + ε2ν‖v‖2
Hf

+
g4C2

1 C̃
2
d

64ε21ε2νK
2
min

‖v‖2
f , (3.20)

cΓ(v, φ) ≤ εν‖v‖2
Hf

+
g2C1C̃ICd

4ενh
‖φ‖2

p, (3.21)

cΓ(v, φ) ≤ εg‖K
1
2∇φ‖2

p +
g2C1C̃dCI
4εgKminh

‖u‖2
f . (3.22)
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3.3 NUMERICAL ALGORITHMS

In this section, we propose the decoupled scheme for the coupled Stokes-Darcy model.

We choose a uniform partition of [0, T ] with tm = m∆t, m = 0, 1, ..., N , where ∆t =

T
N

, and (um, pm, φm) denotes the discrete approximation in time by following schemes to

(u(tm), p(tm), φ(tm)). These are presented below for constant time steps. Their variable ∆t

and adaptive versions are in later section.

3.3.1 BACKWARD EULER PLUS TIME FILTER (BETF)

• Given (u0, p0, φ0) and (u1, p1, φ1). Find (ûm+1, p̂m+1) ∈ (Hf , Q) with m = 0, 1, ...., N − 2,

such that for any v ∈ Hf , and q ∈ Q,

(
ûm+1 − um

∆t
, v)Ωf − af (ûm+1, v) + b(v, p̂m+1) = (fm+1

1 , v)Ωf − cΓ(v, 2φm − φm−1),(3.23)

b(ûm+1, q) = 0.(3.24)

• Find φ̂m+1 ∈ Hp, with m = 1, ...., N − 2, such that for any ψ ∈ Hp,

gS0(
φ̂m+1 − φm

∆t
, ψ)Ωp + ap(φ̂

m+1, ψ) = g(fm+1
2 , ψ)Ωp + cΓ(2um − um−1, ψ). (3.25)

• Apply time filter to update the previous solutions (ûm+1, p̂m+1, φ̂m+1),

um+1 = ûm+1 − 1

3
(ûm+1 − 2um + um−1), (3.26)

pm+1 = p̂m+1 − 1

3
(p̂m+1 − 2pm + pm−1), (3.27)

φm+1 = φ̂m+1 − 1

3
(φ̂m+1 − 2φm + φm−1). (3.28)
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3.3.2 EQUIVALENT BACKWARD EULER PLUS TIME FILTER

To analyze the algorithm we will eliminate the intermediate variables and reduce BETF to

an equivalent 2 step method. This reduction is a repetition of the NSE case in [52] so we

omit the routine algebraic details, yielding the following.

• Given (u0, p0, φ0) and (u1, p1, φ1), find (um+1, pm+1) ∈ (Hf , Q), with m = 1, ...., N − 1,

such that for any v ∈ Hf , and q ∈ Q,

(
3um+1 − 4um + um−1

2∆t
, v)Ωf − af (

3

2
um+1 − um +

1

2
um−1, v)

+ b(v,
3

2
pm+1 − pm +

1

2
pm−1) = (fm+1

1 , v)Ωf − cΓ(v, 2φm − φm−1), (3.29)

b(
3

2
um+1 − um +

1

2
um−1, q) = 0. (3.30)

• Given φ0 and φ1, find φm+1 ∈ Hp, with m = 1, ...., N − 1, such that for any ψ ∈ Hp,

gS0(
3φm+1 − 4φm + φm−1

2∆t
, ψ)Ωp + ap(

3

2
φm+1 − φm +

1

2
φm−1, ψ)

= g(fm+1
2 , ψ)Ωp + cΓ(2um − um−1, ψ).

(3.31)

Define the following difference operators:

A(um+1) =
3

2
um+1 − 2um +

1

2
um−1, B(um+1) =

3

2
um+1 − um +

1

2
um−1.

There are some important identities we need to use in the later section.

(A(um+1), um+1)Ωf =
‖um+1‖2

f + ‖2um+1 − um‖2
f

4

−
‖um‖2

f + ‖2um − um−1‖2
f

4
+
‖um+1 − 2um + um−1‖2

f

4
,

(B(um+1), um+1)Ωf =
3‖um+1‖2

f + ‖um‖2
f

4
−

3‖um‖2
f + ‖um−1‖2

f

4

+
‖um+1 − um‖2

f

2
+
‖um+1 + um−1‖2

f

4
.

(3.32)
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3.3.3 TIME STABILITY OF THE DECOUPLED SCHEME

In this section, we prove the long time stability of BETF decoupled scheme for constant time

step. Assume u1 and u0 is divergence free, i.e., b(ui, q) = 0,∀q ∈ Q, i = 1, 0. From (3.30),

it is easy to know b(ui, q) = 0,∀q ∈ Q, i ≥ 0. Long time stability holds under a condition

(below) relating ∆t to problem parameters. We make this condition explicit as parameters

can vary from large to very small in different applications.

Theorem 1. Define Energy

Em+1 =
1

4
(‖um+1‖2

f + ‖2um+1 − um‖2
f ) +

∆t

4

(
3af (u

m+1, um+1) + af (u
m, um)

)
+
gS0

4
(‖φm+1‖2

p + ‖2φm+1 − φm‖2
p) +

∆t

4

(
3ap(φ

m+1, φm+1) + ap(φ
m, φm)

)
.

(3.33)

Suppose ∆t satisfies the time step condition ∆t ≤ min{ νKmin
288C2

1 C̃
2
dg

2
, ν

2KminS0

288C2
1C

2
dg

2}, then the decou-

pled scheme is stable uniformly in time and there holds

EN +
ν∆t

8
‖∇(um+1 − um)‖2

f +
ν∆t

8
‖∇(um+1 + um−1)‖2

f

+
g∆t

8
‖K

1
2∇(φm+1 − φm)‖2

p +
g∆t

8
‖K

1
2∇(φm+1 + φm−1)‖2

p

≤E1 +
N−1∑
m=1

3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

N−1∑
m=1

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p

+
3ν∆t

8
(‖∇u1‖2

f + ‖∇u0‖2
f ) +

3g∆t

8
(‖K

1
2∇φ1‖2

p + ‖K
1
2∇φ0‖2

p).

(3.34)

If there is no restriction on ∆t, the decoupled scheme is stable in finite time and there holds

EN +
1

4

N−1∑
m=1

(
‖um+1 − 2um + um−1‖2

f + gS0‖φm+1 − 2φm + φm−1‖2
p

)
+

13ν∆t

36

N−1∑
m=1

‖∇(um+1 − um)‖2
f +

ν∆t

9

N−1∑
m=1

‖∇(um+1 + um−1)‖2
f

+
13g∆t

36

N−1∑
m=1

‖K
1
2∇(φm+1 − φm)‖2

p +
g∆t

9

N−1∑
m=1

‖K
1
2∇(φm+1 + φm−1)‖2

p

≤C(T )
{
E1 +

N−1∑
m=1

3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

N−1∑
m=1

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p

+
ν∆t

2
(‖∇u1‖2

f + ‖∇u0‖2
f ) +

g∆t

2
(‖K

1
2∇φ1‖2

p + ‖K
1
2∇φ0‖2

p)
}
.

(3.35)

with C(T ) = exp
( N∑
m=0

max{CC
2
1C

2
dg

2∆t

ν2KminS0
,
CC2

1 C̃
2
dg

2∆t

νK2
min

}
)
.
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Proof. In (3.29)-(3.31), we set v = ∆tum+1, q = ∆tpm+1 and ψ = ∆tφm+1, and add them

together

(A(um+1), um+1)Ωf + gS0(A(φm+1), φm+1)Ωp

+ ∆taf (B(um+1), um+1) + ∆tap(B(φm+1), φm+1)

=∆t(fm+1
1 , um+1)Ωf + g∆t(fm+1

2 , φm+1))Ωp

−∆tcΓ(um+1, 2φm − φm−1) + ∆tcΓ(2um − um−1, φm+1).

(3.36)

From (3.32) and (3.36), we get

1

4
(‖um+1‖2

f + ‖2um+1 − um‖2
f ) +

∆t

4

(
3af (u

m+1, um+1) + af (u
m, um)

)
+
gS0

4
(‖φm+1‖2

p + ‖2φm+1 − φm‖2
p) +

∆t

4

(
3ap(φ

m+1, φm+1) + ap(φ
m, φm)

)
− 1

4
(‖um‖2

f + ‖2um − um−1‖2
f )−

∆t

4

(
3af (u

m, um) + af (u
m−1, um−1)

)
− gS0

4
(‖φm‖2

p + ‖2φm − φm−1‖2
p)−

∆t

4

(
3ap(φ

m, φm) + ap(φ
m−1, φm−1)

)
+

1

4
‖um+1 − 2um + um−1‖2

f +
gS0

4
‖φm+1 − 2φm + φm−1‖2

p

+
ν∆t

2
‖∇(um+1 − um)‖2

f +
ν∆t

4
‖∇(um+1 + um−1)‖2

f

+
g∆t

2
‖K

1
2∇(φm+1 − φm)‖2

p +
g∆t

4
‖K

1
2∇(φm+1 + φm−1)‖2

p

=∆t(fm+1
1 , um+1)Ωf + g∆t(fm+1

2 , φm+1)Ωp

−∆tcΓ(um+1, 2φm − φm+1) + ∆tcΓ(2um − um−1, φm+1).

(3.37)

Then we can rearrange the equality

Em+1 − Em +
1

4
‖um+1 − 2um + um−1‖2

f +
gS0

4
‖φm+1 − 2φm + φm−1‖2

p

+
ν∆t

2
‖∇(um+1 − um)‖2

f +
ν∆t

4
‖∇(um+1 + um−1)‖2

f

+
g∆t

2
‖K

1
2∇(φm+1 − φm)‖2

p +
g∆t

4
‖K

1
2∇(φm+1 + φm−1)‖2

p

=∆t(fm+1
1 , um+1)Ωf + g∆t(fm+1

2 , φm+1)Ωp

−∆tcΓ(um+1, 2φm − φm+1) + ∆tcΓ(2um − um−1, φm+1).

(3.38)
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Note that um+1 = 1
2
(um+1−um+um+1 +um−1 +um−um−1) and (a+b+c)2 ≤ 3(a2 +b2 +c2),

by using Young and Hölder inequalities, we have

∆t(fm+1
1 , um+1)Ωf + g∆t(fm+1

2 , φm+1)Ωp

≤3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p +
ν∆t

12
‖ ∇um+1 ‖2

f

+
g∆t

12
‖ K

1
2∇φm+1 ‖2

p

≤ν∆t

16

(
‖∇(um+1 − um)‖2

f + ‖∇(um+1 + um−1)‖2
f + ‖∇(um − um−1)‖2

f

)
+
g∆t

16

(
‖K

1
2∇(φm+1 − φm)‖2

p

+ ‖K
1
2∇(φm+1 + φm−1)‖2

p + ‖K
1
2∇(φm − φm−1)‖2

p

)
+

3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p .

(3.39)

Take ε1 = 1
12

, ε2 = g
32

in (3.19) and ε1 = g
12

, ε2 = 1
32

in (3.20), for the interface terms on the

right hand side of (3.38),

−∆tcΓ(um+1, 2φm − φm−1) + ∆tcΓ(2um − um−1, φm+1)

=−∆tcΓ(um+1, φm+1 − 2φm + φm−1) + ∆tcΓ(um+1 − 2um + um−1, φm+1)

≤ν∆t

12
‖∇um+1)‖2

f +
g∆t

32
‖K

1
2 (φm+1 − 2φm + φm−1)‖2

p

+
g∆t

12
‖K

1
2∇φm+1‖2

p +
ν∆t

32
‖um+1 − 2um + um−1‖2

f

+
72C2

1C
2
dg

3∆t

ν2Kmin

‖φm+1 − 2φm + φm−1‖2
p

+
72C2

1 C̃dg
2∆t

νK2
min

‖um+1 − 2um + um−1‖2
f

≤ν∆t

16

(
2‖∇(um+1 − um)‖2

f + ‖∇(um+1 + um−1)‖2
f

+ 2‖∇(um − um−1)‖2
f

)
+
g∆t

16

(
2‖K

1
2∇(φm+1 − φm)‖2

p + ‖K
1
2∇(φm+1 + φm−1)‖2

p

+ 2‖K
1
2∇(φm − φm−1)‖2

p

)
+

72C2
1C

2
dg

3∆t

ν2Kmin

‖φm+1 − 2φm + φm−1‖2
p

+
72C2

1 C̃dg
2∆t

νK2
min

‖um+1 − 2um + um−1‖2
f .

(3.40)
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Inserting (3.40) and (3.39) to (3.38), we arrive at

Em+1 − Em + (
1

4
− 72C2

1 C̃dg
2∆t

νK2
min

)‖um+1 − 2um + um−1‖2
f

+ (
gS0

4
− 72C2

1C
2
dg

3∆t

ν2Kmin

)‖φm+1 − 2φm + φm−1‖2
p

+
5ν∆t

16
‖∇(um+1 − um)‖2

f +
ν∆t

8
‖∇(um+1 + um−1)‖2

f

+
5g∆t

16
‖K

1
2∇(φm+1 − φm)‖2

p

+
g∆t

8
‖K

1
2∇(φm+1 + φm−1)‖2

p

≤3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p

+
3ν∆t

16
‖∇(um − um−1)‖2

f +
3g∆t

16
‖K

1
2∇(φm − φm−1)‖2

p.

(3.41)

If ∆t satisfies the time step condition ∆t ≤ min{ νKmin
288C2

1 C̃
2
dg

2
, ν

2KminS0

288C2
1C

2
dg

2}, summing up (3.41)

from m = 1 to N − 1 leads to

EN +
ν∆t

8
‖∇(um+1 − um)‖2

f +
ν∆t

8
‖∇(um+1 + um−1)‖2

f

+
g∆t

8
‖K

1
2∇(φm+1 − φm)‖2

p +
g∆t

8
‖K

1
2∇(φm+1 + φm−1)‖2

p

≤E1 +
N−1∑
m=1

3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

N−1∑
m=1

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p

+
3ν∆t

8
(‖∇u1‖2

f + ‖∇u0‖2
f )

+
3g∆t

8
(‖K

1
2∇φ1‖2

p + ‖K
1
2∇φ0‖2

p).

(3.42)

Thus we complete the proof of the uniform in time stability. Next we are going to prove the

unconditional, finite time stability of BETF scheme. Using 2um−um−1 = −1
2
(um+1−um) +

3
2
(um − um−1) + 1

2
(um+1 + um−1), um+1 = 1

2
(um+1 − um + um+1 + um−1 + um − um−1) and

18



(a + b + c)2 ≤ 3(a2 + b2 + c2) and taking ε1 = 1
12

, ε2 = g
54

in (3.19) and ε1 = g
12

, ε2 = 1
54

in

(3.20), for the interface term on the right hand side of (3.38),

−∆tcΓ(um+1, 2φm − φm−1) + ∆tcΓ(2um − um−1, φm+1)

≤ν∆t

12
‖∇um+1)‖2

f +
g∆t

54
‖K

1
2 (2φm − φm−1)‖2

p

+
243C2

1C
2
dg

3∆t

2ν2Kmin

‖2φm − φm−1‖2
p

+
g∆t

12
‖K

1
2∇φm+1‖2

p +
ν∆t

54
‖2um − um−1‖2

f

+
243C2

1 C̃dg
2∆t

2νK2
min

‖2um − um−1‖2
f

≤ν∆t

144

(
11‖∇(um+1 − um)‖2

f + 11‖∇(um+1 + um−1)‖2
f

+ 27‖∇(um − um−1)‖2
f

)
+
g∆t

144

(
11‖K

1
2∇(φm+1 − φm)‖2

p

+ 11‖K
1
2∇(φm+1 + φm−1)‖2

p + 27‖K
1
2∇(φm − φm−1)‖2

p

)
+

243C2
1C

2
dg

3∆t

2ν2Kmin

‖2φm − φm−1‖2
p +

243C2
1 C̃dg

2∆t

2νK2
min

‖2um − um−1‖2
f .

(3.43)

Inserting (3.43) and (3.39) to (3.38), we arrive at

Em+1 − Em +
1

4
‖um+1 − 2um + um−1‖2

f

+
gS0

4
‖φm+1 − 2φm + φm−1‖2

p

+
13ν∆t

36
‖∇(um+1 − um)‖2

f +
ν∆t

9
‖∇(um+1 + um−1)‖2

f

+
13g∆t

36
‖K

1
2∇(φm+1 − φm)‖2

p

+
g∆t

9
‖K

1
2∇(φm+1 + φm−1)‖2

p

≤3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p

+
ν∆t

4
‖∇(um − um−1)‖2

f +
g∆t

4
‖K

1
2∇(φm − φm−1)‖2

p

+
243C2

1C
2
dg

3∆t

2ν2Kmin

‖2φm − φm−1‖2
p +

243C2
1 C̃

2
dg

2∆t

2νK2
min

‖2um − um−1‖2
f .

(3.44)
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Summing up (3.41) from m = 1 to N − 1 leads to

EN +
1

4

N−1∑
m=1

(
‖um+1 − 2um + um−1‖2

f + gS0‖φm+1 − 2φm + φm−1‖2
p

)
+

13ν∆t

36

N−1∑
m=1

‖∇(um+1 − um)‖2
f +

ν∆t

9

N−1∑
m=1

‖∇(um+1 + um−1)‖2
f

+
13g∆t

36

N−1∑
m=1

‖K
1
2∇(φm+1 − φm)‖2

p +
g∆t

9

N−1∑
m=1

‖K
1
2∇(φm+1 + φm−1)‖2

p

≤E1 +
N−1∑
m=1

3C2
d∆t

ν
‖ fm+1

1 ‖2
f +

N−1∑
m=1

3gC̃2
d∆t

Kmin

‖ fm+1
2 ‖2

p

+
ν∆t

2
(‖∇u1‖2

f + ‖∇u0‖2
f ) +

g∆t

2
(‖K

1
2∇φ1‖2

p + ‖K
1
2∇φ0‖2

p)

+
CC2

1C
2
dg

2∆t

ν2KminS0

N−1∑
m=0

gS0

4
‖φm‖2

p +
CC2

1 C̃
2
dg

2∆t

νK2
min

N−1∑
m=0

1

4
‖um‖2

f .

(3.45)

Applying the discrete Gronwall inequality, we get (3.35).

3.4 ERROR ANALYSIS

This section gives an analysis of the error(constant time stepsize ) of the fully discrete BETF

algorithm, where spatial discretization is performed using finite element methods (FEMs).

To discretize the Stokes-Darcy problem in space by finite element method, let hi be a positive

parameter and Thi be a regular partition of triangular or quadrilateral elements of Ωi, i = f, p.

We select continuous piecewise polynomials of degrees k, k, and k − 1 for the finite element

spaces Hh
f ⊂ Hf , H

h
p ⊂ Hp, Q

h ⊂ Q which are conforming finite element spaces. We assume

the fluid velocity space Hh
f and the pressure space Qh satisfy the discrete inf-sup condition:

there exists a positive constant γ, independent of h, such that, ∀q ∈ Qh,∃ v ∈ Hh
f , v 6= 0,

b(v, q) ≥ γ‖v‖Hf‖q‖f . (3.46)
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Furthermore, we will use the inverse inequalities: there exist constants CI , C̃I , which depend

on the angles in the finite element mesh, such that, for all v ∈ Hh
f and φ ∈ Hh

p ,

‖∇v‖f ≤ CIh
−1‖v‖f , ‖∇φ‖p ≤ C̃Ih

−1‖φ‖p. (3.47)

The fully discrete approximation of BETF algorithm is: Given (u0
h, p

0
h, φ

0
h) and (u1

h, p
1
h, φ

1
h),

find (um+1
h , pm+1

h , φm+1
h ) ∈ (Hh

f , Q
h, Hh

p ), with m = 1, ...., N − 1, such that for any vh ∈ Hh
f ,

ψh ∈ Hh
p and qh ∈ Qh,

(
3um+1

h − 4umh + um−1
h

2∆t
, vh)Ωf − af (

3

2
um+1
h − umh +

1

2
um−1
h , vh)

+ b(vh,
3

2
pm+1
h − pmh +

1

2
pm−1
h ) = (fm+1

1 , vh)Ωf − cΓ(vh, 2φ
m
h − φm−1

h ),

(3.48)

b(
3

2
um+1
h − umh +

1

2
um−1
h , qh) = 0, (3.49)

gS0(
3φm+1

h − 4φmh + φm−1
h

2∆t
, ψh)Ωp + ap(

3

2
φm+1
h − φmh +

1

2
φm−1
h , ψh)

= g(fm+1
2 , ψh)Ωp + cΓ(2umh − um−1

h , ψh).

(3.50)

We assume that the solution of Stokes-Darcy problem satisfies the following regularity:

(u(t), φ(t)) ∈ (Hk+1(Ωf )
d, Hk+1(Ωp)) and p(t) ∈ Hk(Ωf ), define the linear projection op-

erator P : (u(t), φ(t), p(t)) ∈ (Hf , Hp, Q) → (ũ(t), φ̃(t), p̃(t)) ∈ (Hh
f , H

h
p , Q

h), ∀t ∈ [0, T ]

by:

af (u(t), v) + cΓ(v, φ(t)) + b(v, p(t)) + ap(φ(t), ψ)− cΓ(u(t), ψ)

= af (ũ(t), v) + cΓ(v, φ̃(t)) + b(v, p̃(t))

+ ap(φ̃(t), ψ)− cΓ(ũ(t), ψ) ∀v(t) ∈ Hh
f , ψ(t) ∈ Hh

p ,

(3.51)

b(ũ(t), q) = 0 ∀q(t) ∈ Qh, (3.52)

then we have the following error estimates:

‖ũ(t)− u(t)‖f + h‖ũ(t)− u(t)‖Hf ≤ Chk+1‖u(t)‖Hk+1(Ωf )d , (3.53)

‖φ̃(t)− φ(t)‖p + h‖φ̃(t)− φ(t)‖Hp ≤ Chk+1‖φ(t)‖Hk+1(Ωp), (3.54)

‖p̃(t)− p(t)‖f ≤ Chk‖p(t)‖Hk(Ωf ). (3.55)
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For ∀(vh, ψh, qh) ∈ (Hh
f , H

h
p , Q

h), the true solution (u(tm+1), p(tm+1), φ(tm+1)) satisfies:

(
A(u(tm+1))

∆t
, vh)Ωf + af (B(u(tm+1)), vh) + b(vh, B(p(tm+1)))

= (ξm+1
f , vh)Ωf + (fm+1

1 , vh)Ωf − g
∫

Γ

φ(tm+1)vh · nf

+ af (B(u(tm+1))− u(tm+1), vh) + b(vh, B(p(tm+1))− p(tm+1)),

(3.56)

− b(u(tm+1), qh) = 0, (3.57)

gS0(
A(φ(tm+1))

∆t
, ψh)Ωp + ap(B(φ(tm+1)), ψh) = gS0(ξm+1

p , ψh)Ωp

+ g(fm+1
2 , ψh)Ωp + g

∫
Γ

ψhu(tm+1) · nf + ap(B(φ(tm+1))− φ(tm+1), ψh),
(3.58)

where, ξm+1
f , ξm+1

p are defined by

ξm+1
f : = A(u(tm+1))

∆t
− ut(tm+1), ξm+1

p : = B(φ(tm+1))
2∆t

− φt(tm+1). (3.59)

To derive the error estimates of BETF algorithm, we first give this method’s consistency

error.

Lemma 8. The following inequalities hold:

‖A(u(tm+1))
∆t

‖2
f ≤ 9

24t

∫ tm+1

tm−1
‖ut‖2

fdt, (3.60)

‖ξm+1
f ‖2

f ≤ C4t3
∫ tm+2

tm
‖uttt(t)‖2

fdt, (3.61)

‖ũ(tm+2)− 2ũ(tm+1) + ũ(tm)‖2
Hf
≤ C4t3

∫ tm+2

tm
‖utt‖2

Hf
dt, (3.62)

‖B(u(tm+1))− u(tm+1)‖2
Hf
≤ C4t3

∫ tm+1

tm−1
‖utt‖2

Hf
dt, (3.63)

‖A(φ(tm+1))
∆t

‖2
p ≤ 9

24t

∫ tm+1

tm−1
‖φt‖2

pdt, (3.64)

‖ξm+2
p ‖2

p ≤ C4t3
∫ tm+2

tm
‖φttt(t)‖2

pdt, (3.65)

‖φ̃(tm+2)− 2φ̃(tm+1)− φ̃(tm)‖2
Hp
≤ C4t3

∫ tm+2

tm
‖φtt‖2

Hp
dt, (3.66)

‖B(φ(tm+1))− φ(tm+1)‖2
Hp
≤ C4t3

∫ tm+1

tm−1
‖φtt‖2

Hp
dt. (3.67)

Proof. The proof is similar to the Lemma 2 in [62].
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Theorem 2. For any 0 < tN = T <∞, assume the solution satisfies the following regularity

condition

u ∈ H1(0, T ;Hk+1(Ωf )) ∩H2(0, T ;H1(Ωf )) ∩H3(0, T ;L2(Ωf )),

φ ∈ H1(0, T ;Hk+1(Ωp)) ∩H2(0, T ;H1(Ωp)) ∩H3(0, T ;L2(Ωp)),

ptt ∈ L2(0, T, L2
0(Ωf )),

(3.68)

and ∆t satisfies ∆t ≤ min{ νKmin
CC2

1 C̃
2
dg

2
, ν

2KminS0

CC2
1C

2
dg

2 }, then there exists a constant C independent

of h and ∆t, such that

‖u(tN)− uNh ‖2
f + ‖φ(tN)− φNh ‖2

p

+
N−1∑
m=1

(11

8
ν∆t‖∇(ηm+1

u − ηmu )‖2
f +

11

8
g∆t‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p

)
+

N−1∑
m=1

(3

4
g∆t‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p +
3

4
ν∆t‖∇(ηm+1

u + ηm−1
u )‖2

f

)
≤C∆t4

(∫ T

0

‖uttt‖2
fdt+

∫ T

0

‖φttt‖2
pdt
)

+ C∆t4
(∫ T

0

‖φtt‖2
Hpdt+

∫ T

0

‖utt‖2
Hf
dt+

∫ T

0

‖ptt‖2
fdt
)

+ Ch2k+2
(∫ T

0

‖ut‖2
Hk+1(Ωf )dt+

∫ T

0

‖φt‖2
Hk+1(Ωp)dt

)
+ C∆t(‖∇η1

u‖2
f + ‖∇η0

u‖2
f ) + C∆t(‖K

1
2∇(η1

φ)‖2
p + ‖K

1
2∇(η0

φ)‖2
p)

+ (‖η1
u‖2 + ‖2η1

u − η0
u‖2) + gS0(‖η1

φ‖2 + ‖2η1
φ − η0

φ‖2).

(3.69)

Here and afterwards, we denote by C a generic positive constant which depends on the

physical parameters (ν, g, S0, Kmin), and it may has different values at different occasions.

Proof. Subtracting (3.56)-(3.58) from (3.48)-(3.50), we have the following error equations:

(
A(u(tm+1)− um+1

h )

∆t
, vh)Ωf − af (B(u(tm+1)− um+1

h ), vh) + b(vh, B(p(tm+1)− pm+1
h ))

= (ξm+1
f , vh)Ωf − g

∫
Γ

(φ(tm+1)− 2φmh + φm−1
h )vh · nf

+ af (B(u(tm+1))− u(tm+1), vh) + b(vh, B(p(tm+1))− p(tm+1)),

(3.70)

b(u(tm+1)−B(um+1
h ), qh) = 0, (3.71)
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gS0(
A(φ(tm+1)− φm+1

h )

∆t
, ψh)Ωp + ap(B(φ(tm+1)− φm+1

h ), ψh)

= gS0(ξm+1
p , ψh)Ωp + g

∫
Γ

ψh(u(tm+1)− 2umh + um−1
h ) · nf + ap(B(φ(tm+1))− φm+1, ψh).

(3.72)

Let ũ, p̃ and φ̃ be the projection of u, p and φ in Hh
f , Qh and Hh

p . Denote the error as

follows:

u(tm+1)− um+1
h = u(tm+1)− ũ(tm+1) + ũ(tm+1)− um+1

h = εm+1
u + ηm+1

u , (3.73)

φ(tm+1)− φm+1
h = φ(tm+1)− φ̃(tm+1) + φ̃(tm+1)− φm+1

h = εm+1
φ + ηm+1

φ , (3.74)

p(tm+1)− pm+1
h = p(tm+1)− p̃(tm+1) + p̃(tm+1)− pm+1

h = εm+1
p + ηm+1

p . (3.75)

Then we can rewrite (3.70)-(3.72):

(
A(ηm+1

u )

∆t
, vh)Ωf + af (B(ηm+1

u ), vh) + b(vh, B(ηm+1
p )) = (ξm+1

f , vh)Ωf

− g
∫

Γ

(φ(tm+1)−B(φ(tm+1)) +B(φ̃(tm+1))

− (2φ̃(tm)− φ̃(tm−1)))vh · nf − g
∫

Γ

(2ηmφ − ηm−1
φ )vh · nf

− af (B(εm+1
u ), vh)− b(vh, B(εm+1

p ))

− g
∫

Γ

B(εm+1
φ )vh · nf + af (B(u(tm+1))− u(tm+1), vh)

+ b(vh, B(p(tm+1))− p(tm+1))− (
A(εm+1

u )

∆t
, vh)Ωf ,

(3.76)

b(u(tm+1)−B(u(tm+1)) +B(ηm+1
u ), qh) = −b(B(εm+1

u ), qh), (3.77)

gS0(
A(ηm+1

φ )

∆t
, ψh)Ωp + ap(B(ηm+1

φ ), ψh)

= gS0(ξm+1
p , ψh)Ωp + g

∫
Γ

ψh(2η
m
u − ηm−1

u ) · nf

+ g

∫
Γ

ψh(u(tm+1)

−B(u(tm+1)) +B(ũ(tm+1))− (2ũ(tm)− ũ(tm−1))) · nf

− gS0(
A(εm+1

φ )

∆t
, ψh)Ωp − ap(B(εm+1

φ ), ψh)

+ g

∫
Γ

ψhB(εm+1
u ) · nf + ap(B(φ(tm+1))− φ(tm+1), ψh).

(3.78)
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Setting vh = ηm+1
u , qh = ηm+1

p in (3.76) and (3.77) yields

(
A(ηm+1

u )

∆t
, ηm+1
u )Ωf + af (B(ηm+1

u ), ηm+1
u ) + b(ηm+1

u , B(ηm+1
p )) = (ξm+1

f , ηm+1
u )Ωf

− g
∫

Γ

(φ(tm+1)−B(φ(tm+1)) +B(φ̃(tm+1))− (2φ̃(tm)− φ̃(tm−1)))ηm+1
u · nf

− g
∫

Γ

(2ηmφ − ηm−1
φ )ηm+1

u · nf − (
A(εm+1

u )

∆t
, ηm+1
u )Ωf − af (B(εm+1

u ), ηm+1
u )

− b(ηm+1
u , B(εm+1

p ))− g
∫

Γ

B(εm+1
φ )ηm+1

u · nf + af (B(u(tm+1))− u(tm+1), ηm+1
u )

+ b(ηm+1
u , B(p(tm+1))− p(tm+1)),

(3.79)

b(B(ηm+1
u ), ηm+1

p ) = −b(u(tm+1)−B(u(tm+1)), ηm+1
p )− b(B(εm+1

u ), ηm+1
p ). (3.80)

Choosing ψh = ηm+1
φ in (3.78) yields

gS0(
A(ηm+1

φ )

∆t
, ηm+1
φ )Ωp + ap(B(ηm+1

φ ), ηm+1
φ ) = gS0(ξm+1

p , ηm+1
φ )Ωp

+ g

∫
Γ

ηm+1
φ (2ηmu − ηm−1

u ) · nf − gS0(
A(εm+1

φ )

∆t
, ηm+1
φ )Ωp

+ g

∫
Γ

ηm+1
φ (u(tm+1)−B(u(tm+1)) +B(ũ(tm+1))− (2ũ(tm)− ũ(tm−1))) · nf

− ap(B(εm+1
φ ), ηm+1

φ ) + g

∫
Γ

ηm+1
φ B(εm+1

u ) · nf + ap(B(φ(tm+1)− φ(tm+1), ηm+1
φ ).

(3.81)

From (3.51), (3.52) and (3.77), we notice b
(
B(ηm+1

u ), qh
)

= −b
(
u(tm+1)−B(u(tm+1)), qh

)
−

b
(
B(εm+1

u ), qh
)
= 0, −af

(
B(εm+1

u ), ηm+1
u

)
− b
(
ηm+1
u , B(εm+1

p )
)

+ g
∫

Γ
B(εm+1

φ )ηm+1
u · nf = 0.

Assuming u1
h = ũ(t1), u0

h = ũ(t0), and by (3.52) and b
(
B(ηm+1

u ), qh
)

= 0 we have b(ηmu , qh) =

0 ∀qh ∈ Qh for m = 0, ...N . From (3.32) and (3.36) and multiplying (3.79) by 4∆t gives

(‖ηm+1
u ‖2

f + ‖2ηm+1
u − ηmu ‖2

f ) + 3∆taf (η
m+1
u , ηm+1

u ) + ∆taf (η
m
u , η

m
u )

− (‖ηmu ‖2
f + ‖2ηmu − ηm−1

u ‖2
f )− 3∆taf (η

m
u , η

m
u )−∆taf (η

m−1
u , ηm−1

u )

+ ‖ηm+1
u − 2ηmu + ηm−1

u ‖2
f + 2ν∆t‖∇(ηm+1

u − ηmu )‖2
f + ν∆t‖∇(ηm+1

u + ηm−1
u )‖2

f

− 4∆tb(ηm+1
u , B(p(tm+1))− p(tm+1))

=4∆t(ξm+1
f , ηm+1

u )Ωf − 4g∆t

∫
Γ

(2ηmφ − ηm−1
φ ) · ηm+1

u · nf

− 4g∆t

∫
Γ

(φ(tm+1)−B(φ(tm+1)) +B(φ̃(tm+1))− (2φ̃(tm)− φ̃(tm−1)))ηm+1
u · nf

− 4∆t
(

(
A(εm+1

u )

∆t
, ηm+1
u )Ωf − af (B(u(tm+1))− u(tm+1), ηm+1

u )
)
.

(3.82)
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Similarly, from (3.51), note that ap(B(εm+1
φ ), ηm+1

φ ) + g
∫

Γ
ηm+1
φ B(εm+1

u ) · nf = 0, from (3.32)

and multiplying (3.81) by 4∆t yields

gS0(‖ηm+1
φ ‖2

p + ‖2ηm+1
φ − ηmφ ‖2

p) + 3∆tap(η
m+1
p , ηm+1

p ) + ∆tap(η
m
p , η

m
p )

− gS0(‖ηmφ ‖2
p + ‖2ηmφ − ηm−1

φ ‖2
p)− 3∆tap(η

m
p , η

m
p )−∆tap(η

m−1
p , ηm−1

p )

+ gS0‖ηm+1
φ − 2ηmφ + ηm−1

φ ‖2
p + 2g∆t‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p

+ g∆t‖K
1
2∇(ηm+1

φ + ηm−1
φ )‖2

p

=4gS0∆t(ξm+1
p , ηm+1

φ )Ωp + 4g∆t

∫
Γ

ηm+1
φ (2ηmu − ηm−1

u ) · nf

+ 4g∆t

∫
Γ

ηm+1
φ (u(tm+1)−B(u(tm+1)) +B(ũ(tm+1))− (2ũ(tm)− ũ(tm−1))) · nf

− 4∆t
(
gS0(

A(εm+1
φ )

∆t
, ηm+1
φ )Ωp − ap(B(φm+1)− φm+1, ηm+1

φ )
)
.

(3.83)

Let Fm+1 = (‖ηm+1
u ‖2

f+‖2ηm+1
u −ηmu ‖2

f )+3∆taf (η
m+1
u , ηm+1

u )+∆taf (η
m
u , η

m
u )+gS0(‖ηm+1

φ ‖2
p+

‖2ηm+1
φ −ηmφ ‖2

p)+3∆tap(η
m+1
p , ηm+1

p )+∆tap(η
m
p , η

m
p ), adding the above equalities (3.82)-(3.83)

together, we get

Fm+1 − Fm + ‖ηm+1
u − 2ηmu + ηm−1

u ‖2
f + 2ν∆t‖∇(ηm+1

u − ηmu )‖2
f

+ gS0‖ηm+1
φ − 2ηmφ + ηm−1

φ ‖2
p + 2g∆t‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p

+ g∆t‖K
1
2∇(ηm+1

φ + ηm−1
φ )‖2

p + ν∆t‖∇(ηm+1
u + ηm−1

u )‖2
f

=4∆t
(

(ξm+1
f , ηm+1

u )Ωf − (
A(εm+1

u )

∆t
, ηm+1
u )Ωf

+ gS0(ξm+1
p , ηm+1

φ )Ωp − gS0(
A(εm+1

φ )

∆t
, ηm+1
φ )Ωp

)
− 4g∆t

(∫
Γ

(2ηmφ − ηm−1
φ ) · ηm+1

u · nf −
∫

Γ

ηm+1
φ (2ηmu − ηm−1

u ) · nf
)

− 4g∆t
(∫

Γ

(φ(tm+1)−B(φ(tm+1)) +B(φ̃(tm+1))− (2φ̃(tm)− φ̃(tm−1)))ηm+1
u · nf

−
∫

Γ

ηm+1
φ (u(tm+1)−B(u(tm+1)) +B(ũ(tm+1))− (2ũ(tm)− ũ(tm−1))) · nf

)
+ 4∆t

(
af (B(u(tm+1))− u(tm+1), ηm+1

u ) + b(ηm+1
u , B(p(tm+1)− p(tm+1)))

+ ap(B(φ(tm+1))− φ(tm+1), ηm+1
φ )

)
.

(3.84)
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Based on Lemma 8 and ‖A(εm+1
u )
∆t
‖2 ≤ 9

2∆t

∫ tm+1

tm−1
‖ut− ũt‖2dt, the first term on the right hand

side of (3.84) can be bounded by

4∆t
(

(ξm+1
f , ηm+1

u )Ωf − (
A(εm+1

u )

∆t
, ηm+1
u )Ωf

+ gS0(ξm+1
p , ηm+1

φ )Ωp − gS0(
A(εm+1

φ )

∆t
, ηm+1
φ )Ωp

)
≤C∆t4

∫ tm+1

tm−1

‖uttt‖2
fdt+

ν∆t

16
‖∇ηm+1

u ‖2
f + C∆t‖A(εm+1

u )

∆t
‖2
f

+ C∆t4
∫ tm+1

tm−1

‖φttt‖2
pdt+

g∆t

16
‖K

1
2∇ηm+1

φ ‖2
p + C∆t‖

A(εm+1
φ )

∆t
‖2
p

≤C∆t4
(∫ tm+1

tm−1

‖uttt‖2
fdt+

∫ tm+1

tm−1

‖φttt‖2
pdt
)

+ Ch2k+2
(∫ tm+1

tm−1

‖ut‖2
Hk+1(Ωf )dt+

∫ tm+1

tm−1

‖φt‖2
Hk+1(Ωp)dt

)
+
ν∆t

16

(
‖∇(ηm+1

u − ηmu )‖2
f + ‖∇(ηmu − ηm−1

u )‖2
f + ‖∇(ηm+1

u + ηm−1
u )‖2

f

)
+
g∆t

16

(
‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p + ‖K

1
2∇(ηmφ − ηm−1

φ )‖2
p + ‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p

)
.

(3.85)

Taking the same technique used in (3.40), we can bound the second term on the right hand

side of (3.84)

− 4g∆t
(∫

Γ

(2ηmφ − ηm−1
φ ) · ηm+1

u · nf −
∫

Γ

ηm+1
φ (2ηmu − ηm−1

u ) · nf
)

≤ν∆t

16

(
2‖∇(ηm+1

u − ηmu )‖2
f + ‖∇(ηm+1

u + ηm−1
u )‖2

f + 2‖∇(ηmu − ηm−1
u )‖2

f

)
+
g∆t

16

(
2‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p + ‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p

+ 2‖K
1
2∇(ηmφ − ηm−1

φ )‖2
p

)
+
CC2

1C
2
dg

3∆t

ν2Kmin

‖ηm+1
φ − 2ηmφ + ηm−1

φ ‖2
p

+
CC2

1 C̃dg
2∆t

νK2
min

‖ηm+1
u − 2ηmu + ηm−1

u ‖2
f .

(3.86)

Taking ε = ∆t
12

in (3.17) and (3.18) and using um+1 = 1
2
(um+1−um+um+1+um−1+um−um−1)

and (a + b + c)2 ≤ 3(a2 + b2 + c2), the third term on the right hand side of (3.84) can be
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bounded by

− 4g∆t
(∫

Γ

(φ(tm+1)−B(φ(tm+1)) +B(φ̃(tm+1))− (2φ̃(tm)− φ̃(tm+1)))ηm+1
u · nf

−
∫

Γ

ηm+1
φ (u(tm+1)−B(u(tm+1)) +B(ũ(tm+1))− (2ũ(tm)− ũ(tm−1))) · nf

)
= −4g∆t

∫
Γ

(
(−1

2
φ(tm+1) + φ(tm)− 1

2
φ(tm−1)) +

3

2
(φ̃(tm+1)

− 2φ̃(tm) + φ̃(tm−1))
)
ηm+1
u · nf

+ 4g∆t

∫
Γ

ηm+1
φ

(
(−1

2
u(tm+1) + u(tm)− 1

2
u(tm−1)) +

3

2
(ũ(tm+1)

− 2ũ(tm) + ũ(tm−1))
)
· nf

≤ gC3

ν

(
‖∇φ(tm+1)− 2∇φ(tm) +∇φ(tm−1)‖2

p + ‖∇φ̃(tm+1)− 2∇φ̃(tm) +∇φ̃(tm−1)‖2
p

)
+

C3

Kmin

(
‖∇u(tm+1)− 2∇u(tm) +∇u(tm−1)‖2

f + ‖∇ũ(tm+1)− 2∇ũ(tm) +∇ũ(tm−1)‖2
f

)
+
ν∆t

16

(
‖∇(ηm+1

u − ηmu )‖2
f + ‖∇(ηmu − ηm−1

u )‖2
f

+ ‖∇(ηm+1
u + ηm−1

u )‖2
f

)
+
g∆t

16

(
‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p + ‖K

1
2∇(ηmφ − ηm−1

φ )‖2
p

+ ‖K
1
2∇(ηm+1

φ + ηm−1
φ )‖2

p

)
,

(3.87)

where, the parameter C3 = 216C1C2g∆t. From the definition of the bilinear forms af , ap and

b, the rest of the right hand side of the (3.84) can be bounded by the following inequality

− 4∆t
(
af (B(u(tm+1)− u(tm+1), ηu(tm+1))

+ b(ηu(tm+1), B(p(tm+1))− p(tm+1))

+ 4∆tap(B(φ(tm+1))− φ(tm+1), ηφ(tm+1))
)

≤ C∆t
(
‖∇(B(u(tm+1))− u(tm+1))‖2

f + ‖B(p(tm+1))− p(tm+1)‖2
f

+ ‖K
1
2∇(B(φ(tm+1))− φ(tm+1))‖2

p

)
+
ν∆t

16

(
‖∇(ηm+1

u − ηmu )‖2
f + ‖∇(ηmu − ηm−1

u )‖2
f + ‖∇(ηm+1

u + ηm−1
u )‖2

f

)
+
g∆t

16

(
‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p + ‖K

1
2∇(ηmφ − ηm−1

φ )‖2
p + ‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p

)
.

(3.88)
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Combining all the above estimates (3.84)-(3.88) gives

Fm+1 − Fm + ‖ηm+1
u − 2ηmu + ηm−1

u ‖2
f +

27

16
ν∆t‖∇(ηm+1

u − ηmu )‖2
f

+ gS0‖ηm+1
φ − 2ηmφ + ηm−1

φ ‖2
p +

27

16
g∆t‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p

+
3

4
g∆t‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p +
3

4
ν∆t‖∇(ηm+1

u + ηm−1
u )‖2

f

≤C∆t4
(∫ tm+1

tm−1

‖uttt‖2
fdt+

∫ tm+1

tm−1

‖φttt‖2
pdt
)

+ Ch2k+2
(∫ tm+1

tm−1

‖ut‖2
Hk+1(Ωf )dt+

∫ tm+1

tm−1

‖φt‖2
Hk+1(Ωp)dt

)
+
CC2

1C
2
dg

3∆t

ν2Kmin

‖ηm+1
φ − 2ηmφ + ηm−1

φ ‖2
p +

CC2
1 C̃

2
dg

2∆t

νK2
min

‖ηm+1
u − 2ηmu + ηm−1

u ‖2
f

+ C∆t
(
‖∇φ(tm+1)− 2∇φ(tm) +∇φ(tm−1)‖2

p + ‖∇φ̃(tm+1)

− 2∇φ̃(tm) +∇φ̃(tm−1))|2p
)

+ C∆t
(
‖∇u(tm+1)

− 2∇u(tm) +∇u(tm−1)‖2
f + ‖∇ũ(tm+1)− 2∇ũ(tm) +∇ũ(tm−1)‖2

f

)
+ C∆t

(
‖∇(B(u(tm+1))− u(tm+1))‖2

f + ‖B(p(tm+1))− p(tm+1)‖2
f

+ ‖K
1
2∇(B(φ(tm+1))− φ(tm+1))‖2

p

)
+

5ν∆t

16
‖∇(ηmu − ηm−1

u )‖2
f

+
5g∆t

16
‖K

1
2∇(ηmφ − ηm−1

φ )‖2
p.

(3.89)

Assuming ∆t ≤ min{ νKmin
CC2

1 C̃
2
dg

2
, ν

2KminS0

CC2
1C

2
dg

2 } and using (3.62)-(3.63), (3.66)-(3.67) yield

Fm+1 − Fm +
27

16
ν∆t‖∇(ηm+1

u − ηmu )‖2
f +

27

16
g∆t‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p

+
3

4
g∆t‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p +
3

4
ν∆t‖∇(ηm+1

u + ηm−1
u )‖2

f

≤C∆t4
(∫ tm+1

tm−1

‖uttt‖2
fdt+

∫ tm+1

tm−1

‖φttt‖2
pdt
)

+ Ch2k+2
(∫ tm+1

tm−1

‖ut‖2
Hk+1(Ωf )dt+

∫ tm+1

tm−1

‖φt‖2
Hk+1(Ωp)dt

)
+ C∆t4

(∫ tm+1

tm−1

‖φtt‖2
Hpdt+

∫ tm+1

tm−1

‖utt‖2
Hf
dt+

∫ tm+1

tm−1

‖ptt‖2
fdt
)

+
5ν∆t

16
‖∇(ηmu − ηm−1

u )‖2
f +

5g∆t

16
‖K

1
2∇(ηmφ − ηm−1

φ )‖2
p.

(3.90)

29



Summing up from m = 1 to m = N − 1 yields

FN +
N−1∑
m=1

(11

8
ν∆t‖∇(ηm+1

u − ηmu )‖2
f +

11

8
g∆t‖K

1
2∇(ηm+1

φ − ηmφ )‖2
p

)
+

N−1∑
m=1

(3

4
g∆t‖K

1
2∇(ηm+1

φ + ηm−1
φ )‖2

p +
3

4
ν∆t‖∇(ηm+1

u + ηm−1
u )‖2

f

)
≤F1 + C∆t4

(∫ T

0

‖uttt‖2
fdt+

∫ T

0

‖φttt‖2
pdt
)

+ C∆t4
(∫ T

0

‖φtt‖2
Hpdt+

∫ T

0

‖utt‖2
Hf
dt+

∫ T

0

‖ptt‖2
fdt
)

+ Ch2k+2
(∫ T

0

‖ut‖2
Hk+1(Ωf )dt+

∫ T

0

‖φt‖2
Hk+1(Ωp)dt

)
+

5

8
ν∆t(‖∇η1

u‖2
f + ‖∇η0

u‖2
f ) +

5

8
g∆t(‖K

1
2∇(η1

φ)‖2
p + ‖K

1
2∇(η0

φ)‖2
p).

(3.91)

From (3.53)-(3.55) and using triangle inequality on (3.73)-(3.75) yields (5.9).

Remark 2. : If there is no restriction on ∆t, we can estimate the interface term in the

same way as in 3.43, and we have the unconditional error analysis in the finite time interval.

3.5 ADAPTIVE TIME FILTERED BE ALGORITHMS

By using Newton interpolation, the variable stepsize BDF methods of order p (BDF −

p) can be written in [56]. Define the jth order backward divided difference by σju =

u[tn+m, tn+m−1, ..., tn+m−j], and the parameter in time filter by ηp+1 =
∏p
i=1(tn+m−tn+m−i)∑p+1

j=1(tn+m−tn+m−j)−1
.

Based on divided difference, let km = tm+1 − tm, τm = km+1

km
. It is easy to state the variable

stepsize Backward Euler plus time filter for Stokes-Darcy equations in terms of divided dif-

ference:

Given (u0
h, p

0
h, φ

0
h) and (u1

h, p
1
h, φ

1
h), find (um+1

h , pm+1
h , φm+1) ∈ (Hh

f , Q
h, Hh

p ), such that for

m = 0, 1, ...., N − 1:

BE for Stokes (σ1ûm+1
h , vh)Ωf − af (ûm+1

h , vh) + b(vh, p̂
m+1) = (fm+1

1 , vh)Ωf − cΓ(vh, φ
∗
h),

b(ûm+1, qh) = 0.

BE for Darcy gS0(σ1φ̂m+1
h , ψh)Ωp + ap(φ̂

m+1
h , ψh) = g(fm+1

2 , ψh)Ωp + cΓ(u∗h, ψh).
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Here, choosing φ∗h = φm−1
h and u∗h = um−1

h gives a standard variable time stepsize BE

method for Stokes-Darcy equations and choosing φ∗h = (1 + τm−1)φmh − τm−1φ
m−1
h , and u∗h =

(1 + τm−1)umh − τm−1u
m−1
h is explored herein. Implementing this change involves changing

one line of code redefining φ∗h and u∗h. Apply time filter to update the previous solution

um+1
h = ûm+1

h −
( km+1

1
km+1

+ 1
km+1+km

)
σ2ûm+1

h , (3.92)

φm+1
h = φ̂m+1

h −
( km+1

1
km+1

+ 1
km+1+km

)
σ2φ̂m+1

h , (3.93)

pm+1
h = p̂m+1

h −
( km+1

1
km+1

+ 1
km+1+km

)
σ2p̂m+1

h . (3.94)

Using algebraic manipulation, the above three equality can be written in terms of stepsize

ratio τ as follows:

um+1
h = ûm+1

h − τm−1(1 + τm−1)

1 + 2τm−1

(
1

1 + τm−1

ûm+1
h − umh +

τm−1

1 + τm−1

um−1
h ), (3.95)

pm+1
h = p̂m+1

h − τm−1(1 + τm−1)

1 + 2τm−1

(
1

1 + τm−1

p̂m+1
h − pmh +

τm−1

1 + τm−1

pm−1
h ), (3.96)

φm+1
h = φ̂m+1

h − τm−1(1 + τm−1)

1 + 2τm−1

(
1

1 + τm−1

φ̂m+1
h − φmh +

τm−1

1 + τm−1

φm−1
h ). (3.97)

The combination of BE, BEplustimefilter and general adaptive method lead to adaptive BE

and adaptive BEplustimefilter algorithm. Since the time accuracy of BEplustimefilter is

O(k2), we can use Estu = |um+1
h − ûm+1

h | and Estφ = |φm+1
h − φ̂m+1

h | as two estimate for

the local error of velocity and hydraulic head in BE. In order to estimate the local error

of velocity and hydraulic head for BEplustimefilter, it is easy to take Estu = η3σ3ûm+1
h ,

Estφ = η3σ3φ̂m+1
h as two estimate because σ3 is the third order backward divided difference.

We give a simple formula for stepsize selection which is the combination of some general

adaptive methods. We denote γ and γ̃ two safety factors. The first safety factor γ is used

to prevent the next step size becoming too big to decrease the chance that the next solution

will be rejected. The effect of the second factor γ̃ is making the stepsize growing more slowly

so that the recomputed solution is more likely to be accepted. We took γ = 0.9, and γ̃ = 0.6.
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Algorithm 1 (Adaptive BE). Let m = 1. Given ε, γ̃, γ, {um−1
h , umh }, {pm−1

h , pmh } and

{φm−1
h , φmh }, compute {um+1

h , pm+1
h , φm+1

h } by solving

BE for Stokes

(σ1um+1
h , vh)Ωf − af (um+1

h , vh) + b(vh, p
m+1) = (fm+1

1 , vh)Ωf − cΓ(vh, φ
m
h ),

b(um+1
h , qh) = 0.

BE for Darcy

gS0(σ1φm+1
h , ψh)Ωp + ap(φ

m+1
h , ψh) = g(fm+1

2 , ψh)Ωp + cΓ(umh , ψh).

Choose

Estu =η2σ2ûm+1
h , Estφ =η2σ2φ̂m+1

h ,

if min{|Estu|, |Estφ|} < ε
4
,

τm = min

{
2,

(
ε

|Estu|

) 1
2

,

(
ε

|Estφ|

) 1
2

}
, (3.98)

km+1 = γ · τm · km; (3.99)

if ε
4
≤ min{|Estu|, |Estφ|} ≤ ε ,

τm = min

{
1,

(
ε

|Estu|

) 1
2

,

(
ε

|Estφ|

) 1
2

}
, (3.100)

km+1 = γ · τm · km. (3.101)

If none satisfy the tolerance, set

km = γ̃ · τm−1 · km−1,

and recompute the above steps.
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Algorithm 2 (Adaptive BETF). Let m = 2. Given ε, γ̃, γ, {um−2
h , um−1

h , umh }, {pm−2
h ,

pm−1
h , pmh }, {φm−2

h ,φm−1
h , φmh }, compute {um+1

h , pm+1
h , φm+1

h } by solving

Modified BE for Stokes

(σ1ûm+1
h , vh)Ωf − af (ûm+1

h , vh) + b(vh, p̂
m+1)

= (fm+1
1 , vh)Ωf − cΓ(vh, (1 + τm−1)φmh − τm−1φ

m−1
h ),

b(ûm+1, qh) = 0.

BE for Darcy

gS0(σ1φ̂m+1
h , ψh)Ωp + ap(φ̂

m+1
h , ψh)

= g(fm+1
2 , ψh)Ωp + cΓ((1 + τm−1)um − τm−1u

m−1, ψh).

Time filter for ûm+1
h , p̂m+1

h , φ̂m+1
h

um+1
h = ûm+1

h − η2σ2ûm+1
h ,

φm+1
h = φ̂m+1

h − η2σ2φ̂m+1
h ,

pm+1
h = p̂m+1

h − η2σ2p̂m+1
h .

Choose

Estu =η3σ3ûm+1
h , Estφ =η3σ3φ̂m+1

h ,

if min{|Estu|, |Estφ|} < ε
4
,

τm = min

{
2,

(
ε

|Estu|

) 1
3

,

(
ε

|Estφ|

) 1
3

}
, (3.102)

km+1 = γ · τm · km; (3.103)

if ε
4
≤ min{|Estu|, |Estφ|} ≤ ε ,

τm = min

{
1,

(
ε

|Estu|

) 1
3

,

(
ε

|Estφ|

) 1
3

}
, (3.104)

km+1 = γ · τm · km. (3.105)

If none satisfy the tolerance, set

km = γ̃ · τm−1 · km−1,
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and recompute the above steps.

Extension to a Third Order Method

Recently [50] has shown how time filter can be extended from backward Euler to some higher

order BDF methods. We also give a test of BDF2 discretization of subdomain terms with a

third order extrapolation formula for the interface terms. Errors are estimated and accuracy

is increased by an added time filter as presented next.

Algorithm 3 (BDF-2 plus time filter). Let σ3xm+1 =
3∑
i=0

Cixm+1−i.

Given {um−2
h , um−1

h , umh }, {pm−2
h , pm−1

h , pmh } and {φm−2
h , φm−1

h , φmh },

compute {um+1
h , pm+1

h , φm+1
h } by solving

BDF-2 for Stokes

(σ2ûm+1
h , vh)Ωf − af (ûm+1

h , vh) + b(vh, p̂
m+1) = (fm+1

1 , vh)Ωf − cΓ(vh, φ
∗
h),

b(ûm+1, qh) = 0.

BDF-2 for Darcy

gS0(σ2φ̂m+1
h , ψh)Ωp + ap(φ̂

m+1
h , ψh) = g(fm+1

2 , ψh)Ωp + cΓ(u∗h, ψh).

Time filter for ûm+1
h , p̂m+1

h , φ̂m+1
h

um+1
h = ûm+1

h − η3σ3ûm+1
h ,

φm+1
h = φ̂m+1

h − η3σ3φ̂m+1
h ,

pm+1
h = p̂m+1

h − η3σ3p̂m+1
h .

where, u∗h = −
2∑
i=0

Ci+1

C0 u
m−i
h , φ∗h = −

2∑
i=0

Ci+1

C0 φ
m−i
h . We approximate um+1

h and φm+1
h by u∗h

and φ∗h in the interface coupling terms due to um+1
h = u∗h +

σp+1um+1
h

C0 = u∗h +O(kp+1).

3.6 NUMERICAL EXPERIMENTS

In this section, three time filters are performed with constant time stepsize and variable

time stepsize to show the validity and accuracy of the decoupled scheme. Furthermore, we

implemented the codes using the software package FreeFEM++ .
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Example 1: Consider the computational domain Ωf = (0, 1)×(1, 2),Ωp = (0, 1)×(0, 1),

and interface Γ = (0, 1)× {1}. We take the exact solution:

φ(x, y, t) = [2− πsin(πx)][1− y − cos(πy)]cos(t),

u(x, y, t) =
(

[x2(y − 1)2 + y]cos(t), [−2

3
x(y − 1)3 + 2− πsin(πx)]cos(t)

)
,

p(x, y, t) = [2− πsin(πx)]sin(
π

2
y)cos(t).

Table 1: The convergence performance for BE method at time tN = 1 with h = 1/120.

∆t
‖u(tN )−uNh ‖f
‖u(tN )‖f

rate
‖p(tN )−pNh ‖f
‖p(tN )‖f

rate
‖φ(tN )−φNh ‖p
‖φ(tN )‖p rate

1/8 0.00173173 0.0746392 0.0181246

1/16 0.000876655 0.9821 0.0371619 1.0061 0.00927994 0.9658

1/32 0.000441074 0.9910 0.0185575 1.0018 0.00469195 0.9839

1/48 0.000294664 0.9948 0.0123682 1.0007 0.00313929 0.9911

1/64 0.00022123 0.9964 0.00927512 1.0004 0.00235869 0.9938

Table 2: The convergence performance for BETF method at time tN = 1 with h = 1/120.

∆t
‖u(tN )−uNh ‖f
‖u(tN )‖f

rate
‖p(tN )−pNh ‖f
‖p(tN )‖f

rate
‖φ(tN )−φNh ‖p
‖φ(tN )‖p rate

1/8 0.00917426 0.0228416 0.00820143

1/16 0.00217503 2.0766 0.00600395 1.9277 0.00193804 2.0813

1/32 0.000519991 2.0645 0.00150016 2.0008 0.000463955 2.0625

1/48 0.000227587 2.0379 0.000666787 1.9998 0.000203143 2.0369

1/64 0.000127028 2.0270 0.000378827 1.9653 0.000113407 2.0263

Here, we set the parameters ν = 1, g = 1, z = 0, S0 = 1, αν
√
d√

trace(Π)
= 1, and K = kI, where

k = 1, and the initial conditions, boundary conditions, and the source terms follow from the

exact solution. For BE and BETF, we use the well-known Taylor-Hood elements (P2−P1)
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Table 3: Convergence for BDF2 at time tN = 1 with h = 1/120.

∆t
‖u(tN )−uNh ‖f
‖u(tN )‖f

rate
‖p(tN )−pNh ‖f
‖p(tN )‖f

rate
‖φ(tN )−φNh ‖p
‖φ(tN )‖p rate

1/8 0.000202378 0.0113836 0.0015852

1/16 4.79795e-005 2.0766 0.00276725 2.0404 0.000362859 2.1272

1/32 1.16465e-005 2.0425 0.0006805 2.0238 8.64945e-005 2.0687

1/48 5.12343e-006 2.0252 0.000300683 2.0144 3.78077e-005 2.0410

1/64 2.86697e-006 2.0181 0.00016863 2.0104 2.10875e-005 2.0294

Table 4: Convergence for BDF2 plus time filter at time tN = 1 with h = 1/120.

∆t
‖u(tN )−uNh ‖f
‖u(tN )‖f

rate
‖p(tN )−pNh ‖f
‖p(tN )‖f

rate
‖φ(tN )−φNh ‖p
‖φ(tN )‖p rate

1/8 0.000583937 0.00165794 0.000485433

1/16 7.92566e-05 2.8812 0.000199929 3.0518 6.59814e-05 2.8791

1/32 1.02708e-05 2.9480 2.57276e-05 2.9581 8.55089e-06 2.9479

1/48 3.07738e-06 2.9725 7.7075e-06 2.9728 2.56208e-06 2.9724

1/64 1.30534e-06 2.9811 3.27519e-06 2.9749 1.08676e-06 2.9811

Table 5: Convergence of global error for adaptive BE method with h = 1/120.

∆t
( N∑
i=2

ki
‖u(ti)−uih‖

2
f

‖u(ti)‖2f

) 1
2 rate

( N∑
i=2

ki
‖p(ti)−pih‖

2
f

‖p(ti)‖2f

) 1
2 rate

( N∑
i=2

ki
‖φ(ti)−φih‖

2
p

‖φ(ti)‖2p

) 1
2 rate

1/34 0.000236169 0.0119435 0.00234341

1/114 7.42995e-005 0.9910 0.00377136 0.9528 0.00074303 0.9494

1/362 2.33819e-005 1.0006 0.00119749 0.9929 0.000233827 1.0006

1/1149 7.24488e-006 1.0144 0.000379229 0.9955 7.34297e-005 1.0028

1/1636 4.97812e-006 1.0619 0.000266619 0.9970 5.09029e-005 1.0369
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Table 6: Convergence of global error for adaptive BETF method with h = 1/120.

∆t
( N∑
i=2

ki
‖u(ti)−uih‖

2
f

‖u(ti)‖2f

) 1
2 rate

( N∑
i=2

ki
‖p(ti)−pih‖

2
f

‖p(ti)‖2f

) 1
2 rate

( N∑
i=2

ki
‖φ(ti)−φih‖

2
p

‖φ(ti)‖2p

) 1
2 rate

1/13 0.0030781 0.0172693 0.00271955

1/41 0.000331267 1.9407 0.00220551 1.7917 0.000292453 1.9414

1/119 4.00274e-005 1.9833 0.000546644 1.3091 3.5363e-005 1.9827

1/373 3.69748e-006 2.0849 0.000143857 1.1685 3.29478e-006 2.0774

1/553 1.66681e-006 2.0233 9.1707e-005 1.1433 1.52531e-006 1.9558

for fluid velocity and pressure and the continuous piecewise quadratic functions (P2) for

hydraulic head. For BDF2 and BDF2 plus time filter, we use (P3 − P2) for fluid velocity

and pressure and (P3) for hydraulic head. In Table 1-4, we use BE, BETF, BDF2 and BDF2

plus time filter with constant time stepsize to run simulations at final time T = 1.0 and set

the mesh size h = 1
120

. The results show that the numerical convergence rate of BETF and

BDF2 plus time filter are approximately second order and third order in time respectively

for u, p and φ. In Figure 2-4, we present the log-log plots of the relative error for velocity,

pressure and hydraulic head which clearly shows applying time filter leads to higher order.

In Table 5-6, we allow the time stepsize to be variable, and final time and the same mesh

from the constant stepsize test were used. Various tolerance were tested from 1e-1 to 1e-7.

Since the time stepsize is variable, ∆t in Table 5-6 is the average time stepsize. It can be

seen the convergence order of adaptive BETF is also higher than adaptive BE. Figure 5-6

displays the log-log plots of the global error for velocity, pressure and hydraulic head. It is

observed that adaptive BETF reduced the total amount of work (number of steps taken), and

it requires less time steps than adaptive BE for the smaller tolerance.
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Figure 2: Relative errors of velocity u for BE, BE plus time filter, BDF2 and BDF2 plus

time filter with constant time stepsize.
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Figure 3: Relative errors of hydraulic head φ for BE, BE plus time filter, BDF2 and BDF2

plus time filter with constant time stepsize.
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Figure 4: Relative errors of pressure p for BE, BE plus time filter, BDF2 and BDF2 plus

time filter with constant time stepsize.
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Figure 5: Global errors of velocity u (left) and hydraulic head φ (right) for adaptive BE

and BE plus time filter.
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Figure 6: Global errors of pressure p for adaptive BE and BE plus time filter.

3.7 CONCLUSIONS

This paper develops, analyzes and tests a time-accurate partitioned method for the Stokes-

Darcy equations. The method combines a time filter and Backward Euler scheme, is second

order accurate and provide, at no extra complexity, an estimated the temporal error. This

approach post-processes the solutions of Backward Euler scheme by adding three lines to

original codes to increase the time accuracy from first order to second order. We prove long

time stability and error estimates of Backward Euler plus time filter with constant time

stepsize. Moreover, we extend the approach to variable time stepsize and construct adaptive

algorithms. Numerical tests show convergence of our method and support the theoretical

analysis.
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4.0 LOW COMPLEXITY, TIME ACCURATE ALGORITHMS IN

CFD-TIME FILTERED BACKWARD EULER FOR NAVIER-STOKES

EQUATIONS

4.1 INTRODUCTION

The backward Euler time discretization is often used for complex, viscous flows due to its

stability, rapid convergence to steady state solutions and simplicity to implement. However,

it has poor time transient flow accuracy, [90], and can fail by overdamping a solution’s

dynamic behavior. For ODEs, adding a time filter to backward Euler, as in (1.3) below, yields

two, embedded, A-stable approximations of first and second order accuracy, [93]. This report

develops this idea into an adaptive time-step and adaptive order method for time accurate

fluid flow simulation and gives an analysis of the resulting methods properties for constant

time-steps. For constant time-steps, the resulting Algorithm 4 below involves adding only

1 extra line to a backward Euler code. The added filter step increases accuracy and adds

negligible additional computational complexity, see Figure 7a and Figure 7b. Further, both

time adaptivity and order adaptivity are easily implemented in a constant time step backward

Euler code with O(20) added lines. Thus, algorithms herein have two main features. First,

they can be implemented in a legacy code based on backward Euler without modifying the

legacy components. Second, both time step and method order can easily be adapted due

to the embedded structure of the method. The variable step, variable order step (VSVO)

method is presented in Section 4.2 and tested in Section 4.6.2.

Even for constant time-steps and constant order, the method herein does not reduce to a

standard / named method. Algorithm 4 with Option B is (for constant order and time-step)

equivalent to a member of the known, 2 parameter family of second order, 2-step, A-stable one
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leg methods (OLMs), see Algorithm 7. Stability and velocity convergence of the (constant

time step) general second order, two-step, A-stable method for the Navier-Stokes equations

was proven already in [89], see equation (3.20) p. 185, and has been elaborated thereafter,

e.g., [96]. Our velocity stability and error analysis, while necessary for completeness, parallels

this previous work and is thus collected in appendix. On the other hand, Algorithm 4 with

Option A does not fit within a general theory even for constant stepsize, and produces more

accurate pressure approximations.

We begin by presenting the simplest, constant stepsize case to fix ideas. Consider the

time dependent incompressible Navier-Stokes (NS) equations:

ut + u · ∇u− ν∆u+∇p = f, and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and

∫
Ω

p dx = 0,

u(x, 0) = u0(x) in Ω.

(4.1)

Here, Ω ⊂ Rd(d=2,3) is a bounded polyhedral domain; u : Ω × [0, T ] → Rd is the fluid

velocity; p : Ω× (0, T ]→ R is the fluid pressure. The body force f(x, t) is known, and ν is

the kinematic viscosity of the fluid.

Suppressing the spacial discretization, the method calculates an intermediate velocity

ûn+1 using the backward Euler / fully implicit method. Time filters (requiring only two

additional lines of code and not affecting the BE calculation) are applied to produce un+1

and pn+1 follows:

Algorithm 4 (Constant 4t BE plus time filter). With u∗ = ûn+1 (Implicit) or u∗ = 2un −

un−1 (Linearly-Implicit), Step 1: (Backward Euler)

ûn+1 − un

∆t
+ u∗ · ∇ûn+1 − ν∆ûn+1 +∇p̂n+1 = f(tn+1),

∇ · ûn+1 = 0,

(4.2)

Step 2: (Time Filter for velocity and pressure)

un+1 = ûn+1 − 1

3
(ûn+1 − 2un + un−1) (4.3)
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Figure 7: The time filter does not add to the computational complexity (Fig. 7a), yet

increases the method to second order (Fig. 7b).

Option A: (No pressure filter)

pn+1 = p̂n+1.

Option B:

pn+1 = p̂n+1 − 1

3
(p̂n+1 − 2pn + pn−1)

Algorithm 4A means Option A is used, and Algorithm 4B means Option B is used.

Its implementation in a backward Euler code does not require additional function eval-

uations or solves, only a minor increase in floating point operations. Figure 7a presents a

runtime comparison with and without the filter step. It is apparent that the added computa-

tional complexity of Step 2 is negligible. However, adding the time filter step has a profound

impact on solution quality, see Figure 7b.

Herein, we give a velocity stability and error analysis for constant timestep in appendix.

Since (eliminating the intermediate step) the constant time-step method is equivalent to

an A-stable, second order, two step method, its velocity analysis has only minor deviations

from the analysis in [89] and [96]. We also give an analysis of the unfiltered pressure error,
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which does not have a parallel in [89] or [96]. The predicted (optimal) convergence rates

are confirmed in numerical tests in Section 4.6. We prove the pressure approximation is

stable and second order accurate provided only the velocity is filtered. The predicted second

order pressure convergence, with or without filtering the pressure, is also confirmed in our

tests, Figure 8. The rest of the paper is organized as follow. In Section 2, we give the full,

self-adaptive VSVO algorithm for a general initial value problem. Section 3 introduces some

important mathematical notations and preliminaries necessary and analyze the method for

the Navier-Stokes equations. In Section 4, we prove unconditional, nonlinear energy stability.

We analyze consistency error in Section 4.4.1.

4.1.1 RELATED WORK

Time filters are primarily used to stabilize leapfrog time discretizations of weather models;

see [103], [77], [107]. In [93] it was shown that the time filter used herein increases accuracy

to second order, preserves A-stability, anti-diffuses the backward Euler approximation and

yields an error estimator useful for time adaptivity. The analysis in [93] is an application of

classical numerical ODE theory and does not extend to the Navier-Stokes equations. For the

constant time step case, our analysis is based on eliminating the intermediate approximation

ûn+1 and reducing the method to an equivalent two step, OLM (a twin of a linear multistep

method). The velocity stability and convergence of the general A-stable OLM was analyzed

for the NSE (semi-implicit, constant time step and without space discretization) in [89].

Thus, the constant time step, discrete velocity results herein follow from these results. There

is considerable previous work on analysis of multistep time discretizations of various PDEs,

e.g. Crouzeix and Raviart [82]. Baker, Dougalis, and Karakashian [78] gave a long-time

error analysis of the BDF methods for the NSE under a small data condition. (We stress

that the method herein is not a BDF method.) The analysis of the method in Girault and

Raviart [89] was extended to include spacial discretizations in [96]. The work in [96] also

shows how to choose those parameters to improve accuracy in higher Reynolds number flows

- a significant contribution by itself. Other interesting extensions include the work of Gevici

[88], Emmrich [84], [85], Jiang [95], Ravindran [102] and [98].
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4.2 THE ADAPTIVE VSVO METHOD

Section 4.6.2 tests both the constant time step method and the method with adaptive step

and adaptive order. This section will present the algorithmic details of adapting both the or-

der and time step based on estimates of local truncation errors based on established methods

[91]. The constant time step Algorithm 1.1 involves adding one (Option A) or two (Option

B) lines to a backward Euler FEM code. The full self adaptive VSVO Algorithm 2.1 below

adds O(20) lines. We first give the method for the initial value problem

y ′(t) = f(t, y(t)), for t > 0 and y(0) = y0.

Denote the nth time step size by ∆tn. Let tn+1 = tn+∆tn and yn an approximation to y(tn).

The choice of filtering weights depend on ωn = ∆tn/∆tn−1, Step 2 below. TOL is the user

supplied tolerance on the allowable error per step.

Algorithm 5 (Variable Stepsize, Variable Order 1 and 2 (VSVO-12)).

Step 1 : Backward Euler

yn+1
(1) − yn

∆tn
= f(tn+1, y

n+1
(1) )

Step 2 : Time Filter

yn+1
(2) = yn+1

(1) −
ωn+1

2ωn+1 + 1

(
yn+1

(1) − (1 + ωn+1)yn + ωn+1y
n−1)

)
Step 3 : Estimate error in yn+1

(1) and yn+1
(2) .

EST1 = yn+1
(2) − y

n+1
(1)

EST2 =
ωnωn+1(1 + ωn+1)

1 + 2ωn+1 + ωn
(
1 + 4ωn+1 + 3ω2

n+1

)(yn+1
(2)

−(1 + ωn+1)(1 + ωn(1 + ωn+1))

1 + ωn
yn + ωn+1(1 + ωn(1 + ωn+1))yn−1

−ω
2
nωn+1(1 + ωn+1)

1 + ωn
yn−2

)
.

Step 4 : Check if tolerance is satisfied.
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If ‖EST1‖ < TOL or ‖EST2‖ < TOL, at least one approximation is acceptable. Go to

Step 5a. Otherwise, the step is rejected. Go to Step 5b.

Step 5a : At least one approximation is accepted. Pick an order and stepsize

to proceed.

If both approximations are acceptable, set

∆t(1) = 0.9∆tn

(
TOL

‖EST1‖

) 1
2

, ∆t(2) = 0.9∆tn
(

TOL

‖EST2‖

) 1
3

.

Set

i = argmaxi∈{1,2}∆t
(i), ∆tn+1 = ∆t(i), tn+2 = tn+1 + ∆tn+1, yn+1 = yn+1

(i) .

If only y(1) (resp. y(2)) satisfies TOL, set ∆tn+1 = ∆t(1) (resp. ∆t(2)), and yn+1 = yn+1
(1)

(resp. yn+1
(2) ). Proceed to Step 1 to calculate yn+2.

Step 5b : Neither approximations satisfy TOL.

Set

∆t(1) = 0.7∆tn

(
TOL

‖EST1‖

) 1
2

, ∆t(2) = 0.7∆tn

(
TOL

‖EST2‖

) 1
3

.

Set

i = argmaxi∈{1,2}∆t
(i), ∆tn = ∆t(i), tn+1 = tn + ∆tn

Return to Step 1 to try again.

For clarity, we have not mentioned several standard features such as setting a maximum

and minimum timestep, the maximum or minimum stepsize ratio, etc.

The implementation above computes an estimation of the local errors in Step 3. EST1

provides an estimation for the local error of the first order approximation y
(1)
n+1 since y

(2)
n+1 is

a second order approximation. For a justification of EST2, see appendix. The optimal next

stepsizes for both approximations are predicted in a standard way in Steps 5a and 5b. The

method order (first or second) is adapted by accepting whichever approximation satisfies

the error tolerance criterion (Step 4) and yields the larger next time step by the choice of

i = argmax∆t(i).
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Standard formulas, see e.g. [92], are used to pick the next stepsize. The numbers 0.9 in

Step 5a and 0.7 in Step 5b are commonly used safety factors to make the next approximation

more likely to be accepted.

One more line is needed for linearly implicit methods. For linearly implicit

methods the point of linearization must also have O(∆t2) accuracy. For example, with

u∗ = un

un+1 − un

∆tn
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1 & ∇ · un+1 = 0 (4.4)

is a common first order linearly implicit method. The required modification in the BE step

to ensure second order accuracy after the filter is to shift the point of linearization from

u∗ = un to

u∗ =

(
1 +

∆tn+1

∆tn

)
un − ∆tn+1

∆tn
un−1 = (1 + ωn)un − ωnun−1.

Other simplifications. The algorithm can be simplified if only the time-step is adapted

(not order adaptive). It can be further simplified using extrapolation where the second order

approximation is adapted based on EST1 (pessimistic for the second order approximation).

4.3 FULLY DISCRETE METHOD

Before starting to analyze stability and convergence, we state the fully discrete method.

Algorithm 6 (Fully Discrete Method). Given un−1
h , unh ∈ Xh (and if necessary, given

pn−1
h , pnh ∈ Qh), find (ûn+1

h , p̂n+1) ∈ (Xh, Qh) satisfying(
ûn+1
h − unh

∆tn
, vh

)
+ b(ûn+1

h , ûn+1
h , vh) + ν(∇ûn+1

h ,∇vh)− (p̂n+1
h ,∇ · vh) = (f(tn+1), vh),

(4.5)

(∇ · ûn+1, qh) = 0.

for all (vh, qh) ∈ (Xh, Qh). Then compute

un+1
h = ûn+1

h − ωn+1

2ωn+1 + 1

(
ûn+1
h − (1 + ωn+1)unh + ωn+1u

n−1
h )

)
.
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Option A: (No pressure filter)

pn+1
h = p̂n+1

h .

Option B:

pn+1
h = p̂n+1

h − ωn+1

2ωn+1 + 1

(
p̂n+1
h − (1 + ωn+1)pnh + ωn+1p

n−1
h )

)
.

The constant time-step stability and error analysis works with the following equivalent

formulation of the method. We stress that what follows is not the preferred implementation

since it only yields one approximation, while Algorithm 6 gives the embedded approximations

ûn+1
h and un+1

h and an error estimator.

Algorithm 7 (Constant time-step, equivalent method). Assume the time-step is constant.

Given (unh, p
n
h) and (un−1

h , pn−1
h ), find (un+1

h , pn+1
h ) such that for all (vh, qh) ∈ (Xh, Qh),

Option A

( 3
2
un+1
h − 2unh + 1

2
un−1
h

∆t
, vh

)
+ b

(
3

2
un+1
h − unh +

1

2
un−1
h ,

3

2
un+1
h − unh +

1

2
un−1
h , vh

)
(4.6)

+ν

(
∇
(

3

2
un+1
h − unh +

1

2
un−1
h

)
,∇vh

)
−
(
pn+1
h ,∇ · vh

)
=
(
fn+1, vh

)
,(

∇ ·
(

3

2
un+1
h − unh +

1

2
un−1
h

)
, qh

)
= 0,

or Option B

( 3
2
un+1
h − 2unh + 1

2
un−1
h

∆t
, vh

)
+ b

(
3

2
un+1
h − unh +

1

2
un−1
h ,

3

2
un+1
h − unh +

1

2
un−1
h , vh

)
(4.7)

+ν

(
∇
(

3

2
un+1
h − unh +

1

2
un−1
h

)
,∇vh

)
−
(

3

2
pn+1
h − pn

h +
1

2
pn−1
h ,∇ · vh

)
=
(
fn+1, vh

)
,(

∇ ·
(

3

2
un+1
h − unh +

1

2
un−1
h

)
, qh

)
= 0.

The pressure is highlighted in bold, and is the only difference between the two above

equations. The time difference term of the above equivalent method is that of BDF2 but

the remainder is different. This is not the standard BDF2 method.

Proposition 1. Algorithm 6A (respectively B) is equivalent Algorithm 7A (respectively B).
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Proof. We will just prove the case for Option A since the other case is similar. Let (un+1
h , pn+1

h )

be the solution to Algorithm 6. By linearity of the time filter, (un+1
h , pn+1

h ) ∈ (Xh, Qh). We

can write ûn+1
h in terms of un+1

h ,unh, and un−1
h as ûn+1 = 3

2
un+1− un + 1

2
un−1. Substitute this

into (4.5). Then (un+1
h , pn+1

h ) satisfies equation (4.6).

These steps can be reversed to show the converse.

We next define the discrete kinetic energy, viscous and numerical dissipation terms that

arise naturally from a G-stability analysis of Algorithm 7, regardless of whether Option

A or B is used. The (constant time-step) discrete kinetic energy, discrete viscous energy

dissipation rate and the numerical energy dissipation rate of Algorithm 7 are

discrete energy: En = 1
4

[‖un‖2 + ‖2un − un−1‖2 + ‖un − un−1‖2] ,

viscous dissipation: Dn+1 = ∆tν||∇
(

3
2
un+1 − un + 1

2
un−1

)
||2,

numerical dissipation: Zn+1 = 3
4
‖un+1 − 2un + un−1‖2.

Remark 3. As ∆t → 0, En is consistent with the kinetic energy 1
2
‖u‖2 and Dn is consis-

tent with the instantaneous viscous dissipation ν‖∇u‖2. The numerical dissipation Zn+1 ≈
3
4
∆t4‖utt(tn+1)‖2, is asymptotically smaller than the numerical dissipation of backward Euler,

1
2
∆t2‖ut(tn+1)‖2.

The method’s kinetic energy differs from that of BDF2, which is (e.g. [99])

EnBDF2 =
1

4

[
‖un‖2 + ‖2un − un−1‖2

]
due to the term ‖un−un−1‖2 in En which is a dispersive penalization of a discrete acceleration.

Define the interpolation and difference operators as follows

Definition 1. The interpolation operator I and difference operator D are

I[wn+1] =
3

2
wn+1 − wn +

1

2
wn−1 and D[wn+1] =

3

2
wn+1 − 2wn +

1

2
wn−1.

Formally, I[w(tn+1)] = w(tn+1) +O(∆t2), and D[w(tn+1)]
∆t

= wt(t
n+1) +O(∆t2). This will

be made more precise in the consistency error analysis in Section 4.4.1.
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4.4 STABILITY AND ERROR ANALYSIS

We prove stability and error analysis of the constant time-step method. The velocity proofs

parallel ones in [89] and [96] and are collected in appendix. The pressure analysis is presented

in Section 5.

Theorem 3. Assume the stepsize is constant. The following equality holds.

EN +
N−1∑
n=1

Dn+1 +
N−1∑
n=1

Zn+1 = ∆t
N−1∑
n=1

(f, I[un+1
h ]) + E1.

Proof. In Algorithm 7, set vh = I[un+1
h ] and qh = pn+1

h for Option A, or qh = I[pn+1
h ] for

Option B, and add.

(D[un+1
h ], I[un+1

h ]) +Dn+1 = ∆t(f, I[un+1
h ]). (4.8)

By Lemma 6 and Definition 1,

(D[un+1
h ], I[un+1

h ]) = En+1 − En + Zn+1.

Thus, (4.8) can be written

En+1 − En +Dn+1 + Zn+1 = ∆t(f(tn+1), I[un+1
h ]).

Summing over n from 1 to N − 1 yields the result.

This result is for the time stepping method applied to the Navier-Stokes equations. More

generally, the constant time-step method of Algorithm 3.2 is G-Stable, a fact that follows

from the equivalence of A and G-Stability [83]. We calculate the G matrix explicitly below.

Corollary 1. Assume the time-step is constant. Backward Euler followed by the time filter

is G-Stable with G matrix

G =

 3
2
−3

4

−3
4

1
2

 .
Proof. Simply check that

[un, un−1]G

 un

un−1

 =
1

4

[
|un|2 + |2un − un−1|2 + |un − un−1|2

]
.
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4.4.1 CONSISTENCY ERROR

By manipulating (2.5), we derive the consistency error. The true solution to (2.5) satisfies(
D[u(tn+1)]

∆t
, vh

)
+ b
(
I[u(tn+1)], I[u(tn+1)], vh

)
+ ν

(
∇I[u(tn+1)],∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
fn+1, vh

)
+ τn+1(u, p; vh) ∀vh ∈ Xh.

(4.9)

If Option A is used (pressure is unfiltered),

τn+1(u, p; vh) = τn+1
A (u, p; vh) =

(
D[u(tn+1)]

∆t
− ut(tn+1), vh

)
(4.10)

+b
(
I[u(tn+1)], I[u(tn+1)], vh

)
− b(u(tn+1), u(tn+1), vh) + ν

(
∇(I[u(tn+1)]− u(tn+1)),∇vh

)
If Option B is used (pressure is filtered),

τn+1(u, p; vh) = τn+1
A (u, p; vh)−

(
I[p(tn+1)]− p(tn+1),∇ · vh

)
(4.11)

Thus, filtering the pressure introduces a term that, while still second order, adds to the

consistency error. We believe this is why Option A performs better in the numerical tests,

Figure 8. Furthermore, Option B requires assuming additional regularity for convergence,

see Theorem 11.

The terms in the consistency error are bounded in the following lemma.

Lemma 9 (Consistency). For u, p sufficiently smooth, we have

∥∥∥∥D[u(tn+1)]

∆t
− ut(tn+1)

∥∥∥∥2

≤ 6

5
∆t3

∫ tn+1

tn−1

‖uttt‖2dt,

∥∥∥∥I[u(tn+1)]− u(tn+1)

∥∥∥∥2

≤ 4

3
∆t3

∫ tn+1

tn−1

‖utt‖2dt. (4.12)

∥∥∥∥I[p(tn+1)]− p(tn+1)

∥∥∥∥2

≤ 4

3
∆t3

∫ tn+1

tn−1

‖ptt‖2dt. (4.13)

Proof. See Appendix A.
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4.4.2 ERROR ESTIMATES FOR THE VELOCITY

Next, we analyze the convergence of Algorithm 7 and give an error estimate for the velocity.

Let tn = n∆t. Denote the errors enu = u(tn)− unh and enp = p(tn)− pnh.

Theorem 4. Assume that the true solution (u, p) satisfies the following regularity

u ∈ L∞(0, T ; (Hk+1Ω))d), ut ∈ L2(0, T ; (Hk+1Ω))d), utt ∈ L2(0, T ; (H1Ω))d),

uttt ∈ L2(0, T ; (L2Ω))d), p ∈ L2(0, T ; (Hs+1(Ω))d).
(4.14)

Additionally for Option B, assume ptt ∈ L2(0, T ; (L2(Ω))d. For (un+1
h , pn+1

h ) satisfying (4.6),

we have the following estimate

‖eNu ‖2 + ‖2eNu − eN−1
u ‖2 + ‖eNu − eN−1

u ‖2 +
N−1∑
n=1

3‖en+1
u − 2enu + en−1

u ‖2

+ ν∆t
N−1∑
n=1

‖∇I[en+1
u ]‖2 ≤ C

(
h2k + h2s+2 + ∆t4

) (4.15)

Proof. See appendix.

4.5 PRESSURE STABILITY AND CONVERGENCE

4.5.1 STABILITY OF PRESSURE

We introduce the following discrete norms

‖|ω‖|∞,k := max
0≤n≤T/∆t

‖ωn‖k, ‖|ω‖|2,k :=

T/∆t−1∑
n=0

∆t‖ωn‖2
k

1/2

. (4.16)

In this section, we prove the pressure approximation is stable in l1(0, T ;L2(Ω)). We first

give a corollary of Theorem 3 asserting the stability of the velocity approximation.

Corollary 2. Suppose f ∈ L2(0, T ;H−1(Ω)d), then the velocity

approximation satisfies

EN +
1

2

N−1∑
n=1

Dn+1 +
N−1∑
n=1

Zn+1 ≤ 1

2ν
‖|f‖|22,−1 + E1.
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Proof. Consider Theorem 3. Applying the Cauchy-Schwartz yields the inequality.

We now prove the stability of the filtered pressure.

Theorem 5. Suppose Corollary 2 holds, then the pressure approximation satisfies

β∆t
N−1∑
n=1

‖pn+1
h ‖ ≤ C for Option A,

β∆t
N−1∑
n=1

‖I[pn+1
h ]‖ ≤ C for Option B.

(4.17)

Proof. We prove it for Option A, as the other case is similar. Isolating the discrete time

derivative in (4.6), and restricting vh to Vh yields(
D[un+1

h ]

∆t
, vh

)
= −b

(
I[un+1

h ], I[un+1
h ], vh

)
− ν

(
∇I[un+1

h ],∇vh
)

+
(
fn+1, vh

)
∀vh ∈ Vh.

(4.18)

The terms on the right hand side of (4.18) can be bounded as follows,

b
(
I[un+1

h ], I[un+1
h ], vh

)
≤ C‖∇I[un+1

h ]‖‖∇I[un+1
h ]‖‖∇vh‖,

− ν
(
∇I[un+1

h ],∇vh
)
≤ ν‖∇I[un+1

h ]‖‖∇vh‖,(
fn+1, vh

)
≤ ‖fn+1‖−1‖∇vh‖.

(4.19)

In equation (4.18), we can use the above estimates in (4.19), divide both sides by ‖∇vh‖,

and take the supremum over vh ∈ Vh. This gives∥∥∥∥D[un+1
h ]

∆t

∥∥∥∥
V ∗h

≤ (C‖∇I[un+1
h ]‖+ ν)‖∇I[un+1

h ]‖+ ‖fn+1‖−1. (4.20)

Lemma 5 implies∥∥∥∥D[un+1
h ]

∆t

∥∥∥∥
X∗h

≤ C
[
(‖∇I[un+1

h ]‖+ 1)‖∇I[un+1
h ]‖+ ‖fn+1‖−1

]
. (4.21)

Now consider Algorithm 7 again with vh ∈ Xh. Isolating the pressure term in (4.6) and

using the estimates from (4.19) yields

(
pn+1
h ,∇ · vh

)
≤
(
D[un+1

h ]

∆t
, vh

)
(4.22)

+C(‖∇I[un+1
h ]‖+ 1)‖∇I[un+1

h ]‖‖∇vh‖+ ‖fn+1‖−1‖∇vh‖.

53



Divide both sides by ‖∇vh‖, take supremum over vh ∈ Xh and use the discrete inf-sup

condition and the results in (4.22). Then,

β‖pn+1
h ‖

≤ C
[
(‖∇I[un+1

h ]‖+ 1)‖∇I[un+1
h ]‖+ ‖fn+1‖−1

]
.

(4.23)

We then multiply by ∆t, sum from n = 1 to n = N − 1, and apply Cauchy-Schwartz on the

right hand,

β∆t
N−1∑
n=1

‖pn+1
h ‖

≤ C∆t
[
(‖|∇I[un+1

h ]‖|2,0 + 1)‖|∇I[un+1
h ]‖|2,0 + ‖fn+1‖2,−1

]
.

(4.24)

Then using the result from velocity approximation, we get,

β∆t
N−1∑
n=1

‖pn+1
h ‖

≤ C
[
(‖|f‖|2,−1 + 1)‖|f‖|2,−1 + (E1 + 1)E1

]
.

(4.25)

4.5.2 ERROR ESTIMATES FOR THE PRESSURE

We now prove convergence of the pressure approximation in l1(0, T ;L2(Ω)). Denote the

pressure error as enp = p(tn)− pnh.

Theorem 6. Let u, p satisfy the equation (4.15). Let the assumption of regularity in Theorem

11 be satisfied. Then there exists a constant C > 0 such that

∆tβ
N−1∑
n=1

‖en+1
p ‖ ≤ C

(
hk + hs+1 + ∆t2

)
for Option A,

∆tβ
N−1∑
n=1

‖I[en+1
p ]‖ ≤ C

(
hk + hs+1 + ∆t2

)
for Option B.

(4.26)
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Proof. Again, we only prove this for Option A since the other case requires only slight

modification. Using the equations (A.3) and (A.4) yields(
D[φ(tn+1)]

∆t
, vh

)
=

(
D[η(tn+1)]

∆t
, vh

)
− b
(
I[en+1

u ], I[u(tn+1)], vh
)

− b
(
I[un+1

h ], I[en+1
u ], vh

)
− ν

(
∇I[en+1

u ],∇vh
)

+
(
p(tn+1)− λn+1

h ,∇ · vh
)

+ τn+1(u, p; vh) ∀vh ∈ Vh.

(4.27)

We bound the six individual terms on the right hand side of (4.27), term by term as follows:

(
D[η(tn+1)]

∆t
, vh

)
≤ C∆t−

1
2‖ηt‖L2(tn−1,tn+1;L2(Ω))‖∇vh‖, (4.28)

− b
(
I[en+1

u ], I[u(tn+1)], vh
)
≤ C‖∇I[en+1

u ]‖‖∇I[u(tn+1)]‖‖∇vh‖, (4.29)

− b
(
I[un+1

h ], I[en+1
u ], vh

)
≤ C‖∇(I[un+1

h ])‖‖∇I[en+1
u ]‖‖∇vh‖, (4.30)

− ν
(
∇I[en+1

u ],∇vh
)
≤ ν‖∇I[en+1

u ]‖‖∇vh‖, (4.31)

(
p(tn+1)− λn+1

h ,∇ · vh
)
≤ C‖p(tn+1)− λn+1

h ‖‖∇vh‖, (4.32)

τn+1(u, p; vh) ≤ C∆t
3
2

(
‖uttt‖L2(tn−1,tn+1;L2(Ω)) + ‖∇utt‖L2(tn−1,tn+1;L2(Ω))

+ ‖∇u‖2
L4(tn−1,tn+1;L2(Ω)) + ‖∇utt‖2

L4(tn−1,tn+1;L2(Ω))

)
‖∇vh‖.

(4.33)

Considering equation (4.27) and Lemma 5 , using equations (4.28)-(4.33), dividing both sides

by ‖∇vh‖ and taking a supremum over Vh gives∥∥∥∥D[φ(tn+1)]

∆t

∥∥∥∥
X∗h

≤ C
[
∆t−

1
2‖ηt‖L2(tn,tn+1;L2(Ω))‖

+ ‖∇I[en+1
u ]‖(‖∇I[u(tn+1)]‖+ ‖∇(I[un+1

h ])‖+ 1)

+ ‖p(tn+1)− λn+1
h ‖+ ∆t

3
2

(
‖uttt‖L2(tn−1,tn+1;L2(Ω)) + ‖∇utt‖L2(tn−1,tn+1;L2(Ω))

+ ‖∇u‖2
L4(tn−1,tn+1;L2(Ω)) + ‖∇utt‖2

L4(tn−1,tn+1;L2(Ω))

)]
.

(4.34)
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Separating the pressure error term en+1
p = (p(tn+1)− λn+1

h )− (pn+1
h − λn+1

h ) and rearranging

implies

(
pn+1
h − λn+1

h ,∇ · vh
)

=

(
D[η(tn+1)]

∆t
, vh

)
−
(
D[φ(tn+1)]

∆t
, vh

)
+ν
(
∇I[en+1

u ],∇vh
)
−
(
en+1
p ,∇ · vh

)
−
(
p(tn+1)− λn+1

h , vh
)

+ τn+1(u, p; vh) ∀vh ∈ Xh.

Consider the estimates in (4.28)-(4.34). Divide by ‖∇vh‖, take supremum over vh ∈ Xh and

use discrete inf-sup condition to obtain,

β‖pn+1
h − λn+1

h ‖ ≤ C
[
∆t−

1
2‖ηt‖L2(tn,tn+1;L2(Ω))

+ ‖∇I[en+1
u ]‖

(
‖∇I[u(tn+1)]‖+ ‖∇(I[un+1

h ])‖+ 1
)

+ ‖p(tn+1)− λn+1
h ‖+ ∆t

3
2

(
‖uttt‖L2(tn−1,tn+1;L2(Ω)) + ‖∇utt‖L2(tn−1,tn+1;L2(Ω))

+ ‖∇u‖2
L4(tn−1,tn+1;L2(Ω)) + ‖∇utt‖2

L4(tn−1,tn+1;L2(Ω))

)]
.

(4.35)

We multiply by ∆t, sum from n = 1 to n = N − 1 and apply triangle inequality. This yields

β∆t
N−1∑
n=1

‖en+1
p ‖ ≤ C

[
∆t−

1
2‖ηt‖L2(0,T ;L2(Ω))

+ ‖|p(tn+1)− λn+1
h ‖|2,0 + ‖|∇I[en+1

u ]‖|2,0

+ ∆t
5
2

(
‖uttt‖2,0 + ‖∇utt‖2,0 + ‖|∇u‖|24,0 + ‖∇utt‖2

4,0

)]
.

(4.36)

Results from the equations (A.19) and (A.22) give the bounds for the first two terms. Using

error estimates of the velocity on the third term and taking infimum over Xh and Qh yield

the result.

4.6 NUMERICAL TESTS

We verify second order convergence for the new method through an exact solution in Section

4.6.1. Visualizations of the flow and benchmark quantities gives additional support to the

increased accuracy of the new method in Section 4.6.3. The tests used P2/P1 and P3/P2

elements. All computations were performed with FEniCS [75].
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4.6.1 TAYLOR-GREEN VORTEX

We apply the backward Euler and the backward Euler plus filter for the 2D Taylor-Green

vortex. This test problem is historically used to assess accuracy and convergence rates in

CFD [81]. The exact solution is given by

u = e−2νt(cosx sin y,− sinx cos y) and p = −1

4
e−4νt(cos 2x+ cos 2y).

To test time accuracy, we solve using P3/P2 elements on a uniform mesh of 250 × 250

squares divided into 2 triangle per square. We take a series of time steps for which the total

error is expected to be dominated by the temporal error. Since the true solution decays

exponentially, we tabulate and display relative errors. Fig. 6.1 displays the relative errors

for backward Euler, backward Euler plus filtering only the velocity (Algorithm 4A), and

backward Euler plus filtering both the velocity and pressure (Algorithm 4B). Filtering the

pressure does not affect the velocity solution, so the velocity error plot only shows two lines.

The velocity error is O(∆t2), as predicted, and significantly smaller than the backward Euler

error. Thus, adding the filter step (1.3) reduces the velocity error substantially, Figure 8.1,

at negligible cost, Figure 1.1. The pressure error is O(∆t2) when either both u and p are

filtered, or only u is filtered, which is consistent with our theoretical analysis. Filtering only

u has smaller pressure error since the pressure filter introduces an extra consistency error

term, see (4.11).

4.6.2 ADAPTIVE TEST

We test the time/order adaptive algorithm on a problem that showcases the superiority of

the VSVO method over the constant stepsize, constant order method.

The Taylor-Green problem can be modified by replacing F with any differentiable func-

tion of t. With velocity and pressure defined as before, the required body force is

f(x, y, t) = (2νF (t) + F ′(t))〈cosx sin y,− cos y sinx〉.
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Figure 8: Convergence rates for the filtered quantities are second order as predicted.

Filtering only the velocity produces the best pressure.

For F (t), we construct a sharp transition function between 0 and 1. First, let

g(t) =

0 if t ≤ 0

exp
(
− 1

(10t)10

)
if t > 0

This is a differentiable function, and g(5) ≡ 1 in double precision. Therefore, a differentiable

(up to machine precision) function can be constructed with shifts and reflections of this

function. This creates sections of flatness, and sections that rapidly change which require

adaptivity to resolve efficiently. See Fig. 9 for the evolution of ‖u‖ with time. All tests were

initialized at rest spaced at a constant interval of k = 0.1, 100 nodes per side of the square

using P2/P1 elements, and with final time of 45.

Figure 9 compares two numerical solutions. One is from Algorithm 4 (second order

- nonadaptive), and the other is from Algorithm 5 (VSVO-12). With TOL = 10−3, the

VSVO-12 method takes 342 steps, which comprises 254 accepted steps, and 88 rejected

steps. The constant stepsize method which took 535 steps does not accurately capture the

energetic jumps.

Figure 10 shows the relative l2L2 velocity errors versus steps taken of VSVO-12 for seven

different TOLs, starting at 10−1, and dividing by ten down to 10−7. This is compared
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with nonadaptive method (which has no rejected steps) sampled at several stepsizes. Both

methods show second order convergence, but for smaller tolerances, VSVO-12 performs about

103 better than the nonadaptive method for the same amount of work.

0 5 10 15 20 25 30 35 40 45
1

2

Or
de

r

VSVO versus Constant Stepsize Constant Order

0 5 10 15 20 25 30 35 40 45
t

0

2

4

6

8

10

||u
||

VSVO-12, TOL= 10−3, 342 steps
second order - nonadaptive, 535 steps
Exact ||u||

Figure 9: The nonadaptive second order method results in large overshoots and

undershoots while requiring more work than the adaptive method.

4.6.3 FLOW AROUND A CYLINDER

We now use the benchmark problem of flow around a cylinder, originally proposed in [104],

to test the improvement obtained using filters on flow quantities (drag, lift, and pressure

drop) using values obtained via a DNS in [97] as a reference. This problem has also been

used as a benchmark in [101],[100],[79],[80] and others. Let ν = 10−3, f ≡ 0, Tfinal = 8, and
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Figure 10: The VSVO-12 method performs three orders of magnitude better for the same 

amount of work compared to the nonadaptive 2nd order method for the test problem in 

Section 4.6.2. Each circle represents a different tolerance from T OL = 10−1 to 10−7.

i.e., a channel with a cylindrical cutout. A parabolic velocity of u = 0.41−2 sin(πt/8)(6y(0.41

− y), 0) is prescribed at the left and right boundaries. We used a spatial discretization with 

479026 degrees of freedom with 1000 vertices on the boundary of the cylinder. The mesh used 

P 2/P 1 elements, and was obtained by adaptive refinement from solving the steady solution 

with u = 0.41−2(6y(0.41 − y), 0) as inflow and outflow boundary conditions.

      The correct behavior for this problem is that vortices shed off the cylinder as the in-let and 

outlet velocities increase. Fig. 11 shows snapshots of the flow at t = 6 for five
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successively halved ∆t’s. The Backward Euler approximation shows no vortex shedding for

∆t = 0.04, 0.02, and 0.01. The filtered method of Algorithm 4 shows the qualitatively correct

behavior from ∆t = 0.02 on. Clearly, higher order and less dissipative methods are necessary

to see dynamics for modestly large ∆t.

It was demonstrated in [97] that the backward Euler time discretization greatly under

predicts lift except for very small step sizes. Fig. 12 demonstrates that the time filter in

Algorithm 4 corrects both the amplitude and phase error in the backward Euler approxi-

mation. Other quantities that were compared to reference values were the maximum drag

cd,max, the time of max drag t(cd,max), time of maximum lift t(cl,max), and pressure drop

across the cylinder at t = 8 are shown in Table 7.

The choice of whether or not to filter the pressure does not affect the velocity solution,

the snapshots shown Figure 11 are the same for both choices. Table 7 shows that filtering u

greatly improves the calculated flow quantities whether or not p is filtered.

4.7 CONCLUSIONS

This report presents a low computational and cognitive complexity, stable, time accurate and

adaptive method for the Navier-Stokes equations. The improved method requires a mini-

mally intrusive modification to an existing program based on the fully implicit / backward

Euler time discretization, does not add to the computational complexity, and is conceptu-

ally simple. The backward Euler approximation is simply post-processed with a two-step,

linear time filter. The time filter additionally removes the overdamping of Backward Euler

while remaining unconditionally energy stable, proven herein. Even for constant stepsizes,

the method does not reduce to a standard / named time stepping method but is related to

a known 2-parameter family of A-stable, two step, second order methods. Numerical tests

confirm the predicted convergence rates and the improved predictions of flow quantities such

as drag and lift.
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(a) Backward Euler (b) Backward Euler Plus Filter

Figure 11: Flow snapshots at t = 6 with ∆t = 0.04 (top), and ∆t halving until ∆t = 0.0025

(bottom). Backward Euler (left) destroys energy and suppresses oscillations, meaning that

it can predict nearly steady state solutions when a time dependent one exists. The time

filter (right) corrects this.
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Figure 12: Lift of the Backward Euler solution and the filtered solution for ∆t = 0.0025.

The filtered solution correctly predicts both the time and magnitude of the maximum lift.
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Table 7: Lift, drag, and pressure drop for cylinder problem.

Backward Euler

∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8)

0.04 3.92 2.95112558 0.88 0.00113655 -0.12675521

0.02 3.94 2.95064522 0.92 0.00117592 -0.12647232

0.01 3.93 2.95041574 7.17 0.02489640 -0.12433915

0.005 3.93 2.95031983 6.28 0.17588270 -0.10051423

0.0025 3.9325 2.95038901 6.215 0.30323034 -0.10699361

Backward Euler Plus Filter

0.04 3.92 2.95021463 7.56 0.00438111 -0.12628328

0.02 3.94 2.95026781 6.14 0.20559211 -0.11146505

0.01 3.93 2.95060684 5.81 0.40244197 -0.09943203

0.005 3.935 2.95082513 5.72 0.46074771 -0.11111586

0.0025 3.935 2.95089028 5.7 0.47414096 -0.11193754

Backward Euler Plus Filter u and p

0.04 3.92 2.95073993 7.52 0.00439864 -0.12642684

0.02 3.94 2.95039973 6.14 0.21101313 -0.11153593

0.01 3.93 2.95063962 5.81 0.40624697 -0.09945143

0.005 3.935 2.95083296 5.72 0.46192306 -0.11112049

0.0025 3.935 2.95089220 5.7 0.47444753 -0.11193859

Reference Values

— 3.93625 2.950921575 5.693125 0.47795 −0.1116
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5.0 LOW COMPLEXITY ALGORITHMS IN CFD–ARTIFICAL

COMPRESSION METHOD FOR MHD FLOWS

5.1 INTRODUCTION

We consider the time-dependent magnetohydrodynamic flows at low magnetic Reynolds

numbers (denoted by Rm). The low-Rm MHD model (typical for terrestrial applications, see

[12, 20, 23]) is given by: find fluid velocity u : Ω× [0, T ]→ Rd, pressure p : Ω× [0, T ]→ R

and electric potential φ : Ω× [0, T ]→ R satisfying

1

N
(ut + u · ∇u)− 1

M2
∆u +∇p = f + B×∇φ+ (u×B)×B,

∇ · u = 0,

∆φ = ∇ · (u×B).

u = 0 on ∂Ω× [0, T ],

φ = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) ∀ x ∈ Ω.

(5.1)

Here, body force f , external magnetic field B, and final time T > 0 are known. The domain

Ω ⊂ Rd (d = 2 or 3) is a convex polygon or polyhedra. N is interaction parameter and M is

Hartmann number, N
M2 = 1

Re
, where Re is the Reynolds number. Further, u0(x) ∈ H1

0 (Ω)d

and ∇ · u0 = 0.

In this report, we give an anlysis of a classical artificial compression scheme from [28]

adapted from the Navier-Stokes equations (NSE) to the model (5.1). Combined with two

partitioned methods from [23], we gave two fully-decoupled methods. The schemes (Algo-

rithm 8 and Algorithm 9) are based on (i) replacing ∇ · u by εpt + ∇ · u = 0, (ii) time
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discretization by the implicit methods (Backward-Euler and BDF2) and (iii) treating the

magnetic field terms explicitly to further uncouple the system into components. Theorem

11 below shows that for smooth solutions the error of Algorithm 8 is O(∆t+ ε). Numerical

tests in Section 5.5 also confirm that the error of Algorithm 8 and Algorithm 9 are O(∆t+ε)

and O(∆t2 + ε), respectively.

5.1.1 PREVIOUS WORK

MHD describes the behavior of the electrically conducting fluids in the presence of an exter-

nal magnetic field. The study of MHD, initiated by Alfvén [1], has been widely developed in

many fields of science including astrophysics, geophysics, engineering, and metallurgy. Ap-

plications include the studying of sunspots and solar flares, pumping and stirring of liquid

metals, liquid metals cooling of nuclear reactors, forecasting of climate change, controlled

thermonuclear fusion and sea water propulsion, see [2, 3, 4, 5, 6]. Most terrestrial appli-

cations, such as liquid metals, involve small magnetic Reynolds numbers, Rm � 1. In

these cases, the magnetic field influences the conducting fluid via the Lorentz force, but the

conducting fluid does not significantly perturb the magnetic field. Thus the magnetic field

induced by the electrically conducting fluid motion is small and can be negligible compared

with the imposed magnetic field. Neglecting the induced magnetic field, the general MHD

flows can be simplified to the low-Rm MHD model considered herein.

In the recent years, there are many works on the MHD equations. For instance, ref-

erences [18, 19, 13, 15, 16, 17] studied some effective iterative methods in finite element

approximation for the steady MHD equations. For the time-dependent MHD equations,

He [33] discussed an Euler semi-implicit scheme for the three-dimensional MHD equations.

The decoupled fully discrete finite element schemes for the unsteady MHD equations were

analyzed in [31, 32, 39]. Zhang, Su and Feng [14] analyzed a partitioned scheme based

on Gauge-Uzawa finite element method for the 2D time-dependent MHD equations. The

mathematical structure of the steady low-Rm MHD model was established by Peterson [12].

Numerical analysis of the evolutionary problem (5.1) was performed by Yuksel and Isik [25]

(coupled implicit method), Yuksel and Ingram [20] (coupled Crank-Nicolson method), and
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Rong, Hou and Zhang [35] (coupled spectral deferred correction method). Partitioned meth-

ods uncoupling the fluid velocity from the electric potential were analyzed in [23, 24, 36]. The

Algorithm 9 and 8 herein continue this development uncoupling electric potential, pressure

and individual components of the velocity.

5.1.2 THE SLIGHTLY COMPRESSIBLE MODEL

There are two forms of coupling in the above equation (5.1). One is the coupling between

the fluid velocity u and the electric potential φ. The other is that the fluid velocity u and

the pressure p are coupled by the incompressibility restriction ∇ · u = 0. Both couplings

increase memory requirements, make the equations more difficult to solve numerically, and

reduce computational efficiency. In the existing papers on numerical analysis of the MHD

flows at low magnetic Reynolds numbers, most methods considered to solve the problem

are monolithic methods in which the coupled problem is solved iteratively at each time

step. Therefore, we study uncoupling methods for the time-dependent MHD flows at low

magnetic Reynolds numbers. As to the coupling between u and p via ∇ · u = 0, the general

idea to deal with this coupling is to relax the incompressibility constraint. There have been

some such methods: the artificial compression method, penalty method, projection method,

and pressure stabilization method (see [10, 9, 28, 30, 34, 37, 38, 13, 17, 29]). The artificial

compression method (ACM), which was introduced by Chorin [9] and Temam [40], breaks

the incompressibility restriction by adding a slightly compressible term εpt (ε > 0 small) in

∇ · u = 0. This allows the pressure to be advanced in time explicitly. Using ACM, the

slightly compressible model of (5.1) is given as follows.

1

N
(uεt + uε · ∇uε +

1

2
(∇ · uε)uε)− 1

M2
∆uε +∇pε = f + B×∇φε + (uε ×B)×B,

εpεt +∇ · uε = 0, ∆φε = ∇ · (uε ×B),

(5.2)

with the conditions

uε = 0 on ∂Ω× [0, T ], φε = 0 on ∂Ω× [0, T ],

uε(0) = u0, pε(0) = p0,
(5.3)
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where typically ε = O(∆t) or O(∆t2). The function p0 ∈ L2(Ω) is arbitrarily chosen but

independent of ε. The term 1
2
(∇·uε)uε preserves skew-symmetry of the trilinear form. Since

1
2
(∇·u)u = 0 for the true solution u of (5.1) and εpt = O(ε), the consistency error of model

(5.2)-(5.3) is clearly O(ε).

5.1.3 THE ARTIFICIAL COMPRESSION SCHEMES

Implicit-explicit (IMEX) methods have been widely used in to reduce the cost per time step

in solving coupled systems of partial differential equations, see [8, 11, 31, 32, 33, 39]. In

Algorithm 9 and 8 below, the coupling between the velocity u and electric potential φ are

treated explicitly to uncouple the systems. The fluid velocity u and pressure p are further

uncoupled using artificial compression method. The nonlinear term u · ∇u + 1
2
(∇ · u)u is

treated linearly implicitly to reduce complexity. Let B(u,v) := u ·∇v+ 1
2
(∇·u)v. Based on

the IMEX partitioned schemes in [23], the following first order (Backward-Euler) and second

order (BDF2) artificial compression schemes are introduced.

Algorithm 8 (Backward Euler ). Given un, pn, φn, find un+1, pn+1, φn+1 satisfying

1

N
(
un+1 − un

∆t
+B(un,un+1))− 1

M2
∆un+1 +∇pn+1

= fn+1 + B×∇φn + (un+1 ×B)×B,

ε
pn+1 − pn

∆t
+∇ · un+1 = 0,

∆φn+1 = ∇ · (un ×B).

(5.4)

Algorithm 9 (BDF2). Given un−1,un, pn, φn−1, φn, find un+1, pn+1, φn+1 satisfying

1

N
(
3un+1 − 4un + un−1

2∆t
+B(2un − un−1,un+1))− 1

M2
∆un+1 +∇pn+1

= fn+1 + B×∇(2φn − φn−1) + (un+1 ×B)×B,

ε
pn+1 − pn

∆t
+∇ · un+1 = 0,

∆φn+1 = ∇ · (un+1 ×B).

(5.5)
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In both algorithms, the term ∇pn+1 can be eliminated by using pn+1 = pn − ∆t
ε
∇ · un+1.

Thus, the calculation for Algorithm 8 (and similarly for Algorithm 9) proceeds as follows.

Given un, pn, φn, solve for un+1:

1

N
(
un+1 − un

∆t
+B(un,un+1))− 1

M2
∆un+1 − ∆t

ε
∇∇ · un+1 − (un+1 ×B)×B

= fn+1 + B×∇φn −∇pn.
(5.6)

Perform an algebraic update of pn+1:

pn+1 = pn − ∆t

ε
∇ · un+1. (5.7)

Solve for φn+1:

∆φn+1 = ∇ · (un ×B). (5.8)

In Algorithm 8, the explicit treatment of the coupling terms B×∇φ and ∇·(u×B) preserves

unconditional stability, Section 5.3. In Algorithm 9, the coupling term ∇· (u×B) is treated

implicitly preserving stability (conditionally stable, Section 5.3) and higher accuracy. The

derivation of a fully uncoupled, unconditionally, long time stable, second order method for

(5.1) is an open problem. Since decoupling is through time discretization and can be applied

to various space discretizations, we focus on analyzing the time discretization scheme for the

slightly compressible model. For the numerical tests in Section 5.5, we use a standard finite

element method for space discretizations.

5.2 ANALYSIS OF THE SLIGHTLY COMPRESSIBLE MODEL

In this section, we analyze the slightly compressible model (5.2)-(5.3). Firstly, we give a prior

estimates for its solution (uε, pε, φε). Then, we show that (uε, pε, φε) is an approximation to

the true solution of the simplified MHD equations (5.1) when ε goes to 0.

The electric current density J := σ(−∇φ + u × B) is an important electromagnetic

quantity in MHD flows, see [21, 22]. Here the electrical conductivity σ is a constant. For

convenient analysis, we define j := −∇φ+ u×B and jε := −∇φε + uε ×B.
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Theorem 7. Let (uε, pε, φε) be the solution of model (5.2)-(5.3), then, with all bounds uni-

form in ε, we have

uε ∈ L∞(0, T ;L2(Ω))
⋂

L2(0, T ;H1
0 (Ω))

⋂
L2(0, T ;L6(Ω)),

√
εpε ∈ L∞(0, T ;L2(Ω)), φε ∈ L2(0, T ;H1

0 (Ω)),

jε ∈ L2(0, T ;L2(Ω)),

uε · ∇uε and (∇ · uε)uε ∈ L2(0, T ;L1(Ω))
⋂

L1(0, T ;L
3
2 (Ω)).

(5.9)

Proof. Taking the inner product of the three equations in (5.2) with uε, pε, and φε, respec-

tively, then summing up the three new equations, we obtain

1

2N

d

dt
‖uε‖2 +

1

M2
‖∇uε‖2 + ‖ − ∇φε + uε ×B‖2 +

ε

2

d

dt
‖pε‖2

= (f ,uε) ≤ 1

2M2
‖∇uε‖2 +

M2

2
‖f‖2

−1.

(5.10)

Thus, we have

1

N

d

dt
‖uε‖2 +

1

M2
‖∇uε‖2 + ‖ − ∇φε + uε ×B‖2 + ε

d

dt
‖pε‖2 ≤M2‖f‖2

−1. (5.11)

Integration of (5.11) from 0 to t shows that

1

N
‖uε(t)‖2 +

1

M2

∫ t

0

‖∇uε(s)‖2ds+

∫ t

0

‖ − ∇φε(s) + uε(s)×B‖2ds+ ε‖pε(t)‖2

≤M2‖f‖2
L2(0,T ;H−1) +

1

N
‖uε(0)‖2 + ε‖pε(0)‖2, 0 < t ≤ T.

(5.12)

Thus, we have

sup
t∈[0,T ]

1

N
‖uε(t)‖2 + ε‖pε(t)‖2 ≤ c1,

c1 = M2‖f‖2
L2(0,T ;H−1) +

1

N
‖u0‖2 + ‖p0‖2.

(5.13)

Here, since we are interested in small values of ε, we assume ε ≤ 1.

We also have ∫ T

0

‖∇uε(s)‖2ds ≤M2c1,

∫ T

0

‖jε(s)‖2ds ≤ c1. (5.14)

Since

∇φε(s) = −jε(s) + uε(s)×B, (5.15)
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using the inequality ‖v1 × v2‖ ≤ 2‖v1‖L∞‖v2‖ and the Poincaré inequality, we can get

∫ T

0

‖∇φε(s)‖2ds ≤
∫ T

0

‖jε(s)‖2ds+

∫ T

0

‖uε(s)×B‖2ds

≤
∫ T

0

‖jε(s)‖2ds+ 4‖B‖2
L∞

∫ T

0

‖uε(s)‖2ds

≤
∫ T

0

‖jε(s)‖2ds+ C‖B‖2
L∞

∫ T

0

‖∇uε(s)‖2ds

≤ (1 + CM2‖B‖2
L∞)c1.

(5.16)

The remaining conditions follow from Hölder’s inequality and the Sobolev embedding theo-

rem.

Next, we derive an error estimate for the sightly compressible model. Denote the error

eu = u− uε, eφ = φ− φε, ep = p− pε, and ej = j− jε. Thus, we have ej = −∇eφ + eu ×B.

The following theorem shows that |u− uε| tends to zero in L∞(0, T ;L2(Ω)) as ε → 0. The

order of convergence is at least O(
√
ε).

Theorem 8. Assume that the true solution u ∈ L2(0, T ;H2(Ω)) and pt ∈ L2(0, T ;L2(Ω)),

then we have the following estimate

‖eu‖L∞(0,T ;L2(Ω)) + ‖eu‖L2(0,T ;H1
0 (Ω)) + ‖eφ‖L2(0,T ;H1

0 (Ω)) + ‖
√
εep‖L∞(0,T ;L2(Ω)) ≤ C

√
ε. (5.17)

Proof. Subtracting (5.2) from (5.1) , we obtain

1

N

∂

∂t
eu +

1

N
B(eu,u) +

1

N
B(uε, eu)− 1

M2
∆eu +∇ep = B×∇eφ + (eu ×B)×B,

ε
∂

∂t
ep +∇ · eu = εpt,

∆eφ = ∇ · (eu ×B).

(5.18)

Taking the inner product of the three equations in (5.18) with eu, ep, and eφ, respectively,

then summing up the three new equations, we obtain

1

2N

d

dt
‖eu‖2 +

1

N
b(eu,u, eu) +

1

M2
‖∇eu‖2 + ‖ − ∇eφ + eu ×B‖2 +

ε

2

d

dt
‖ep‖2 = (εpt, ep).

(5.19)
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Thus,
1

2N

d

dt
‖eu‖2 +

1

M2
‖∇eu‖2 + ‖ − ∇eφ + eu ×B‖2 +

ε

2

d

dt
‖ep‖2

= (εpt, ep)−
1

N
b(eu,u, eu)

≤ ε‖pt‖‖ep‖+
C

N
‖eu‖‖u‖2‖∇eu‖

≤ ε

2
‖pt‖2 +

ε

2
‖ep‖2 +

1

2M2
‖∇eu‖2 +

CM2

2N2
‖eu‖2‖u‖2

2.

(5.20)

We have
1

N

d

dt
‖eu‖2 +

1

M2
‖∇eu‖2 + ‖ − ∇eφ + eu ×B‖2 + ε

d

dt
‖ep‖2

≤ C‖u‖2
2‖eu‖2 + ε‖ep‖2 + ε‖pt‖2.

(5.21)

Integrate (5.21) from 0 to t to obtain

1

N
‖eu(t)‖2 + ε‖ep(t)‖2 +

1

M2

∫ t

0

‖∇eu‖2ds+

∫ t

0

‖ − ∇eφ + eu ×B‖2ds

≤ 1

N
‖eu(0)‖2 + ε‖ep(0)‖2 + C

∫ t

0

‖u‖2
2‖eu‖2ds+

∫ t

0

ε‖ep‖2ds+

∫ t

0

ε‖pt‖2ds.

(5.22)

Using the Gronwall lemma, we get

1

N
‖eu‖2 + ε‖ep‖2 +

1

M2

∫ t

0

‖∇eu‖2ds+

∫ t

0

‖ − ∇eφ + eu ×B‖2ds

≤ C(
1

N
‖eu(0)‖2 + ε‖ep(0)‖2 +

∫ t

0

ε‖pt‖2ds)

≤ Cε(‖ep(0)‖2 +

∫ t

0

‖pt‖2ds), 0 < t ≤ T.

(5.23)

Thus, we have, as ε→ 0,

sup
t∈[0,T ]

‖eu‖ ≤ C
√
ε→ 0,

∫ T

0

‖∇eu‖2ds ≤ Cε→ 0,∫ T

0

‖ej‖2ds ≤ Cε→ 0, sup
t∈[0,T ]

‖
√
εep‖ ≤ C

√
ε→ 0.

(5.24)

Since

∇eφ = −ej + eu ×B, (5.25)

we can also deduce that ∫ T

0

‖∇eφ‖2ds ≤ Cε→ 0, as ε→ 0, (5.26)

which completes the proof.
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5.3 STABILITY AND ERROR ANALYSIS

In this section, we analyze stability of Algorithm 8 and Algorithm 9, then give an á priori

error estimate for Algorithm 8. Theorem 9 below shows that Algorithm 8 is unconditionally

stable.

Theorem 9. For (un, pn, φn) satisfying Algorithm 8, we have the following unconditional

stability.

1

N
‖um‖2 +

1

N

m−1∑
n=0

‖un+1 − un‖2 + ε‖pm‖2 + ε
m−1∑
n=0

‖pn+1 − pn‖2 +
∆t

M2

m−1∑
n=0

‖∇un+1‖2

+ ∆t‖um ×B‖2 + ∆t‖∇φm‖2 + ∆t
m−1∑
n=0

(‖ − ∇φn + un+1 ×B‖2

+ ‖ − ∇φn+1 + un ×B‖2)

≤M2∆t
m−1∑
n=0

‖fn+1‖2
−1 +

1

N
‖u0‖2 + ε‖p0‖2 + ∆t‖u0 ×B‖2 + ∆t‖∇φ0‖2.

(5.27)

Proof. Taking the inner product of the three equations in (5.4) with un+1, pn+1, and φn+1,

respectively, and multiplying it by 2∆t, we can obtain

1

N
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2) +

2∆t

M2
‖∇un+1‖2

− 2∆t(pn+1,∇ · un+1) + 2∆t(−∇φn + un+1 ×B,un+1 ×B)

= 2∆t(fn+1,un+1),

ε(‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2) + 2∆t(pn+1,∇ · un+1) = 0,

2∆t(−∇φn+1 + un ×B,−∇φn+1) = 0.

(5.28)

Then summing up the three equations in (5.28), we have

1

N
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2) +

2∆t

M2
‖∇un+1‖2

+ 2∆t(−∇φn + un+1 ×B,un+1 ×B) + 2∆t(−∇φn+1 + un ×B,−∇φn+1)

+ ε(‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2) = 2∆t(fn+1,un+1).

(5.29)
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By using the following identity

2(a+ b, b) + 2(c+ d, c) = c2 − a2 + b2 − d2 + (a+ b)2 + (c+ d)2, (5.30)

we get

2∆t(−∇φn + un+1 ×B,un+1 ×B) + 2∆t(−∇φn+1 + un ×B,−∇φn+1)

= ∆t‖un+1 ×B‖2 −∆t‖un ×B‖2 + ∆t‖∇φn+1‖2 −∆t‖∇φn‖2

+ ∆t(‖ − ∇φn + un+1 ×B‖2 + ‖ − ∇φn+1 + un ×B‖2).

(5.31)

Thus, (5.29) can be rewritten as

1

N
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2) + ε(‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2)

+
2∆t

M2
‖∇un+1‖2 + ∆t‖un+1 ×B‖2 −∆t‖un ×B‖2 + ∆t‖∇φn+1‖2 −∆t‖∇φn‖2

+ ∆t(‖ − ∇φn + un+1 ×B‖2 + ‖ − ∇φn+1 + un ×B‖2)

= 2∆t(fn+1,un+1) ≤M2∆t‖fn+1‖2
−1 +

∆t

M2
‖∇un+1‖2.

(5.32)

Finally, summing (5.32) from n = 0 to n = m− 1 completes the proof.

The following theorem shows that Algorithm 9 is stable with a condition, relating the

time step ∆t with the problem data. Recall jn := −∇φn + un ×B.

Theorem 10. For (un, pn, φn) satisfying Algorithm 9, if time step ∆t satisfies

∆t <
1

2N(1 + C2
pM

2‖B‖2
L∞)‖B‖2

L∞
, (5.33)

we have the following stability.

1

2N
‖um‖2 +

1

2N
‖2um − um−1‖2 +

∆t

2M2

m−1∑
n=1

‖∇un+1‖2

+ ∆t
m−1∑
n=1

‖jn+1‖2 + ∆t
m−1∑
n=1

‖2jn − jn−1‖2

≤ 1

2N
‖u1‖2 +

1

2N
‖2u1 − u0‖2 + 2M2∆t

m−1∑
n=1

‖fn+1‖2
−1.

(5.34)

74



Proof. Taking the inner product of the three equations in (5.5) with un+1, pn+1, and φn+1,

respectively, and multiplying it by 2∆t, we can obtain

1

2N
(3‖un+1‖2 − 4‖un‖2 + ‖un−1‖2) +

1

N
‖un+1 − un‖2 − 1

N
‖un − un−1‖2

+
1

2N
‖un+1 − 2un + un−1‖2 +

2∆t

M2
‖∇un+1‖2 − 2∆t(pn+1,∇ · un+1)

+ 2∆t(−∇(2φn − φn−1) + un+1 ×B,un+1 ×B)

= 2∆t(fn+1,un+1),

ε(‖pn+1‖2 − ‖pn‖2 + ‖pn+1 − pn‖2) + 2∆t(pn+1,∇ · un+1) = 0,

2∆t(−∇φn+1 + un+1 ×B,−∇φn+1) = 0,

(5.35)

where we use the identity

1

2
(3a− 4b+ c)a =

1

4
(3a2 − 4b2 + c2) +

1

2
(a− b)2 − 1

2
(b− c)2 +

1

4
(a− 2b+ c)2.

The key issue is to deal with the term 2∆t(−∇(2φn−φn−1) +un+1×B,un+1×B). We have

2∆t(−∇(2φn − φn−1) + un+1 ×B,un+1 ×B)

= 2∆t(2jn − jn−1 + (un+1 − 2un + un−1)×B,un+1 ×B)

= 2∆t(2jn − jn−1,un+1 ×B) + 2∆t((un+1 − 2un + un−1)×B,un+1 ×B)

= 2∆t(2jn − jn−1,un+1 ×B)

+ ∆t(‖un+1 ×B‖2 − ‖(2un − un−1)×B‖2 + ‖(un+1 − 2un + un−1)×B‖2).

(5.36)

From the third equation in (5.5), we have

(2jn − jn−1,−∇ψ) = 0, ∀ψ ∈ S. (5.37)

Taking ψ = φn+1 and adding it to the term 2∆t(2jn − jn−1,un+1 ×B) gives

2∆t(2jn − jn−1,un+1 ×B) = 2∆t(2jn − jn−1, jn+1)

= ∆t(‖jn+1‖2 + ‖2jn − jn−1‖2 − ‖jn+1 − 2jn + jn−1‖2)

= ∆t(‖jn+1‖2 + ‖2jn − jn−1‖2 − ‖(un+1 − 2un + un−1)×B‖2

+ ‖∇φn+1 − 2∇φn +∇φn−1‖2),

(5.38)
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where we use ‖ji‖2 = ‖ui ×B‖2 − ‖∇φi‖2, ∀i ≤ n+ 1. Combining (5.35), (5.36) and (5.38)

yields

1

2N
(3‖un+1‖2 − 4‖un‖2 + ‖un−1‖2) +

1

N
‖un+1 − un‖2 − 1

N
‖un − un−1‖2

+
1

2N
‖un+1 − 2un + un−1‖2 +

2∆t

M2
‖∇un+1‖2

+ ∆t‖un+1 ×B‖2 + ∆t‖jn+1‖2 + ∆t‖2jn − jn−1‖2

= 2∆t(fn+1,un+1) + ∆t‖(2un − un−1)×B‖2.

(5.39)

For an arbitrary δ > 0, the term ∆t‖(2un − un−1)×B‖2 can be bounded by

∆t‖(2un − un−1)×B‖2 = ∆t‖(un+1 − 2un + un−1)×B‖2 + ∆t‖un+1 ×B‖2

− 2∆t((un+1 − 2un + un−1)×B,un+1 ×B)

≤ ∆t‖(un+1 − 2un + un−1)×B‖2 + ∆t‖un+1 ×B‖2

+
∆t

δ2
‖(un+1 − 2un + un−1)×B‖2 + ∆tδ2‖un+1 ×B‖2

≤ ∆t(1 +
1

δ2
)‖B‖2

L∞‖un+1 − 2un + un−1‖2

+ ∆t‖un+1 ×B‖2 + ∆tC2
pδ

2‖B‖2
L∞‖∇un+1‖2,

(5.40)

where we use the Poincaré inequality ‖u‖ ≤ Cp‖∇u‖, ∀u ∈ X. By taking δ = 1
CpM‖B‖L∞

,

we can obtain

1

2N
(3‖un+1‖2 − 4‖un‖2 + ‖un−1‖2) +

1

N
‖un+1 − un‖2 − 1

N
‖un − un−1‖2

+ (
1

2N
−∆t(1 +

1

ε2
)‖B‖2

L∞)‖un+1 − 2un + un−1‖2

+
∆t

2M2
‖∇un+1‖2 + ∆t‖jn+1‖2 + ∆t‖2jn − jn−1‖2

≤ 2M2∆t‖fn+1‖2
−1.

(5.41)

Finally, under the condition (5.33), summing (5.41) from n = 1 to n = m− 1 completes the

proof.

Next, we analyze the convergency of Algorithm 8 and give an á priori error estimate for

Algorithm 8. Since the error analysis of Algorithm 9 is similar to that of Algorithm 8 but

considerably longer, we omit it. Denote enu = u(tn)−un, enp = p(tn)−pn, and enφ = φ(tn)−φn.

The following theorem not only shows the convergence order of Algorithm 8 but can also

indicates a way to choose the value of ε.
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Theorem 11. Assume that the true solution (u, p, φ) satisfies the following regularity

u ∈ L∞(0, T ;H2(Ω)), ut ∈ L2(0, T ;H1(Ω)), utt ∈ L2(0, T ;H−1(Ω)),

pt ∈ L∞(0, T ;L2(Ω)), ptt ∈ L2(0, T ;L2(Ω)), φt ∈ L2(0, T ;H1(Ω)).
(5.42)

For (un, pn, φn) satisfying Algorithm 8, we have the following estimate

1

2N
‖emu ‖2 +

∆t

M2

m−1∑
n=0

‖∇en+1
u ‖2 + ∆t

m−1∑
n=0

‖∇en+1
φ ‖2

+ ∆t
m−1∑
n=0

(‖ − ∇enφ + en+1
u ×B‖2 + ‖ − ∇en+1

φ + enu ×B‖2) ≤ C(∆t2 + ε2),

(5.43)

for sufficiently small ∆t.

Proof. At time tn+1, the true solution (u, p, φ) satisfies

1

N
(
u(tn+1)− u(tn)

∆t
+B(u(tn+1),u(tn+1)))− 1

M2
∆u(tn+1) +∇p(tn+1)

−B×∇φ(tn+1)− (u(tn+1)×B)×B = fn+1 +
1

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1)),

ε
p(tn+1)− p(tn)

∆t
+∇ · u(tn+1) =

ε

∆t

∫ tn+1

tn
ptdt,

∆φ(tn+1) = ∇ · (u(tn+1)×B).

(5.44)

Subtract (5.4) from (5.44) to obtain

1

N
(
en+1
u − enu

∆t
+B(enu,u(tn+1)) +B(un, en+1

u ) +B(u(tn+1)− u(tn),u(tn+1)))

− 1

M2
∆en+1

u +∇en+1
p −B×∇enφ −B× (∇φ(tn+1)−∇φ(tn))− (en+1

u ×B)×B

=
1

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1)),

ε
en+1
p − enp

∆t
+∇ · en+1

u =
ε

∆t

∫ tn+1

tn
ptdt,

∆en+1
φ = ∇ · (enu ×B) +∇ · ((u(tn+1)− u(tn))×B).

(5.45)
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Taking the inner product of the three equations in (5.45) with en+1
u , en+1

p , and en+1
φ , re-

spectively, then summing up the three new equations and multiplying it by 2∆t, we obtain

1

N
(‖en+1

u ‖2 − ‖enu‖2 + ‖en+1
u − enu‖2) + ε(‖en+1

p ‖2 − ‖enp‖2 + ‖en+1
p − enp‖2)

+
2∆t

M2
‖∇en+1

u ‖2 + ∆t‖en+1
u ×B‖2 −∆t‖enu ×B‖2 + ∆t‖∇en+1

φ ‖2 −∆t‖∇enφ‖2

+ ∆t(‖ − ∇enφ + en+1
u ×B‖2 + ‖ − ∇en+1

φ + enu ×B‖2)

=
2∆t

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1), en+1
u )− 2∆t

N
b(enu,u(tn+1), en+1

u )

− 2∆t

N
b(u(tn+1)− u(tn),u(tn+1), en+1

u ) + 2∆t(∇φ(tn+1)−∇φ(tn), en+1
u ×B)

+ 2∆t((u(tn+1)− u(tn))×B,∇en+1
φ ) + 2ε(

∫ tn+1

tn
ptdt, e

n+1
p ),

(5.46)

where we use the identity (5.30) again. We have that

2∆t‖∇en+1
φ ‖2 = 2∆t((u(tn+1)− u(tn))×B,∇en+1

φ ) + 2∆t(∇en+1
φ , enu ×B) (5.47)

Adding (5.46) to (5.47), we obtain

1

N
(‖en+1

u ‖2 − ‖enu‖2 + ‖en+1
u − enu‖2) + ε(‖en+1

p ‖2 − ‖enp‖2 + ‖en+1
p − enp‖2)

+
2∆t

M2
‖∇en+1

u ‖2 + 2∆t‖∇en+1
φ ‖2 + ∆t‖en+1

u ×B‖2 −∆t‖enu ×B‖2

+ ∆t‖∇en+1
φ ‖2 −∆t‖∇enφ‖2 + ∆t(‖ − ∇enφ + en+1

u ×B‖2 + ‖ − ∇en+1
φ + enu ×B‖2)

=
2∆t

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1), en+1
u )− 2∆t

N
b(enu,u(tn+1), en+1

u )

− 2∆t

N
b(u(tn+1)− u(tn),u(tn+1), en+1

u ) + 2∆t(∇φ(tn+1)−∇φ(tn), en+1
u ×B)

+ 4∆t((u(tn+1)− u(tn))×B,∇en+1
φ ) + 2∆t(∇en+1

φ , enu ×B) + 2ε(

∫ tn+1

tn
ptdt, e

n+1
p ).

(5.48)

Next, we need to bound all the terms on the RHS of (5.48). For arbitrary σ > 0, σ1 >

0, σ2 > 0, σ3 > 0, we have the following estimates. The first term can be bounded as

2∆t

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1), en+1
u ) ≤C∆t‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1

+ σ∆t‖∇en+1
u ‖2.

(5.49)
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The nonlinear terms can be bounded as

−2∆t

N
b(enu,u(tn+1), en+1

u ) ≤ C∆t‖enu‖‖u(tn+1)‖2‖∇en+1
u ‖

≤ C∆t‖u(tn+1)‖2
2‖enu‖2 + σ∆t‖∇en+1

u ‖2, (5.50)

−2∆t

N
b(u(tn+1)− u(tn),u(tn+1), en+1

u ) ≤ C∆t‖u(tn+1)− u(tn)‖‖u(tn+1)‖2‖∇en+1
u ‖

≤ C∆t‖u(tn+1)‖2
2‖u(tn+1)− u(tn)‖2 + σ∆t‖∇en+1

u ‖2. (5.51)

We bound the term 2∆t(∇φ(tn+1)−∇φ(tn), en+1
u ×B) as follows.

2∆t(∇φ(tn+1)−∇φ(tn), en+1
u ×B) ≤ 4∆t‖en+1

u ‖‖B‖L∞‖∇φ(tn+1)−∇φ(tn)‖

≤ C∆t‖∇φ(tn+1)−∇φ(tn)‖2 + σ∆t‖∇en+1
u ‖2.

(5.52)

The term 4∆t((u(tn+1)− u(tn))×B,∇en+1
φ ) is bounded as

4∆t((u(tn+1)− u(tn))×B,∇en+1
φ ) ≤ 8∆t‖u(tn+1)− u(tn)‖‖B‖L∞‖∇en+1

φ ‖

≤ C∆t‖B‖2
L∞‖u(tn+1)− u(tn)‖2 + σ1∆t‖∇en+1

φ ‖2.
(5.53)

We also bound the term 2∆t(∇en+1
φ , enu ×B) by

2∆t(∇en+1
φ , enu ×B) ≤ 4∆t‖enu‖‖B‖L∞‖∇en+1

φ ‖ ≤ C∆t‖B‖2
L∞‖enu‖2 + σ1∆t‖∇en+1

φ ‖2.

(5.54)

Lastly, we need to bound the remaining term 2ε(
∫ tn+1

tn
ptdt, e

n+1
p ). It is known (see [28]) that

if pt(t), ptt(t) ∈ L2(Ω)/R, there exists an unique ϕ(t) ∈ H1
0 (Ω), such that

∇ · ϕ(t) = pt(t), ∇ · ϕt(t) = ptt(t) (5.55)

and

‖ϕ(t)‖1 ≤ C‖pt(t)‖, ‖ϕt(t)‖1 ≤ C‖ptt(t)‖ for all t ∈ [0, T ]. (5.56)

From (5.45), we have, at time tn+1,

∇en+1
p =− 1

N

en+1
u − enu

∆t
+

1

M2
∆en+1

u − 1

N
B(enu,u(tn+1))− 1

N
B(un, en+1

u )

− 1

N
B(u(tn+1)− u(tn),u(tn+1)) + B×∇enφ + B× (∇φ(tn+1)−∇φ(tn))

+ (en+1
u ×B)×B +

1

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1)).

(5.57)
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Thus, we obtain

2ε(

∫ tn+1

tn
ptdt, e

n+1
p ) = 2ε(

∫ tn+1

tn
∇ · ϕ(t)dt, en+1

p ) = −2ε(

∫ tn+1

tn
ϕdt,∇en+1

p )

= −2ε(

∫ tn+1

tn
ϕdt,

1

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1)))

− 2ε(

∫ tn+1

tn
ϕdt,

1

M2
∆en+1

u )− 2ε(

∫ tn+1

tn
ϕdt,B×∇enφ)

− 2ε(

∫ tn+1

tn
ϕdt,B× (∇φ(tn+1)−∇φ(tn)))

− 2ε(

∫ tn+1

tn
ϕdt, (en+1

u ×B)×B) + 2ε(

∫ tn+1

tn
ϕdt,

1

N

en+1
u − enu

∆t
)

+ 2ε(

∫ tn+1

tn
ϕdt,

1

N
B(un, en+1

u )) + 2ε(

∫ tn+1

tn
ϕdt,

1

N
B(enu,u(tn+1)))

+ 2ε(

∫ tn+1

tn
ϕdt,

1

N
B(u(tn+1)− u(tn),u(tn+1))).

(5.58)

Next, we need to bound all the terms on the RHS of (5.58). First, we have

− 2ε(

∫ tn+1

tn
ϕdt,

1

N
(
u(tn+1)− u(tn)

∆t
− ut(t

n+1)))

≤ 2ε

N
‖
∫ tn+1

tn
ϕdt‖1‖

u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖−1

≤ Cε
√

∆t(

∫ tn+1

tn
‖ϕ‖2

1dt)
1
2‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖−1

≤ Cε2

∫ tn+1

tn
‖ϕ‖2

1dt+ ∆t‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1

≤ Cε2

∫ tn+1

tn
‖pt‖2dt+ ∆t‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1.

(5.59)

For the term −2ε(
∫ tn+1

tn
ϕdt, 1

M2 ∆en+1
u ), we have

−2ε(

∫ tn+1

tn
ϕdt,

1

M2
∆en+1

u ) = 2ε(

∫ tn+1

tn
∇ϕdt, 1

M2
∇en+1

u )

≤ 2ε

M2
‖
∫ tn+1

tn
∇ϕdt‖‖∇en+1

u ‖2

≤ Cε
√

∆t(

∫ tn+1

tn
‖∇ϕ‖2dt)

1
2‖∇en+1

u ‖2

≤ Cε2

∫ tn+1

tn
‖pt‖2dt+ σ∆t‖∇en+1

u ‖2.

(5.60)
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For the term −2ε(
∫ tn+1

tn
ϕdt,B×∇enφ), we have

− 2ε(

∫ tn+1

tn
ϕdt,B×∇enφ) ≤ 4ε‖B‖L∞‖

∫ tn+1

tn
ϕdt‖‖∇enφ‖

≤ Cε
√

∆t(

∫ tn+1

tn
‖ϕ‖2dt)

1
2‖∇enφ‖ ≤ Cε2

∫ tn+1

tn
‖pt‖2dt+ σ2∆t‖∇enφ‖2.

(5.61)

The term −2ε(
∫ tn+1

tn
ϕdt,B× (∇φ(tn+1)−∇φ(tn))) is bounded as

− 2ε(

∫ tn+1

tn
ϕdt,B× (∇φ(tn+1)−∇φ(tn))) ≤ Cε

√
∆t(

∫ tn+1

tn
‖ϕ‖2dt)

1
2‖∇φ(tn+1)−∇φ(tn)‖

≤ Cε2

∫ tn+1

tn
‖pt‖2dt+ ∆t‖∇φ(tn+1)−∇φ(tn)‖2.

(5.62)

The term −2ε(
∫ tn+1

tn
ϕdt, (en+1

u ×B)×B) is by

− 2ε(

∫ tn+1

tn
ϕdt, (en+1

u ×B)×B) ≤ Cε
√

∆t(

∫ tn+1

tn
‖ϕ‖2dt)

1
2‖en+1

u ‖

≤ Cε2

∫ tn+1

tn
‖pt‖2dt+ σ∆t‖∇en+1

u ‖2.

(5.63)

We bound the term 2ε(
∫ tn+1

tn
ϕdt, 1

N
en+1
u −enu

∆t
) by

2ε(

∫ tn+1

tn
ϕdt,

1

N

en+1
u − enu

∆t
)

=
2ε

N∆t
[(

∫ tn+1

tn
ϕdt, en+1

u )− (

∫ tn

tn−1

ϕdt, enu)]− 2ε

N∆t
(

∫ tn+1

tn
ϕdt−

∫ tn

tn−1

ϕdt, enu)

≤ 2ε

N∆t
[(

∫ tn+1

tn
ϕdt, en+1

u )− (

∫ tn

tn−1

ϕdt, enu)] +
2ε∆t

N
|(ϕt(ξn), enu)|

≤ 2ε

N∆t
[(

∫ tn+1

tn
ϕdt, en+1

u )− (

∫ tn

tn−1

ϕdt, enu)] +
2ε∆t

N
‖ϕt(ξn)‖‖enu‖

≤ 2ε

N∆t
[(

∫ tn+1

tn
ϕdt, en+1

u )− (

∫ tn

tn−1

ϕdt, enu)] + Cε2∆t‖ptt(ξn)‖2 + σ3∆t‖∇enu‖2,

(5.64)

where ξn ∈ (tn−1, tn+1). We bound the term 2ε(
∫ tn+1

tn
ϕdt, 1

N
B(un, en+1

u )) as

2ε(

∫ tn+1

tn
ϕdt,

1

N
B(un, en+1

u )) ≤ Cε‖
∫ tn+1

tn
∇ϕdt‖‖∇en+1

u ‖‖∇un‖

≤ Cε
√

∆t(

∫ tn+1

tn
‖∇ϕ‖2dt)

1
2‖∇en+1

u ‖‖∇un‖ ≤ Cε2‖∇un‖2

∫ tn+1

tn
‖pt‖2dt+ σ∆t‖∇en+1

u ‖2.

(5.65)
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The term 2ε(
∫ tn+1

tn
ϕdt, 1

N
B(enu,u(tn+1))) is bounded as

2ε(

∫ tn+1

tn
ϕdt,

1

N
B(enu,u(tn+1))) ≤ Cε‖

∫ tn+1

tn
∇ϕdt‖‖∇enu‖‖∇u(tn+1)‖

≤ Cε2‖∇u(tn+1)‖2

∫ tn+1

tn
‖pt‖2dt+ σ3∆t‖∇enu‖2.

(5.66)

For the last term, we have

2ε(

∫ tn+1

tn
ϕdt,

1

N
B(u(tn+1)− u(tn),u(tn+1)))

≤ Cε
√

∆t(

∫ tn+1

tn
‖∇ϕ‖2dt)

1
2‖u(tn+1)− u(tn)‖‖u(tn+1)‖2

≤ Cε2‖u(tn+1)‖2
2

∫ tn+1

tn
‖pt‖2dt+ ∆t‖u(tn+1)− u(tn)‖2.

(5.67)

Combining (5.59)-(5.67), we have

2ε(

∫ tn+1

tn
ptdt, e

n+1
p ) ≤ 3σ∆t‖∇en+1

u ‖2 + σ2∆t‖∇enφ‖2 + 2σ3∆t‖∇enu‖2

+ ∆t‖u(tn+1)− u(tn)‖2 + ∆t‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1

+ ∆t‖∇φ(tn+1)−∇φ(tn)‖2 +
2ε

N∆t
[(

∫ tn+1

tn
ϕdt, en+1

u )− (

∫ tn

tn−1

ϕdt, enu)]

+ Cε2∆t‖ptt(ξn)‖2 + Cε2

∫ tn+1

tn
‖pt‖2dt+ Cε2‖∇un‖2

∫ tn+1

tn
‖pt‖2dt.

(5.68)

Set σ = 1
14M2 , σ1 = 1

4
, σ2 = 1

2
, σ3 = 1

4M2 . Combining (5.48)-(5.54) and (5.68), we have

1

N
(‖en+1

u ‖2 − ‖enu‖2 + ‖en+1
u − enu‖2) + ε(‖en+1

p ‖2 − ‖enp‖2 + ‖en+1
p − enp‖2)

+
∆t

M2
‖∇en+1

u ‖2 + ∆t‖∇en+1
φ ‖2 + ∆t‖en+1

u ×B‖2 −∆t‖enu ×B‖2

+
∆t

2M2
‖∇en+1

u ‖2 − ∆t

2M2
‖∇enu‖2 +

3

2
∆t‖∇en+1

φ ‖2 − 3

2
∆t‖∇enφ‖2

+ ∆t(‖ − ∇enφ + en+1
u ×B‖2 + ‖ − ∇en+1

φ + enu ×B‖2)

≤ C∆t(‖u(tn+1)‖2
2 + ‖B‖2

L∞)‖enu‖2 + C∆t‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1

+ C∆t‖∇φ(tn+1)−∇φ(tn)‖2 + C∆t(1 + ‖u(tn+1)‖2
2 + ‖B‖2

L∞)‖u(tn+1)− u(tn)‖2

+
2ε

N∆t
[(

∫ tn+1

tn
ϕdt, en+1

u )− (

∫ tn

tn−1

ϕdt, enu)]

+ Cε2∆t‖ptt(ξn)‖2 + Cε2

∫ tn+1

tn
‖pt‖2dt+ Cε2‖∇un‖2

∫ tn+1

tn
‖pt‖2dt.

(5.69)
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Summing (5.69) from n = 0 to n = m− 1, we obtain

1

N
‖emu ‖2 +

1

N

m−1∑
n=0

‖en+1
u − enu‖2 + ε‖emp ‖2 +

m−1∑
n=0

‖en+1
p − enp‖2 +

∆t

M2

m−1∑
n=0

‖∇en+1
u ‖2

+ ∆t
m−1∑
n=0

‖∇en+1
φ ‖2 + ∆t‖emu ×B‖2 +

3

2
∆t‖∇emφ ‖2 +

∆t

2M2
‖∇emu ‖2

+ ∆t
m−1∑
n=0

(‖ − ∇enφ + en+1
u ×B‖2 + ‖ − ∇en+1

φ + enu ×B‖2)

≤ 1

N
‖e0

u‖2 + ε‖e0
p‖2 + ∆t‖e0

u ×B‖2 +
∆t

2M2
‖∇e0

u‖2 +
3

2
∆t‖∇e0

φ‖2 + C∆t
m−1∑
n=0

‖enu‖2

+ C∆t
m−1∑
n=0

‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1 + C∆t

m−1∑
n=0

‖∇φ(tn+1)−∇φ(tn)‖2

+ C∆t
m−1∑
n=0

‖u(tn+1)− u(tn)‖2 +
2ε

N∆t
(

∫ tm

tm−1

ϕdt, emu ) + Cε2∆t
m−1∑
n=0

‖ptt(ξn)‖2

+ Cε2

m−1∑
n=0

∫ tn+1

tn
‖pt‖2dt+ Cε2

m−1∑
n=0

‖∇un+1‖2

∫ tn+1

tn
‖pt‖2dt.

(5.70)

Next, we bound the terms in the right hand side of (5.70). First, we have

C∆t
m−1∑
n=0

‖u(tn+1)− u(tn)

∆t
− ut(t

n+1)‖2
−1 ≤ C∆t2

m−1∑
n=0

∫ tn+1

tn
‖utt‖2

−1dt

≤ C∆t2‖utt‖2
2,−1.

(5.71)

We also have

C∆t
m−1∑
n=0

‖∇φ(tn+1)−∇φ(tn)‖2 ≤ C∆t2
m−1∑
n=0

∫ tn+1

tn
‖∇φt‖2dt ≤ C∆t2‖φt‖2

2,1, (5.72)

and

C∆t
m−1∑
n=0

‖u(tn+1)− u(tn)‖2 ≤ C∆t2
m−1∑
n=0

∫ tn+1

tn
‖ut‖2dt ≤ C∆t2‖ut‖2

2,0. (5.73)

Moreover,

2ε

N∆t
(

∫ tm

tm−1

ϕdt, emu ) =
2ε

N
(ϕ(ηm), emu ) ≤ 2ε2

N
‖ϕ(ηm)‖2 +

1

2N
‖emu ‖2

≤ Cε2‖pt(ηm)‖2 +
1

2N
‖emu ‖2 ≤ Cε2‖pt‖2

∞,0 +
1

2N
‖emu ‖2,

(5.74)
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where ηm ∈ (tm−1, tm). Lastly, it gives that

Cε2

m−1∑
n=0

∫ tn+1

tn
‖pt‖2dt ≤ Cε2‖pt‖2

2,0, (5.75)

and

Cε2

m−1∑
n=0

‖∇un+1‖2

∫ tn+1

tn
‖pt‖2dt ≤ Cε2‖pt‖2

∞,0

m−1∑
n=0

∆t‖∇un+1‖2 ≤ Cε2‖pt‖2
∞,0, (5.76)

where we use the result in Theorem 9.

Combining (5.71)-(5.76) with (5.70), we can have

1

2N
‖emu ‖2 +

∆t

M2

m−1∑
n=0

‖∇en+1
u ‖2 + ∆t

m−1∑
n=0

‖∇en+1
φ ‖2

+ ∆t
m−1∑
n=0

(‖ − ∇enφ + en+1
u ×B‖2 + ‖ − ∇en+1

φ + enu ×B‖2)

≤ C∆t
m−1∑
n=0

‖enu‖2 + C(∆t2 + ε2).

(5.77)

Finally applying the discrete Gronwall lemma completes the proof.

5.4 ANALYSIS OF NON-PHYSICAL ACOUSTIC WAVES

Artificial compression method can greatly speed up computations but can also introduce

new physical flow behaviors associated with compressibility such as non-physical, fast, pres-

sure oscillations (acoustic waves). These fast acoustic waves can yield restrictive time step

conditions for explicit time discretization of the full system or pollute the pressure approx-

imation. In this section, we analyze these non-physical acoustic waves through an acoustic

waves equation for pressure. We rewrite the model (5.2) as follows.

1

N
(ut + u · ∇u +

1

2
(∇ · u)u)− 1

N ·Re
∆u +∇p = f + j×B,

εpt +∇ · u = 0,

∇ · j = 0.

(5.78)
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Taking the divergence of the first equation and ∂/∂t of the second equation in (5.78), we

obtain

1

N
∇ · ut +

1

N
∇ · (u · ∇u +

1

2
(∇ · u)u− 1

·Re
∆u) + ∆p = ∇ · f +∇ · (j×B),

εptt +∇ · ut = 0.

(5.79)

Assume ∇· f = 0. Multiplying the first equation in (5.79) by N and eliminating ∇·ut term,

we can have

εptt −N∆p = ∇ · (u · ∇u +
1

2
(∇ · u)u− 1

·Re
∆u)−N∇ · (j×B). (5.80)

Since ∇ · (j×B) = (∇× j) ·B and ∇× j = ∇× (−∇φ + u×B) = ∇× (u×B), we have

∇ × j = −(∇ · u)|B| and ∇ · (j × B) = −(∇ · u)|B|2 in 2 dimension case. Thus equation

(5.80) can be rewritten as

εptt + εN |B|2pt −N∆p = ∇ · (u · ∇u +
1

2
(∇ · u)u− 1

·Re
∆u). (5.81)

The pressure wave equation (5.81) shows that the non-physical oscillation in p will be damped

by damping coefficient N |B|2. Thus, the effect of magnetic field is to damp acoustic waves

in slightly compressible flows. The waves have energy input due to the right hand side terms.

The speed of the non-physical acoustic wave is O( 1√
ε
), which indicates that the wave speed

goes up to∞ as ε→ 0. We test the non-physical acoustic wave in Section 5.5.2. We compute

and plot (figure 20 and figure 21) the pressure at origin (0, 0) on a time interval after initial

transients pass to test if the wave speed increases as the time step ∆t ↓ 0.

Nonlinear Acoustics. We consider the effect of the nonlinear term in the right hand

side of (5.81) on acoustic waves. Let the usual Lighthill sound source (see, [26] and [27] for

justification) be denoted by

Q(u,u) := ∇u : (∇u)T =
∑
i,j

∂ui
∂xj

∂uj
∂xi

for d = 2 or 3.

Since we have the identity that

∇ · (u · ∇u +
1

2
(∇ · u)u) = Q(u,u)− 1

2
u · ∇(∇ · u) +

1

2
|∇ · u|2,
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if the effect of slight compressibility on acoustic waves is negligible, we can obtain

∇ · (u · ∇u +
1

2
(∇ · u)u− 1

·Re
∆u) ' Q(u,u) if ∇ · u ' 0.

Recall (5.2) that ∇ · u = −εpt. Then we have

∇ · (u · ∇u +
1

2
(∇ · u)u− 1

·Re
∆u) = Q(u,u) +

ε

2
u · ∇pt +

ε2

2
|pt|2 +

ε

Re
∆pt.

Thus (5.81) can be rewritten as

εptt + εN |B|2pt −N∆p = Q(u,u) +
ε

2
u · ∇pt +

ε2

2
|pt|2 +

ε

Re
∆pt. (5.82)

Q(u,u) represents the physical sound source, i.e., the sound generated by the flow. The

terms ε
2
u ·∇pt+ ε2

2
|pt|2 + ε

Re
∆pt are the nonphysical sound sources and their values vanish as

ε goes to 0. When Re� 1, the leading order term in nonphysical sound sources is ε
2
u · ∇pt.

In Section 5.5.2, we compute the relative size of the leading order term in non-physical sound

sources to the Lighthill sound source

Ratio =
‖ ε

2
u · ∇pt‖
‖Q(u,u)‖

.

The result is shown in figure 22 and figure 23. Looking at the vertical axis scales, we conclude

that the nonphysical sound source is negligible compared to the physical one.

5.5 NUMERICAL TEST

In this section, we provide numerical experiments to test the convergence of Algorithm 8

and Algorithm 9, and the non-physical acoustic waves analyzed in Section 5.4. We utilize

the P2-P1 Taylor-Hood mixed finite elements for fluid velocity and pressure and P2 finite

element for electric potential. The software package FreeFEM + +, see [142], are used for

our simulation.
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5.5.1 TESTING CONVERGENCE

Let the domain Ω = [0, 1] × [0, 1], Re = 1, N = 1, M = 1 and B = (0, 0, 1). Consider the

true solution (u, p, φ) given as follows.

u(x, y, t) = (2π cos(2πx) sin(2πy),−2π sin(2πx) cos(2πy), 0)e−5t,

p(x, y, t) = 0,

φ(x, y, t) = (cos(2πx) cos(2πy) + x2 − y2)e−5t.

The body force f , boundary condition and initial condition are determined by the true

solution.

We firstly compute the rate of convergence to confirm the effectiveness of our theoretical

analysis for Algorithm 1. Set ε = ∆t. Select T = 1, h = 1
60

and then ∆t = 1
20
, 1

30
, 1

40
, 1

50
, 1

60
.

We compute ‖emu ‖, (
∑m−1

n=0 ‖∇en+1
u ‖2)

1
2 and (∆t

∑m−1
n=0 ‖∇e

n+1
φ ‖2)

1
2 to obtain the convergence

rate.

Table 8: Errors and convergence rates of Algorithm 8.

∆t ‖emu ‖ Rate (∆t
∑m−1

n=0 ‖∇en+1
u ‖2)

1
2 Rate (∆t

∑m−1
n=0 ‖∇e

n+1
φ ‖2)

1
2 Rate

1/20 6.0467e-2 2.2961e-1 2.5699e-1

1/30 4.3838e-2 0.79 1.4885e-1 1.07 1.7247e-1 0.98

1/40 3.3862e-2 0.90 1.0901e-1 1.08 1.2983e-1 0.99

1/50 2.7299e-2 0.97 8.6329e-2 1.05 1.0411e-1 0.99

1/60 2.2684e-2 1.02 7.2225e-2 0.98 8.6917e-2 0.99

Table 8 confirms that the rate of convergence is first order in accord with the theoretical

result of Theorem 11.

We also compute the rate of convergence for Algorithm 9. Since Algorithm 9 is second

order accurate, we set ε = ∆t2. Select T = 1, h = ∆t and then ∆t = 1
20
, 1

40
, 1

60
, 1

80
, 1

100
. We

also compute ‖emu ‖, (
∑m−1

n=0 ‖∇en+1
u ‖2)

1
2 and (∆t

∑m−1
n=0 ‖∇e

n+1
φ ‖2)

1
2 .

Table 9 shows that the rate of convergence of Algorithm 9 is second order, as expected.

87



Table 9: Errors and convergence rates of Algorithm 9.

∆t ‖emu ‖ Rate (∆t
∑m−1

n=0 ‖∇en+1
u ‖2)

1
2 Rate (∆t

∑m−1
n=0 ‖∇e

n+1
φ ‖2)

1
2 Rate

1/20 7.1314e-3 1.1478e-1 9.7290e-3

1/40 1.7696e-3 2.01 3.6299e-2 1.66 2.9077e-3 1.72

1/60 7.6980e-4 2.05 1.7458e-2 1.81 1.3712e-3 1.85

1/80 4.2564e-4 2.06 1.0219e-2 1.86 7.9445e-4 1.90

1/100 2.6889e-4 2.06 6.6996e-3 1.89 5.1754e-4 1.92

5.5.2 TESTING NON-PHYSICAL ACOUSTIC WAVES

We explore the non-physical acoustic waves by the following 2D test problem (Flow between

offset circles).

Let the domain Ω = {(x, y) : x2 + y2 ≤ 1 and (x− 0.5)2 + y2 ≥ 0.12}, B = 1 ·~k, the final

time T = 30, and the body force f = (−4y(1 − x2 − y2), 4x(1 − x2 − y2))T. Set Re = 1000

and N = 1, thus M =
√
N ·Re =

√
1000. For velocity boundary conditions, let u = 0 on

both circles. Similarly set ε = ∆t for Algorithm 8 (ε = ∆t2 for Algorithm 9). Choose time

step ∆t = 1
25
, 1

50
, 1

100
.

Firstly, we plot the pressure vs. t at (0, 0). Figure 20 (figure 21) shows the results of

Algorithm 8 (Algorithm 9) on a time interval [25, 30] after initial transients pass. We find

that the time evolution of the pressure at one point in space varies greatly as ∆t changes.

However, the wave’s frequency has a clear pattern consistent with (5.81): As ∆t decreases,

the wave’s frequency increases.

Figure 22 (Algorithm 8) and figure 23 (Algorithm 9) present the relative size of the

leading order term in non-physical sound sources to the Lighthill sound source:
‖ ε

2
u·∇pt‖

‖Q(u,u)‖ . It

shows that Q(u,u) is the dominant forcing for oscillations in p and ∇ · u.

Lastly, in order to study how close the computing solution is to incompressible, we

compute ‖∇ · u‖/‖u‖. As shown in figure 25 (Algorithm 9), the relative size of ∇ · u

decreases as ∆t decreases. However, in figure 24 (Algorithm 8), ∇ · u fails to decrease
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Figure 13: Pressure at (0,0) vs Time, Algorithm 8, dt=1/25 (left), dt=1/50 (middle) and

dt=1/100 (right).

Figure 14: Pressure at (0,0) vs Time, Algorithm 9, dt=1/25 (left), dt=1/50 (middle) and

dt=1/100 (right).

Figure 15: Non-physical acoustic source / Lighthill source, Algorithm 8, dt=1/25 (left),

dt=1/50 (middle) and dt=1/100 (right).
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Figure 16: Non-physical acoustic source / Lighthill source, Algorithm 9, dt=1/25 (left),

dt=1/50 (middle) and dt=1/100 (right).

when ∆t decreases, which implies that the selection of ε = ∆t or ∆t2 should influence the

stability of the artificial compression method. For Algorithm 8, we could further stabilize

this first order method. Thus, we consider to add a stabilization term γ∇∇·u in Algorithm 8

(γ = 10000) and then recompute the relative size of ∇·u. Figure 19 presents the computing

results and shows that the relative size of ∇ · u decreases as ∆t decreases when we select

a large γ in the stabilization term γ∇∇ · u. Compared with figure 24, when we apply the

stabilization term, the oscillation of the relative size of ∇ · u becomes weaker, which shows

the stabilization term γ∇∇ · u might be an effective way to dampen non-physical acoustic

waves. Meanwhile, we find that as ∆t ↓ 0, ‖∇·u‖/‖u‖ appears to be more oscillating, which

is also consistent with our analysis of non-physical acoustic waves since ∇ · u = −εpt.

5.6 CONCLUSIONS

In this paper, we construct two decoupled methods based on the artificial compression

method (uncoupling the pressure and velocity) and partitioned method (uncoupling the

velocity and electric potential) for magnetohydrodynamics flows at low magnetic Reynolds

numbers. The methods we study allow us at each time step to solve linear problems, un-

coupled by physical processes, per time step, which can greatly improve the computational
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Figure 17: ‖∇ · u‖/‖u‖, Algorithm 8, dt=1/25 (left), dt=1/50 (middle) and dt=1/100

(right).

Figure 18: ‖∇ · u‖/‖u‖, Algorithm 2, dt=1/25 (left), dt=1/50 (middle) and dt=1/100

(right).

Figure 19: ‖∇ · u‖/‖u‖, with γ∇∇ · u, Algorithm 8, dt=1/25 (left), dt=1/50 (middle) and

dt=1/100 (right).
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efficiency. This paper gives the stability and error analysis, presents a brief analysis of

the non-physical acoustic waves generated, and provides computational tests to support the

theory.
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6.0 MODEL ACCURATE ALGORITHMS IN CFD–EXTENSION OF

BALDWIN-LOMAX MODEL TO NON-EQUILIBRIUM

TURBULENCE

6.1 INTRODUCTION

The most common approach to the prediction of turbulent flow statistics is to add to the

Navier-Stokes equations an eddy viscosity term, calibrate the term’s coefficients, discretize

the result and solve. A well-calibrated model and an effective numerical method have proven

to predict reliably turbulent flows at statistical equilibrium. The question considered herein

is how to extend such a model to non-equilibrium turbulence and how to adapt algorithms to

the extended model. The first work on the approach herein was for the Smagorinsky model in

[139]. Herein, we extend the Baldwin-Lomax model, shown below. In the modeling process,

several choices must be made. We take a different path through these in developing the non-

equilibrium extension than in [139]. Let us begin with the time dependent incompressible

Navier-Stokes (NS) equations:

ut + u · ∇u− ν∆u +∇p = f , and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and

∫
Ω

p dx = 0,

u(x, 0) = u0(x) in Ω.

(6.1)

Here, Ω ⊂ Rd(d=2,3) is a bounded polyhedral domain; u : Ω × [0, T ] → Rd is the fluid

velocity; p : Ω × (0, T ] → R is the fluid pressure. The body force f is known. Re is the

Reynolds number and ν = 1
Re

.
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There are many approaches to simulating turbulent flows, see [118, 119, 120, 121, 122].

One of the most commonly used is to model the ensemble-averaged Navier-Stokes equation

by eddy viscosity, discretize then solve. In this approach, instantaneous variables are decom-

posed into the mean (ensemble averaging) and fluctuating components, then reintroduced

into the governing equations to obtain the ensemble averaging equations. However, the sys-

tem is not closed and contains Reynolds stress term that represents the effects of fluctuation.

This Reynolds stress must be modeled in order to close the system.

Given the ensemble averaging of fluid velocity and pressure

〈u〉(x, t) =
1

J

J∑
j=1

u(x, t;ωj), and 〈p〉(x, t) =
1

J

J∑
j=1

p(x, t;ωj). (6.2)

Decompose the pressure and velocity into mean and fluctuations:

u = 〈u〉+ u′, and p = 〈p〉+ p′, (6.3)

where 〈u〉, 〈p〉 are the mean and u′, p′ are the fluctuating components. Substituting the en-

semble averaging variables into the NS equations (6.1) yields the ensemble averaging equa-

tions.

〈u〉t + 〈u〉 · ∇〈u〉 − ν∆〈u〉 − ∇ · R(u,u) +∇〈p〉 = f ,

∇ · 〈u〉 = 0,
(6.4)

where the Reynolds stress R(u,u) := 〈u〉⊗〈u〉−〈u⊗u〉 = −〈u′⊗u′〉, see, e.g., [121, 123, 130].

By the Boussinesq assumption and eddy viscosity hypothesis ([127, 128, 129, 132]), the

Reynolds stress R(u,u) is modeled by (νT (〈u〉)∇〈u〉). Note that the turbulence eddy vis-

cosity νT (〈u〉) > 0. This is the standard eddy viscosity (EV) model:

wt + w · ∇w − ν∆w −∇ · (νT (w)∇w) +∇q = f ,

∇ ·w = 0.
(6.5)

The solution (w, q) of (6.5) is an approximation of the mean (〈u〉, 〈p〉).

There have been many techniques to predict the turbulent eddy viscosity νT (e.g., [119,

120, 121, 122, 124, 134, 135, 136]). However, EV models have difficulties in simulating

backscatter or complex turbulence not at statistical equilibrium, see, e.g., [131, 133, 137].

Since νT > 0, the term −∇ · (νT (w)∇w) in (6.5) can only represent dissipative effects of
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the Reynolds stress. In order to precisely characterize backscatter, Jiang and Layton [139]

presented two approaches to correcting EV models and obtained new models of turbulence

not at statistical equilibrium, analyzed the corrected Smagorinsky model and gave algorithms

for its discretization.

Like many EV models, the Baldwin-Lomax model (see, e.g., [119, 121, 141]) begins simply

and then has evolved substantial complexity to model effects such as separation and wakes

not well described by the basic model. We consider herein only its simplest form for which

νT (〈u〉) = l(x)2|∇ × 〈u〉|. Here, l(x) is a mixing length that depends on the distance to the

wall. The model extension, analysis and algorithms herein are adapted to more intricate,

algebraic νT (〈u〉) with only notational complexity. The corrected model studied herein is as

follows.

wt + β2∇× (l2(x)∇×wt) + w · ∇w +∇× (l2(x)|∇ ×w|∇ ×w)− ν∆w +∇q = f ,

∇ ·w = 0.

(6.6)

Here, β is a positive model calibration parameter. The eddy viscosity term is expressed

in rotational (curl - curl) form. The model’s mixing length l(x) has the property that

0 ≤ l(x) → 0 as x → ∂Ω. The effect of the true Reynolds stress on the mean flow is, on

time average, dissipative, see [129, 139, 140]. We prove in Section 6.2 that the time averaged

effect of the terms that modeled the Reynolds stress is also dissipative.

lim inf
T→∞

1

T

∫ T

0

∫
Ω

(β2l2(x)∇×wt · ∇ ×w + l2(x)|∇ ×w|3)dxdt

= lim inf
T→∞

1

T

∫ T

0

∫
Ω

l2(x)|∇ ×w|3dxdt ≥ 0.

Our numerical tests in Section 6.5 show that the term that models pointwise in time, statis-

tical backscatter, β2∇× (l2(x)∇×wt), does result in bursts, wherein∫
Ω

(β2l2(x)∇×wt · ∇ ×w + l2(x)|∇ ×w|3)dx < 0.

In other words, the eddy viscosity accounts for the persistent effect of the Reynolds stress

while the new term accounts for statistical backscatter without artificial negative viscosities.

We also present and analyze a numerical method for accurate solution of the new model
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(6.6) in Section 6.3. The challenges that occur here are (i) to develop algorithms that are

small extensions of the standard methods for the usual Baldwin-Lomax model, and (ii) to

perform the analysis for coefficients l(x)→ 0 at walls.

6.2 ANALYSIS OF THE CORRECTED EV MODEL

This section first recalls the important properties of standard EV models (6.5). Then it

presents the derivation of the corrected scheme (6.6) based on (6.5) and shows that the new

model (6.6) maintains the time-averaged dissipative effect of the Reynolds stress.

Taking the inner product of the first and second equation in ensemble averaging NS

equations (6.4) with 〈u〉 and 〈p〉 respectively, we can obtain the kinetic energy equation for

the mean
1

2

d

dt
‖〈u〉‖2 + ν‖∇〈u〉‖2 +

∫
Ω

R(u,u) : ∇〈u〉dx =

∫
Ω

f · 〈u〉dx. (6.7)

In (6.7), the right hand side term
∫

Ω
f · 〈u〉dx is the energy input. The term 1

2
d
dt
‖〈u〉‖2

is the changing rate of the kinetic energy of the mean. The term ν‖∇〈u〉‖2 is the energy

dissipation of the mean. The term
∫

Ω
R(u,u) : ∇〈u〉dx indicates the effect of fluctuations

on the mean. Moreover, if the term
∫

Ω
R(u,u) : ∇〈u〉dx > 0, the effect is dissipative but

if
∫

Ω
R(u,u) : ∇〈u〉dx < 0, fluctuations transfer energy back to the mean which is called

backscatter.

There are two key properties of Reynolds stress (proven in [139]). Time averaged dissi-

pativity:

lim inf
T→∞

1

T

∫ T

0

∫
Ω

R(u,u) : ∇〈u〉dxdt = lim inf
T→∞

1

T

∫ T

0

∫
Ω

ν〈|∇u′|2〉dxdt ≥ 0 (6.8)

Second, the variance evolution equation:∫
Ω

R(u,u) : ∇〈u〉dx =
1

2

d

dt

∫
Ω

〈|u′|2〉dx+

∫
Ω

ν〈|∇u′|2〉dx. (6.9)

The inequality (6.8) is consistent with the Boussinesq assumption that the effects of turbulent

fluctuations are dissipative on the mean in the time averaged case. The interpretation of

(6.9) is as follows. For flows at statistical equilibrium d
dt

∫
Ω
〈|u′|2〉dx = 0, while the second

96



term
∫

Ω
ν〈|∇u′|2〉dx is clearly dissipative. This term is modeled by an eddy viscosity acting

on 〈u〉 that dissipates energy pointwise in both space and time. Thus the (space averaged)

pointwise in time deviation from dissipativity must arise from the first term on the RHS of

(6.9). Therefore, the term 1
2
d
dt

∫
Ω
〈|u′|2〉dx should be modeled in the corrected EV scheme to

represent backscatter.

In addition, the proof of the Boussinesq hypothesis in [129] is by extracting information

on fluctuations from the energy equality for realizations. It was done for strong solutions,

the natural setting for turbulence theory since it can be phrased in terms of the Reynolds

stresses. This report also gave, Section 2.1 p. 2356, the equation for evolution of space

averaged variance and turbulence intensities as well as an extended survey of the long history

on the problem. In [112] an extension was given for ensembles of both initial conditions and

body forces. In [139] it was shown that (using a result of Duchon and Robert [110]) a similar

proof holds for weak solutions and that the spacial localization of backscatter depends only

on 4 quantities: the variance of u and ∇u, the skewness of u and the velocity-pressure

covariance. The (highly nontrivial) connection between the formulation in terms of the

Reynolds stresses and the above proof for weak solutions was recently made by Berselli and

Lewandowski [109], which contains the most general formulation of the result. Dissipativity

of fluctuations and convergence to statistical equilibrium was extended to space and time

discretizations in [140] and to MHD turbulence (through the Elsässer variables) in [114].

Once it was pointed out that dissipativity, while violated at some instants in time, emerges

for time averaged quantities, various forms of the Boussinesq hypothesis’ proof are implicit in

Reynolds transport theory. For example, space and time averaging the trace of the transport

equations of the Reynolds stresses, Jovanovic [113] Section 5.1 p. 110, yields the dissipativity

of fluctuations. For time, not statistical, averages dissipativity of fluctuations result appears

already (well hidden) in equation (3.127) p. 75, in Chacón- Rebollo and Lewandowski [136].

This connection was developed further by Lewandowski [115] and in several new directions

in [109].

The key point to describe the Reynolds stress term is how to model u′ via 〈u〉. By the

Kolmogorov-Prandtl relation for the turbulent viscosity,

νT (〈u〉) = cll
√
k′, (6.10)
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where k′ = 1
2
〈|u′|2〉, cl is a proportionality constant and l is the mixing length. Consider the

simplest case (the inner layer viscosity) of the Baldwin-Lomax model

νT (〈u〉) = l2|∇ × 〈u〉|, (6.11)

where l is the mixing length, such as l(x) = 0.41 × distance{x, ∂Ω}. Combine (6.10) with

(6.11) to obtain the fluctuation model

action(u′) ' βl∇× 〈u〉, (6.12)

where β > 0 is a model calibration parameter. Then the Reynolds stresses term
∫

Ω
R(u,u) :

∇〈u〉dx becomes

∫
Ω

R(u,u) : ∇〈u〉dx ' 1

2

d

dt

∫
Ω

β2l2|∇ × 〈u〉|2dx+

∫
Ω

l2|∇ × 〈u〉||∇ × 〈u〉|2dx, (6.13)

Notice the time derivative term comes from the fluctuation model (6.12) and the eddy

viscosity term is based on (6.11). Then, (6.13) leads to the closure model

−∇ · R(u,u) ' β2∇× (l2∇× 〈u〉t) +∇× (l2|∇ × 〈u〉|∇ × 〈u〉). (6.14)

Combining (6.14) with (6.4) and calling the model’s approximation to 〈u〉 and 〈p〉, w and q

yields model (6.6).

wt + β2∇× (l2(x)∇×wt) + w · ∇w +∇× (l2(x)|∇ ×w|∇ ×w)− ν∆w +∇q = f ,

∇ ·w = 0.
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Remark 4. Although existence theory for (6.6) is not the issue considered in this report, it

is useful to note the model’s mathematical structure. Compared with the NSE, this model

contains two additional terms. The first is β2∇×(l2∇×wt) which is similar to the commonly

used dispersive regularization −∆wt. The second is ∇×(l2|∇ ×w|∇ ×w). This second term

is strongly monotone and locally Lipschitz being similar to a p-Laplacian term. For l > 0

it is readily seen that Galerkin approximations in spaces of Stokes eigenfunctions belong to

L∞(0, T ;V 2) ∩ L3(0, T ;V 3) (and by a limit argument under mild conditions on l(x)) the

solution w satisfies the regularity

w ∈ L∞(0, T ;V 2) ∩ L3(0, T ;V 3) (6.15)

We therefore conjecture that (again under mild conditions on l(x)) existence and uniqueness

of strong solutions hold for the model.

For our purposes herein, we shall assume the model has a solution in the following sense.

The weak formulation of (6.6), satisfied by sufficiently smooth solutions, is : Find (w, q) ∈

(X,Q) satisfying

(wt,v) + (l2(x)∇×wt,∇× v) + b(w,w,v) + (l2(x)|∇ ×w|∇ ×w,∇× v)

+ ν(∇w,∇v)− (q,∇ · v) = (f ,v) ∀v ∈ X,

(∇ ·w, r) = 0 ∀r ∈ Q.

(6.16)

Definition 2. A distributional solution w of model (6.6) is a strong solution if w has regu-

larity (6.15), w(x, t)→ w0(x) in L2(Ω) as t→ 0 and if w satisfies the model’s weak form (

(2.1) above) for all v ∈ L∞(0, T ;V 2) ∩ L3(0, T ;V 3).

Operationally, the above definition means one may set v = w in (2.1). Our numerical

tests in Section 6.5 include ones with different boundary conditions. For these the variational

formulation and solution notion must be appropriately adapted. Next, we give a theoretical

analysis of model (6.6) and show in Theorem 12 that this new model still maintains the

property that the effects of turbulent fluctuations on the mean are dissipative in long time

averaging sense.
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Theorem 12. Assume f ∈ L∞(0,∞;H−1(Ω)). For the strong solution w of model (6.6), we

have

w, l∇×w ∈ L∞(0,∞;L2(Ω)), (6.17)

lim inf
T→∞

[
1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt] = lim inf
T→∞

1

T

∫ T

0

∫
Ω

f ·wdxdt,

(6.18)

lim inf
T→∞

1

T

∫ T

0

∫
Ω

[β2∇× (l2∇×wt) ·w + l2|∇ ×w|3]dxdt ≥ 0. (6.19)

Proof. Taking the inner product of model (6.6) with w, we obtain

1

2

d

dt
(‖w‖2 + β2‖l(x)∇×w‖2) + ν‖∇w‖2 +

∫
Ω

l2(x)|∇ ×w|3dx =

∫
Ω

f ·wdx

≤ 1

2ν
‖f‖2

−1 +
ν

2
‖∇w‖2.

(6.20)

Rearrange the terms in inequality (6.20) to get

d

dt
(‖w‖2 + β2‖l(x)∇×w‖2) + ν‖∇w‖2 + 2

∫
Ω

l2(x)|∇ ×w|3dx ≤ 1

ν
‖f‖2

−1. (6.21)

For the term ν‖∇w‖2, we have

ν‖∇w‖2 ≥ ν

2CPF
‖w‖2 +

ν

2
‖∇w‖2 =

ν

2CPF
‖w‖2 +

ν

2
‖∇ ×w‖2

≥ ν

2CPF
‖w‖2 +

ν

2Lmax
‖l(x)∇×w‖2,

(6.22)

where we use the Poincaré inequality, and Lmax = supx∈Ω |l(x)|2.

Since 2
∫

Ω
l2(x)|∇ ×w|3dx ≥ 0, combining (6.22) and (6.21), we can obtain

d

dt
(‖w‖2 + β2‖l(x)∇×w‖2) +

ν

2CPF
‖w‖2 +

ν

2Lmax
‖l(x)∇×w‖2 ≤ 1

ν
‖f‖2

−1. (6.23)

Let g(t) := ‖w‖2 + β2‖l(x)∇×w‖2, we have

g′(t) + αg(t) ≤ 1

ν
‖f‖2

−1 ≤
1

ν
‖f‖2

L∞(0,∞;H−1(Ω)) <∞, (6.24)

100



where α = max{ ν
2CPF

, ν
2β2Lmax

} > 0. By inequality (6.24), we can deduce (6.17). Then

integrate (6.20) on [0, T ] and divide it by T to get

1

2T
(‖w(T )‖2 + β2‖l∇×w(T )‖2) +

1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

=
1

2T
(‖w(0)‖2 + β2‖l∇×w(0)‖2) +

1

T

∫ T

0

∫
Ω

f ·wdxdt.
(6.25)

Using (6.17), we have

O(
1

T
) +

1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

= O(
1

T
) +

1

T

∫ T

0

∫
Ω

f ·wdxdt,
(6.26)

which implies (6.18).

Next, consider the Reynolds stress term. Note that (6.25) can be rewritten as

1

2T
‖w(T )‖2 +

β2

2T

∫ T

0

d

dt
‖l∇×w‖2dt+

1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

=
1

2T
‖w(0)‖2 +

1

T

∫ T

0

∫
Ω

f ·wdxdt.

(6.27)

Then by (6.26) and (6.27), we have

β2

2T

∫ T

0

d

dt
‖l∇×w‖2dt+

1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

= O(
1

T
)−O(

1

T
) +

1

T

∫ T

0

∫
Ω

f ·wdxdt− 1

T

∫ T

0

ν‖∇w‖2dt

= O(
1

T
)−O(

1

T
) +

1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt,

(6.28)

which completes the proof of (6.19).
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6.3 THE FINITE ELEMENT APPROXIMATION

In this section, we present the finite element approximation for the corrected EV model

(6.6) and analyze its stability and convergence. One deviation from the (now standard)

numerical analysis of the NS equations is that the balance between the two model terms is

not be accounted for. Alternatively speaking, our model has two new terms not in the NS

equations. Their relative size, β, is important in the analysis .

The finite element approximation is : Find (wh, qh) ∈ (Xh, Qh) satisfying

(wh,t,vh) + β2(l2(x)∇×wh,t,∇× vh) + b(wh,wh,vh) + ν(∇wh,∇vh)− (qh,∇ · vh)

+ (l2(x)|∇ ×wh|∇ ×wh,∇× vh) = (f ,vh) ∀vh ∈ Xh,

(∇ ·wh, rh) = 0 ∀rh ∈ Qh.

(6.29)

Theorem 13. Method (6.29) is unconditionally energy stable. For all 0 < t ≤ T ,

‖wh‖2(t) + β2‖l(x)∇×wh‖2(t) + 2

∫ t

0

∫
Ω

|l
2
3 (x)∇×wh|3dxds+ ν

∫ t

0

‖∇wh‖2ds

≤ 1

ν

∫ t

0

‖f‖2
−1ds+ ‖wh‖2(0) + ‖l(x)∇×wh‖2(0).

(6.30)

Proof. Set vh = wh, rh = qh in (6.29) to obtain

1

2

d

dt
‖wh‖2 +

β2

2

d

dt
‖l(x)∇×wh‖2 +

∫
Ω

l2(x)|∇ ×wh|3dx + ν‖∇wh‖2

= (f ,wh) ≤
1

2ν
‖f‖2

−1 +
ν

2
‖∇wh‖2.

(6.31)

Multiplying (6.31) by 2 and integrating it from 0 to t complete the proof.

The next theorem shows the convergence result of method (6.29).
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Theorem 14. Assume w is a strong solution of model (6.6). Suppose the following condition

is satisfied: ∇w ∈ L4(0, T ;L2(Ω))

sup
0≤t≤T

‖w −wh‖2(t) + sup
0≤t≤T

β2‖l(x)∇× (w −wh)‖2(t) + ν‖∇(w −wh)‖2
L2(0,T ;L2)

+ C‖l
2
3 (x)∇× (w −wh)‖3

L3(0,T ;L3)

≤ C[ inf
vh∈Xh,rh∈Qh

{ sup
0≤t≤T

‖w − vh‖2(t) + sup
0≤t≤T

‖l(x)∇× (w − vh)‖2(t)

+ ‖l(x)∇× (w − vh)t‖2
L2(0,T ;L2) + ‖∇(w − vh)‖2

L4(0,T ;L2) + ‖(w − vh)t‖2
L2(0,T ;L2)

+ ‖∇(w − vh)‖2
L2(0,T ;L2) + ‖q − rh‖2

L2(0,T ;L2)

+ ‖l
2
3 (x)∇× (w − vh)‖

3
2

L3(0,T ;L3) + ‖l
2
3 (x)∇× (w − vh)‖3

L3(0,T ;L3)}

+ ‖w −wh‖2(0) + β2‖l(x)∇× (w −wh)‖2(0)].

(6.32)

Proof. Let w̃ : [0, T ] → Vh be arbitrary. Splitting the error e = w − wh via e = η − φh,

where η = w− w̃, φh = wh − w̃. Subtracting (6.29) from the weak formulation of (6.6), we

obtain

(et,vh) + β2(l2(x)∇× et,∇× vh) + b(e,w,vh) + b(wh, e,vh)

+ ν(∇e,∇vh)− (q − qh,∇ · vh)

+ (l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× vh)

+ (l2(x)|∇ × w̃|∇ × w̃ − l2(x)|∇ ×wh|∇ ×wh,∇× vh)

= 0 ∀vh ∈ Xh,

(∇ · e, rh) = 0 ∀rh ∈ Qh.

(6.33)

Setting vh = φh in (6.33), we have

1

2

d

dt
‖φh‖2 +

β2

2

d

dt
‖l(x)∇× φh‖2 + ν‖∇φh‖2

+ (l2(x)|∇ ×wh|∇ ×wh − l2(x)|∇ × w̃|∇ × w̃,∇× φh)

= (ηt, φh) + (l2(x)∇× ηt,∇× φh) + ν(∇η,∇φh)− (q − rh,∇ · φh)

+ b(η,w, φh)− b(φh,w, φh) + b(wh, η, φh)

+ (l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× φh),

(6.34)
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where rh ∈ Qh is arbitrary. Next, we need to bound the terms in (6.34). Using (2.1) in

Lemma 2, we can obtain

(l2(x)|∇ ×wh|∇ ×wh − l2(x)|∇ × w̃|∇ × w̃,∇× φh) ≥ C‖l
2
3 (x)∇× φh‖3

L3 . (6.35)

All the terms on the right hand side of (6.34) are bounded as follows. For the term (ηt, φh),

(ηt, φh) ≤ C‖ηt‖‖∇φh‖ ≤ C‖ηt‖2 +
ν

12
‖∇φh‖2. (6.36)

For the term (l2(x)∇× ηt,∇× φh),

(l2(x)∇× ηt,∇× φh) ≤ ‖l(x)∇× ηt‖‖l(x)∇× φh‖

≤ 1

2
‖l(x)∇× ηt‖2 +

1

2
‖l(x)∇× φh‖2.

(6.37)

The term ν(∇η,∇φh) is bounded by

ν(∇η,∇φh) ≤ C‖∇η‖2 +
ν

12
‖∇φh‖2. (6.38)

The term −(q − rh,∇ · φh) is bounded by

−(q − rh,∇ · φh) ≤ C‖q − rh‖2 +
ν

12
‖∇φh‖2. (6.39)

Using Lemma 3, we have the following estimate.

b(η,w, φh) ≤ C‖∇η‖‖∇w‖‖∇φh‖ ≤ C‖∇w‖2‖∇η‖2 +
ν

12
‖∇φh‖2. (6.40)

b(φh,w, φh) ≤ C‖φh‖
1
2‖∇w‖‖∇φh‖

3
2 ≤ C‖∇w‖4‖φh‖2 +

ν

12
‖∇φh‖2. (6.41)

b(wh, η, φh) ≤ C‖wh‖
1
2‖∇wh‖

1
2‖∇η‖‖∇φh‖

≤ C‖wh‖‖∇wh‖‖∇η‖2 +
ν

12
‖∇φh‖2

≤ C‖∇wh‖‖∇η‖2 +
ν

12
‖∇φh‖2,

(6.42)
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where we use the stability bound sup0≤t≤T ‖wh‖ ≤ C in Theorem 13. Lastly, by (2.2) in

Lemma 2, we have

(l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× φh)

≤ Cγ‖l
2
3 (x)∇× η‖L3‖l

2
3 (x)∇× φh‖L3 ,

(6.43)

where γ = max{‖l 2
3 (x)∇×w‖L3 , ‖l 2

3 (x)∇× w̃‖L3}. Since

‖l
2
3 (x)∇× w̃‖L3 ≤ ‖l

2
3 (x)∇×w‖L3 + ‖l

2
3 (x)∇× η‖L3 , (6.44)

there exists

γ = max{‖l
2
3 (x)∇×w‖L3 , ‖l

2
3 (x)∇× w̃‖L3} ≤ ‖l

2
3 (x)∇×w‖L3 + ‖l

2
3 (x)∇× η‖L3 . (6.45)

Combining (6.45) with (6.43), we obtain

(l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× φh)

≤ C‖l
2
3 (x)∇×w‖L3‖l

2
3 (x)∇× η‖L3‖l

2
3 (x)∇× φh‖L3

+ C‖l
2
3 (x)∇× η‖2

L3‖l
2
3 (x)∇× φh‖L3

≤ C‖l
2
3 (x)∇×w‖

3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + C‖l
2
3 (x)∇× η‖3

L3 +
C

2
‖l

2
3 (x)∇× φh‖3

L3 .

(6.46)

Combining (6.35)-(6.42), (6.46) with (6.34) gives to

d

dt
(‖φh‖2 + β2‖l(x)∇× φh‖2) + ν‖∇φh‖2 + C‖l

2
3 (x)∇× φh‖3

L3

≤ C‖∇w‖4‖φh‖2 + ‖l(x)∇× φh‖2

+ ‖l(x)∇× ηt‖2 + C‖∇w‖2‖∇η‖2 + C‖ηt‖2 + C‖∇η‖2 + C‖q − rh‖2

+ C‖∇wh‖‖∇η‖2 + C‖l
2
3 (x)∇×w‖

3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + C‖l
2
3 (x)∇× η‖3

L3 .

(6.47)

Integrate (6.47) from 0 to t to obtain

‖φh‖2(t) + β2‖l(x)∇× φh‖2(t) +

∫ t

0

[ν‖∇φh‖2 + C‖l
2
3 (x)∇× φh‖3

L3 ]ds

≤ ‖φh‖2(0) + β2‖l(x)∇× φh‖2(0)

+

∫ t

0

max{C‖∇w‖4,
1

β2
}(‖φh‖2 + β2‖l(x)∇× φh‖2)ds

+ C

∫ t

0

[‖l(x)∇× ηt‖2 + ‖∇w‖2‖∇η‖2 + ‖ηt‖2 + ‖∇η‖2 + ‖q − rh‖2

+ ‖∇wh‖‖∇η‖2 + ‖l
2
3 (x)∇×w‖

3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + ‖l
2
3 (x)∇× η‖3

L3 ]ds.

(6.48)
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Since
∫ T

0
‖∇w‖4dt ≤ C, using Gronwall’s inequality, we have

‖φh‖2(t) + β2‖l(x)∇× φh‖2(t) +

∫ t

0

[ν‖∇φh‖2 + C‖l
2
3 (x)∇× φh‖3

L3 ]ds

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0)

+

∫ t

0

[‖l(x)∇× ηt‖2 + ‖∇w‖2‖∇η‖2 + ‖ηt‖2 + ‖∇η‖2 + ‖q − rh‖2

+ ‖∇wh‖‖∇η‖2 + ‖l
2
3 (x)∇×w‖

3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + ‖l
2
3 (x)∇× η‖3

L3 ]ds}

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0) +

∫ t

0

‖l(x)∇× ηt‖2(s)ds

+ (

∫ t

0

‖∇w‖4(s)ds)
1
2 (

∫ t

0

‖∇η‖4(s)ds)
1
2 +

∫ t

0

‖ηt‖2(s)ds+

∫ t

0

‖∇η‖2(s)ds

+

∫ t

0

‖q − rh‖2(s)ds+ (

∫ t

0

‖∇wh‖2(s)ds)
1
2 (

∫ t

0

‖∇η‖4(s)ds)
1
2

+ (

∫ t

0

‖l
2
3 (x)∇×w‖3

L3(s)ds)
1
2 (

∫ t

0

‖l
2
3 (x)∇× η‖3

L3(s)ds)
1
2 +

∫ t

0

‖l
2
3 (x)∇× η‖3

L3(s)ds}.

(6.49)

With the stability bound (
∫ T

0
‖∇wh‖2(s)ds)

1
2 ≤ C, we can deduce

‖φh‖2(t) + β2‖l(x)∇× φh‖2(t) + ν

∫ t

0

‖∇φh‖2(s)ds+ C

∫ t

0

‖l
2
3 (x)∇× φh‖3

L3(s)ds

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0) +

∫ t

0

‖l(x)∇× ηt‖2(s)ds

+ (

∫ t

0

‖∇η‖4(s)ds)
1
2 +

∫ t

0

‖ηt‖2(s)ds+

∫ t

0

‖∇η‖2(s)ds+

∫ t

0

‖q − rh‖2(s)ds

+ (

∫ t

0

‖l
2
3 (x)∇× η‖3

L3(s)ds)
1
2 +

∫ t

0

‖l
2
3 (x)∇× η‖3

L3(s)ds}.

(6.50)

Then we have

sup
0≤t≤T

‖φh‖2(t) + sup
0≤t≤T

β2‖l(x)∇× φh‖2(t) + ν‖∇φh‖2
L2(0,T ;L2) + C‖l

2
3 (x)∇× φh‖3

L3(0,T ;L3)

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0) + ‖l(x)∇× ηt‖2
L2(0,T ;L2)

+ ‖∇η‖2
L4(0,T ;L2) + ‖ηt‖2

L2(0,T ;L2) + ‖∇η‖2
L2(0,T ;L2)

+ ‖q − rh‖2
L2(0,T ;L2) + ‖l

2
3 (x)∇× η‖

3
2

L3(0,T ;L3) + ‖l
2
3 (x)∇× η‖3

L3(0,T ;L3)}.
(6.51)
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Adding (6.51) to

sup
0≤t≤T

‖η‖2(t) + sup
0≤t≤T

β2‖l(x)∇× η‖2(t) + ν‖∇η‖2
L2(0,T ;L2) + C‖l

2
3 (x)∇× η‖3

L3(0,T ;L3)

(6.52)

and then using the triangle inequality complete the proof.

6.4 TIME DISCRETIZATION

In this section, we discuss the time discretization scheme for the corrected EV model (6.6).

Divide the time interval [0, T ] to m elements (tn, tn+1). Here, ∆t = T
m

, tn = n∆t for

n = 0, 1, 2, · · · ,m. We denote wn = w(tn) and similarly for other variables.

Algorithm 10 (First order BE scheme). Given (wn, qn), find (wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(wn+1,wn+1,v) + ν(∇wn+1,∇v)

+ (l2(x)|∇ ×wn+1|∇ ×wn+1,∇× v)− (qn+1,∇ · v) = (fn+1,v) ∀v ∈ X,

(∇ ·wn+1, r) = 0 ∀r ∈ Q.
(6.53)

An á priori bound on wn+1 is proven in the next theorem. The system (5.1) reduces to a

finite dimensional nonlinear system with an á priori bound on any possible solution. Thus,

existence of wn+1 then follows by a standard fixed point argument similar to the nonlinear

system arising in the space and time discretized NSE case. When discretized in time but

not in space, existence of wn+1 can also be proven by monotonicity techniques.

Theorem 15. Algorithm 10 is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 +
m−1∑
n=0

‖wn+1 −wn‖2 +
m−1∑
n=0

β2‖l(x)∇× (wn+1 −wn)‖2

+ 2∆t
m−1∑
n=0

∫
Ω

|l
2
3 (x)∇×wn+1|3dx + ν∆t

m−1∑
n=0

‖∇wn+1‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+1‖2
−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(6.54)
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Proof. Set v = wn+1, r = qn+1 in (10) to obtain

1

2∆t
(‖wn+1‖2 − ‖wn‖2 + ‖wn+1 −wn‖2)

+
β2

2∆t
(‖l(x)∇×wn+1‖2 − ‖l(x)∇×wn‖2 + ‖l(x)∇×wn+1 − l(x)∇×wn‖2)

+

∫
Ω

l2(x)|∇ ×wn+1|3dx + ν‖∇wn+1‖2

= (fn+1,wn+1)

≤ 1

2ν
‖fn+1‖2

−1 +
ν

2
‖∇wn+1‖2.

(6.55)

Multiplying (6.55) by 2∆t and summing it from n = 0 to n = m− 1 complete the proof.

Theorem 16. Assume w is a strong solution of the model. Assume that the true solution

w satisfies the following regularity.

∇w ∈ L∞(0, T ;L2), wtt ∈ L2(0, T ;L2), l(x)∇×wtt ∈ L2(0, T ;L2). (6.56)

Then,

‖em‖2 + β2‖l(x)∇× em‖2 + ∆t
m−1∑
n=0

ν‖∇en+1‖2 + 2∆t
m−1∑
n=0

C‖l
2
3 (x)∇× en+1‖3

L3 ≤ C∆t2.

(6.57)

Proof. At time tn+1, the true solution (w, q) satisfies

(
w(tn+1)−w(tn)

∆t
,v) + β2(l2(x)∇× w(tn+1)−w(tn)

∆t
,∇× v) + b(w(tn+1),w(tn+1),v)

+ (l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1),∇× v) + ν(∇w(tn+1),∇v)− (p(tn+1),∇ · v)

= (fn+1,v) + (Rn+1,v) + (l2(x)∇×Rn+1,∇× v) ∀v ∈ X,

(∇ ·w(tn+1), r) = 0 ∀r ∈ Q,
(6.58)
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where Rn+1 = w(tn+1)−w(tn)
∆t

−wt(t
n+1). Denote en+1 = w(tn+1)−wn+1. Subtracting (6.58)

from (10), we have

(
en+1 − en

∆t
,v) + β2(l2(x)∇× en+1 − en

∆t
,∇× v) + b(en+1,w(tn+1),v) + b(wn+1, en+1,v)

+ (l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1)− l2(x)|∇ ×wn+1|∇ ×wn+1,∇× v)

+ ν(∇en+1,∇v)− (p(tn+1)− qn+1,∇ · v)

= (Rn+1,v) + β2(l2(x)∇×Rn+1,∇× v) ∀v ∈ X,

(∇ · en+1, r) = 0 ∀r ∈ Q.
(6.59)

Setting v = en+1 in (6.59), we can obtain

1

2∆t
(‖en+1‖2 − ‖en‖2 + ‖en+1 − en‖2) + ν‖∇en+1‖2

+
β2

2∆t
(‖l(x)∇× en+1‖2 − ‖l(x)∇× en‖2 + ‖l(x)∇× en+1 − l(x)∇× en‖2)

+ (l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1)− l2(x)|∇ ×wn+1|∇ ×wn+1,∇× en+1)

= (Rn+1, en+1) + β2(l2(x)∇×Rn+1,∇× en+1)− b(en+1,w(tn+1), en+1).

(6.60)

Next, we will bound the terms in (6.60). Using (2.1) in Lemma 2, we can obtain

(l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1)− l2(x)|∇ ×wn+1|∇ ×wn+1,∇× en+1)

≥ C‖l
2
3 (x)∇× en+1‖3

L3 .
(6.61)

For the term (Rn+1, en+1),

(Rn+1, en+1) ≤ C‖Rn+1‖‖∇en+1‖ ≤ C‖Rn+1‖2 +
ν

4
‖∇en+1‖2. (6.62)

For the term (l2(x)∇×Rn+1,∇× en+1),

β2(l2(x)∇×Rn+1,∇× en+1) ≤ β2‖l(x)∇×Rn+1‖‖l(x)∇× en+1‖

≤ β2

2
‖l(x)∇×Rn+1‖2 +

β2

2
‖l(x)∇× en+1‖2.

(6.63)

Lastly, the term −b(en+1,w(tn+1), en+1) is bounded by

−b(en+1,w(tn+1), en+1) ≤ C‖en+1‖
1
2‖∇w(tn+1)‖‖∇en+1‖

3
2

≤ C‖en+1‖2‖∇w(tn+1)‖4 +
ν

4
‖∇en+1‖2.

(6.64)
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Combining (6.61)-(6.64) with (6.60), we have

1

2∆t
(‖en+1‖2 − ‖en‖2 + ‖en+1 − en‖2) +

ν

2
‖∇en+1‖2 + C‖l

2
3 (x)∇× en+1‖3

L3

+
β2

2∆t
(‖l(x)∇× en+1‖2 − ‖l(x)∇× en‖2 + ‖l(x)∇× en+1 − l(x)∇× en‖2)

≤ C‖∇w(tn+1)‖4‖en+1‖2 +
β2

2
‖l(x)∇× en+1‖2 + C‖Rn+1‖2 +

β2

2
‖l(x)∇×Rn+1‖2.

(6.65)

Multiplying (6.65) by 2∆t and summing it from n = 0 to n = m− 1, we obtain

‖em‖2 +
m−1∑
n=0

‖en+1 − en‖2 + ∆t
m−1∑
n=0

ν‖∇en+1‖2 + 2∆t
m−1∑
n=0

C‖l
2
3 (x)∇× en+1‖3

L3

+ β2‖l(x)∇× em‖2 + ∆t
m−1∑
n=0

β2‖l(x)∇× en+1 − l(x)∇× en‖2

≤ ‖e0‖2 + β2‖l(x)∇× e0‖2 + C∆t
m−1∑
n=0

‖∇w(tn+1)‖4‖en+1‖2

+ ∆t
m−1∑
n=0

β2‖l(x)∇× en+1‖2 + C∆t
m−1∑
n=0

‖Rn+1‖2 + ∆t
m−1∑
n=0

β2‖l(x)∇×Rn+1‖2.

(6.66)

Since ‖∇w‖L∞(0,T ;L2) ≤ C, using Lemma 1, when ∆t < 1
max{C‖∇w‖L∞(0,T ;L2),1}

, we can obtain

‖em‖2 + β2‖l(x)∇× em‖2 + ∆t
m−1∑
n=0

ν‖∇en+1‖2 + 2∆t
m−1∑
n=0

C‖l
2
3 (x)∇× en+1‖3

L3

≤ C[‖e0‖2 + β2‖l(x)∇× e0‖2 + ∆t
m−1∑
n=0

‖Rn+1‖2 + ∆t
m−1∑
n=0

β2‖l(x)∇×Rn+1‖2].

(6.67)

We also have

∆t
m−1∑
n=0

‖Rn+1‖2 = ∆t
m−1∑
n=0

‖w(tn+1)−w(tn)

∆t
−wt(t

n+1)‖2

≤ C∆t2
m−1∑
n=0

∫ tn+1

tn
‖wtt‖2ds = C∆t2‖wtt‖L2(0,T ;L2),

(6.68)
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and

∆t
m−1∑
n=0

β2‖l(x)∇×Rn+1‖2 = ∆t
m−1∑
n=0

β2‖l(x)∇× (
w(tn+1)−w(tn)

∆t
−wt(t

n+1))‖2

≤ C∆t2
m−1∑
n=0

∫ tn+1

tn
β2‖l(x)∇×wtt‖2ds

= C∆t2β2‖l(x)∇×wtt‖L2(0,T ;L2).

(6.69)

Finally, combining (6.68), (6.69), and (6.67) completes the proof.

Algorithm 11 (First order linearly implicit, Backward-Euler scheme). Given (wn, qn), find

(wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(wn,wn+1,v) + ν(∇wn+1,∇v)

+ (l2(x)|∇ ×wn|∇ ×wn+1,∇× v)− (qn+1,∇ · v) = (fn+1,v) ∀v ∈ X,

(∇ ·wn+1, r) = 0 ∀r ∈ Q.
(6.70)

Algorithm 11 leads to a linear problem for a continuous and coercive operator for wn+1.

Existence of wn+1 follows from the Lax-Milgram lemma.

Theorem 17. Algorithm 11 is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 +
m−1∑
n=0

‖wn+1 −wn‖2 +
m−1∑
n=0

β2‖l(x)∇× (wn+1 −wn)‖2

+ 2∆t
m−1∑
n=0

∫
Ω

l2(x)|∇ ×wn| · |∇ ×wn+1|2dx + ν∆t
m−1∑
n=0

‖∇wn+1‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+1‖2
−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(6.71)

Remark 5. The proof of Theorem 17 is similar to that of Theorem 15. We omit it here.
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Algorithm 12 (Second order Crank-Nicolson scheme). Given (wn, qn), find (wn+1, qn+1)

satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(wn+ 1

2 ,wn+ 1
2 ,v) + ν(∇wn+ 1

2 ,∇v)

+ (l2(x)|∇ ×wn+ 1
2 |∇ ×wn+ 1

2 ,∇× v)− (qn+ 1
2 ,∇ · v) = (fn+ 1

2 ,v) ∀v ∈ X,

(∇ ·wn+1, r) = 0 ∀r ∈ Q,
(6.72)

where we denote wn+ 1
2 = wn+wn+1

2
, and similarly for other variables.

Equations (6.72) in Algorithm 12 leads to a nonlinear system of equations for wn+1. These

equations can be rearranged into a nonlinear system for wn+1/2 with the same structure as

the nonlinear system occurring in Algorithm 10. By the same argument existence for wn+1/2

follows. From this, by subtracting wn/2, existence follows for wn+1.

Theorem 18. Algorithm 12 is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 + 2∆t
m−1∑
n=0

∫
Ω

|l
2
3 (x)∇×wn+ 1

2 |3dx + ν∆t
m−1∑
n=0

‖∇wn+ 1
2‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+ 1
2‖2
−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(6.73)

Proof. Set v = wn+ 1
2 in (6.72) to obtain

1

2∆t
(‖wn+1‖2 − ‖wn‖2) +

β2

2∆t
(‖l(x)∇×wn+1‖2 − ‖l(x)∇×wn‖2)

+

∫
Ω

l2(x)|∇ ×wn+ 1
2 |3dx + ν‖∇wn+ 1

2‖2

= (fn+ 1
2 ,wn+ 1

2 ) ≤ 1

2ν
‖fn+ 1

2‖2
−1 +

ν

2
‖∇wn+ 1

2‖2.

(6.74)

Multiplying (6.74) by 2∆t and summing it from n = 0 to n = m− 1 complete the proof.
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Algorithm 13 (Second order Crank-Nicolson linearly extrapolation scheme). Given

wn−1,wn, qn, find (wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(ϕ(wn),wn+ 1

2 ,v) + ν(∇wn+ 1
2 ,∇v)

+ (l2(x)|∇ × ϕ(wn)|∇ ×wn+ 1
2 ,∇× v)− (qn+ 1

2 ,∇ · v) = (fn+ 1
2 ,v) ∀v ∈ X,

(∇ ·wn+1, r) = 0 ∀r ∈ Q,
(6.75)

where ϕ(wn) = 3
2
wn − 1

2
wn−1.

Algorithm 13 is linearly implicit. It leads to a system for wn+1 that is continuous and

coercive. Existence of wn+1 then follows, as for the linearly implicit BE method, by the

Lax-Milgram lemma.

Theorem 19. Algorithm 13 is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 + 2∆t
m−1∑
n=0

∫
Ω

l2(x)|∇ × ϕ(wn)||∇ ×wn+ 1
2 |2dx

+ ν∆t
m−1∑
n=0

‖∇wn+ 1
2‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+ 1
2‖2
−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(6.76)

Remark 6. The proof of Theorem 19 is similar to that of Theorem 18. We just omit it here.

6.5 NUMERICAL TEST

Since we study the simplest realization of an algebraic model, our goal is simply to test if

the model correction can exhibit backscatter in the form of a negative total dissipation at

some times. We select a 2d test without a global rotational flow (due to the choice of the

Baldwin-Lomax as the starting point). We use the first order scheme Algorithm 11 and

the second order scheme Algorithm 13. For both methods, we compute the evolution of

four components of dissipation in their approximation to the effect of the Reynolds stress
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on the mean kinetic energy. The P2-P1 Taylor-Hood mixed finite elements are utilized for

discretization in space. FreeFem++ [142] is used for simulation.

Choose a rectangle domain Ω = [0, 4] × [0, 1] with a square obstacle Ω = [0.5, 0.6] ×

[0.45, 0.55] inside it. We compute the problem on a Delaunay-Vornoi generated triangular

mesh with more mesh points near the obstacle area and less in other area, shown in Figure

20. The flow passes through this domain from left to right. For boundary conditions on the

inflow boundary, we let u|x−direction = 4y(1 − y), u|y−direction = 0. On the right, out-flow,

boundary, we impose the ”do-nothing” outflow boundary condition, [126] p. 21 eqn. (2.37)

and [111] p. 475. The no-slip condition u = 0 is imposed on other boundaries. We take

f = 0, T = 20, ∆t = 0.01, and Re = 10, 000. Let ȳ denote the distance of x to the nearest

wall. The mixing length is chosen ([119] Chapter 3 e.g. eqn. (3.99) p. 76) to be

l(x) =

0.41 · ȳ when 0 < ȳ < 0.2 ·Re− 1
2

0.41 · 0.2 ·Re− 1
2 otherwise

The degree of freedom is 17625, the shortest triangle edge is 0.0102605, and the longest is

0.097187. An alternatives is to pick l(x) = h, the local meshwidth, in the spirit of large eddy

simulation.

Figure 20: Mesh used in our computation.

For Algorithm 9, [130], since Backward-Euler scheme has substantial numerical dissipa-

tion, we select β = 10 and 100 to compute the following quantities, shown in Figure 21
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(β = 10), and Figure 22 (β = 100).

Backscatter term (BST) = β2

∫
Ω

l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+1dx

Numerical dissipation (ND) =
β2

2∆t
‖l(x)∇×wn+1 − l(x)∇×wn‖2,

Fluctuation dissipation (FD) =

∫
Ω

l2(x)|∇ ×wn||∇ ×wn+1|2dx,

Total Dissipation (TD) =

∫
Ω

(β2l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+1

+ l2(x)|∇ ×wn||∇ ×wn+1|2)dx.

Figure 21: BST,ND,FD,TD vs Time, β = 10, Algorithm 11.
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Figure 22: BST,ND,FD,TD vs Time, β = 100, Algorithm 11.
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For Algorithm 13,[130] [143], we compute the following quantities, shown in Figure 23

(β = 10).

Backscatter term (BST) = β2

∫
Ω

l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+ 1

2dx,

Fluctuation dissipation (FD) =

∫
Ω

l2(x)|∇ × ϕ(wn)||∇ ×wn+ 1
2 |2dx,

Total Dissipation (TD) =

∫
Ω

(β2l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+ 1

2

+ l2(x)|∇ × ϕ(wn)||∇ ×wn+ 1
2 |2)dx,

where ϕ(wn) = 3
2
wn − 1

2
wn−1 and wn+ 1

2 = 1
2
(wn+1 + wn).

Figure 23: BST,FD,TD vs Time, β = 10, Algorithm 13.
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In both Figure 22 and Figure 23, TD is negative at some times, indicating that backscat-

ter occurs and energy is transferred from fluctuation to the mean at that moment. However

in Figure 21, there is no appearance of negative values in TD. The results show that the

numerical dissipation in Algorithm 11 (the backward Euler time discretization) is compared

to the model dissipation and, for β = 10, dominates the term modeling the flow of energy

from fluctuations back to the mean. Algorithm 13 does not contain any numerical dissipa-

tion. For Algorithm 13, β = 10, the effects of the added term does provide bursts of energy

to the mean flow.

In order to test the convergence, we reduce both mesh size and time step, then recom-

pute the backscatter term and dissipation terms. Since Algorithm 13 does not contain any

numerical dissipation, we use Algorithm 13 to do this test.

Firstly, we double the mesh points of all edges. The degree of freedom is 69657, the

shortest triangle edge is 0.00503187, and the longest is 0.0495673. We also halve the time

step and take ∆t = 0.005. Figure 24 shows the result.

We furthermore double the mesh points of all edges. The degree of freedom is 276438, the

shortest triangle edge is 0.0024586, and the longest is 0.0270444. The time step ∆t = 0.0025.

Figure 25 shows the result.

Both Figure 24 and Figure 25 indicate the occurrence of backscatter at the same moments

on successively refined meshes.

6.6 CONCLUSIONS

Complex turbulence not at statistical equilibrium is impossible to simulate using eddy vis-

cosity models due to a backscatter. This research presents the way to correct the Baldwin-

Lomax model for non-equilibrium effects and gives an analysis of the energy evolution in the

corrected model. Furthermore, a finite element approximation of the corrected eddy model

with first-order and second-order time discretization are also presented. A numerical test is

given to support the theory.
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Figure 24: BST,FD,TD vs Time, β = 10, ∆t = 0.005,Algorithm 13.
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Figure 25: BST,FD,TD vs Time, β = 10, ∆t = 0.0025,Algorithm 13.
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7.0 CONCLUSIONS AND OPEN QUESTIONS

The major motivation of this thesis is to develop low complexity, time accurate, and model

accurate methods to solve various problems in computational fluid dynamics. Rigorous

mathematical foundation is provided through stability and error analysis to ensure accuracy

and reliability of the methods. Numerical tests which are included for each project address

the development of efficient methods and further prove the accuracy of fluid prediction.

In Chapter 2, we presented an BETF algorithm, construct an adaptive BETF algorithm

and another time filter for pth order BDF method for Stokes-Darcy equation. Another

second order method is derived by the combination of Backward Euler plus a time filter that

is easily completed by adding three lines to the previous code and slightly modifying the

matrix of right hand side based on the BE method. Both theoretical analysis and tests both

indicate that adding the filter step to Backward Euler have the advantage of improving time

accuracy and convergence order. The numerical tests performed verify that time adaptivity

guarantees accuracy while decreasing storage required and overall complexity.

Accurate and stable time discretization is important for obtaining correct flow predic-

tions. The backward Euler time discretization is a stable but inaccurate method. In Chapter

3, we have shown that for minimum extra programming effort, computational complexity,

and storage, second order accuracy and unconditional stability can be obtained by adding

a time filter. Due to the embedded and modular structure of the algorithm, both adaptive

time-step and adaptive order are easily implemented in a code based on a backward Euler

time discretization. Extension of the method and analysis to yet higher order time discretiza-

tion is important as is exploring the effect of time filters on other methods possible for Step

1 of Algorithm 4. Analysis of the effect of time filters with moving and time dependent

boundary conditions would also be a significant extension.
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In Chapter 4, we construct two decoupled methods based on the artificial compression

method and the partitioned method for the time-dependent magnetohydrodynamics flows

at low magnetic Reynolds numbers. Theoretical analysis indicates that the error estimate

of Algorithm 8 is ‖u(tn) − un‖ ≤ C(∆t + ε) ∀n ≤ T/∆t. We also explore the non-physical

acoustic waves that comes from the application of the artificial compression method and give

a brief analysis for it. The numerical examples illustrate the correctness of our theoretical

analysis. An open question is that the error estimate given in Theorem 8 shows ‖u(t) −

uε(t)‖ ≤ C
√
ε ∀t ∈ [0, T ], which is not optimal in view of the error estimate in Theorem

11. The optimal error estimate for the slightly compressible model is necessary because it

can indicate the relation between the coefficient ε and the time step ∆t and thus suggest

the optimal choice of ε according to different time-discretization schemes. The other open

question is how to control the non-physical acoustic waves. Since the non-physical acoustic

waves will increasingly influence the accuracy of computing solution as the time step goes

to 0, it should be an interesting issue to study effective methods to solve this problem, such

as adding stabilization terms (e.g. γ∇∇ · u) or utilizing time filters.

Last but not least, we have considered the simplest form of the Baldwin-Lomax eddy

viscosity model, making the simplest choices within the approach of [139] to adapt it to

incorporate the effects of energy flow from fluctuations back to means (a form of statistical

backscatter). For internal flow with no-slip boundary condition in both 2d and 3d, the effects

of fluctuations on means are dissipative on time average but can have bursts (with time

average zero) for which energy flow reverses. We have shown that the corrected Baldwin-

Lomax model shares this property. We have given a stability analysis of two numerical

methods for numerical approximation of the resulting model: one with substantial numerical

dissipation and one without. Using this two methods, numerical tests confirm backscatter

does occur and that the results obtained depend upon the numerical dissipation in the

algorithms used and the single model calibration parameter β.
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APPENDIX A

VELOCITY ERROR ANALYSIS

A.0.1 PROOF OF LEMMA 9

Proof. By Taylor’s theorem with the integral remainder,

D[u(tn+1)]−∆tut(t
n+1) =

3

2
u(tn+1)−∆tut(t

n+1)

−2

(
u(tn+1)−∆tut(t

n+1) +
∆t2

2
utt(t

n+1)) +
1

2

∫ tn

tn+1

uttt(t)(t
n − t)2dt

)
+

1

2

(
u(tn+1)− 2∆tut(t

n+1) + 2∆t2utt(t
n+1)) +

1

2

∫ tn−1

tn+1

uttt(t)(t
n−1 − t)2dt

)

= −
∫ tn+1

tn
uttt(t

n − t)2dt− 1

4

∫ tn+1

tn−1

uttt(t
n−1 − t)2dt.

These terms are first estimated by Cauchy-Schwarz.(∫ tn+1

tn
uttt(t)(t

n − t)2dt

)2

≤
∫ tn+1

tn
u2
tttdt

∫ tn+1

tn
(tn − t)4dt =

∆t5

5

∫ tn+1

tn
u2
tttdt.

1

16

(∫ tn+1

tn−1

uttt(t)(t
n−1 − t)2dt

)2

≤ 1

16

∫ tn+1

tn−1

u2
tttdt

∫ tn+1

tn−1

(tn−1 − t)4dt =
2∆t5

5

∫ tn+1

tn−1

u2
tttdt.
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Thus, (
D[u(tn+1)]

∆t
− ut(tn+1)

)2

≤ 6

5
∆t3

∫ tn+1

tn−1

u2
tttdt.

Integrating with respect to x yields the first inequality. Next,

I[u(tn+1)]− u(tn+1) =
1

2
u(tn+1)− u(tn) +

1

2
u(tn−1)

=

∫ tn+1

tn
utt(t)(t

n+1 − t)dt+

∫ tn−1

tn
utt(t)(t

n−1 − t)dt.

By similar steps, (∫ tn+1

tn
utt(t)(t

n − t)dt

)2

≤ ∆t3

3

∫ tn+1

tn
u2
ttdt.

(∫ tn

tn−1

utt(t)(t
n−1 − t)dt

)2

≤ ∆t3

3

∫ tn

tn−1

u2
ttdt.

Therefore, (
I[u(tn+1)]− u(tn+1)

)2 ≤ 4

3
∆t3

∫ tn+1

tn−1

u2
ttdt. (A.1)

The last inequality can be proved using the same strategy.

A.0.2 PROOF OF THEOREM 11

Proof. We prove this for Option A. A parallel proof exists for Option B. At tn+1 = (n+1)∆t,

the true solution of (6.1) satisfies,(
D[u(tn+1)]

∆t
, vh

)
+ b
(
I[u(tn+1)], I[u(tn+1)], vh

)
+ ν

(
∇I[u(tn+1)],∇vh

)
−
(
p(tn+1),∇ · vh

)
=
(
fn+1, vh

)
+ τn+1(u, p; vh) ∀vh ∈ Xh.

(A.2)

Subtracting (4.6) from (A.2) yields(
D[en+1

u ]

∆t
, vh

)
+ b
(
I[en+1

u ], I[u(tn+1)], vh
)

+ b
(
I[un+1

h ], I[en+1
u ], vh

)
+ ν

(
∇I[en+1

u ],∇vh
)

−
(
en+1
p ,∇ · vh

)
= τn+1(u, p; vh).

(A.3)
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Decompose the error equation for velocity

u(tn+1)− un+1
h = (un+1 − ũn+1

h ) + (ũn+1
h − un+1

h ) = ηn+1 + φn+1
h . (A.4)

where ũn+1
h is the best approximation of u(tn+1) in Vh.

Set vh = I[φn+1
h ]. Using the identity (2.7) with a = φn+1

h , b = φnh, c = φn−1
h , (A.4), and

applying (λh,∇ · φh) = 0 for all λh ∈ V h, equation (A.3) can be written

1

4∆t
(‖φn+1

h ‖2 + ‖2φn+1
h − φnh‖2 + ‖φn+1

h − φnh‖2)

− 1

4∆t
(‖φnh‖2 + ‖2φnh − φn−1

h ‖2 + ‖φnh − φn−1
h ‖2)

+
3

4∆t
‖φn+1

h − 2φnh + φn−1
h ‖2 + ν‖∇I[φn+1

h ]‖2

= −
(
D[ηn+1]

∆t
, I[φn+1

h ]

)
− b
(
I[φn+1

h ], I[u(tn+1)], I[φn+1
h ]

)
− b
(
I[un+1

h ], I[ηn+1], I[φn+1
h ]

)
− b
(
I[ηn+1], I[u(tn+1)], I[φn+1

h ]
)

+
(
p(tn+1)− λn+1

h ,∇ · I[φn+1
h ]

)
− ν

(
∇I[ηn+1],∇I[φn+1

h ]
)

+ τn+1(u, p; I[φn+1
h ]).

(A.5)

The next step in the proof is to bound all the terms on the right hand side of (A.5) and

absorb terms into the left hand side. For arbitrary ε > 0, the first term on the right hand

side of (A.5) is bounded in the following way,

−
(
D[ηn+1]

∆t
, I[φn+1

h ]

)
≤ 1

4ε

∥∥∥∥D[ηn+1]

∆t

∥∥∥∥2

−1

+ ε‖∇I[φn+1
h ]‖2. (A.6)

The first nonlinear term can be bounded as

− b
(
I[φn+1

h ], I[u(tn+1)], I[φn+1
h ]

)
≤ C‖I[φn+1

h ]‖‖I[u(tn+1)]‖2‖∇I[φn+1
h ]‖

≤ C2

4ε
‖I[φn+1

h ]‖2‖I[u(tn+1)]‖2
2 + ε‖∇I[φn+1

h ]‖2.
(A.7)

The second nonlinear term is estimated by rewriting it using (A.4) as follows

− b
(
I[un+1

h ], I[ηn+1], I[φn+1
h ]

)
= −b

(
I[u(tn+1)], I[ηn+1], I[φn+1

h ]
)

+ b
(
I[ηn+1], I[ηn+1], I[φn+1

h ]
)

+ b
(
I[φn+1

h ], I[ηn+1], I[φn+1
h ]

)
.

(A.8)
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then find bounds for all terms on the right hand side of (A.8). We bound the third nonlinear

term in (A.5) the same way as the first nonlinear term in (A.8).

− b
(
I[u(tn+1)], I[ηn+1], I[φn+1

h ]
)

≤ C‖∇I[u(tn+1)]‖‖∇I[ηn+1]‖‖∇I[φn+1
h ]‖

≤ C2

4ε
‖u‖2

∞,1‖∇I[ηn+1]‖2 + ε‖∇I[φn+1
h ]‖2,

(A.9)

and

b
(
I[ηn+1], I[ηn+1], I[φn+1

h ]
)
≤ C2

4ε
‖∇I[ηn+1]‖4 + ε‖∇I[φn+1

h ]‖2. (A.10)

Next, we have

b
(
I[φn+1

h ], I[ηn+1], I[φn+1
h ]

)
≤ C‖I[φn+1

h ]‖
1
2‖∇I[φn+1

h ]‖
1
2‖∇I[ηn+1]‖‖∇I[φn+1

h ]‖

≤ Ch
−1
2 ‖I[φn+1

h ]‖‖∇I[ηn+1]‖‖∇I[φn+1
h ]‖

≤ Ch
1
2‖I[φn+1

h ]‖‖I[u(tn+1)]‖2‖∇I[φn+1
h ]‖

≤ C2

4ε
h‖I[φn+1

h ]‖2‖I[u(tn+1)]‖2
2 + ε‖∇I[φn+1

h ]‖2.

(A.11)

The pressure can be bounded as follows

(
p(tn+1)− λn+1

h ,∇ · I[φn+1
h ]

)
≤ C2

4ε
‖p(tn+1)− λn+1

h ‖2 + ε‖∇I[φn+1
h ]‖2. (A.12)

Then we can bound the term after the pressure,

− ν
(
∇I[ηn+1],∇(I[φn+1

h ])
)
≤ C2

4ε
‖∇I[ηn+1]‖2 + ε‖∇I[φn+1

h ]‖2. (A.13)

Next we will bound all components of the consistency error τn+1(u, p; I[φn+1
h ]).(

D[u(tn+1)]

∆t
− ut(tn+1), I[φn+1

h ]

)
≤ C‖D[u(tn+1)]

∆t
− ut(tn+1)‖‖∇I[φn+1

h ]‖

≤ C2

4ε
‖D[u(tn+1)]

∆t
− ut(tn+1)‖2 + ε‖∇I[φn+1

h ]‖2.

(A.14)

ν
(
∇(I[u(tn+1)]− u(tn+1)),∇I[φn+1

h ]
)

≤ C2

4ε
‖∇(I[u(tn+1)]− u(tn+1))‖2 + ε‖∇I[φn+1

h ]‖2.
(A.15)

126



Setting ε = ν
16

, the nonlinear term in τn+1(u, p; I[φn+1
h ]) is then estimated as follows,

b
(
I[u(tn+1)], I[u(tn+1)], I[φn+1

h ]
)
− b(u(tn+1), u(tn+1), I[φn+1

h ])

= b
(
I[u(tn+1)]− u(tn+1), I[u(tn+1)], I[φn+1

h ]
)
− b(u(tn+1), I[u(tn+1)]− u(tn+1), I[φn+1

h ])

≤ C‖∇(I[u(tn+1)]− u(tn+1))‖‖∇I[φn+1
h ]‖

(
‖∇I[u(tn+1)]‖+ ‖∇u(tn+1)‖

)
≤ C2

4ε
‖∇(I[u(tn+1)]− u(tn+1))‖2

(
‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2

)
+ ε‖∇I[φn+1

h ]‖2.

1

4∆t
(‖φn+1

h ‖2 + ‖2φn+1
h − φnh‖2 + ‖φn+1

h − φnh‖2) +
ν

4
‖∇I[φn+1

h ]‖2

− 1

4∆t
(‖φnh‖2 + ‖2φnh − φn−1

h ‖2 + ‖φnh − φn−1
h ‖2) +

3

4∆t
‖φn+1

h − 2φnh + φn−1
h ‖2

≤ C
(
‖D[ηn+1]

∆t
‖2
−1 + (1 + h)‖I[φn+1

h ]‖2‖I[u(tn+1)]‖2
2

+ ‖u‖2
∞,1‖∇I[ηn+1]‖2 + ‖∇I[ηn+1]‖4 + ‖p(tn+1)− λn+1

h ‖2

+ ‖∇I[ηn+1]‖2 + ‖D[u(tn+1)]

∆t
− ut(tn+1)‖2

+ ‖∇(I[u(tn+1)]− u(tn+1))‖2

+ ‖∇(I[u(tn+1)]− u(tn+1))‖2(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)
)
.

(A.16)

Let κ = Cν‖u‖2
∞,2(1 +h). Assume ∆t < 1

κ
, summing from n = 1 to n = N − 1 and applying

the discrete Gronwall lemma we obtain

‖φNh ‖2 + ‖2φNh − φN−1
h ‖2 + ‖φNh − φN−1

h ‖2

+
N−1∑
n=1

3‖φn+1
h − 2φnh + φn−1

h ‖2 + ν∆t
N−1∑
n=1

‖∇I[φn+1
h ]‖2

≤ e

(
∆tκ(N−1)

1−∆tκ

)(
‖φ1

h‖2 + ‖2φ1
h − φ0

h‖2 + ‖φ1
h − φ0

h‖2 + C∆t
N−1∑
n=1

‖D[ηn+1]

∆t
‖2
−1

+ C∆tν(‖u‖2
∞,1 + 1)

N−1∑
n=1

‖∇I[ηn+1]‖2 + C∆t
N−1∑
n=1

‖∇I[ηn+1]‖4

+ C∆t
N−1∑
n=1

‖p(tn+1)− λn+1
h ‖2 + C∆t

N−1∑
n=1

‖D[u(tn+1)]

∆t
− ut(tn+1)‖2

+ C∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2

+ C∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)
)
.

(A.17)
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The first three terms can be bounded as

‖φ1
h‖2 + ‖2φ1

h − φ0
h‖2 + ‖φ1

h − φ0
h‖2

≤ C
(
‖u(t1)− u1

h‖2 + ‖(u(t0)− u0
h)‖2

)
+ Ch2k+2‖|u‖|2∞,k+1.

(A.18)

We bound the fourth term in (A.17) as follows

ν∆t
N−1∑
n=1

‖D[ηn+1]

∆t
‖2
−1 = ν∆t

N−1∑
n=1

‖
3
2
(ηn+1 − ηn)− 1

2
(ηn − ηn−1)

∆t
‖2
−1

≤ C

N∑
n=0

∫ tn+1

tn−1

‖ηt‖2ds ≤ Ch2k+2‖ut‖2
2,k+1,

(A.19)

and

∆t(ν‖u‖2
∞,1 + ν)

N−1∑
n=1

‖∇I[ηn+1]‖2

≤ C∆tν(2‖u‖2
∞,1 + 1) max

{
9

4
, 4,

1

4

}N−1∑
n=1

3
(
‖∇ηn+1‖2 + ‖∇ηn‖2 + ‖∇ηn−1‖2

)
≤ C∆t

N∑
n=0

h2k‖un+1‖2
k+1 = Ch2k‖|u‖|22,k+1.

(A.20)

Similarly to (A.20), we also have

∆t
N−1∑
n=1

‖∇I[ηn+1]‖4 ≤ C∆t
N∑
n=0

h4k‖ut+1‖4
k+1 = Ch4k‖|u‖|44,k+1. (A.21)

Observe that

ν∆t
N∑
n=1

‖p(tn+1)− λn+1
h ‖2 ≤ Ch2s+2‖|p‖|22,s+1. (A.22)

The terms from consistency error are bounded using Lemma 9.

ν∆t
N−1∑
n=1

‖D[u(tn+1)]

∆t
− ut(tn+1)‖2 = C∆t4

N−1∑
n=0

∫ tn+1

tn−1

‖uttt‖2dt = C∆t4‖uttt‖2
2,0. (A.23)

ν∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2 ≤ C∆t4
N−1∑
n=1

∫ tn+1

tn−1

‖∇utt‖2dt ≤ C∆t4‖∇utt‖2
2,0.

(A.24)
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ν∆t
N−1∑
n=1

‖∇(I[u(tn+1)]− u(tn+1))‖2(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)

≤ C∆t
N−1∑
n=1

(‖∇I[u(tn+1)]‖2 + ‖∇u(tn+1)‖2)∆t3
∫ tn+1

tn
‖∇utt‖2dt

≤ C∆t4
N−1∑
n=1

(

∫ tn+1

tn−1

‖∇I[u(tn+1)]‖4 + ‖∇u(tn+1)‖4 + ‖∇utt‖4dt)

≤ C∆t4(‖|∇u‖|44,0 + ‖∇utt‖4
4,0).

(A.25)

Combining (A.18) - (A.22) gives

‖φNh ‖2 + ‖2φNh − φN−1
h ‖2 + ‖φNh − φN−1

h ‖2 +
N−1∑
n=1

3‖φn+1
h − 2φnh + φn−1

h ‖2

+ ν∆t
N−1∑
n=1

‖∇I[φn+1
h ]‖2

≤ C
(
‖u(t1)− u1

h‖2 + ‖(u(t0)− u0
h)‖2 + h2k+2‖|u‖|2∞,k+1

+ h2k+2‖ut‖2
2,k+1 + h2k‖|u‖|22,k+1 + h4k‖|u‖|44,k+1 + h2s+2‖|p‖|22,s+1

+ ∆t4(‖uttt‖2
2,0 + ‖∇utt‖2

2,0 + ‖|∇u‖|44,0 + ‖∇utt‖4
4,0)
)
.

(A.26)

We add both sides of (A.26) with

‖ηN‖2 + ‖2ηN − ηN−1‖2 + ‖ηN − ηN−1‖2 +
N−1∑
n=1

3‖ηn+1 − 2ηn + ηn−1‖2

+ ν∆t
N−1∑
n=1

‖∇(
3

2
ηn+1 − ηn +

1

2
ηn−1)‖2.

(A.27)

and apply triangle inequality to get (4.15).
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APPENDIX B

SECOND ORDER ERROR ESTIMATOR

This section justifies the use of EST2 as an error estimator for the second order approx-

imation. A Taylor series calculation shows that the second order approximation yn+1
(2) in

Algorithm 5 has the local truncation error (LTE) (for constant stepsize)

LTE = −∆t3
(

1

3
y′′′ +

1

2
fyy
′′
)

+O(∆t4).

Consider the addition of a second time filter,

Step 1 :
y

(1)
n+1−yn

∆t
= f(tn+1, y

n+1
(1) ),

Step 2 : yn+1
(2) = yn+1

(1) −
1
3

{
yn+1

(1) − 2yn + yn−1
}

Step 3 : yn+1 = yn+1
(2) −

2
11

{
yn+1

(2) − 3yn + 3yn−1 − yn−2
} (B.1)

Another Taylor series calculation shows that the induced method has the LTE of

LTE = −∆t3
1

2
fyy
′′ +O(∆t4),

Thus, yn+1 yields a more accurate (still second order) approximation, and

EST2 = yn+1
(2) − yn+1 =

2

11

{
y

(2)
n+1 − 3yn + 3yn−1 − yn−2

}
gives an estimate for the error of yn+1. This is extended to variable stepsize using Newton

interpolation, and written with stepsize ratios in Algorithm 5.

This is a nonstandard approach since one would normally use a higher order approxima-

tion to estimate the error. However, this is simple since it requires no additional function

evaluations or Jacobians, and does not require solving a system of equations. Interestingly,

(B.1) remains energy stable, and could be useful as a standalone constant stepsize method.
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APPENDIX C

PROOF OF MONOTONICITY AND LIPSCHITZ CONTINUITY

Remark 7. The proof of monotonicity and local Lipschitz continuity are similar to the

analogous ones for the Smagorinsky model. Since the present work involves the rotational

form, we include both for completeness. Our proofs are adapted from Lemma 8.5 in [125].

Proof. (Proof of Lemma 2) First, we prove the strong monotonicity (2.1). Define an operator

F : (L3(Ω))d → (L
3
2 (Ω))d by

F(∇× u) = l2(x)|∇ × u|∇ × u, (C.1)

where u ∈ (W 1,3(Ω))d, l : x ∈ Ω 7→ R is a non-negative function and l ∈ L∞(Ω). We further

define u = τu′ + (1− τ)u′′, τ ∈ [0, 1]. Then, we have

F(∇× u′)− F(∇× u′′) =

∫ 1

0

d

dτ
F(∇× u)dτ. (C.2)

Combine (C.1) and (C.2) to get

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′) · (∇× (u′ − u′′))

= (F(∇× u′)− F(∇× u′′)) · (∇× (u′ − u′′))

=
3∑
i=1

(

∫ 1

0

d

dτ
Fi(∇× u)dτ)[(

∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)].

(C.3)

131



Here, consider 3D case (d = 3). The notations i, j, k = 1, 2, 3, or i, j, k = 2, 3, 1, or i, j, k =

3, 1, 2. We have

d

dτ
Fi(∇× u)

= (l2(x)
d

dτ
|∇ × u|)(∂uk

∂xj
− ∂uj
∂xk

) + l2(x)|∇ × u|[(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)],
(C.4)

and

d

dτ
|∇ × u| = d

dτ
(

3∑
l=1

[τ(
∂u′n
∂xm

− ∂u′m
∂xn

) + (1− τ)(
∂u′′n
∂xm

− ∂u′′m
∂xn

)]2)
1
2

=
1

|∇ × u|

3∑
l=1

(
∂un
∂xm

− ∂um
∂xn

)[(
∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)],

(C.5)

where the notations l,m, n = 1, 2, 3, or l,m, n = 2, 3, 1, or l,m, n = 3, 1, 2.

By (C.4) and (C.5), we obtain

d

dτ
Fi(∇× u) =

l2(x)

|∇ × u|

3∑
l=1

(
∂un
∂xm

− ∂um
∂xn

)[(
∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)](
∂uk
∂xj
− ∂uj
∂xk

)

+ l2(x)|∇ × u|[(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)].

(C.6)

Combining (C.6) and (C.3), we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′) · (∇× (u′ − u′′)) = Q1 +Q2. (C.7)

Here,

Q1 =

∫ 1

0

l2(x)

|∇ × u|

3∑
i,l=1

(
∂un
∂xm

− ∂um
∂xn

)(
∂uk
∂xj
− ∂uj
∂xk

)

· [( ∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)][(
∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)]dτ

≥ 0.

(C.8)
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Furthermore, we have

Q2 =

∫ 1

0

l2(x)|∇ × u|
3∑
i=1

[(
∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)]2dτ

≥ Cd

∫ 1

0

l2(x)
3∑
i=1

(
3∑
l=1

| ∂un
∂xm

− ∂um
∂xn
|)[(∂u′k

∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)]2dτ

≥ Cd

3∑
i=1

3∑
l=1

l2(x)[

∫ 1

0

|τ(
∂u′n
∂xm

− ∂u′m
∂xn

) + (1− τ)(
∂u′′n
∂xm

− ∂u′′m
∂xn

)|dτ ]

· [(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)]2

≥ Cd

3∑
i=1

3∑
l=1

l2(x)[
1

4
|( ∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)|][(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)]2

≥ C

3∑
i=1

l2(x)|(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)|3,

(C.9)

where we use those inequalities
√
a2 + b2 + c2 ≥ Cd(|a|+ |b|+ |c|) and

∫ 1

0
|τa+ (1− τ)b|dτ ≥

1
4
|a− b|, ∀ a, b, c ∈ R.

By (C.7), (C.8) and (C.9), we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′),∇× (u′ − u′′)) =

∫
Ω

(Q1 +Q2)dx

≥ C

∫
Ω

3∑
i=1

l2(x)|(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj
−
∂u′′j
∂xk

)|3dx

= C‖l
2
3 (x)∇× (u′ − u′′)‖3

L3 ,

(C.10)

which completes the proof of strong monotonicity (2.1).

Next, we prove the local Lipschitz-continuity (2.2). Using triangle inequality, we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ (l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′|∇ × u′′,∇× v)

+ (l2(x)|∇ × u′|∇ × u′′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ ‖l
2
3 (x)|∇ × u′|‖L3‖l

2
3 (x)∇× (u′ − u′′)‖L3‖l

2
3 (x)∇× v‖L3

+ ‖l
2
3 (x)|∇ × u′| − l

2
3 (x)|∇ × u′′|‖L3‖l

2
3 (x)∇× u′′‖L3‖l

2
3 (x)∇× v‖L3 .

(C.11)

133



Since

‖l
2
3 (x)|∇ × u′|‖L3 =

∫
Ω

(
3∑
i=1

|l
2
3 (x)(∇× u′)i|2)

3
2dx

≤ C̃d

∫
Ω

(
3∑
i=1

|l
2
3 (x)(∇× u′)i|3)dx

= C̃d‖l
2
3 (x)∇× u′‖L3 ,

(C.12)

where we use the inequality ‖x‖`2 ≤ C̃d‖x‖`3 , ∀ x ∈ Rd. We also have

‖l
2
3 (x)|∇ × u′| − l

2
3 (x)|∇ × u′′|‖L3 ≤ ‖l

2
3 (x)|∇ × u′ −∇× u′′|‖L3

≤ C̃d‖l
2
3 (x)∇× (u′ − u′′)‖L3 .

(C.13)

Finally, by (C.11), (C.12), and (C.13), we can obtain the local Lipschitz-continuity (2.2).

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ C̃d‖l
2
3 (x)∇× u′‖L3‖l

2
3 (x)∇× (u′ − u′′)‖L3‖l

2
3 (x)∇× v‖L3

+ C̃d‖l
2
3 (x)∇× u′′‖L3‖l

2
3 (x)∇× (u′ − u′′)‖L3‖l

2
3 (x)∇× v‖L3

= Cγ‖l
2
3 (x)∇× (u′ − u′′)‖L3‖l

2
3 (x)∇× v‖L3 ,

(C.14)

where γ = max{‖l 2
3 (x)∇× u′‖L3 , ‖l 2

3 (x)∇× u′′‖L3}.

134



BIBLIOGRAPHY

[1] Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature. 150, 405-406
(1942)

[2] Moffatt, H.K.: Field generation in electrically conducting fluids[M]. Cambridge University
Press (1978)

[3] Barleon, L., Casal, V., Lenhart, L.: MHD flow in liquid-metal-cooled blankets. Fusion
Engineering and Design. 14, 401-412 (1991)

[4] Davidson, P.A.: Magnetohydrodynamics in material processing. Annu. Rev. Fluid Mech.
31, 273-300 (1999)

[5] Lin, T.F., Gilbert, J.B., Kossowsky, R.: Sea-water magnetohydrodynamic propulsion
for next-generation undersea vehicles. Pennsylvania State Univ State College Applied Re-
search Lab (1990)

[6] Gerbeau, J.F., Bris, C.L., Lelièvre, T.: Mathmatical methods for the Magnetohydrody-
namics of Liquid metals. Oxford University Press (2006)

[7] Adams, R.A.: Sobolev spaces. Academic press (2003)

[8] Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent
partial differential equations[J]. SIAM Journal on Numerical Analysis. 32(3), 797-823
(1995)

[9] Chorin, A.J.: Numerical solution of the Navier-Stokes equations[J]. Mathematics of com-
putation. 22(104), 745-762 (1968)

[10] Rannacher, R.: On Chorin’s projection method for the incompressible Navier-Stokes
equations. In The Navier-Stokes equations II theory and numerical methods. Springer
Berlin Heidelberg. 167-183 (1992)

[11] Turek, S.: A comparative study of some time-stepping techniques for the incompressible
Navier-Stokes equations: From fully implicit nonlinear schemes to semi-implicit projection
methods[M]. IWR. (1995)

135



[12] Peterson, J.S.: On the finite element approximation of incompressible flows of an elec-
trically conducting fluid[J]. Numerical Methods for Partial Differential Equations. 4(1),
57-68 (1988)

[13] Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for
the steady MHD equations[J]. Computer Methods in Applied Mechanics and Engineering,
2016, 304: 521-545.

[14] Zhang, Q., Su, H., Feng, X.: A partitioned finite element scheme based on Gauge-Uzawa
method for time-dependent MHD equations[J]. Numerical Algorithms, 2017: 1-19.

[15] Zhu, T., Su, H., Feng, X.: Some Uzawa-type finite element iterative methods for
the steady incompressible magnetohydrodynamic equations[J]. Applied Mathematics and
Computation, 2017, 302: 34-47.

[16] Wu, J., Liu, D., Feng, X., Huang, P.: An efficient two-step algorithm for the stationary
incompressible magnetohydrodynamic equations[J]. Applied Mathematics and Computa-
tion, 2017, 302: 21-33.

[17] Su, H., Feng, X., Zhao, J.: Two-Level Penalty Newton Iterative Method for the
2D/3D Stationary Incompressible Magnetohydrodynamics Equations[J]. Journal of Sci-
entific Computing, 2017, 70(3): 1144-1179.

[18] Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative meth-
ods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods
Appl. Mech. Engrg. 276 (2014) 287 C311.

[19] Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incom-
pressible magnetohydrodynamics, J. Sci. Comput. 63 (2015) 426 C451.

[20] Yuksel, G., Ingram, R.: Numerical analysis of a finite element Crank-Nicolson dis-
cretization for MHD flows at small magnetic Reynolds numbers. International Journal of
Numerical Analysis and Modeling. 10(1), 74-98 (2013)

[21] Roberts ,P.H.: An introduction to magnetohydrodynamics. Elsevier, USA (1967)

[22] Davidson ,P.A.: An Introduction to Magnetohydrodynamics. Cambridge University
Press, United Kingdom (2001)

[23] Layton, W.J., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods
for uncoupling evolutionary MHD flows. Numer. Meth. Part D.E. 30(4), 1083-1102 (2014)

[24] Layton W, Tran H, Trenchea C. Stability of partitioned methods for magnetohydrody-
namics flows at small magnetic Reynolds number[J]. Recent advances in scientific com-
puting and applications. 586(231) (2013)

[25] Yuksel, G., Isik, O.R.: Numerical analysis of Backward-Euler discretization for simpli-
fied magnetohydynamic flows. Applied Mathematical Modelling. 39, 1889-1898 (2015)

136



[26] Lighthill, M.J.: On sound generated aerodynamically. I. General theory[C]. Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The
Royal Society, 1952, 211(1107): 564-587.

[27] Layton, W., Novotny, A.: The exact derivation of the Lighthill acoustic analogy for low
Mach number flows. Advances in Math Fluid Mech. 247-279 (2009)

[28] Shen, J.: On error estimates of the penalty method for unsteady Navier CStokes equa-
tions[J]. SIAM Journal on Numerical Analysis. 32(2), 386-403 (1995)

[29] Fabrie, P., Galusinski, C.: The slightly compressible Navier-Stokes equations revis-
ited[J]. Nonlinear Analysis: Theory, Methods and Applications. 46(8), 1165-1195 (2001)

[30] Shen, J.: On a new pseudocompressibility method for the incompressible Navier-Stokes
equations[J]. Applied numerical mathematics. 21(1), 71-90 (1996)

[31] Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations. I. time discretiza-
tion, Numer. Method Part. Diff. Equ. 33(3), 956-C973 (2017)

[32] Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations II: Finite element
spatial discretization and numerical implementation. Comput. Math. Appl. 69, 1390-C1406
(2015)

[33] He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-
dimensional incompressible MHD equations. IMA Journal of Numerical Analysis. dru015,
(2014)

[34] Shen, J.: Pseudo-compressibility methods for the unsteady incompressible Navier-Stokes
equations. In Proceedings of the 1994 Beijing symposium on nonlinear evolution equations
and infinite dynamical systems. 68-78 (1997)

[35] Rong, Y., Hou, Y., Zhang, Y.: Numerical analysis of a second order algorithm for simpli-
fied magnetohydrodynamic flows[J]. Advances in Computational Mathematics. 43:823-848
(2017)

[36] Rong, Y., Hou, Y.: A Partitioned Second-Order Method for Magnetohydrodynamic
Flows at Small Magnetic Reynolds Numbers. Numerical Methods for Partial Differential
Equations. 33(6), 1966-1986 (2017)

[37] Shen, J.: On error estimates of projection methods for Navier-Stokes equations: first-
order schemes[J]. SIAM Journal on Numerical Analysis. 29(1), 57-77 (1992)

[38] Shen, J.: On error estimates of some higher order projection and penalty-projection
methods for Navier-Stokes equations[J]. Numerische Mathematik. 62(1), 49-73 (1992)

[39] Prohl, A.: Convergent finite element discretizations of the nonstationary incompress-
ible magnetohydrodynamics system[J]. ESAIM: Mathematical Modelling and Numerical
Analysis. 42(6), 1065-1087 (2008)

137



[40] Temam, R.: Sur l’approximation de la solution des quations de Navier-Stokes par la
mthode des pas fractionnaires (I)[J]. Archive for Rational Mechanics and Analysis. 32(2),
135-153 (1969)

[41] Hecht, F., Pironneau, O.: FreeFem++. Webpage: http://www.freefem.org

[42] A, Thom.: The flow past circular cylinders at low speeds[J]. The Royal Society. 1364-
5021

[43] Arbogast,T., Gomez, M.: A discretization and multigrid solver for a Darcy-Stokes sys-
tem of three dimensional vuggy porous media. Computational Geosciences, 13(3):331–348,
2009.

[44] Arbogast,T., Gomez, M.: A discretization and multigrid solver for a Darcy-Stokes sys-
tem of three dimensional vuggy porous media. Computational Geosciences, 13(3):331–348,
2009.

[45] Asselin, R.: Frequency filter for time integrations. Monthly Weather Review, 100(6):487,
1972.

[46] Bernardi, C., Rebollo, T., Hecht, F., Mghazli, Z.: Mortar finite element discretization
of a model coupling Darcy and Stokes equations. ESIAM Mathematical Modelling and
Numerical Analysis, 42(3):375–410, 2007.

[47] Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time ac- curate
second-order methods for Stokes-Darcy system. SIAM Journal on Numerical Analysis,
51(5):2563-2584, 2012.

[48] Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time ac- curate
third-order algorithm for the Stokes-Darcy system. Numerische Mathematik, 134(4):857–
879, 2016.

[49] Chen, W., Gunzburger, M., Sun, D., Wang, X.: Weak Galerkin method for the coupled
Darcy- Stokes flow. IMA Journal of Numerical Analysis, 36(2), 2014.

[50] DeCaria, V., Guzel, A., Layton, W., Li, Y.: A new embedded variable stepsize, variable
order family of low computational complexity. arXiv:1810.06670 [math.NA], 2018.

[51] DeCaria, V., Layton, W., McLaughlin, M.: An analysis of the Robert-Asselin time filter
for the correction of nonphysical acoustics in an artificial compression method. Nu- merical
Methods for Partial Differential Equations, 12 2018.

[52] DeCaria, V., Layton, W., Zhao, H.: Analysis of a low complexity, time-accurate dis-
cretization of the Navier-Stokes equations. arXiv:1810.06705 [math.NA], 2018.

[53] V. J. Ervin, E. W. Jenkins, and Hyesuk Lee. Approximation of the Stokes-Darcy System
by Optimization. Plenum Press, 2014.

138



[54] Gatica, N., Sequeira, F.: Analysis of the HDG method for the Stokes-Darcy coupling:
HDG for Stokes-Darcy. Numerical Methods for Partial Differential Equations, 33(3), 2017.

[55] Guzel, A., Layton, W.: Time filters increase accuracy of the fully implicit method. Bit
Numerical Mathematics, (3):1–15, 2018.

[56] Hay, A., Etienne, S., Pelletier, D., Garon,A.: Hp-adaptive time integration based on the
BDF for viscous flows. Journal of Computational Physics, 291(C):151–176, 2015.

[57] Hessari, P.: Pseudospectral least squares method for Stokes-Darcy equations. SIAM
Jour- nal on Numerical Analysis, 53(3):1195–1213, 2015.

[58] Jiang, B.: A parallel domain decomposition method for coupling of surface and ground-
water flows. Computer Methods in Applied Mechanics and Engineering, 198(9):947–957,
2009.

[59] Kwizak, M., Robert, A.: A semi-implicit scheme for grid point atmospheric models of
the primitive equations. Monthly Weather Review, 99(99), 1971.

[60] Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for split- ting
the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. Journal of
Computational and Applied Mathematics, 236(13):3198–3217, 2012.

[61] Layto, W., Trenchea, C:. Analysis of long time stability and errors of two parti- tioned
methods for uncoupling evolutionary groundwater-surface water flows. SIAM Journal on
Numerical Analysis, 51(51):248–272, 2013.

[62] Li, Y., Hou, Y.: A second-order partitioned method with different subdomain time steps
for the evolutionary Stokes-Darcy system. Mathematical Methods in the Applied Sciences,
41(9), 2018.

[63] Li, Y., Trenchea, C:. A higher-order Robert-Asselin type time filter. Journal of Compu-
tational Physics, 259(2):23–32, 2014.

[64] Lipnikov, K., Vassilev, D., Yotov. I.: Discontinuous Galerkin and mimetic finite dif-
ference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Nu-
merische Mathematik, 126(2):321–360, 2014.

[65] Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid
flow with porous media flow. SIAM Journal on Numerical Analysis, 45(5):1801–1813, 2007.

[66] Mu, M., Zhu., X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model.
Mathematics of Computation, 79(270):707–731, 2010.

[67] Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time
steps for the nonstationary Stokes-Darcy model. Numerical Methods for Partial Differential
Equations, 29(2):549–583, 2013.

139



[68] Tlupova, S., Cortez, R.: Boundary integral solutions of coupled Stokes and Darcy flows.
Journal of Computational Physics, 228(1):158–179, 2009.

[69] Wang, G., He, Y., Li, R.: Discontinuous finite volume methods for the stationary Stokes-
Darcy problem. International Journal for Numerical Methods in Engineering, 107(5):395–
418, 2016.

[70] Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and
Darcy equations. Journal of Computational Physics, 257(1):126–142, 2014.

[71] Williams, P.: A proposed modification to the Robert-Asselin time filter. Monthly
Weather Review, 137(8):2538–2546, 2009.

[72] Williams, P.: The RAW filter: An improvement to the Robert-Asselin filter in semi-
implicit integrations. Monthly Weather Review, 139(6):1996–2007, 2011.

[73] Williams, P.: Achieving seventh-order amplitude accuracy in leapfrog integrations.
Monthly Weather Review, 141(9):3037–3051, 2013.

[74] Ervin, V. Approximation of coupled Stokes-Darcy flow in an axisymmetric domain.
Computer Methods in Applied Mechanics and Engineering, 258(2):96–108, 2013.

[75] Alnæs, M., Blechta, J., Hake, j., Johansson, A., Kehlet, B., Logg, A., Richardson, C.,
Ring, J., Rognes, M., Wells, G.: The FEniCS project version 1.5. Archive of Numerical
Software, 3(100), 2015.

[76] Arnold, D., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations.
CALCOLO, 21(4):337–344, Dec 1984.

[77] Asselin, R.: Frequency filter for time integrations. Mon. Weather Rev, (100):487–490,
1972.

[78] Baker, G., Dougalis, A., Karakashian, O.: On a higher order accurate fully discrete
Galerkin approximation to the Navier-Stokes equations. Mathematics of Computation,
39(160):339–375, 1982.

[79] Besier, M., Rannacher, R.: Goal-oriented spacetime adaptivity in the finite element
Galerkin method for the computation of nonstationary incompressible flow. International
Journal for Numerical Methods in Fluids, 70(9):1139–1166, January 2012.

[80] Charnyi, S., Heister, T., Olshanskii, M., Rebholz, L.: On conservation laws of Navier-
Stokes Galerkin discretizations. Journal of Computational Physics, 337:289 – 308, 2017.

[81] Chorin, A.: The numerical solution of the Navier-Stokes equations for an incompressible
fluid. Bull. Amer. Math. Soc., 73(6):928–931, 11 1967.

[82] Crouzeix, M., Raviart, P.: Approximation d equations d evolution lin eaires par des m
ethodes multipas. Etude Numerique des Grands Systemes, 1976.

140



[83] Dahlquist, G.: G-stability is equivalent to A-stability. BIT Numerical Mathematics,
18(4):384–401, Dec 1978.

[84] Emmrich, E.: Error of the two-step BDF for the incompressible Navier-Stokes problem.
ESAIM: M2AN, 38(5):757–764, 2004.

[85] Emmrich, E.: Stability and convergence of the two-step BDF for the incompressible
Navier-Stokes Problem. 5:199–209, 01 2004.

[86] Fiordilino, J.: On pressure estimates for the Navier-Stokes equations. ArXiv e-prints,
Mar. 2018.

[87] Galvin, K.: New subgrid artificial viscosity Galerkin methods for the Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 200(1):242 – 250,
2011.

[88] Geveci, T.: On the convergence of a time discretization scheme for the Navier-Stokes
equations. Mathematics of Computation, 53(187):43–53, 1989.

[89] Girault, V., Raviart, P.: Finite Element Approximation of the Navier-Stokes Equations.
Springer-Verlag Berlin Heidelberg, 1979.

[90] Gresho,P., Sani, R.: Incompressible Flow and the Finite Element Method. John Wiley
and Sons, Inc., 1998.

[91] Griffiths, D., Higham, D.: Numerical methods for ordinary differential equations.
Springer, 2010.

[92] Griffiths, D., Higham, D.: Numerical Methods for Ordinary Differential Equations.
Springer-Verlag London Limited, 2010.

[93] Guzel,A., Layton, W.: Time filters increase accuracy of the fully implicit method. BIT
Numerical Mathematics, 58(2):301–315, Jun 2018.

[94] Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-
Stokes prob-lem. part iv. error analysis for second-order time discretization. SIAM Journal
on Numerical Analysis, 27(2):353384, 1990.

[95] Jiang, N.: A second-order ensemble method based on a blended backward differentia-
tion formula timestep-ping scheme for time-dependent Navier-Stokes equations. Numerical
Methods for Partial Differential Equa- tions, 33(1):34–61.

[96] Jiang, N., Mohebujjaman, N., Rebholz,L., Trenchea, C.: An optimally accurate dis-
crete regulariza- tion for second order timestepping methods for Navier-Stokes equations.
Computer Methods in Applied Mechanics and Engineering, 310:388 – 405, 2016.

141



[97] John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow
around a cylinder. International Journal for Numerical Methods in Fluids, 44(7):777–788,
2004.

[98] Layton, W., Mays, N., Neda, M., Trenchea, C.: Numerical analysis of modular regular-
ization methods for the BDF2 time discretization of the Navier-Stokes equations. ESAIM:
M2AN, 48(3):765–793, 2014.

[99] Layton, W., Trenchea, C.: Stability of two IMEX methods, CNLF and BDF2-AB2, for
uncoupling systems of evolution equations. Applied Numerical Mathematics, 62:112–120,
2012.

[100] Liu, J., Liu, J., Pego, R.: Stable and accurate pressure approximation for unsteady
incompressible viscous flow. Journal of Computational Physics, 229(9):3428 – 3453, 2010.

[101] Rang, J., Angermann, L.: New Rosenbrock W-Methods of order 3 for partial differential
algebraic equa- tions of index 1. BIT Numerical Mathematics, 45(4):761–787, Dec 2005.

[102] Ravindran, S.: An extrapolated second order backward difference time-stepping scheme
for the magneto- hydrodynamics system. Numerical Functional Analysis and Optimization,
37(8):990–1020, 2016.

[103] Robert, A.: An evaluation of the behaviour of planetary waves in an atmospheric model
based on spherical harmonics. PhD thesis, McGill, 1965.

[104] Schafer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. In
H. E.H., editor, Flow Simulation with High-Performance Computers II. Notes on Numer-
ical Fluid Mechanics, volume 48, pages 547–566. Vieweg+Teubner Verlag, 1996.

[105] Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. Society for
Industrial and Applied Mathematics, 1995.

[106] Verfurth, R.: Error estimates for a mixed finite element approximation of the Stokes
equations. ESAIM: Mathematical Modelling and Numerical Analysis - Mod elisation Math
ematique et Analyse Numerique, 18(2):175–182, 1984.

[107] Williams, P.: A proposed modification to the Robert-Asselin time filter. Monthly
Weather Review, 137:2538–2546, 08 2009.

[108] Adams, R.A.: Sobolev spaces. Academic press, 2003.

[109] L.C. Berselli and R. Lewandowski, On the Reynolds time-averaged equations and the
long-time behavior of Leray-Hopf weak solutions, with applications to ensemble averages,
arXiv preprint arXiv:1801.08721, 2018

[110] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompress-
ible Euler and Navier-Stokes equations, Nonlinearity,13, 249-255, 2000.

142



[111] P.M. Gresho and R.L.. Sani, Incompressible flow and the finite element method, Vol.
2: Isothermal laminar flows.

[112] N. Jiang and W. Layton, Numerical analysis of two ensemble eddy viscosity numerical
regularizations of fluid motion, NMPDEs, 31 (2015) 630-651.

[113] J. Jovanovic,The statistical dynamics of turbulence, Springer, Berlin, 2004.

[114] A. Labovsky and W. Layton, Magnetohydrodynamic flows: Boussinesq conjecture,
JMAA, Volume 434, 2016, 1665–1675.

[115] R. Lewandowski, Long-time turbulence model deduced from the Navier-Stokes equa-
tions, Chinese Annals of Mathematics, Series B, 36(2015) 883–894.

[116] R. Temam: Navier¡aStokes Equations: Theory and Numerical Analysis. North-Holland
Publishing Company, New York, 1977.

[117] R.A. Horn and C.R. Johnson: Matrix Analysis. Cambridge University Press, Cam-
bridge, England, 1990.

[118] H. Tennekes and J.L. Lumley: A first course in turbulence, MIT Press, Cambridge,
1972.

[119] D.C. Wilcox: Turbulence modeling for CFD[M]. La Canada, CA: DCW industries,
1998.

[120] J. Mathieu and J. Scott: An introduction to turbulent flow, Cambridge University
Press, Cambridge, 2000.

[121] P.A. Durbin and B.A. Pettersson-Reif: Statistical Theory and Modeling for Turbulent
Flows, Second Edition, Wiley, Chichester, 2011.

[122] W.K. George: Lectures in Turbulence for the 21st Century. Chalmers University of
Technology, available at http://www.turbulence-online.com/, 2013.

[123] L.C. Berselli and F. Flandoli: On a stochastic approach to Eddy Viscosity models for
turbulent flows[M]//Advances in Mathematical Fluid Mechanics. Springer Berlin Heidel-
berg, 2009: 55-81.

[124] B. Mohammadi and O. Pironneau: Analysis of the k-epsilon turbulence model[J].
France: Editions MASSON. 1993.

[125] V. John: Large eddy simulation of turbulent incompressible flows: analytical and
numerical results for a class of LES models. Vol. 34. Springer Science and Business Media,
2012.

[126] V. John: Finite element methods for incompressible flow problems, Springer, Berlin,
2016.

143
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