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Summary 

 

Background 

Cardiovascular (CV) disease remains a major health care burden worldwide. Exercise has a 

preventive effect on CV disease risk. Risk factors for CV disease include higher age, higher 

inactivity levels as well as reduced cardiorespiratory fitness. The retinal microcirculation is a 

valid vascular bed to detect vascular alterations in an early and subclinical stage. Alterations 

in retinal microvascular phenotype, defined as narrower central retinal arteriolar equivalents 

(CRAE), wider central retinal venular equivalents (CRVE) as well as reduced flicker light-

induced dilatation (FID), are associated with increased CV risk. Reactive oxygen species (ROS) 

production, modulated by DNA methylation of p66Shc, is a key driver for vascular alterations. 

To date no study exists that investigates the influence of physical activity (PA) or the effect of 

an exercise intervention on the ageing process of the retinal microcirculation in healthy 

individuals and patients with increased CV risk.  

Aims 

The aims of my PhD project were: 1) to investigate the association of long-term PA or inactivity 

on retinal microvascular phenotype in healthy older individuals, 2) to investigate the 

association of CV risk on retinal microvascular phenotype in long-term physical inactive older 

individuals and 3) to investigate the effects of twelve-weeks HIIT on retinal microvascular 

phenotype in older CV risk patients. 

Methods 

This PhD based on the “Exercise, Arterial Crosstalk-Modulation, and Inflammation in an Ageing 

Population” study (EXAMIN AGE). This study investigated the exercise effects in a systems 

physiology approach with a cross-sectional and an interventional study design. In the cross-

sectional approach 38 healthy active (HA), 36 healthy sedentary (HS) and 84 sedentary 

individuals at increased CV risk (SR) were included. SR were randomised into a twelve-week 

high-intensity interval training (HIIT) or a control condition with standard PA 

recommendations after the baseline assessment. The Retinal Vessel Analyser was used to 
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measure the retinal microvascular phenotype. Enzyme-linked immunosorbent assay kits were 

used to analyse plasma 3-nitrotyrosine (3-NT) as a marker of oxidative stress. Gene expression 

of p66Shc and DNA methylation analysis were assessed in mononuclear cells by real-time 

quantitative polymerase chain reaction and Methylminer quantitative polymerase chain 

reaction to detect the epigenetic pathway of oxidative stress, one potential mechanism that 

affect retinal microvascular phenotype. 

Results 

Our results demonstrated wider CRAE and narrower CRVE in HA compared to HS resulting in 

a higher arteriolar-to-venular diameter ratio (AVR). By contrast, SR showed narrower CRAE 

and wider CRVE compared to HS resulting in a lower AVR compared to HS and HA. HS showed 

higher FID compared to SR and HA. FID in SR and HA did not significantly differ. A significant 

correlation between CRVE and maximal oxygen consumption (VO2peak) as well as between 

AVR and VO2peak were observed. In both sedentary groups, higher p66Shc expression and 

increased plasma levels of 3-NT were associated with hypomethylation of p66Shc promoter. 

HIIT reduced body mass index, fat mass, low-density lipoprotein and increased muscle mass 

and VO2peak. HIIT increased CRAE, decreased CRVE and increased arteriolar FID compared to 

the control group. A significant association between ΔCRAE and ΔVO2peak, ΔAVR and 

ΔVO2peak as well as between Δarteriolar FID and ΔVO2peak were observed. HIIT restored 

promoter methylation, blunting p66Shc expression and 3-NT levels. 

Conclusion 

Higher PA seems to be associated with favourable microvascular phenotype compared to 

sedentary individuals, with a further decline in sedentary individuals with increased CV risk. 

However, the use of FID seems to be limited in highly active individuals, eventually due to pre-

dilated arterioles. Therefore, our recommendation is to combine FID with analysis of retinal 

vessel diameters to differentiate functional non-responders from manifest microvascular 

endothelial dysfunction and thereby improve individual microvascular risk stratification. 

Exercise treatment has the potential to counteract microvascular dysfunction in older patients 

at increased CV risk. Exercise-induced reprogramming of DNA methylation on p66Shc gene 

promoter may represent a putative mechanistic link whereby exercise protects against age-
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related oxidative stress. Retinal vessel analysis seems to be a sensitive tool for detecting long-

term PA as well as short-term exercise effects on retinal microvascular health in an ageing 

population. 
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1. Introduction 

 

1.1 Social economic burden of CV disease 

 

Cardiovascular (CV) disease is still the main health care burden worldwide. The World Health 

Organisation statistics from 2013 show that 36 million deaths or 63% of all globally occurring 

deaths were due to non-communicable diseases. CV disease are the main cause of death (48%) 

followed by cancer (21%) and chronic respiratory disease (12%)1.  

The European Commission explained in their Companion Report “State of Health in the EU 

2017” that CV disease is also a main cause of mortality in the European Union2. Thirty-four 

percent of all deaths in men and 40% of all deaths in women were caused by CV disease3. 

Despite the general mortality rate falling, health expenditure is rising. Health costs are on 

average the biggest government expense after pensions, which poses a significant economic 

burden for the European countries2. One reason for higher health care costs is the higher life 

expectancy and demographic changes. The 2015 Commission-EPC Ageing Report speculated 

that the number of European Union citizens aged 65 or older will rise from 27.8% today, to 

51.1% in 2060. This would result in only two working-age individuals per person over 65 years, 

compared to four working-age individuals per person over 65 years today. The future health 

challenges of an ageing population mean that 1) the health care systems will be under financial 

strain due to less working-age individuals per person over 65 years and 2) an increasing 

number of individuals will suffer from chronic diseases. Therefore, prevention strategies for 

chronic diseases are increasingly important. To date up to 80% of health care costs are spent 

on the treatment of non-communicable diseases, which are largely preventable. Only 3% of 

the European health care budgets are currently spent on prevention. Therefore, the European 

Commission describes improvements in disease prevention as a main health care challenge 

for the future2.  

Health and disease data in Switzerland mirror the situation in the world and the European 

Union. The leading cause of mortality in Switzerland is also CV disease, based on the latest 

data from 2016. From a total of 64 964 deaths, 20 712 were caused by CV disease (32%)4. The 
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general increase in the older population aggravates the health burden in Switzerland as in 

other countries. The number of citizens aged 65 or older will increase from 1.5 million in 2015 

to 2.17 million by 2030 and 2.69 million by 2045. About 27% of all citizens in Switzerland will 

be 65 years or older in the year 20505. 

To conclude, CV disease is a worldwide health care problem. Prevention strategies and timely 

diagnosis are essential to reduce CV mortality and financial health care burdens. 

 

1.2 Lifestyle prevention strategies to reduce cardiovascular risk 

 

The American Heart Association defines smoking, physical inactivity, unhealthy diet and being 

overweight or obesity as the main CV risk factors6. Improvements in these unhealthy lifestyle 

parameters have the power to decrease the prevalence of CV mortality by up to three-

quarters7.  

 

1.2.1 Cardiorespiratory fitness and mortality 

 

In this section, I will focus on cardiorespiratory fitness (CRF) as a CV risk factor because low 

CRF has previously been shown as the strongest risk prediction factor for all-causes of death 

even compared to obesity, smoking status, hypertension, high cholesterol levels or diabetes8, 

9. CRF predicts all-cause and CV disease mortality in healthy individuals9-11 as well as in patients 

with known CV disease such as obesity, type 2 diabetes, hypertension and lipid 

abnormalities10, 12-18. Meyers et al. investigated exercise capacity on a treadmill in 6 213 men 

with and without a history of CV disease. The overall mortality during a mean follow-up of 6.2 

years was the primary endpoint. Peak exercise capacity, adjusted for age, was the strongest 

predictor of death in individuals both with and without CV disease. With each one metabolic 

equivalent (MET) increase, corresponding to 1-km/h higher running/jogging speed, there was 

a mortality risk reduction of twelve percent. The authors concluded that exercise capacity is a 

more powerful predictor of mortality among men than other established risk factors for 
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cardiovascular disease19. Laukkanen et al. found similar results. They measured maximal 

oxygen consumption (VO2peak) in 2 361 men between 42-60 years and documented fatal and 

non-fatal cardiac events in a 13-year follow-up. Individuals with higher fitness levels had a 

lower risk for coronary events. Each one MET increase was associated with a 17-29% decrease 

of non-fatal, and 28-51% decrease of fatal cardiac events. VO2peak together with smoking was 

the strongest independent and consistent risk predictor20. Ekelund and colleagues 

investigated physical fitness using treadmill exercise testing in clinically healthy men and 

measured death from coronary heart disease and CV disease in a follow-up period of 8.5 years. 

They demonstrated that each standard deviation decrease in CRF was associated with a two 

to five fold higher rate of coronary heart disease or CV disease mortality rate21. In their meta-

analysis, Kodama et al. summarised several studies on CRF and coronary heart disease events, 

CV disease events and all-cause mortality in healthy men and women. They included 33 

studies with 187 303 participants and 11 395 events in total. They found that subjects with a 

low CRF had a 70% and 56% increased risk for CV and all-cause mortality, respectively11. The 

authors pointed out, those least fit individuals who increased their individual CRF to the next 

level of fitness, would have the highest mortality benefits. Fewer mortality benefits were 

observed by comparing the moderate- to high-fit group11.  

This observation leads automatically to a dose-response discussion. Several studies, including 

some described above, found a high mortality risk in individuals with a CRF level below five 

METs whereas CRF levels above eight or ten METs seem to have a protective effect11, 12, 16, 19, 

22. Kodama et al. showed that healthy individuals with CRF ≥7.9 METs had a substantially lower 

risk of all-cause mortality and CV events compared with healthy individuals with CRF <7.9 

METs11. However, far more important than the discussion about the right level of CRF, is to 

communicate the important public health message that every increase in CRF confers 

substantial health benefits, especially in individuals with pre-existing low rates of CRF23. The 

high potential of exercise-based interventions to enhance CV health will be described in the 

following chapter.  
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1.2.2 Exercise-based interventions to enhance CV health 

 

In this chapter, I would like to discuss the potential to enhance CV health from two angles: 

firstly by lifestyle interventions that aim to increase physical activity (PA) and therefore reduce 

sedentary behaviour in long-term settings, and secondly specific short-term exercise 

interventions.  

Improvements in CRF due to an increase of PA or exercise interventions have the potential to 

reduce mortality by up to 44%24. Blair et al. examined CRF in 9 777 men at baseline and after 

a follow-up period of five years. Individuals who improved from unfit to fit during these five 

years had a reduced mortality risk of 44%24. Even relatively fit men with an averageVO2peak 

of 42 ml/min/kg who maintained or improved their CRF during a follow-up period of six years 

reduced their risk of CV and all-cause mortality by up to 27% and 42%, respectively, during an 

eleven-year follow-up compared to individuals who showed decreased CRF25. This study also 

demonstrated that individuals who maintained or improved their fitness could lower their CV 

and all-cause mortality risks independent of their baseline fitness level.  

Wen et al. described the influence of moderate PA on CV and all-cause mortality in an 

impressive way26. The authors allocated 416 175 individuals to one of five activity groups 

(inactive, low, medium, high or very high activity) based on a self-administered questionnaire 

for PA. Hazard ratios for mortality risk were analysed during an average follow-up of 8.05 

years. The authors reported a 14% reduction in all-cause mortality among individuals 

exercising for 90 min. per week or 15 minutes per day in a moderate intensity (low active 

group), compared to the inactive group26. This study demonstrates the huge impact of 

increased daily PA on mortality risk reduction. Gregg and colleagues investigated the effect of 

changes in PA behaviour in older women, aged 65 years or older. Increase PA levels during a 

follow-up of 5.7 years, measured by questionnaire, reduced CV mortality during the next 6.7 

years by up to 36% compared to individuals who stayed sedentary, independent of age, 

smoking, body mass index, comorbid conditions and baseline physical activity level27. A 

population-based British cohort study (n=7 735) investigated PA data of 40-59 year old men 

at baseline and at a follow-up 12-14 years later. All-cause mortality was analysed four years 

after the second investigation. Men who were inactive at baseline and then started gentle 
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activities had a significantly lower all-cause mortality rate compared to men who remained 

sedentary (45%). These results were similar for men with existing CV disease28. All these 

studies support the important public-health recommendations to increase daily PA in healthy 

men and women, in individuals with pre-existing CV disease and indeed for all levels of fitness. 

This will reduce not just CV mortality but also lower the rate of all causes of mortality. 

PA as part of the daily routine has therefore obvious benefits. Additionally, short-term 

exercise interventions in their own right have also been shown to decrease rates of CV 

mortality by increasing CRF and CV health. Unfit individuals or individuals at increased CV risk 

especially seem to benefit from short-term exercise interventions. The meta-analysis from 

Lawler et al. included 34 randomised controlled trials in post-myocardial infarction patients to 

estimate the effect of exercise-based cardiac rehabilitation programmes on CV outcomes. 

Patients undergoing these programmes had a lower risk for reinfarction as well as cardiac and 

all-cause mortality compared to the control group. These intervention effects were 

independent of exercise programme duration. This means that even short exercise 

programmes may lead to improved long-term outcomes in CV risk patients29. A further meta-

analysis in 63 studies with 14 486 patients following myocardial infarction, revascularisation 

or with a diagnosis of angina pectoris or coronary heart disease, investigated the effect of 

exercise-based cardiac rehabilitation compared to no-exercise control interventions. These 

rehabilitation programmes reduced CV mortality and the risk of hospitalisation. As well as the 

improved CV mortality rates, exercise rehabilitation programmes increased health related 

quality of life compared to the control subjects30. Therefore, the European Society of 

Cardiology, the American College of Cardiology and the American Heart Association have 

defined exercise-based rehabilitation programmes as a central element in cardiac 

rehabilitation31-33. However, the debate about the best exercise modalities for short-term 

exercise programmes is still ongoing and will be discussed in the next section.  
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1.2.3 Short-term exercise modalities: the best training to improve CV health 

 

The optimal modalities of exercise programmes are being discussed in the literature by 

comparing the health benefits of different durations or intensities. A general distinction is 

made between moderate continuous training (MCT) and high-intensity interval training (HIIT). 

The meta-analysis of Liou et al. investigated the ability of MCT and HIIT interventions to 

improve VO2peak and CV risk factors in patients with coronary artery disease. In ten studies 

218 patients did a HIIT and 254 a MCT. HIIT led to a higher improvement of VO2peak (+1.78 

mL/kg/min) compared to MCT. However, MCT was associated with a more marked decrease 

in resting heart rate (-1.8/min) and body weight (-0.48 kg)34. The authors did not consider if 

the reduced body weight was associated with reduced lean body mass or fat mass. It is 

possible that HIIT leads to higher improvements in muscle mass compared to MCT thereby 

total body weight is not necessarily the best parameter to describe exercise-related 

intervention benefits. A better parameter to describe the health benefits after exercise 

interventions is vascular function35. Vascular dysfunction, especially endothelial dysfunction, 

occurs early in the process of atherosclerosis36. Patients without clinical evidence of 

atherosclerosis but with CV risk factors showed impaired vascular function measured by 

endothelial vasodilation37. Furthermore, several studies demonstrated that endothelial 

dysfunction is an independent predictor of future cardiovascular events in patients with CV 

risk factors and of heart failure38, 39. Improvements in endothelial function correlate with a 

more favourable prognosis40 suggesting that vascular health, measured by endothelial 

function, could be a sensitive tool for detecting the effectiveness of exercise therapies. In their 

meta-analysis, Ramos et al. analysed the effect of MCT or HIIT interventions on vascular 

function in six randomised controlled trials including 182 individuals. HIIT was defined as four 

intervals of four minutes at 85-95% of maximal heart rate (HRmax) with three minutes of 

active recovery (60-70% HRmax) in between. Both exercise modalities improved vascular 

function. However, HIIT was more effective and additionally showed a tendency for larger 

improvements of VO2peak, CV risk factors, oxidative stress, inflammation and insulin 

sensitivity41. A further meta-analysis from Weston et al. compared the efficacy of HIIT 

compared to MCT in ten studies with 273 patients with coronary artery disease, heart failure, 

hypertension, metabolic syndrome and obesity. Patients undergoing HIIT showed almost 
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double the increase in VO2peak compared to MCT42. A broad range of publications support 

this theory by showing that HIIT improves CRF more than MCT in healthy individuals43 as well 

as in heart failure patients44. As described in the previous section, CRF seems to be an 

important marker for CV and all-cause mortality, more so than other established CV risk 

factors45, and sees greater improvement with HIIT sessions compared to MCT. Taking into 

account that the risk of exercise-related CV events seems to be equally low for HIIT and MCT 

interventions46, and considering the fact that HIIT shows better physiological adaptations 

compared to MCT, it leads to the conclusion that HIIT should be preferred in short-term 

exercise programmes to achieve the highest improvement in CV health.  

In summary, it seems to be very important to live a physically active life and increase CRF to 

reduce the individual CV and all-cause mortality risks. However, even if PA and fitness are 

strong risk predictor for CV mortality, vascular alterations and dysfunction are essentially the 

underlying reason why vascular events occur. To date it is not clear, which biomarker best 

reflects vascular alterations or dysfunction and is therefore the most sensitive biomarker for 

vascular ageing. The following chapter will discuss the concept of early vascular ageing as well 

as potential circulating and vascular biomarkers for detecting CV disease risk. 

 

1.3 Biomarkers of CV disease  

 

The current guidelines of the European Society of Cardiology and ten other societies on CV 

disease prevention in clinical practice have summarised the most important biomarkers for 

CV risk assessment33. The recommendation to evaluate CV risk is based on classical risk factors 

such as patients’ age, smoking status, cholesterol and blood pressure. Scoring systems should 

be used to calculate the ten-year CV risk based on these classical risk factors. Typical scoring 

systems are Framingham47, SCORE48, or PROCAM49. All these systems are based on large 

representative cohorts and have been externally well-validated50. Even if these scores have 

their advantages, they do not measure vascular function itself and fail to measure vascular 

ageing directly. Nilsson et al. previously described the concept of vascular ageing or early 

vascular ageing (EVA) as pathophysiological model to better define individual CV risk51. 
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Vascular ageing can be measured by analysing target organ damage as a mediating step 

between CV risk factors and CV disease events. Analysing target organ damage can enhance 

the screening process of CV risk patients as well as the control of treatment efficacy. Nilsson 

et al. described the control of risk factors in CV risk cohorts as an aggressive decrease of 

atherosclerosis modifiers (ADAM). ADAM have the potential to reduce target organ damage 

and therefore improve vascular ageing51, 52. Zethelius et al. demonstrated that a combination 

of several circulating and vascular biomarkers together with classical risk factors improved the 

risk stratification for CV death compared to classic risk factors solely. Circulating or vascular 

biomarkers, as markers for target organ damage, are likely to have a high reclassification 

potential33 and will be discussed in this chapter.  

Specifically vascular dysfunction, often analysed by measuring endothelial dysfunction, seems 

to play a key role in several disease states as a primary determinant of pathophysiology, which 

leads at the end to multiple organ failure and death53-55. Increasing endothelial dysfunction, 

as a marker for vascular ageing, seems to be responsible for uncontrolled clotting activation, 

capillary micro-thrombi formation, local hypoxia and ischaemia53 and is associated with 

increased cardiac events56. Age-related vascular dysfunction can occur in the absence of a 

diagnosed CV disease and classical CV risk factors57. This supports the assumption that 

vascular dysfunction may be a precursor to the development of CV disease58. A key driver for 

endothelial dysfunction is the imbalance between nitric oxide (NO) bioavailability and reactive 

oxygen species (ROS)59. ROS generation is mediated by an upregulation of the adaptor protein 

p66Shc that is regulated primarily by DNA methylation and posttranslational modifications of 

histone proteins60, 61. Reduced p66Shc expression seems to protect against age-induced and 

ROS-mediated endothelial dysfunction, possibly contributing to the extended life span of 

p66Shc deficient mice62. Genetic deletion of the p66Shc gene has been shown to protect against 

age-related vascular dysfunction, most likely by reducing production of O2- and restoring NO 

bioavailability60. Therefore, the timely detection of endothelial dysfunction and its underlying 

mechanisms at an early and subclinical stage is important for primary prevention. 

Furthermore it is crucial to identify specific therapies that ameliorate existing endothelial 

dysfunction as a means of secondary prevention55. Normally endothelial dysfunction is not 

measured in the daily clinical routine53 although there are two common ways of identifying it. 
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1) Evaluating an endothelial-dependent dilation response to a set stimulus or 2) evaluating 

circulating biomarkers of endothelial dysfunction63.  

The most frequently used circulating biomarker to measure endothelial dysfunction is the 

“von Willebrand factor” (vWF)55. This endothelial specific ligand for platelet glycoproteins 

plays a crucial role in platelet adhesion to damaged arterial walls64. vWF is released if 

endothelial cells are injured and can be measured by enzyme-linked immunosorbent assay. 

Lip and Blann demonstrated that vWF is increased in CV disease65. It has also been shown that 

vWF predicts ischaemic heart disease66, 67 and stroke risk in previously healthy individuals68 

and is an independent predictor of acute myocardial infarction or mortality69, 70. Treatment of 

CV risk factors such as hypertension71 or diabetes72 results in a significant reduction of vWF. 

vWF seems to be a highly relevant and specific circulating biomarker for endothelial 

dysfunction that plays a role in the early development of several vascular diseases. Another 

circulating biomarker for endothelial dysfunction and endothelial cell damage are circulating 

endothelial cells55. These cells, often defined as the expression of glycoprotein CD146, are 

rarely found in healthy individuals but are elevated in CV73 and inflammatory disease 

patients73. Increased levels of CD146 were associated with decreased vascular function 

measured by brachial artery flow-mediated dilation (FMD)74.  

The measurement of FMD is the gold standard in evaluating vascular endothelial function in 

the macrocirculation75. In this non-invasive method, vessel diameters of a target artery are 

measured via ultrasound 2D-images at rest, and during increased blood flow, to analyse 

endothelium‐dependent vasodilatation of the target vessel. The underlying mechanisms for 

increased FMD in response to higher sheer stress were summarised previously76. Briefly, 

increased blood flow leads to higher sheer stress, which results in a calcium dependent 

activation of endothelial nitric oxide synthase (eNOS) and NO generation. Higher NO levels are 

responsible for a relaxation of smooth muscle cells and a consequent dilatation of the artery77. 

Several studies demonstrated that a reduced FMD response is associated with a higher CV 

event risk and highlighted the predictive value of FMD for vascular dysfunction and future CV 

events78, 79. One standard deviation increase in FMD was associated with a 50% lower risk of 

CV events78. Further means of measuring macrovascular health are the carotid artery intima-
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media thickness, or the central pulse wave velocity. These are both valid biomarkers to detect 

vascular alterations.  

However, 90% of all blood vessels and more importantly 96% of all endothelial cells are in the 

microcirculation, which underlines the relevance of measuring microvascular endothelial 

function to detect EVA. Even though the microcirculation, often defined as vessels <300µm, is 

a different vascular bed with its own and specific structure and function compared to the 

macrocirculation, evidence about a cross-talk between small and large vessels exists. Laurent 

et al. described the cross-talk as a vicious cycle80. Alterations in the microcirculation especially 

higher wall to lumen ratio and narrower arteriolar diameters seems to be responsible for 

higher blood pressure. Higher blood pressure over long period, in turn, increases the stiffness 

of the macrocirculation due to a shift from elastin to collagen in the vessel walls. The increased 

stiffness of large arteries is a major determinant of increased pulse pressure, which in turn, 

damages the microcirculation and favours the development of macrovascular alterations80, 81. 

Amelioration of microvascular alterations seems to be an effective approach to reduce end-

organ damage by breaking this vicious cycle and therefore preserving CV health82. Instead of 

distinguishing macro- and microcirculation by their diameters, it is also possible to define 

these different vascular beds according to their function. This physiological definition includes 

all vessels in the microcirculation which show a myogenic reaction (constriction) in their 

diameters due to an increase blood pressure83. Independent of the definition, the 

microcirculation is the key driver in regulating the blood flow and blood pressure by changing 

the vessel diameter84. The arteriolar section is responsible for the main flow resistance and 

pressure decrease of the coronary tree83. Additionally, sheer stress, pressure and metabolic 

sensitivity increases with decreasing vessel diameter85. Therefore, it seems to be essential to 

evaluate vascular health and endothelial function in the microcirculation. 

 

1.3.1 Microvascular biomarkers of CV disease  

 

Microvascular alterations or dysfunction is often assessed by measuring microvascular 

endothelial function as described previously86, 87. Houben et al. reviewed different techniques 
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of assessing it88. The skin is a non-invasive vascular bed and can be used to analyse 

microvascular function with capillary microscopy or Laser-Doppler flowmetry. Capillary 

microscopy measures the structure and function of capillaries by evaluating capillary 

morphology and density, blood flow and pressure88. Microvascular dysfunction measured 

with capillary microscopy has been associated with hypertension89, type 2 diabetes90, 91 or 

obesity92. Laser-Doppler flowmetry measures changes in blood flow in a single spot or a larger 

skin area to evaluate flowmotion or blood flow after a heat or occlusion stimulus. Reduced 

flowmotion has been associated with higher age, and higher waist circumference as well as 

hypertension93, 94. Sörensen et al. showed a reduced heat-induced vasodilation response in 

pre-diabetes individuals compared to healthy controls with a further decline in type 2 diabetes 

patients in a population-based study95. To conclude, the skin seems to be a sensitive and 

physiologically relevant vascular bed for detecting microvascular dysfunction. However, these 

techniques do not allow the examination of single arteriolar or venular vessels separately. 

Retinal vessel analysis allows structural and functional investigation of single arteriolar or 

venular vessels, as well as the analysis of the whole background area of the eye. The potential 

of retinal vessel analysis will be summarised in the next chapter. 

 

1.3.2 Retinal vessel analysis in CV disease 

 

The retinal microcirculation shares its embryological origin and morphological as well as 

physiological properties with the cerebral circulation and is considered as a marker of 

cerebrovascular disease. The static retinal vessel analysis (SVA) measures arteriolar and 

venular diameter equivalents by analysing valid images of the eye background as previously 

described96. This technique enhances the accuracy of CV diagnosis by up to 21% and by 10.1% 

for CV events97 and stroke98. Narrower retinal arterioles and wider venules have been 

associated with increased CV events such as stroke99, coronary heart disease100 as well as 

higher CV mortality101 in an ageing population. Additionally, static retinal vessel alterations 

are associated with hypertension102, 103, diabetes, obesity, dyslipidaemia and inflammation100, 

104. Although retinal vessel diameters are key regulators of microvascular blood flow, they do 

not reflect microvascular endothelial function per se. Dynamic retinal vessel analysis (DVA) is 
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a new diagnostic tool for the assessment of microvascular endothelial function by flicker light-

induced retinal vessel dilatation (FID) over time105. Reduced dilatation responses were found 

in pre-diabetes, with a further reduction in type 2 diabetes patients compared to non-

diabetics with normal glucose levels95. Nägele et al. showed a reduced retinal dilatation 

response in patients with increased CV risks with a further decline in chronic heart failure 

patients106. Machalinska and colleagues showed that a reduced dilatation response is 

associated with circulating markers reflecting endothelial dysfunction in hypertensive 

patients107. Furthermore, a reduced FID is associated with higher age108, 109 and obesity110. An 

impaired retinal vessel dilatation could be an early indicator, and seems to predict mortality 

in high-risk cohorts111. To conclude, the retinal microvascular phenotype, defined as central 

retinal arteriolar (CRAE) and venular (CRVE) equivalents and arteriolar and venular FID, seems 

to be a non-invasive and sensitive vascular biomarker to investigate microvascular health and 

subclinical vascular remodelling. The retinal microvasculature has previously been described 

as a window to the heart112. Retinal vessel analysis may proof to be a valid diagnostic tool to 

screen early vascular ageing (EVA) in the microcirculation. However, it remains to be 

elucidated whether exercise can reverse or postpone further progression of advanced 

vascular ageing even in older adults as a means of an aggressive decrease of atherosclerosis 

modifiers (ADAM).  

 

1.3.3 Retinal vessel phenotype, physical activity and fitness 

 

Less is known about the association of PA and fitness on the retinal microcirculation. The 

Atherosclerosis Risk in Communities (ARIC) Study showed that higher levels of PA during sport 

or at work were associated with narrower CRVE113. Anuradha et al. showed that lower levels 

of PA and higher levels of sedentary behaviour, measured with television viewing time, were 

associated with wider CRVE114. Higher CRF in childhood was associated with wider CRAE and 

narrower CRVE115. A structured daily PA programme during school breaks for eight weeks led 

to wider CRAE, which is associated with better CV health116. Hanssen et al. did the first 

intervention study on retinal vessel analysis in adults. The authors demonstrated that obese 

athletes, lean amateur athletes as well as elite athletes showed increased arteriolar-to-
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venular diameter ratio (AVR) after ten weeks endurance training. Additionally, the authors 

found a significant and positive association between individual fitness levels and AVR96.  

The beneficial effect of high PA levels and higher CRF on the retinal microcirculation had been 

shown previously. However, no study currently exists that has investigated the protective 

effect of long-term PA or the reversible short-term effect of exercise therapy on the retinal 

microvascular phenotype in older adults. Therefore, our research questions were as follows: 

1. PA and normal vascular ageing: Do long-term healthy active older adults have wider 

retinal arteriolar and narrower venular diameters as well as higher FID as compared to 

their healthy sedentary peers? 

2. CV risk and vascular ageing: Do older adults with increased CV risk have narrower 

retinal arteriolar and wider venular diameters as well as reduced FID as compared to 

their healthy sedentary peers? 

3. Exercise intervention and vascular remodeling: Does a twelve-week HIIT improve 

retinal microvascular phenotype in older adults with increased CV risk? 

 

1.4 Aims and Hypothesis 

 

Aims: 

Aim 1: To compare the retinal microvascular phenotype of long-term healthy active older 

adults with the retinal microvascular phenotype of healthy sedentary peers. 

Aim 2: To compare the retinal microvascular phenotype of older adults with increased CV risk 

with the retinal microvascular phenotype of healthy sedentary peers.  

Aim 3: To investigate the effects of a twelve-week HIIT on retinal microvascular phenotype in 

older adults with increased CV risk compared to a control group with standard physical activity 

recommendations.  
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Hypothesis: 

Hypothesis 1: Healthy older adults with high levels of PA and fitness have wider retinal 

arterioles and narrower venules as well as higher FID compared to healthy sedentary peers.  

Hypothesis 2: Sedentary older adults with increased CV risk have narrower retinal arterioles 

and wider venules as well as reduced FID compared to healthy sedentary peers. 

Hypothesis 3: Twelve-weeks of HIIT increases central retinal arteriolar diameters, decreases 

central retinal venular diameters and improves FID in older adults with increased CV risk 

compared to a control group with standard physical activity recommendations.
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Exercise, Arterial
Crosstalk-Modulation, and
Inflammation in an Aging Population:
The ExAMIN AGE Study
Lukas Streese, Arne Deiseroth, Juliane Schäfer, Arno Schmidt-Trucksäss and

Henner Hanssen*

Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland

Background: Age is a key determinant for the development of cardiovascular disease

and higher age coincides with an increased prevalence of obesity and physical inactivity.

The study examines the influence of physical activity on aging processes of physiological

systems focusing on the mechanisms of vascular aging.

Methods/Design: The study consists of two parts. The cross-sectional approach aims

at examining the association of physical fitness and cardiovascular risk with large and

small artery function in healthy older active (HOA, n = 40) and sedentary (HOS, n =

40) persons as well as older sedentary individuals with increased cardiovascular risk

(OSR, n = 80) aged 50–80 years. In the interventional approach, the OSR group is

randomized into a 12-week walking-based high intensity interval training (HIIT) group

or a control condition, aiming at examining the effects of HIIT on arterial function in

diseased older adults. Active lifestyle is defined as >9 metabolic equivalent of task (MET)

per week and sedentary as ≤3 MET/week. Inclusion criteria for OSR are overweight or

obesity (body mass index ≥30 kg/m2) plus at least one additional cardiovascular risk

factor. The primary outcome is arterial stiffness as determined by aortic pulse wave

velocity (PWV). The secondary outcomes are retinal arterial and venous diameters.

Further cardiovascular assessments include peripheral PWV, central haemodynamics,

retinal endothelial function, carotid intima media thickness, cardiac strain and diastolic

function as well as autonomic function and inflammation. Physical fitness is measured

by a treadmill-based spiroergometry to determine peak oxygen uptake.

Discussion: The aim of the study is to demonstrate the importance of and need for

specific physical activity programs for seniors to achieve healthier aging as a long-

term goal. Vascular function defines disease- and age-related end organ damage

and represents the potential to contain health at older age. This research will identify

cardiovascular biomarkers that best resemble underlying cardiovascular risk in age and

disease. The integrated approach will help define new recommendations for treatment

guidance of exercise therapy in an aging population.

ClinicalTrials. gov: NCT02796976; registered 02 June 2016 (retrospectively registered).

Keywords: aging, vascular function, exercise, arterial stiffness, retinal vessels
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BACKGROUND

Atherosclerotic cardiovascular disease (CVD) is a chronic
inflammatory disease of the circulatory system and it is a main
health care threat in western countries. Almost every third death
can be attributed to CVD, amounting to a total of 17.5 million
associated deaths worldwide (World Health Organization, 2014).
About 80% of CVD deaths are thought to be associated with
arterial disorders (Thom et al., 2006). Age is one of the major risk
factors for the development of CVD and demographic change
further aggravates the enormous socio-economic health care
challenge. The number of persons aged 60 or older will double
until the year 2050, which will further aggravate the burden of
age-related diseases such as CVD (World Population Prospects,
2015). Aging is associated with complex structural and functional
alterations of the vascular bed (Ferrari et al., 2003).

The rise of the obesity epidemic in the last decades is another
main underlying reason for the high prevalence of CVD. To date,
almost 70% of adults are classified as either overweight or obese as
compared to 40% 40 years ago (Lavie et al., 2009). The prevalence
of obesity and the metabolic syndrome increases with older age
(Ford et al., 2004). Physical inactivity is amain risk factor not only
for the development of obesity but also for non-communicable
diseases in general and CVD specifically. The World Health
Organization (WHO) has stated that more than three-quarters
of all CVD mortality may be prevented by appropriate changes
in lifestyle. Blair et al. found that individuals who improved from
unfit to fit over a mean follow-up of 5 years showed a reduction
in mortality risk of 44% compared to those who remained unfit
(Blair et al., 1995). In a large prospective cohort, Wen et al.
reported a 14% reduction of all-cause mortality in individuals
exercising for 90min per week or 15min per day compared to
an inactive group (Wen et al., 2011). Vigorous-intensity exercise
(>8.5 MET) seemed to yield greater health benefits in terms of
all-cause mortality reduction than moderate-intensity exercise
(4–6 MET).

High intensity interval training (HIIT) has been suggested
to be an effective training modality for secondary prevention of
CVD in older adults and seems to be superior to well-established
moderate continuous exercise training with respect to improving
not only cardio respiratory fitness but also the cardiovascular
risk profile (Helgerud et al., 2007; Wisloff et al., 2007; Tjonna
et al., 2008; Guimarães et al., 2010; Kessler et al., 2012; Molmen
et al., 2012). The risk of CVD events is considered to be
equally low for both HIIT and moderate continuous training
(MCT) intervention strategies (Rognmo et al., 2012). Exercise
training and regular PA are able to reduce the main underlying
mechanisms for the development and progression of CVD such

Abbreviations: HOA, healthy older Active; HOS, healthy older sedentary; OSR,

older sedentary at risk; HIIT, high intensity interval training; PA, physical activity;

VO2max, maximal oxygen uptake as a measure of physical fitness; MET, metabolic

equivalent; CVD, cardiovascular disease; PWV, pulse wave velocity; cfPWV,

carotis-femoral PWV; ftPWV, femoral tibial PWV; AIx, augmentation index;

AIx@75, AIx at heart rate 75/min; cPP, central pulse pressure; IMT, intima media

thickness; HRV, heart rate variability; SVA, static retinal vessel analysis; DVA,

dynamic retinal vessel analysis; CRAE, central retinal equivalent; CRVE, central

retinal equivalent; AVR, arteriolar-to-venular diameter ratio.

as inflammation, oxidative stress and endothelial dysfunction.
However, it is still unclear which biomarker is most suitable to
detect the process of vascular aging and can sensitively quantify
and monitor treatment effects at older age. Novel approaches for
cardiovascular risk screening and exercise treatment strategies
are indispensable to counteract the growing socio-economic
burden and health hazard of cardiovascular disease in an aging
population.

CARDIOVASCULAR HEALTH AND AGING:
A SYSTEMS PHYSIOLOGY APPROACH

Vascular aging is a gradual process of the circulation that is
aggravated by the development of cardiovascular risk factors
and affects both the macro- and microcirculation (Nichols
et al., 2011). Since aging is the main denominator for chronic
CVD manifestations, the concept of vascular aging has been
proposed to improve clinical guidance of patients with increased
cardiovascular risk (Nilsson et al., 2009, 2013). The concept
implies that age-related clinical or subclinical manifestations are
associated with vascular alterations, which can be quantified by
sensitive non-invasive vascular assessments. Consistent evidence
suggests that arterial stiffness is a subclinical, strong and valid
vascular biomarker for the quantification of atherosclerosis and
grave cardiovascular dysfunction (Salomaa et al., 1995; Laurent
et al., 2006; Vlachopoulos et al., 2010a). Arterial stiffness and
the impairment of the buffer capacity of large arteries lead to
elevated left ventricular afterload and left ventricular hypertrophy
and, at later stages, to heart failure, worsening of coronary
artery disease and increased risk of stroke (Hamilton et al.,
2007). Aortic pulse wave velocity (PWV), acknowledged as
the “gold-standard” method for measuring arterial stiffness,
is an independent predictor for cardiovascular morbidity and
mortality in the general population, elderly subjects and in
patients with cardiovascular disease (Laurent et al., 2001; Sutton-
Tyrrell et al., 2005; Hansen et al., 2006; Mattace-Raso et al.,
2006). An increase of aortic PWV by 1 m/s has been reported
to represent a risk increase of 15% in total cardiovascular
and all-cause mortality (Vlachopoulos et al., 2010a). In the
Baltimore Longitudinal Study of Aging, aortic PWV increased
twofold across the age span and higher fitness were associated
with reduced arterial stiffness in a predominantly sedentary
population as well as in endurance trained older men compared
to less active peers (Vaitkevicius et al., 1993). In a population-
based study of 373 younger subjects in the Netherlands, it
was found that the effect of habitual PA on arterial stiffness
depends on its intensity and differs depending on the arterial
tree segment. Vigorous but not light-to-moderate habitual PA
provides favorable associations with peripheral arterial stiffness
in young adults (van de Laar et al., 2011). In our study, different
approaches of measuring arterial stiffness are applied in various
vascular beds. Central and peripheral PWV measurements are
performed as well as 24-h monitoring of central haemodynamics
such as augmentation index (AIx) and pulse pressure (PP).
Assessment of the macrocirculation includes the structural
analysis of the carotid intima-media thickness (IMT).
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It is generally assumed that increased central PWV
contributes to the pathogenesis of small vessel disease,
particularly the myocardial and cerebral microcirculation.
Increased arterial stiffness seems to expose small vessels to
highly pulsatile pressure and flow, thereby inducing damage
to the microvascular bed (O’Rourke and Safar, 2005). A
cross-talk between large and small arteries exists, promoting
a vicious circle of increases in peripheral vascular resistance,
blood pressure and arterial stiffness, eventually leading to
the manifestation of micro- and macrovascular target organ
damage (Laurent et al., 2009). Retinal vessel analysis is a non-
invasive technique that allows the examination of the retinal
microcirculation (Liew et al., 2008). Retinal vessels are part of
the cerebrovascular bed and they are affected early in the process
of cardiovascular disease. Large cohort studies have previously
shown that narrower retinal arterioles, wider retinal venules
and a resulting lower arteriolar-to-venular diameter ratio (AVR)
are associated with increased risk and severity of hypertension
(Wang et al., 2003; Wong et al., 2004a; Ikram et al., 2006b),
risk of stroke (Ikram et al., 2006a; McGeechan et al., 2009)
and a higher cardiovascular morbidity and mortality in older
subjects (Wong et al., 2002; Wang et al., 2007). In older adults,
obesity is associated with retinal venular widening and a lower
arteriolar-to-venular diameter ratio (AVR) (Nguyen and Wong,
2006; Wang et al., 2006). Inflammation has been associated with
wider retinal venular diameters (Klein et al., 2006). We have
previously shown that higher physical fitness levels are associated
with higher retinal AVR and that regular endurance exercise
induced arteriolar dilatation as well as venular constriction,
leading to a significantly improved AVR in middle-aged lean and
obese individuals (Hanssen et al., 2011). Retinal microvascular
endothelial function can directly be measured in vivo by dynamic
retinal vessel imaging inducing neurovascular coupling by flicker
stimulus (Falsini et al., 2002; Polak et al., 2002). An impaired
response to flicker light has been associated with type 2 diabetes
mellitus (Mandecka et al., 2007; Sörensen et al., 2016), high
blood pressure (Nagel et al., 2004) and aging (Pemp et al., 2009;
Kotliar et al., 2011). The assessment of retinal vessel diameters is
used to define microvascular aging at older age and to examine
associations with physical fitness. Retinal vessel analysis allows
for the investigation of the cross-talk between large and small
arteries.

Large artery stiffness is not only associated with small vessel
disease but is known to relate to left ventricular hypertrophy
as well as systolic and diastolic dysfunction (Roman et al.,
2000; Weber et al., 2008; Namba et al., 2016). In patients
with normal ejection fraction, increased pulse wave reflection
and PWV are associated with higher left ventricular filling
pressures (Weber et al., 2008). In patients with asymptomatic
diastolic dysfunction, increased PWV has been shown to precede
the onset of manifest heart failure with preserved ejection
fraction (Karagodin et al., 2017). Indices of systolic and diastolic
function share its predictive character with arterial stiffening
(Vlachopoulos et al., 2010b; Kane et al., 2011; Lam et al., 2011).
This suggests that ventricular-vascular interactions play a pivotal
role in the clinical relevance of arterial stiffness (Chung et al.,
2010). The recent Health ABC Study, however, demonstrated that

the association of arterial stiffness with the development of heart
failure is not independent of cardiovascular risk factors (Pandey
et al., 2017). Additional assessment of left ventricular structure
and function allows for analysis of the cardiovascular cross-talk
and its association with cardiovascular risk factors.

Autonomic function (AF) is a principal regulator of vascular
properties and cardiac function. AF alters with age and plays
a crucial role in the development of cardiovascular diseases
(1996; Fisher et al., 2009). Its sympathetic and parasympathetic
branches regulate vascular tone and, thereby, modulate arterial
stiffness (Perkins et al., 2006). Heart Rate Variability (HRV) is
an easily recordable clinical marker for autonomic function and
its indices have shown predictive value for the development
of cardiovascular disease (1996; Kleiger et al., 2005). Increased
physical activity has been shown to be associated with favorable
autonomic function in older adults (Soares-Miranda et al.,
2014). In addition to the above mentioned physiological systems,
we will measure circulating anti- as well as pro-inflammatory
cytokines and analyse their role in mediating physical inactivity-
and obesity-related vascular and systemic impairments. Vascular
aging and immunosenescence are explained in large part by
an imbalance between inflammatory and anti-inflammatory
processes. These result in a predominantly pro-inflammatory
status that has been termed “inflamm aging” (Franceschi et al.,
2007). Healthy aging and longevity are the result of an efficient
lifelong anti-inflammatory activity that, once it fails to overcome
cellular and systemic inflammatory processes, can be the driving
force for frailty and age-related pathologies.

METHODS/DESIGN

Objectives
The aims of the study are twofold. In our cross-sectional research
approach, the association of physical activity and fitness on the
process of normal (healthy) aging is analyzed by comparing the
group of healthy older sedentary (HOS) with healthy older active
(HOA) adults. The association of CVD on the process of aging
is examined by comparing HOS with older sedentary persons
with increased cardiovascular risk (OSR). In the interventional
approach, the reversibility of advanced vascular and systemic
aging by a walking-based HIIT is examined in OSR.

Cross-Sectional (Part I)
Aim 1: To determine the associations of physical fitness and
cardiovascular disease with large and small artery function in
HOA, HOS as well as OSR group.

Interventional (Part II)
Aim 2: To examine the effects of HIIT on large and small artery
function in OSR.

Outcome Measures
Primary outcome: central (carotid-femoral) pulse wave velocity
(cfPWV)
Secondary outcomes: central retinal arteriolar (CRAE) and
venular (CRVE) diameters
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Further outcomes: peripheral (femoral-posterior tibial) pulse
wave velocity (ftPWV); central augmentation index (cAIx);
central pulse pressure (cPP); 24 h AIx (24AIx) and cPP
(24cPP); carotid intima media thickness (IMT); retinal vessel
flicker response (DVA); left ventricular diastolic function and
myocardial strain; heart rate variability (HRV), inflammation.

Hypotheses
Hypothesis 1 (Part I): cfPWV is lower in HOA compared to HOS
Hypothesis 2 (Part I): cfPWV is higher in OSR compared to HOS
Hypothesis 3 (Part II): cfPWV inOSR can be reduced by 12 weeks
of HIIT compared to controls.
The same hypotheses will be addressed for the secondary and
further outcomes.

Study Design
The study design consists of two parts with separate sample
size considerations for the cross-sectional and interventional
approach. HOA and HOS participants as well as OSR are
recruited and enrolled in the cross-sectional study (Figure 1).
Recruitment of the OSR group is performed on the basis of
agreement to take part in the exercise intervention following
the cross-sectional assessment, which serves as a baseline
examination for the consecutive intervention. Before enrolment,
subjects are medically examined and scanned for inclusion and
exclusion criteria by the study physician. Written informed
consent is obtained from eligible subjects and a medical
examination and anthropometry are performed and physical
activity levels are assessed. In addition, blood sampling and 24 h
blood pressure monitoring including central PWV, Aix, and PP
are undertaken (visit 1). The enrolment decision is taken on the
basis of the inclusion and exclusion criteria. On two separate
visits and in randomized order, the main vascular diagnostics,
echocardiography, autonomic function and the assessment of
endurance performance (VO2max) are performed for the cross-
sectional part of the study. All vascular diagnostics take place
in the morning and under fasting conditions (visit 2 or 3). The
endurance performance and the autonomic function is always
performed in the afternoon (visit 2 or 3) to reduce within-
day variability. Visit 1 and visit 2/3 are separated by at least
1 week to check inclusion/exclusion criteria. Visit 2 and 3 are
separated by at least 1 day or no more than 2 weeks. After
these three visits, the OSR group is randomized to take part
in a 12-week HIIT or a control condition with general lifestyle
recommendations. All participants have an equal likelihood of
being assigned to treatment or control group. All assessments of
the baseline examination are repeated in the follow-up after 12
weeks (Figure 1).

Inclusion Criteria
• Healthy men and women aged 50–80 years with:

- active lifestyle: >9 MET/week (>3 h moderate
walking/week) or

- sedentary lifestyle: ≤3 MET/week (≤1 h moderate
walking/week)

- 18.5≤ BMI < 25.0 kg/m2

• Sedentary men and women aged 50–80 years with increased
cardiovascular risk:

- overweight or obesity (BMI ≥ 30 kg/m2) and
- ≥one additional cardiovascular risk factor as described in

Figure 2.

Exclusion Criteria
• Healthy men and women aged 50–80 years with:

History of cardiovascular, pulmonary or chronic
inflammatory disease; blood pressure ≥140/90 mmHg during
24 h monitoring or any of the risk factors in Figure 2; current or
past smoker; macular degeneration or glaucoma.

• Sedentary men and women aged 50–80 years at risk:

Decompensated cardiovascular, pulmonary or chronic
inflammatory disease; macular degeneration or glaucoma;
compromising orthopedic problems.

Setting
The RCTwill be realized at the Department of Sport, Exercise and
Health, Basel, Switzerland. This study is financially supported by
the Swiss National Science Foundation (SNF) and approved by
the Ethics Committee of Northwestern and Central Switzerland
(EKNZ-2015-351). We registered this study on ClinicalTrials.gov
(NCT02796976) in June 2016.

Study Procedures and Ethical
Considerations
All participants are briefed verbally and receive information
approved by the Ethics Committee of Northwestern and Central
Switzerland (EKNZ) giving details on the study procedures,
the RCT and the process of randomization. The study will be
carried out in accordance to the protocol and with the principles
stated in the Declaration of Helsinki and the Guidelines of
Good Clinical Practice (GCP) (World Medical Association,
2013). This study protocol was design according the SPIRIT
Guidelines.

All measurements and procedures applied in this study are
non-invasive. Routine exercise ECG includes an exertional
stress test as a medical necessity and safety precaution to
evaluate cardiorespiratory health in all subjects. The OSR
group undergoes a high intensity walking-based training
program. HIIT has previously been applied in a wide range
of patients including patients with coronary artery disease.
The risk for cardiovascular events has been proven to
be equally low for both HIIT and moderate continuous
intervention strategies (Rognmo et al., 2012). Retinal vessel
analysis includes mydriasis of one eye. Using a mydriaticum
(Tropicamid 0.5%), the pupils are dilated and enable
retinal vessel analysis. The eye drops can cause temporary
discomfort, oftentimes a burning sensation for 1–2min.
Flickerlight exposure can potentially cause slight headaches.
The collaborating ophthalmology department in Basel will
offer back up at all times in the unlikely event of continuous
discomfort.
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FIGURE 1 | Study design, cross-sectional part (Part I) and randomized controlled trail (RCT) (Part II); HOA, healthy older active; HOS, healthy older sedentary; OSR,

older sedentary at risk; CG, control group (standard recommendations for daily physical activity); HIIT, high intensity interval training.

All participants are committed to sign a consent form and
will be informed about their right to withdraw from the study
without any consequences. A study assistant will randomize the
OSR group in an intervention or a control group by drawing
a lot after the last pre-intervention assessment. Participants
and investigators are blinded for the group membership during
the pre-measurements. All participants are to be recruited
from our outpatient department, the Metabolism Unit of the
University Hospital Basel, Basel, Switzerland and, in addition,
with postings on University webpages and advertisements
in local newspapers. We aim to recruit the HOA group
in running clubs and on running events in and around
Basel. A total of 160 participants will be recruited for the
study.

Statistical Analysis
The primary outcome of the study is the cfPWV among HOA,
HOS, and OSR (part I), and among OSR after 12 weeks of
intervention with a high-intensity interval training (HIIT) and
those assessed within the same time frame without the HIIT
intervention (control group) (part II). To describe continuous
demographic and baseline characteristics of participants in the
HOA, HOS and OSR group (part I) and those in the OSR
intervention and control group (part II), we will use the median
and interquartile range; and for categorical characteristics, we
will use percentages. Boxplots will be used to visualize the
primary and secondary outcomes in the HOA, HOS and OSR
group (part I) and at baseline as well as after 12 weeks in
the OSR intervention and control group (part II). For part
I, we will use analysis of variance to compare the cfPWV
(and secondary outcomes) between HOA, HOS and OSR. For
part II, we will use analysis of covariance to compare the

cfPWV (and secondary outcomes) after 12 weeks between OSR
in the intervention and those in the control group adjusted
for the corresponding values at baseline (Vickers and Altman,
2001). For each analysis, we will report estimates (with 95%
confidence intervals) of the difference in outcome between
HOA and HOS and between OSR and HOS (part I), and
between OSR in the intervention and those in the control
group (part II). Up-to-date versions of SAS (SAS Institute
Inc., Cary, NC, USA) and R (R Foundation for Statistical
Computing, Vienna, Austria) will be used for analysis and
graphics.

Sample Size Calculation
The sample size was calculated separately for both study parts.
For part I, we assumed that the expected cfPWV corresponded
to 8.5, 9.5, and 11.5 m/s for HOA, HOS and OSR, respectively,
and that the standard deviation was 1.5 m/s (Tedesco et al.,
2004; Gando et al., 2010). With a 2-sided significance level
of 0.05, the sample size needed to attain a targeted power of
80% for detecting a difference with magnitude 1.0 m/s was 36
participants per group (the comparison between HOA and HOS)
and for detecting a difference with magnitude 2.0 m/s, it was
10 participants per group (the comparison between OSR and
HOS). For part II, we assumed that the expected difference in
cfPWV after 12 weeks between OSR in the intervention and
those in the control group was 1.0 m/s and that the standard
deviation was 1.5 m/s (Madden et al., 2009). By including the
baseline cfPWV (before the start of the intervention period) as
a covariate in the pre-specified analysis, we will further reduce
error variability and therefore assumed that the correlation
between baseline and outcome cfPWV was 0.3. With a 2-
sided significance level of 0.05, the sample needed to attain a
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FIGURE 2 | Inclusion criteria and risk factors for older sedentary at risk group (OSR).

targeted power of 80% for showing superiority of the intervention
over control was 34 participants per group. Taking dropouts
into account, we plan to include a total of 40 HOA, 40 HOS
and 80 OSR. The POWER and GLMPOWER procedures in
SAS 9.3 (SAS Institute Inc., Cary, NC, USA) were used for
sample size calculation for the first and second study part,
respectively.

Exercise Intervention and Control
Condition
High Intensive Interval Training (HIIT)
The exercise intervention for the OSR intervention group is a
supervised Nordic-Walking training three times a week with
gradually increased intensity during the first 2 weeks. In the
first week, we will teach Nordic Walking technique, warm-up
and cool-down elements as well as continuous walking training
with moderate intensity at 75% of maximal heart rate (HRmax).

In the second week, the intensity will increase to 80–90% of
HRmax. In the following 10 weeks, HIIT will be performed as
described below. Exercise scientists will supervise all training
sessions.

The following protocol will be used (modified from Wisloff
et al., 2007):

• Three supervised trainings per week
• Intensity: 10min warm-up at 65-70% HRmax, 4x4min

interval training at 80-90% HRmax with 3min of active
recovery at 65-70% HRmax, 10min cool down at 60-70%
HRmax

• Duration: 45 min

Control Group (CG)
The control group is asked to orientate their physical activity
according to the European Guidelines on vascular disease
prevention in clinical practice (Backer et al., 2003).
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IMAGING METHODS AND COURSE OF
MEASUREMENTS

Macrovascular Aging
Central Pulse Wave Velocity
Carotid-femoral PWV (cfPWV), the gold standard for the
measurement of arterial stiffness, is assessed by using a
SphygmoCor R© device (AtCor, Medical Pty Ltd, Sydney,
Australia). The good intra- and interobserver reproducibility of
this technique has been demonstrated in healthy populations and
in patients with chronic kidney disease (Frimodt-Møller et al.,
2006, 2008). After 10min of rest, pulse waves are recorded using
a high-fidelity tonometric transducer at two sites (right carotid
artery and right femoral artery). Pulse wave travel distance is
determined by subtracting the distance between the manubrium
to the carotid artery from the distance between the femoral
artery to the manubrium as previously described (Townsend
et al., 2015). cfPWV measurements are considered to meet the
quality control parameters if two consecutive measurements
are visually acceptable and within 1 m/s of each other with
a standard deviation of <10% (Sigrist et al., 2010). If this
criterium could not be reached a third measurement was applied.
The mean of all valid measurements represents the cfPWV
value.

Peripheral Pulse Wave Velocity
Femoral-tibial PWV (ftPWV) is assessed by using the same
SphygmoCor R© device as for central PWV. Peripheral PWV is
determined as the travel time of the pulse wave between the two
recording sites at the femoral artery and the posterior tibial artery
divided by the distance between the two recording sites. All other
procedures and conditions are the same as for central PWV (see
above).

Pulse Wave Reflection (PWA)
AIx and AIx@75 are measured using the gold standard device
for single measurements (SphygmoCor R©). The augmentation
index from the central pulse is calculated as: AIx = 100 ×

(P2 – P1)/pulse pressure, where P2 is the peak of the reflected
backward wave, P1 is the peak of the forward pressure wave
and central pulse pressure is the systolic pressure maximum
minus the diastolic pressure. A positive AIx would indicate
an augmentation of peak systolic pressure by the reflected
wave. Pulse waveform is obtained using applanation tonometry
(SphygmoCor R© device, ATCor Medical, Sydney, Australia) on
the right radial artery. Ten-second recordings are accumulated
until either two analyses with a quality index of≥90% or three of
≥80%were available. By applying a generalized transfer functions
(GTF) the central arterial pulse waveform is estimated by the
SphygmoCor R© software. These transfer functions have been
validated previously during rest (Gallagher et al., 2004) and
exercise (Sharman et al., 2006). The calculated central arterial
pulse waveform is subjected to further analysis, such as the
determination of AIx and AIx@75. Reproducibility has been
shown to be acceptable at rest (Filipovský et al., 2000) and during
exercise (Holland et al., 2008).

24-h Ambulatory Monitoring of Central

Hemodynamics
Twenty-four hours ambulatory pulse wave monitoring is
obtained using an oscillometric Mobil-O-Graph R© 24 h PWA
Monitor device (I.E.M GmbH, Germany) with integrated
ARCSolver R© software. Based on the oscillometric data, central
hemodynamics as well as the 24-h PWV is calculated.
Oscillometric pulse wave analysis are performed every 20min
for 24 h. Subjects are instructed to hold their arm as steady as
possible during the measurements but otherwise maintain their
daily routine with no additional physical activity while wearing
the device. After data readout, every individual measurement is
reviewed for erroneous values. Values are deleted if the quality of
data is graded 3 or 4 by the ARCSolver R© software. The methods
used for these analyses are the same as used by the SphygmoCor R©

software described previously (Wassertheurer et al., 2010).
Validity and reproducibility of oscillometric estimates of cPP,
Aix, and AIx@75 are comparable with laboratory settings
(Wassertheurer et al., 2010; Luzardo et al., 2012; Papaioannou
et al., 2013).

Intima Media Thickness (IMT)
For the semi-automatic evaluation of intima-media thickness
(IMT), B-Mode clips are conducted using an ultrasonic device
UF-870AG (Fukuda Denshi, Japan) according to current
guidelines (Touboul et al., 2012). With the participant in supine
position and the head rotated by 45◦ either to the left or
right side two locations on both sides are scanned. Ear-to-
ear and horizontal clips are recorded over at least three heart
cycles using the US machines inbuilt 3-lead ecg function. Post
procession and video-based IMT-admeasurement of the exported
clips is performed using the Dynamic Artery Analysis software
(DYARA) as described elsewhere (Teynor et al., 2012), using
image averaging over three heart cycles. Reproducibility of the
aforementioned method is excellent (Touboul et al., 2012).

Microvascular Aging
Static Retinal Vessel Analysis (SVA)
The retinal microcirculation is easily accessible by using the
Retinal Vessel Analyser (RVA, IMEDOS Systems, Jena, Germany)
and a fundus camera (450 FF; Carl Zeiss, Jena, Germany). The
technique allows for the analysis of the structure and function
of retinal arterioles and venules. To measure retinal vessel
diameters, we analyze three valid pictures from one eye with
an angle of 50◦ and the optic disc in the center. The detailed
procedure is described elsewhere (Hanssen et al., 2011). Briefly,
retinal arterioles and venules, coursing through an area of 0.5–1
disc-diameter from the optic disc margin, will be identified semi-
automatically at higher magnification using special analyzing
software (Vesselmap 2, Visualis, Imedos Systems UG). Diameters
will be averaged to central retinal arteriolar (CRAE) and venular
(CRVE) equivalents, and the arteriolar-to-venular-ratio (AVR)
will be calculated from the CRAE and CRVE. The inter-
observer and intra-observer interclass correlation coefficient for
the measurement of retinal vessel diameters ranges from 0.75 to
0.99 (Hubbard et al., 1999; Wong et al., 2004b).
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Dynamic Retinal Vessel Analysis (DVA)
Functional retinal vessel analysis requires pharmacological
dilatation of one pupil with conventional eye drops (Tropicamide
0.5%). Microvascular function is analyzed by a flicker-induced
dilatation of retinal arterioles and veins. We use a fundus camera
(450 FF; Carl Zeiss, Jena, Germany), with a charge-coupled device
for electronic online imaging and a personal computer for system
control, analysis and recording of the obtained data, allowing
non-invasive assessment of retinal endothelial function mediated
by neurovascular coupling following flicker stimulation (Falsini
et al., 2002; Polak et al., 2002). The whole procedure is described
elsewhere (Nagel et al., 2004; Gugleta et al., 2006; Garhofer et al.,
2010). Due to the described inter- and intra-individual variations
of vessel diameters (Hubbard et al., 1999), the mean diameter
resulting from three baseline measurements before application of
the stimulus in each of three flicker cycles is defined as 100%.
The ensuing vessel diameter changes are recalculated in % to
this individual baseline value (Pemp et al., 2009). From the
median of the three curves, parameters such as maximal vessel
dilatation, maximal reactive vessel constriction and area under
the reaction curve during and after flicker stimulation can be
analyzed (Kotliar et al., 2011).

Cardiac Aging
Echocardiographic parameters are assessed using an ultrasonic
device (UF 870AG, Fukuda Denshi, Japan) according to current
guidelines (Nagueh et al., 2009; Lang et al., 2015). Briefly,
global systolic function is described by ejection fraction based
on chamber quantifications as recommended. Linear method
and 2D based formulas are used to calculate left ventricular
functionmass. Right ventricularmeasurements (such as tricuspid
annular plane systolic excursion) as well as atrial volume
measurements give further insight into mechanical properties
of the heart. Diastolic function is assessed using mitral inflow
patterns (E, A, deceleration time, intraventricular relaxation
time), tissue Doppler derived mitral annular velocities (E′, A′)
and pulmonary artery pressures. Additionally, speckle tracking
echocardiography is used to calculate strain.

Autonomic Aging
We record a 12-lead-ECG for 20min in supine position before
and 10min after a treadmill test using Custo Diagnostic Software
(Custo Med GmbH, Germany). The additional post-treadmill
assessment will enable us to evaluate recovery of HRV after
acute bouts of exhaustive exercise. Raw data are extracted and
processed to derive HRV parameters. Time-domain parameters
are standard deviation of normal to normal (NN) RR intervals
(SDNN), root mean square of successive differences (RMSSD)
and the number of pairs of successive NNs that differ by more
than 50ms (NN50). Frequency-domain paramters include high-
and low frequency power. Additionally, Heart Rate Turbulence
(HRT) and Deceleration Capacity (DC) are calculated (Schmidt
et al., 1999; Bauer et al., 2006).

Inflamm-Aging and Circulating CV Risk Factors
To analyse the influence of physical activity on immunological
processes and the association of inflammation, blood samples

are taken. They are drawn by venepuncture of the cubital fossa
of the right or left arm by trained medical staff in a fasting
state. The blood is transported directly to the clinical chemistry
laboratory for further analysis or centrifuged and put on ice.
Clinical routine measurements including total blood count,
total cholesterol (TC), low- (LDL) and high-density lipoprotein
(HDL), triglyzerides (TGA) (colorimetric tests) as well as
fasting glucose levels (hexokinase reference method) and insulin
levels (automated immunoanalyzer system) to estimate insulin
resistance (by HOMA Score) are measured. Samples, which are
not analyzed directly, will centrifuged and the plasma aliquots
will be frozen at a temperature of −80◦. To analyse plasma
concentration of the following specific biomarkers blood samples
will be defrosted and processed. Cytokine-specific ELISA kits
will use to analyse inflammatory serum biomarker interleukin
6 (IL 6), 10 (IL-10), and tumor necrosis factor alpha (TNF-α)
according to the manufactures instructions (IL-6/-10: Bender
Med-Systems (eBioscience), Austria; TNF-α: Bio-source, USA).
The samples will be distributed in duplicates on the plates
and the intra-assay and inter-assay coefficient of variation need
to be ≤10%. High-sensitive c-reactive protein (hsCRP) will be
analyzed by immunoturbidimetric latex CRP assay (Cobas 8000,
Roche-Diagnostics, Basel).

Physical Fitness, Physical Activity, and

Anthropometry
Physical fitness will be assessed by performing an individualized
ramp protocol on the treadmill. We will measure peak oxygen
uptake (VO2peak) and maximal heart rate (HRmax). The
individualized design with increasing speed and ramp steepness
will be used to reach volitional exhaustion after approximately
10min for every participant. The calculation of this protocol
is based on the subject’s age and estimated peak metabolic
equivalent units (METS) as previously recommended (Bader
et al., 1999; Myers and Bellin, 2000). The ECG will be monitored
by medical personal during the whole test. Blood pressure will be
measured during, immediately after and 3min after the exercise
test. Every minute Ratings of Perceived Exertion (RPE) will
be requested (Borg, 1982). Ventilatory parameters, including
VO2max and heart rate, will be measured by using the Cortex
Metalyzer R© 3B metabolic test system (Cortex Biophysik GmbH,
Leipzig, Germany).

All participants will get an accelerometer (Aipermon GmbH,
Germany) to analyse their physical activity (PA). They have
to wear the device on their left hip for the whole day on six
consecutive days. Raw data will be copied onto a computer
and the data will be viewed using the ActiCoach MPAT2Viewer
(Aipermon, GmbH, Germany). The following parameters can
be analyzed by this software: total time (minutes per day)
spent passively (PAS), actively (ACT), walking (WLK), and fast
walking (FWLK). Walking and fast walking times will be joined
to a total walking time (TWT). We have previously validated
activity modes and accelerometer detection precision (Jehn et al.,
2009a,b, 2010, 2011).

Self-reported PA will be measured with the Freiburg
Questionnaire of physical activity. The questionnaire interrogates
health-related physical activities using self-reported activities
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within the last week/month. It creates reliable and valid values
of PA and inactivity (Frey et al., 1999). The total PA is expressed
in hours per week. The Ainsworth Compendium in metabolic
equivalents (METS) estimates the intensities. The formula to
calculate the energy expenditure per week is described elsewhere
(Ainsworth et al., 1993).

Anthropometric data will be measured in a fasting state in
the morning. The Inbody 720 R© (JP Global Markets GmbH,
Germany) device will be used to obtain weight, BMI, skeletal
muscle mass and body fat (Anderson et al., 2012). Height
and waist circumference will be measured by using a normal
measuring tape with respect to current guidelines.

Potential Pitfalls
Our main outcome (cfPWV) as well as most other vascular
measurements are affected by age, hemodynamic variability,
lifestyle behavior, and circadian fluctuations. To minimize
external interference and variability, several measures are
considered. Groups are matched for age and sex. Standardized
vascular imaging is performed under fasting conditions in the
morning after 10min of rest in a supine position. Participants
are encouraged to refrain from alcohol, caffeine and if applicable
from smoking 12 h prior to the examinations. Exercise and
vigorous physical activity should not be performed 24 h before
the visits. The OSR group is allowed to take their medication in
the morning. These measures help to minimize intra-individual
as well as within-day variability.

Change of medication or start of a structured diet during the
12 week-week intervention or control condition are indications
for exclusion. In addition, the start of structured exercise in the
control group is considered an exclusion criterion. To prevent
the start of exercise in the control group, all participants of
this group are invited to take part in the voluntary supervised

exercise program after the post measurements. To prevent high
drop-out rates and optimize adherence to the exercise regime,
every exercise session starts with strength, mobilization and
coordination exercises and includes a warm-up and a cool-down.
The first 2 weeks of the exercise program focus on technical and
coordinative skills at lower intensities before HIIT is started in
the third week into the program.

DISCUSSION AND CONCLUSION

The study design offers a concept for a systems physiology
approach on the mechanisms of aging and the role of physical
activity and fitness. The cross-sectional approach enables to
investigate the association of physical activity with the process
of normal, healthy aging comparing the HOA group with
HOS. In addition, the impact of cardiovascular disease on
physiological functioning is examined by comparing the HOS
group with OSR. The reversibility of pathophysiological aging
in patients with cardiovascular risk is explored by applying
an interventional exercise treatment in the OSR group. Our
study concept investigates the interplay of physiological systems
and how these are affected by physical activity and fitness. To
what extent can physical fitness prevent or delay physiological
dysfunction? The study aims at clarifying some of the main
mechanisms bywhich exercise improves the process of aging. The
multimodal concept of the study is depicted in Figure 3.

The ExAMIN AGE Study resembles new approaches in the
structural and functional diagnostics of aging processes including
systems such as the vasculature, the heart, autonomic function
and inflammation. The results have a focus on vascular imaging
and on the non-pharmaceutical treatment of vascular health
in older inactive individuals at risk. The integrative approach
will help to determine the best non-invasive means to diagnose

FIGURE 3 | Principle concept of the systems physiology approach.
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and define cardiovascular risk in advanced age and disease.
This study design allows the examination of pathophysiological
links between small and large arteries, the so called “vascular
coupling” or “arterial cross-talk.” To date little is known about
the interaction between the two vascular beds and how they affect
each other. It also enables to examine the cross-talk between the
vasculature and the heart. Exercise interventions can improve
both entities and play a key role in the treatment of cardiovascular
and metabolic diseases.

Our study has some limitations. We are aware that the
recruitment of healthy older sedentary individuals (HOS) is
challenging. It needs to be ascertained that all three groups
are strictly matched for age. The analysis of the association of
physical fitness with cardiovascular health and aging processes
in the three groups represents a cross-sectional approach and is
not based on prospective longitudinal data. Life-long activity is
analyzed by subjective reporting but is supported by objective
analysis using accelerometry and spiroergometry. The cross-
sectional study design does not give evidence of a temporal
relationship between physical activity exposure and physiological
outcome. However, the interventional part of the study, where
participants are randomly allocated to the intervention or the
control group, allows for a causal and temporal analysis of
the improvement of aging processes in individuals at risk. The
extensive phenotyping of vascular health and other physiological
systems as well as the analysis of the impact of HIIT are the main
strengths and innovations of the study.

In conclusion, the concept links cardiovascular prevention
and exercise medicine in a systems physiology approach. It aims
to help define new recommendations for treatment guidance of
exercise therapy in an aging population. We aim to demonstrate
the importance of specific physical activity programs for seniors
to achieve healthier aging as a long-term goal. Amelioration of
vascular function represents improvement of disease- and age-
related end organ damage and best describes the potential to
contain vascular health. The study will generate results which
will help to understand better the mechanisms of vascular aging
and the interplay with other physiological systems. The study
approach has the potential for transfer in other age groups and
clinical settings.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the Helsinki Declaration and the SPIRIT
Guidelines. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Ethics Committee of Northwest and Central
Switzerland (EKNZ 2015-351).

AUTHOR CONTRIBUTIONS

LS: drafted the manuscript, performed examinations, is
responsible for general data collection and analysis of
retinal vessels and cardio respiratory fitness, organized and
performed the exercise interventions; AD: helped draft the
manuscript, performed the large artery measurements as well
as cardiac imaging, medical examination, and supervision of all
participants; JS: performed the sample size estimation and was
responsible for statistical considerations; AS-T: participated in
the study design and helped draft the manuscript; HH: designed
the study and is principal investigator, wrote the manuscript and
helped analyse the data. All authors read and approved the final
manuscript.

FUNDING

This research is funded by the Swiss National Science Foundation
(SNSF), a competitive governmental funding body (grant
number: 159518/1).

ACKNOWLEDGMENTS

We would like to thank the personnel of the University Hospital
in Basel, in particular the team of Prof. M. Donath, who
helped with the recruitment of patients. We are grateful to Prof.
J. Flammer and Prof. K. Gugleta for their ophthalmological
support, both clinically and scientifically. We would further
like to thank our administrative team, Monique Nussbaumer
and Karin Zurflüh, for their organizing skills and valuable
support.

REFERENCES

(1996). Heart rate variability Standards of measurement, physiological

interpretation, and clinical use. Task force of the european society of

cardiology and the north american society of pacing and electrophysiology.

Eur. Heart J. 17, 354–381.

Ainsworth, B. E., Haskell, W. L., Leon, A. S., Jacobs, D. R., Montoye, H. J.,

Sallis, J. F., et al. (1993). Compendium of physical activities: classification of

energy costs of human physical activities. Med. Sci. Sports Exerc. 25, 71–80.

doi: 10.1249/00005768-199301000-00011

Anderson, L. J., Erceg, D. N., and Schroeder, E. T. (2012). Utility of multifrequency

bioelectrical impedance compared with dual-energy x-ray absorptiometry for

assessment of total and regional body composition varies between men and

women. Nutr. Res. 32, 479–485. doi: 10.1016/j.nutres.2012.05.009

De Backer, G., Ambrosionie, E., Borch-Johnsen, K., Brotons, C., Cifkova,

R., Dallongeville, J., et al. (2003). European guidelines on cardiovascular

disease prevention in clinical practice. Third joint task force of european

and other societies on cardiovascular disease prevention in clinical practice

(constituted by representatives of eight societies and by invited experts). Eur.

J. Cardiovasc. Prev. Rehabil. 10, S1–S78. doi: 10.1097/01.hjr.0000087913.96

265.e2

Bader, D. S., Maguire, T. E., and Balady, G. J. (1999). Comparison of ramp versus

step protocols for exercise testing in patients or = 60 years of age. Am. J.

Cardiol. 83, 11–14. doi: 10.1016/S0002-9149(98)00774-7

Bauer, A., Kantelhardt, J. W., Barthel, P., Schneider, R., Mäkikallio, T., Ulm,

K., et al. (2006). Deceleration capacity of heart rate as a predictor of

mortality after myocardial infarction: cohort study. Lancet 367, 1674–1681.

doi: 10.1016/S0140-6736(06)68735-7

Frontiers in Physiology | www.frontiersin.org 10 February 2018 | Volume 9 | Article 116

https://doi.org/10.1249/00005768-199301000-00011
https://doi.org/10.1016/j.nutres.2012.05.009
https://doi.org/10.1097/01.hjr.0000087913.96265.e2
https://doi.org/10.1016/S0002-9149(98)00774-7
https://doi.org/10.1016/S0140-6736(06)68735-7
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Streese et al. The ExAMIN AGE Study

Blair, S. N., Kohl, H. W., Barlow, C. E., Paffenbarger, R. S., Gibbons, L. W.,

and Macera, C. A. (1995). Changes in physical fitness and all-cause mortality:

a prospective study of healthy and unhealthy men. JAMA 27, 1093–1098.

doi: 10.1001/jama.1995.03520380029031

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports

Exerc. 14, 377–381. doi: 10.1249/00005768-198205000-00012

Chung, C. M., Chu, C. M., Chang, S. T., Cheng, H. W., Yang, T. Y.,

Wan, P. C., et al. (2010). Quantification of aortic stiffness to predict the

degree of left ventricular diastolic function. Am. J. Med. Sci. 340, 468–473.

doi: 10.1097/MAJ.0b013e3181f0142c

Falsini, B., Riva, C. E., and Logean, E. (2002). Flicker-evoked changes in human

optic nerve blood flow: relationship with retinal neural activity. Invest.

Ophthalmol. Vis. Sci. 43, 2309–2316.

Ferrari, A. U., Radaelli, A., and Centola, M. (2003). Invited review:

aging and the cardiovascular system. J. Appl. Physiol. 95, 2591–2597.

doi: 10.1152/japplphysiol.00601.2003

Filipovský, J., Svobodová, V., and Pecen, L. (2000). Reproducibility of radial

pulse wave analysis in healthy subjects. J. Hypertens. 18, 1033–1040.

doi: 10.1097/00004872-200018080-00007

Fisher, J. P., Young, C. N., and Fadel, P. J. (2009). Central sympathetic

overactivity: maladies and mechanisms. Auton. Neurosci. 148, 5–15.

doi: 10.1016/j.autneu.2009.02.003

Ford, E. S., Giles, W. H., and Mokdad, A. H. (2004). Increasing prevalence of

the metabolic syndrome among U.S. adults. Diabetes Care 27, 2444–2449.

doi: 10.2337/diacare.27.10.2444

Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., et al. (2007).

Inflammaging and anti-inflammaging: a systemic perspective on aging and

longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105.

doi: 10.1016/j.mad.2006.11.016

Frey, I., Berg, A., Grathwohl, D., and Keul, J. (1999). Freiburger Fragebogen

zur körperlichen Aktivität-Entwicklung, Prüfung und Anwendung. Soz.

Präventivmed. 44, 55–64. doi: 10.1007/BF01667127

Frimodt-Møller, M., Nielsen, A. H., Kamper, A. L., and Strandgaard, S.

(2006). Pulse-wave morphology and pulse-wave velocity in healthy human

volunteers: examination conditions. Scand. J. Clin. Lab. Invest. 66, 385–394.

doi: 10.1080/00365510600731332

Frimodt-Møller, M., Nielsen, A. H., Kamper, A. L., and Strandgaard, S.

(2008). Reproducibility of pulse-wave analysis and pulse-wave velocity

determination in chronic kidney disease. Nephrol. Dial. Transplant. 23,

594–600. doi: 10.1093/ndt/gfm470

Gallagher, D., Adji, A., and O’Rourke, M. F. (2004). Validation of the

transfer function technique for generating central from peripheral

upper limb pressure waveform. Am. J. Hypertens. 17, 1059–1067.

doi: 10.1016/j.amjhyper.2004.05.027

Gando, Y., Yamamoto, K., Murakami, H., Ohmori, Y., Kawakami, R., Sanada,

K., et al. (2010). Longer time spent in light physical activity is associated

with reduced arterial stiffness in older adults. Hypertension 56, 540–546.

doi: 10.1161/HYPERTENSIONAHA.110.156331

Garhofer, G., Bek, T., Boehm, A. G., Gherghel, D., Grunwald, J., Jeppesen, P., et al.

(2010). Use of the retinal vessel analyzer in ocular blood flow research. Acta

Ophthalmol. 88, 717–722. doi: 10.1111/j.1755-3768.2009.01587.x

Gugleta, K., Zawinka, C., Rickenbacher, I., Kochkorov, A., Katamay, R., Flammer,

J., et al. (2006). Analysis of retinal vasodilation after flicker light stimulation in

relation to vasospastic propensity. Invest. Ophthalmol. Vis. Sci. 47, 4034–4041.

doi: 10.1167/iovs.06-0351

Guimarães, G. V., Ciolac, E. G., Carvalho, V. O., D’Avila, V. M., Bortolotto, L. A.,

and Bocchi, E. A. (2010). Effects of continuous vs. interval exercise training on

blood pressure and arterial stiffness in treated hypertension.Hypertens. Res. 33,

627–632. doi: 10.1038/hr.2010.42

Hamilton, P. K., Lockhart, C. J., Quinn, C. E., and McVeigh, G. E. (2007).

Arterial stiffness: clinical relevance, measurement and treatment. Clin. Sci. 113,

157–170. doi: 10.1042/CS20070080

Hansen, T. W., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Thijs, L.,

Ibsen, H., et al. (2006). Prognostic value of aortic pulse wave velocity as

index of arterial stiffness in the general population. Circulation 113, 664–670.

doi: 10.1161/CIRCULATIONAHA.105.579342

Hanssen, H., Nickel, T., Drexel, V., Hertel, G., Emslander, I., Sisic, Z.,

et al. (2011). Exercise-induced alterations of retinal vessel diameters and

cardiovascular risk reduction in obesity. Atherosclerosis 216, 433–439.

doi: 10.1016/j.atherosclerosis.2011.02.009

Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas,

M., et al. (2007). Aerobic high-intensity intervals improve VO2max

more than moderate training. Med. Sci. Sports Exerc. 39, 665–671.

doi: 10.1249/mss.0b013e3180304570

Holland, D. J., Sacre, J. W., McFarlane, S. J., Coombes, J. S., and Sharman, J. E.

(2008). Pulse wave analysis is a reproducible technique for measuring central

blood pressure during hemodynamic perturbations induced by exercise. Am. J.

Hypertens. 21, 1100–1106. doi: 10.1038/ajh.2008.253

Hubbard, L. D., Brothers, R. J., King, W. N., Clegg, L. X., Klein,

R., Cooper, L. S., et al. (1999). Methods for evaluation of retinal

microvascular abnormalities associated with hypertension/sclerosis in the

Atherosclerosis Risk in Communities Study. Ophthalmology 106, 2269–2280.

doi: 10.1016/S0161-6420(99)90525-0

Ikram,M. K., de Jong, F. J., Bos,M. J., Vingerling, J. R., Hofman, A., Koudstaal, P. J.,

et al. (2006a). Retinal vessel diameters and risk of stroke: the Rotterdam Study.

Neurology 66, 1339–1343. doi: 10.1212/01.wnl.0000210533.24338.ea

Ikram, M. K., Witteman, J. C., Vingerling, J. R., Breteler, M. M., Hofman,

A., and de Jong, P. T. (2006b). Retinal vessel diameters and risk

of hypertension: the Rotterdam Study. Hypertension 47, 189–194.

doi: 10.1161/01.HYP.0000199104.61945.33

Jehn, M., Schmidt-Trucksäess, A., Schuster, T., Hanssen, H., Weis, M.,

Halle, M., et al. (2009a). Accelerometer-based quantification of 6-minute

walk test performance in patients with chronic heart failure: applicability

in telemedicine. J. Card. Fail. 15, 334–340. doi: 10.1016/j.cardfail.2008.

11.011

Jehn, M., Schmidt-Trucksäss, A., Hanssen, H., Schuster, T., Halle, M., and Koehler,

F. (2011). Association of physical activity and prognostic parameters in elderly

patients with heart failure. J. Aging Phys. Act. 19, 1–15. doi: 10.1123/japa.19.1.1

Jehn, M., Schmidt-Trucksäss, A., Schuster, T., Hanssen, H., Halle, M., and Köhleri,

F. (2010). Pedometer accuracy in patients with chronic heart failure. Int. J.

Sports Med. 31, 186–191. doi: 10.1055/s-0029-1243641

Jehn, M., Schmidt-Trucksäss, A., Schuster, T., Weis, M., Hanssen, H., Halle, M.,

et al. (2009b). Daily walking performance as an independent predictor of

advanced heart failure: prediction of exercise capacity in chronic heart failure.

Am. Heart J. 157, 292–298. doi: 10.1016/j.ahj.2008.10.006

Kane, G. C., Karon, B. L., Mahoney, D. W., Redfield, M. M., Roger, V. L., Burnett,

J. C., et al. (2011). Progression of left ventricular diastolic dysfunction and risk

of heart failure. JAMA. 306, 856–863. doi: 10.1001/jama.2011.1201

Karagodin, I., Aba-Omer, O., Sparapani, R., and Strande, J. L. (2017). Aortic

stiffening precedes onset of heart failure with preserved ejection fraction in

patients with asymptomatic diastolic dysfunction. BMC Cardiovasc. Disord.

17:62. doi: 10.1186/s12872-017-0490-9

Kessler, H. S., Sisson, S. B., and Short, K. R. (2012). The potential for high-

intensity interval training to reduce cardiometabolic disease risk. Sports Med.

42, 489–509. doi: 10.2165/11630910-000000000-00000

Kleiger, R. E., Stein, P. K., Bigger, J. T. Jr. (2005). Heart rate variability:

measurement and clinical utility. Ann. Noninvasive Electrocardiol. 10, 88–101.

doi: 10.1111/j.1542-474X.2005.10101.x

Klein, R., Klein, B. E., Knudtson, M. D., Wong, T. Y., and Tsai, M. Y. (2006). Are

inflammatory factors related to retinal vessel caliber? The beaver dam eye study.

Arch. Ophthalmol. 124, 87–94. doi: 10.1001/archopht.124.1.87

Kotliar, K. E., Lanzl, I. M., Schmidt-Trucksäss, A., Sitnikova, D., Ali, M.,

Blume, K., et al. (2011). Dynamic retinal vessel response to flicker

in obesity: a methodological approach. Microvasc. Res. 81, 123–128.

doi: 10.1016/j.mvr.2010.11.007

Lam, C. S., Lyass, A., Kraigher-Krainer, E., Massaro, J. M., Lee, D. S., Ho, J. E.,

et al. (2011). Cardiac dysfunction and noncardiac dysfunction as precursors of

heart failure with reduced and preserved ejection fraction in the community.

Circulation 124, 24–30. doi: 10.1161/CIRCULATIONAHA.110.979203

Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande,

L., et al. (2015). Recommendations for cardiac chamber quantification by

echocardiography in adults. An update from the American Society of

Echocardiography and the European Association of Cardiovascular Imaging.

Eur. Heart J. Cardiovasc. Imaging 16, 233–271. doi: 10.1093/ehjci/jev014

Laurent, S., Boutouyrie, P., Asmar, R., Gautier, I., Laloux, B., Guize, L.,

et al. (2001). Aortic stiffness is an independent predictor of all-cause and

Frontiers in Physiology | www.frontiersin.org 11 February 2018 | Volume 9 | Article 116

https://doi.org/10.1001/jama.1995.03520380029031
https://doi.org/10.1249/00005768-198205000-00012
https://doi.org/10.1097/MAJ.0b013e3181f0142c
https://doi.org/10.1152/japplphysiol.00601.2003
https://doi.org/10.1097/00004872-200018080-00007
https://doi.org/10.1016/j.autneu.2009.02.003
https://doi.org/10.2337/diacare.27.10.2444
https://doi.org/10.1016/j.mad.2006.11.016
https://doi.org/10.1007/BF01667127
https://doi.org/10.1080/00365510600731332
https://doi.org/10.1093/ndt/gfm470
https://doi.org/10.1016/j.amjhyper.2004.05.027
https://doi.org/10.1161/HYPERTENSIONAHA.110.156331
https://doi.org/10.1111/j.1755-3768.2009.01587.x
https://doi.org/10.1167/iovs.06-0351
https://doi.org/10.1038/hr.2010.42
https://doi.org/10.1042/CS20070080
https://doi.org/10.1161/CIRCULATIONAHA.105.579342
https://doi.org/10.1016/j.atherosclerosis.2011.02.009
https://doi.org/10.1249/mss.0b013e3180304570
https://doi.org/10.1038/ajh.2008.253
https://doi.org/10.1016/S0161-6420(99)90525-0
https://doi.org/10.1212/01.wnl.0000210533.24338.ea
https://doi.org/10.1161/01.HYP.0000199104.61945.33
https://doi.org/10.1016/j.cardfail.2008.11.011
https://doi.org/10.1123/japa.19.1.1
https://doi.org/10.1055/s-0029-1243641
https://doi.org/10.1016/j.ahj.2008.10.006
https://doi.org/10.1001/jama.2011.1201
https://doi.org/10.1186/s12872-017-0490-9
https://doi.org/10.2165/11630910-000000000-00000
https://doi.org/10.1111/j.1542-474X.2005.10101.x
https://doi.org/10.1001/archopht.124.1.87
https://doi.org/10.1016/j.mvr.2010.11.007
https://doi.org/10.1161/CIRCULATIONAHA.110.979203
https://doi.org/10.1093/ehjci/jev014
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Streese et al. The ExAMIN AGE Study

cardiovascular mortality in hypertensive patients.Hypertension 37, 1236–1241.

doi: 10.1161/01.HYP.37.5.1236

Laurent, S., Briet, M., and Boutouyrie, P. (2009). Large and small artery cross-

talk and recent morbidity-mortality trials in hypertension. Hypertension 54,

388–392. doi: 10.1161/HYPERTENSIONAHA.109.133116

Laurent, S., Cockcroft, J., van Bortel, L., Boutouyrie, P., Giannattasio, C.,

Hayoz, D., et al. (2006). Expert consensus document on arterial stiffness:

methodological issues and clinical applications. Eur. Heart J. 27, 2588–2605.

doi: 10.1093/eurheartj/ehl254

Lavie, C. J., Milani, R. V., and Ventura, H. O. (2009). Obesity and cardiovascular

disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 53,

1925–1932. doi: 10.1016/j.jacc.2008.12.068

Liew, G.,Wang, J. J., Mitchell, P., andWong, T. Y. (2008). Retinal vascular imaging.

Circulation 1, 156–161. doi: 10.1161/CIRCIMAGING.108.784876

Luzardo, L., Lujambio, I., Sottolano, M., da Rosa, A., Thijs, L., Noboa, O.,

et al. (2012). 24-h ambulatory recording of aortic pulse wave velocity and

central systolic augmentation: a feasibility study. Hypertens. Res. 35, 980–987.

doi: 10.1038/hr.2012.78

Madden, K. M., Lockhart, C., Cuff, D., Potter, T. F., and Meneilly, G. S. (2009).

Short-term aerobic exercise reduces arterial stiffness in older adults with

type 2 diabetes, hypertension, and hypercholesterolemia. Diabetes Care 32,

1531–1535. doi: 10.2337/dc09-0149

Mandecka, A., Dawczynski, J., Blum, M., Müller, N., Kloos, C., Wolf, G., et al.

(2007). Influence of flickering light on the retinal vessels in diabetic patients.

Diabetes Care 30, 3048–3052. doi: 10.2337/dc07-0927

Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A., van Popele,

N. M., Bos, M. L., Schalekamp, M. A., et al. (2006). Arterial stiffness

and risk of coronary heart disease and stroke. Circulation 113, 657–663.

doi: 10.1161/CIRCULATIONAHA.105.555235

McGeechan, K., Liew, G., Macaskill, P., Irwig, L., Klein, R., Klein, B. E., et al.

(2009). Prediction of incident stroke events based on retinal vessel caliber: a

systematic review and individual-participant meta-analysis. Am. J. Epidemiol.

170, 1323–1332. doi: 10.1093/aje/kwp306

Molmen, H. E., Wisloff, U., Aamot, I. L., Stoylen, A., and Ingul, C. B. (2012).

Aerobic interval training compensates age related decline in cardiac function.

Scand. Cardiovasc. J. 46, 163–171. doi: 10.3109/14017431.2012.660192

Myers, J., and Bellin, D. (2000). Ramp exercise protocols for clinical

and cardiopulmonary exercise testing. Sports Med. 30, 23–29.

doi: 10.2165/00007256-200030010-00003

Nagel, E., Vilser, W., and Lanzl, I. (2004). Age, blood pressure, and vessel diameter

as factors influencing the arterial retinal flicker response. Invest. Ophthalmol.

Vis. Sci. 45, 1486–1492. doi: 10.1167/iovs.03-0667

Nagueh, S. F., Appleton, C. P., Gillebert, T. C., Marino, P. N., Oh, J. K., Smiseth,

O. A., et al. (2009). Recommendations for the evaluation of left ventricular

diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22, 107–133.

doi: 10.1016/j.echo.2008.11.023

Namba, T., Masaki, N., Matsuo, Y., Sato, A., Kimura, T., Horii, S., et al.

(2016). Arterial stiffness is significantly associated with left ventricular diastolic

dysfunction in patients with cardiovascular disease. Int. Heart J. 57, 729–735.

doi: 10.1536/ihj.16-112

Nguyen, T. T., and Wong, T. Y. (2006). Retinal vascular manifestations

of metabolic disorders. Trends Endocrinol. Metab. 17, 262–268.

doi: 10.1016/j.tem.2006.07.006

Nichols, W. W., O’Rourke, M. F., and Vlachopoulos, C. (2011).McDonald’s Blood

Flow in Arteries. Theoretical, Experimental, and Clinical Principles. 6th Edn.

London: Hodder Arnold.

Nilsson, P.M., Boutouyrie, P., Cunha, P., Kotsis, V., Narkiewicz, K., Parati, G., et al.

(2013). Early vascular ageing in translation: from laboratory investigations to

clinical applications in cardiovascular prevention. J. Hypertens. 31, 1517–1526.

doi: 10.1097/HJH.0b013e328361e4bd

Nilsson, P. M., Boutouyrie, P., and Laurent, S. (2009). Vascular aging: a tale of EVA

and ADAM in cardiovascular risk assessment and prevention.Hypertension 54,

3–10. doi: 10.1161/HYPERTENSIONAHA.109.129114

O’Rourke, M. F., and Safar, M. E. (2005). Relationship between aortic stiffening

and microvascular disease in brain and kidney. Hypertension 46, 200–204.

doi: 10.1161/01.HYP.0000168052.00426.65

Pandey, A., Khan, H., Newman, A. B., Lakatta, E. G., Forman, D. E., Butler, J.,

et al. (2017). Arterial stiffness and risk of overall heart failure, heart failure with

preserved ejection fraction, and heart failure with reduced ejection fraction:

the health abc study (health, aging, and body composition). Hypertension 69,

267–274. doi: 10.1161/HYPERTENSIONAHA.116.08327

Papaioannou, T. G., Argyris, A., Protogerou, A. D., Vrachatis, D., Nasothimiou, E.

G., Sfikakis, P. P., et al. (2013). Non-invasive 24 hour ambulatory monitoring

of aortic wave reflection and arterial stiffness by a novel oscillometric device:

the first feasibility and reproducibility study. Int. J. Cardiol. 169, 57–61.

doi: 10.1016/j.ijcard.2013.08.079

Pemp, B., Weigert, G., Karl, K., Petzl, U., Wolzt, M., Schmetterer, L., et al.

(2009). Correlation of flicker-induced and flow-mediated vasodilatation in

patients with endothelial dysfunction and healthy volunteers. Diabetes Care 32,

1536–1541. doi: 10.2337/dc08-2130

Perkins, G. M., Owen, A., Swaine, I. L., and Wiles, J. D. (2006). Relationships

between pulse wave velocity and heart rate variability in healthy men with a

range of moderate-to-vigorous physical activity levels. Eur. J. Appl. Physiol. 98,

516–523. doi: 10.1007/s00421-006-0303-9

Polak, K., Schmetterer, L., and Riva, C. E. (2002). Influence of flicker frequency on

flicker-induced changes of retinal vessel diameter. Invest. Ophthalmol. Vis. Sci.

43, 2721–2726.

Rognmo, Ø., Moholdt, T., Bakken, H., Hole, T., Mølstad, P., Myhr, N. E.,

et al. (2012). Cardiovascular risk of high- versus moderate-intensity aerobic

exercise in coronary heart disease patients. Circulation 126, 1436–1440.

doi: 10.1161/CIRCULATIONAHA.112.123117.

Roman, M. J., Ganau, A., Saba, P. S., Pini, R., Pickering, T. G., and Devereux, R. B.

(2000). Impact of arterial stiffening on left ventricular structure. Hypertension

36, 489–494. doi: 10.1161/01.HYP.36.4.489

Salomaa, V., Riley, W., Kark, J. D., Nardo, C., and Folsom, A. R. (1995).

Non insulin-dependent diabetes mellitus and fasting glucose and insulin

concentrations are associated with arterial stiffness indexes. The ARIC Study.

Circulation 91, 1432–1443. doi: 10.1161/01.CIR.91.5.1432

Schmidt, G., Malik, M., Barthel, P., Schneider, R., Ulm, K., Rolnitzky, L.,

et al. (1999). Heart-rate turbulence after ventricular premature beats as a

predictor of mortality after acute myocardial infarction. Lancet 353, 1390–1396.

doi: 10.1016/S0140-6736(98)08428-1

Sharman, J. E., Lim, R., Qasem, A. M., Coombes, J. S., Burgess, M. I., Franco,

J., et al. (2006). Validation of a generalized transfer function to noninvasively

derive central blood pressure during exercise. Hypertension 47, 1203–1208.

doi: 10.1161/01.HYP.0000223013.60612.72

Sigrist, M. K., Chiarelli, G., Levin, A., Romann, A., and Weber, C. (2010). Pulse

wave velocity measurements are reproducible in multiple trained observers: a

short report. Nephron Clin. Prac. 116, c60–c64. doi: 10.1159/000314664

Soares-Miranda, L., Sattelmair, J., Chaves, P., Duncan, G. E., Siscovick, D. S.,

Stein, P. K., et al. (2014). Physical activity and heart rate variability in

older adults: the cardiovascular health study. Circulation 129, 2100–2110.

doi: 10.1161/CIRCULATIONAHA.113.005361

Sörensen, B. M., Houben, A. J. Berendschot, T. T. Schouten, J. S. Kroon, A.

A., van der Kallen, C. J. et al. (2016). Prediabetes and type 2 diabetes

are associated with generalized microvascular dysfunction. Circulation 134,

1339–1352. doi: 10.1161/CIRCULATIONAHA.116.023446

Sutton-Tyrrell, K., Najjar, S. S., Boudreau, R. M., Venkitachalam, L.,

Kupelian, V., Simonsick, E. M., et al. (2005). Elevated aortic pulse

wave velocity, a marker of arterial stiffness, predicts cardiovascular

events in well-functioning older adults. Circulation 111, 3384–3390.

doi: 10.1161/CIRCULATIONAHA.104.483628

Tedesco, M. A., Natale, F., Di Salvo, G., Caputo, S., Capasso, M., and Calabró,

R. (2004). Effects of coexisting hypertension and type II diabetes mellitus on

arterial stiffness. J. Hum. Hypertens. 18, 469–473. doi: 10.1038/sj.jhh.1001690

Teynor, A., Caviezel, S., Dratva, J., Künzli, N., and Schmidt-Trucksäss, A.

(2012). An automated, interactive analysis system for ultrasound sequences

of the common carotid artery. Ultrasound Med. Biol. 38, 1440–1450.

doi: 10.1016/j.ultrasmedbio.2012.03.015

Thom, T., Haase, N., Rosamond, W., Howard, V. J., Rumsfeld, J., Manolio. T.,

et al. (2006). Heart disease and stroke statistics-−2006 update: a report from

the American Heart Association Statistics Committee and Stroke Statistics

Subcommittee. Circulation 113, e85–e151. doi: 10.1161/CIRCULATIONAHA.

105.171600

Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., et al.

(2008). Aerobic interval training versus continuous moderate exercise as a

Frontiers in Physiology | www.frontiersin.org 12 February 2018 | Volume 9 | Article 116

https://doi.org/10.1161/01.HYP.37.5.1236
https://doi.org/10.1161/HYPERTENSIONAHA.109.133116
https://doi.org/10.1093/eurheartj/ehl254
https://doi.org/10.1016/j.jacc.2008.12.068
https://doi.org/10.1161/CIRCIMAGING.108.784876
https://doi.org/10.1038/hr.2012.78
https://doi.org/10.2337/dc09-0149
https://doi.org/10.2337/dc07-0927
https://doi.org/10.1161/CIRCULATIONAHA.105.555235
https://doi.org/10.1093/aje/kwp306
https://doi.org/10.3109/14017431.2012.660192
https://doi.org/10.2165/00007256-200030010-00003
https://doi.org/10.1167/iovs.03-0667
https://doi.org/10.1016/j.echo.2008.11.023
https://doi.org/10.1536/ihj.16-112
https://doi.org/10.1016/j.tem.2006.07.006
https://doi.org/10.1097/HJH.0b013e328361e4bd
https://doi.org/10.1161/HYPERTENSIONAHA.109.129114
https://doi.org/10.1161/01.HYP.0000168052.00426.65
https://doi.org/10.1161/HYPERTENSIONAHA.116.08327
https://doi.org/10.1016/j.ijcard.2013.08.079
https://doi.org/10.2337/dc08-2130
https://doi.org/10.1007/s00421-006-0303-9
https://doi.org/10.1161/CIRCULATIONAHA.112.123117.
https://doi.org/10.1161/01.HYP.36.4.489
https://doi.org/10.1161/01.CIR.91.5.1432
https://doi.org/10.1016/S0140-6736(98)08428-1
https://doi.org/10.1161/01.HYP.0000223013.60612.72
https://doi.org/10.1159/000314664
https://doi.org/10.1161/CIRCULATIONAHA.113.005361
https://doi.org/10.1161/CIRCULATIONAHA.116.023446
https://doi.org/10.1161/CIRCULATIONAHA.104.483628
https://doi.org/10.1038/sj.jhh.1001690
https://doi.org/10.1016/j.ultrasmedbio.2012.03.015
https://doi.org/10.1161/CIRCULATIONAHA.105.171600
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Streese et al. The ExAMIN AGE Study

treatment for the metabolic syndrome: a pilot study. Circulation 118, 346–354.

doi: 10.1161/CIRCULATIONAHA.108.772822

Touboul, P.-J., Hennerici, M. G., Meairs, S., Adams, H., Amarenco, P., Bornstein,

N., et al. (2012). Mannheim carotid intima-media thickness and plaque

consensus (2004-2006-2011). An update on behalf of the advisory board of

the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and

20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels,

Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 34, 290–296.

doi: 10.1159/000343145

Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos,

J. A., Cockcroft, J. R., et al. (2015). Recommendations for improving

and standardizing vascular research on arterial stiffness: a scientific

statement from the American Heart Association. Hypertension 66, 698–722.

doi: 10.1161/HYP.0000000000000033

Vaitkevicius, P. V., Fleg, J. L., Engel, J. H., O’Connor, F. C., Wright, J. G.,

Lakatta, L. E., et al. (1993). Effects of age and aerobic capacity on arterial

stiffness in healthy adults. Circulation 88, 1456–1462. doi: 10.1161/01.CIR.88.

4.1456

van de Laar, R. J., Ferreira, I., van Mechelen, W., Prins, M. H., Twisk, J. W.,

and Stehouwer, C. D. (2011). Habitual physical activity and peripheral arterial

compliance in young adults: the Amsterdam growth and health longitudinal

study. Am. J. Hypertens. 24, 200–208. doi: 10.1038/ajh.2010.201

Vickers, A. J., and Altman, D. G. (2001). Statistics notes: analysing controlled

trials with baseline and follow up measurements. BMJ 323, 1123–1124.

doi: 10.1136/bmj.323.7321.1123

Vlachopoulos, C., Aznaouridis, K., O’Rourke, M. F., Safar, M. E., Baou, K.,

and Stefanadis, C. (2010a). Prediction of cardiovascular events and all-cause

mortality with central haemodynamics: a systematic review and meta-analysis.

Eur. Heart J. 31, 1865–1871. doi: 10.1093/eurheartj/ehq024

Vlachopoulos, C., Aznaouridis, K., and Stefanadis, C. (2010b). Prediction

of cardiovascular events and all-cause mortality with arterial stiffness: a

systematic review and meta-analysis. J. Am. Coll. Cardiol. 55, 1318–1327.

doi: 10.1016/j.jacc.2009.10.061

Wang, J. J., Liew, G., Klein, R., Rochtchina, E., Knudtson, M. D., Klein, B. E.,

et al. (2007). Retinal vessel diameter and cardiovascular mortality: pooled

data analysis from two older populations. Eur. Heart J. 28, 1984–1992.

doi: 10.1093/eurheartj/ehm221

Wang, J. J., Mitchell, P., Leung, H., Rochtchina, E., Wong, T. Y., and Klein, R.

(2003). Hypertensive retinal vessel wall signs in a general older population.

Hypertension 42, 534–541. doi: 10.1161/01.HYP.0000090122.38230.41

Wang, J. J., Taylor, B., Wong, T. Y., Chua, B., Rochtchina, E., Klein, R., et al. (2006).

Retinal vessel diameters and obesity: a population-based study in older persons.

Obesity 14, 206–214. doi: 10.1038/oby.2006.27

Wassertheurer, S., Kropf, J., Weber, T., van der Giet, M., Baulmann, J., Ammer,

M., et al. (2010). A new oscillometric method for pulse wave analysis:

comparison with a common tonometric method. J. Hum. Hypertens. 24,

498–504. doi: 10.1038/jhh.2010.27

Weber, T., O’Rourke, M. F., Ammer, M., Kvas, E., Punzengruber, C., and Eber,

B. (2008). Arterial stiffness and arterial wave reflections are associated with

systolic and diastolic function in patients with normal ejection fraction. Am.

J. Hypertens. 21, 1194–1202. doi: 10.1038/ajh.2008.277

Wen, C. P., Wai, J. P., Tsai, M. K., Yang, Y. C., Cheng, T. Y., Lee, M. C.,

et al. (2011). Minimum amount of physical activity for reduced mortality and

extended life expectancy: a prospective cohort study. Lancet 378, 1244–1253.

doi: 10.1016/S0140-6736(11)60749-6

Wisløff, U., Støylen, A., Loennechen, J. P., Bruvold, M., Rognmo, Ø., Haram, P. M.,

et al. (2007). Superior cardiovascular effect of aerobic interval training versus

moderate continuous training in heart failure patients: a randomized study.

Circulation 115, 3086–3094. doi: 10.1161/CIRCULATIONAHA.106.675041

Wong, T. Y., Klein, R., Sharrett, A. R., Duncan, B. B., Couper, D. J., Klein, B. E.,

et al. (2004a). Retinal arteriolar diameter and risk for hypertension.Ann. Intern.

Med. 140, 248–255. doi: 10.7326/0003-4819-140-4-200402170-00006

Wong, T. Y., Klein, R., Sharrett, A. R., Duncan, B. B., Couper, D. J., Tielsch, J. M.,

et al. (2002). Retinal arteriolar narrowing and risk of coronary heart disease in

men and women. JAMA 287, 1153–1159. doi: 10.1001/jama.287.9.1153

Wong, T. Y., Knudtson, M. D., Klein, R., Klein, B. E., Meuer, S. M.,

and Hubbard, L. D. (2004b). Computer-assisted measurement of retinal

vessel diameters in the Beaver Dam Eye Study: methodology, correlation

between eyes, and effect of refractive errors. Ophthalmology 111, 1183–1190.

doi: 10.1016/j.ophtha.2003.09.039

World Health Organization (2014). Global Status Report on Noncommunicable

Diseases. Geneva: World Health Organization.

World Medical Association (2013). World Medical Association Declaration of

Helsinki: ethical principles for medical research involving human subjects.

JAMA 310, 2191–2194. doi: 10.1001/jama.2013.281053

World Population Prospects (2015). World Population Prospects The 2015

Revision, Key Findings and Advance Tables.

Conflict of Interest Statement: JS has been an employee of F. Hoffmann-La

Roche Ltd since December 1, 2016. The present study was conducted before JS

joined F. Hoffmann-La Roche Ltd and has no connection to her employment by

the company.

The other authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Streese, Deiseroth, Schäfer, Schmidt-Trucksäss and Hanssen. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Physiology | www.frontiersin.org 13 February 2018 | Volume 9 | Article 116

https://doi.org/10.1161/CIRCULATIONAHA.108.772822
https://doi.org/10.1159/000343145
https://doi.org/10.1161/HYP.0000000000000033
https://doi.org/10.1161/01.CIR.88.4.1456
https://doi.org/10.1038/ajh.2010.201
https://doi.org/10.1136/bmj.323.7321.1123
https://doi.org/10.1093/eurheartj/ehq024
https://doi.org/10.1016/j.jacc.2009.10.061
https://doi.org/10.1093/eurheartj/ehm221
https://doi.org/10.1161/01.HYP.0000090122.38230.41
https://doi.org/10.1038/oby.2006.27
https://doi.org/10.1038/jhh.2010.27
https://doi.org/10.1038/ajh.2008.277
https://doi.org/10.1016/S0140-6736(11)60749-6
https://doi.org/10.1161/CIRCULATIONAHA.106.675041
https://doi.org/10.7326/0003-4819-140-4-200402170-00006
https://doi.org/10.1001/jama.287.9.1153
https://doi.org/10.1016/j.ophtha.2003.09.039
https://doi.org/10.1001/jama.2013.281053
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Publication 2     

 
43 

 

3. Publication 2: High‐intensity  interval training modulates retinal 

microvascular phenotype and DNA methylation of p66Shc gene: a 

randomized controlled trial (EXAMIN AGE) 

 

Authors: 

Lukas Streese1† 

Abdul Waheed Khan2† 

Arne Deiseroth1 

Shafaat Hussain2 

Rosa Suades2 

Andre Tiaden3 

Diego Kyburz3 

Francesco Cosentino2 

Henner Hanssen1 

 

1Department  of  Sport,  Exercise  and  Health,  Medical  Faculty,  University  of  Basel,  Basel, 
Switzerland.  

2Cardiology Unit, Department of Medicine Solna, Karolinska Institute & Karolinska University 
Hospital, Stockholm, Sweden.  

3Rheumatology Unit, University Hospital, University of Basel, Basel, Switzerland 

†contributed equally to this work 

 

Published in: 

European Heart Journal 

Accepted 18th March 2019, in press. 

The final manuscript is available at 

https://academic.oup.com/eurheartj/advance‐article/doi/10.1093/eurheartj/ehz196/5474980 



Publication 2     
 

 
44 

 

Abstract 

Aims:  

Impairments of retinal vessel diameter are associated with major adverse cardiovascular (CV) 

events. Promoter DNA methylation is a repressor of the mitochondrial adaptor p66Shc gene 

transcription,  a  key driver  of  ageing‐induced  reactive oxygen  species.  The  study  aimed  to 

investigate  whether  high‐intensity  interval  training  (HIIT)  affects  retinal  microvascular 

phenotype as well as p66Shc expression and oxidative stress in ageing subjects with increased 

CV risk from the EXAMIN AGE cohort.  

 

Methods and results:  

Eighty‐four  sedentary  subjects  (mean age 59.4±7.0 years) with ≥  two CV  risk  factors were 

randomized into either a 12‐week HIIT or standard physical activity recommendations. Retinal 

arteriolar  and  venular  diameters were measured  by  use  of  a  retinal  vessel  analyser.  As  a 

marker of oxidative stress plasma 3‐nitrotyrosine (3‐NT) level was determined by ELISA. Gene 

expression of p66Shc and DNA methylation were assessed in mononuclear cells by RT‐qPCR 

and methylated‐DNA capture (MethylMiner Enrichment Kit) coupled with qPCR, respectively. 

HIIT reduced body mass index, fat mass, low‐density lipoprotein and increased muscle mass 

as  well  as  maximal  oxygen  uptake  (VO2max).  Moreover,  HIIT  restored  microvascular 

phenotype  by  inducing  retinal  arteriolar  widening  (pre:  175±14µm  vs  post:  181±13µm, 

p=0.001) and venular narrowing  (pre: 222±14µm vs post: 220±14µm, p=0.007). After HIIT, 

restoration  of  p66Shc  promoter  methylation  (p=0.034)  reduced  p66Shc  gene  expression 

(p=0.037) and, in turn, blunted 3‐NT plasma levels (p=0.002). 

 

Conclusion:  

HIIT  rescues  microvascular  dysfunction  in  ageing  subjects  at  increased  CV  risk.  Exercise‐

induced  reprogramming  of  DNA  methylation  of  p66Shc  gene  may  represent  a  putative 

mechanistic link whereby exercise protects against age‐related oxidative stress. 
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Introduction 

Retinal vessels are part of the cerebrovascular bed and represent an accessible window to 

investigate  microvascular  health  and  subclinical  vascular  remodelling.  The  retinal 

microcirculation has previously been described as a window to the heart1. Alterations of the 

retinal microvascular phenotype are associated with heart failure2 and coronary heart disease 

mortality3 and have been shown to be predictive of  long‐term CV outcome  in  the general 

population4.  In  ageing  subjects,  narrower  retinal  arterioles  and  wider  venules  have  been 

associated with increased CV events such as stroke5, coronary artery disease6 and higher CV 

mortality7.  Physical  inactivity  has  been  associated  with  worse  retinal  microvascular 

phenotype8.  

A key  feature of vascular ageing  is  the  imbalance between NO bioavailability and reactive 

oxygen species (ROS) leading to endothelial dysfunction, early step in the pathogenesis of CV 

events. In this setting, the adaptor protein p66Shc has emerged as an important redox enzyme 

implicated  in mitochondrial  ROS  generation.  In  patients with  type  2  diabetes  (T2DM), we 

previously found that upregulation of p66Shc correlates with urinary 8‐iso‐prostaglandin F2� 

levels,  an  in  vivo  marker  of  oxidative  stress,  and  endothelial  dysfunction9.  Epigenetic 

regulation  of  gene  transcription  is  mediated  primarily  by  DNA  methylation  and 

posttranslational modifications of histone proteins10. While the benefits of physical activity 

are  widely  acknowledged,  the  role  of  exercise‐induced  epigenetic  regulation  of  genes 

implicated  in  vascular  ageing  remains  poorly  understood.  Regular  exercise  can modulate 

methylation levels which translate into differential gene expression at genome‐wide level in 

healthy men  and women11.  High‐intensity  interval  training  (HIIT)  can  improve  endothelial 

function and cardiorespiratory fitness comparable or even superior to moderate continuous 

training12.  However,  the  impact  of  exercise  on  the  interplay  between  microvascular 

phenotype,  ROS  generation  and  p66Shc  gene  transcription  is  unknown.  This  randomized 

controlled  trial was designed to assess  the effects of HIIT on  retinal vessel diameters as a 

microvascular biomarker of CV risk as well as DNA methylation of p66Shc gene and oxidative 

stress in ageing subjects with CV risk from the EXAMIN AGE cohort13. 
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Material and Methods 

The  complete  methods  section  of  this  randomized  controlled  trial  is  available  in  the 

supplementary text online including the power calculation and sample size estimation.  

 

Results 

We recruited 452 participants through our Outpatient Prevention Clinic and advertisements 

in local newspapers in and around the City of Basel. Eighty‐four patients (mean age 59 ± 7 

years,  42  female)  met  the  inclusion  criteria  and  were  randomized  into  HIIT  or  standard 

physical  activity  recommendations  (control  group).  Forty  subjects  undergoing HIIT  and 34 

controls were measured post‐intervention  (Supplementary Material online,  Figure S1). No 

changes in medication during the HIIT‐period or HIIT‐related adverse events were observed. 

Distribution  of  CV  risk  factors  is  listed  in  Supplementary  Material  online,  Figure  S2. 

Anthropometric  measurements  before  and  after  12  weeks  of  intervention  or  standard 

physical activity are listed in Supplementary Material online, Table S1.  

 

Microvascular phenotype  

After 12 weeks of HIIT, retinal arteriolar diameters significantly increased (pre: 175 ±14µm vs 

post: 181 ±13µm, p=0.001) and venular diameters decreased (pre: 222 ±14µm vs post: 220 

±14µm,  p=0.007)  as  compared  to  the  control  group  (Figure  1A,  Supplementary  Material 

online  Table  S2).  Further  adjustment  for  maximal  oxygen  uptake  (VO2max)  showed  that 

arteriolar  widening  and  venular  narrowing  were  dependent  on  changes  in  VO2max.  The 

increased  arteriolar‐to‐venular  diameter  ratio  (AVR)  in  the  intervention  group  (β  (95% 

confidence interval): 0.03 (0.01; 0.05), p=0.005) was independent of age, change (Δ) in body 

mass  index  (BMI),  systolic  and  diastolic  blood  pressure,  CV  medication  and  ΔVO2max 

(Supplementary Material online, Table S2). Retinal diameters did not change in the control 

group.  We  also  performed  an  intention‐to‐treat  analysis  for  the  primary  outcome.  The 

exercise‐induced  effects  on  retinal  arteriolar  diameter  and  arteriolar‐to‐venular  diameter 

ratio  (AVR)  remained  significant  but  not  the  effect  of  venular  narrowing  (Supplementary 

Material online, Table S3).  
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Figure 1.  

(A) Retinal vessel diameters in subjects with increased CV risk before and after intervention. 

40  subjects  before  and  after  HIIT  and  34  before  and  after  standard  physical  activity 
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recommendations (control group) were included in the final analysis. (B) Expression of p66Shc 

relative  to  ACTB  was  measured  before  and  after  HIIT  or  standard  physical  activity 

recommendations  in  20  subjects  randomly  selected  from  each  group.  Oxidative  stress 

measured as plasma 3‐NT levels in 40 subjects before and after HIIT and 34 before and after 

standard  physical  activity  recommendations.  (C)  p66Shc  gene  and  CpG  islands  proximal  to 

p66Shc promoter (grey lines indicate CpG rich regions amplified with specific primers). Levels 

of DNA methylation at region 3, 2 and 1 of p66Shc promoter were measured in the same 20 

subjects  before  and  after  HIIT  or  standard  physical  activity  recommendations.  Values  are 

expressed as mean±SD. ANCOVA p‐values corrected for baseline and control group are shown 

for multiple comparisons. *p<0.05 for ANCOVA and between group differences; †p<0.05 for 

t‐test  and  within  group  differences.  CV,  cardiovascular;  CRAE,  central  retinal  arteriolar 

equivalent; CRVE, central retinal venular equivalent; AVR, arteriolar to venular diameter ratio; 

HIIT, high intensity interval training; Ct, cycle threshold; ACTB, actin beta. 

 

Oxidative stress and p66Shc expression 

12  weeks  of  HIIT  as  compared  to  control  condition  significantly  reduced  mitochondrial 

adaptor p66Shc gene expression in peripheral blood mononuclear cells (pre: 6.5 ±8.4 arbitrary 

units  (AU) vs post: 1.9 ±1.5 AU, p=0.037) and blunted 3‐nitrotyrosine  (3‐NT) plasma  levels 

(pre: 5.6 ±5.1 µg/ml vs post: 3.8 ±2.2 µg/ml, p=0.002) after adjustment for age, Δ BMI, systolic 

and  diastolic  blood  pressure,  CV  medication  and  ΔVO2max  (Figure  1B,  Supplementary 

Material online, Table S2). 

 

DNA methylation of p66Shc gene 

p66Shc  promoter  was  analyzed  for  DNA methylation  using Methylminer  and  qPCR.  Three 

different sets of primers were designed to amplify the CPG islands in the p66Shc promoter (‐

225/+676  bp  of  the  transcription  start  site  (TSS))  and  to  comprehensively  examine  the 

methylation status of the CpG islands in the two experimental groups (Figure 1C). A significant 

restoration of DNA methylation status of p66Shc promoter was observed in all three regions 

in the HIIT group (p<0.05, within group analysis). By contrast, no changes were found in the 

control  group.  Following  adjustment  for  confounders  DNA methylation  levels  in  region  3 

remained significantly upregulated after HIIT (p=0.034, Figure 1C). 
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Discussion 

Twelve weeks  of  HIIT  improved  retinal microvascular  phenotype. Moreover,  HIIT‐induced 

reprogramming of DNA methylation of p66Shc gene was associated with downregulation of 

p66Shc expression in peripheral blood mononuclear cells and subsequent decrease of systemic 

oxidative stress.  Improvements  in retinal AVR, p66Shc gene expression and oxidative stress 

were  independent of  age, ΔBMI,  systolic  and diastolic blood pressure, CV medication and 

ΔVO2max. 

Our  randomized  controlled  trial  demonstrates  that microvascular  remodelling  in  an  older 

population  with  increased  CV  risk  can  be  reversed  by  short‐term  exercise  training.  HIIT 

resulted  in  arteriolar  widening  and  venular  narrowing.  In  the  intention‐to‐treat  analysis, 

exercise‐induced  arteriolar  widening  but  not  venular  narrowing  remained  significant 

suggesting predominant effects on arterioles. This retinal microvascular phenotype has been 

linked with a lower incidence of CV events and CV mortality4, 14, 7. Reduced oxidative stress 

with  subsequent  restoration  of  NO  bioavailability  are  major  drivers  of  exercise‐induced 

improvement  of  microvascular  function.  Indeed,  endurance  exercise  has  the  capacity  to 

directly increase endothelial NO production. We have previously shown that exercise‐induced 

dilatation of retinal arteriolar diameters in obese individuals was accompanied by a reduction 

of asymmetrical dimethyl‐L‐arginine (ADMA), an endogenous inhibitor of the L‐arginine/NO 

pathway15. HIIT has been reported  to  improve antioxidant capacity and vascular  reactivity 

more  potently  than  moderate  continuous  training12.  Higher  blood  flow  and  shear  stress 

during HIIT increase plasma glutathione peroxidase availability, which may contribute to ROS 

reduction and, in turn, increased NO bioavailability16. In patients with heart failure, exercise‐

induced attenuation of oxidative stress has been associated with improvement of vascular 

function12. Endothelial homeostasis depends in  large part on the balance between oxidant 

and antioxidant pathways. Higher shear stress during HIIT has been shown to result in more 

distinct  improvement  of  endothelial  function12.  Indeed,  post‐exercise  AVR  was  restored 

independent  of  potential  confounders  and  improvement  of  microvascular  endothelial 

function may be a key mechanism involved.  

Direct effects of exercise on clinical risk factors may also impact microvascular health. Blood 

pressure and fasting glucose  levels did not change significantly during exercise training.  In 

patients with diabetes, hyperglycaemia is associated with increased p66Shc gene expression9. 
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In our study, p66Shc expression was blunted after exercise without any modification in fasting 

blood glucose,  indicating  that exercise‐induced  changes  in p66Shc  gene expression are not 

necessarily linked to blood glucose levels. The observed changes in body composition with a 

decrease in fat mass as well as the reduction of LDL‐cholesterol levels may contribute to the 

observed improvement of microvascular function. Interestingly, we adjusted our analyses for 

BMI,  CV  medications  including  other  potential  confounders  and  the  results  remained 

significant.  In  view  of  the  different  beneficial  effects  elicited  by  HIIT,  the  underlying 

mechanisms  responsible  for  the  restoration  of  microvascular  phenotype  are  likely  to  be 

multifactorial. Future studies are warranted to investigate the relative contribution of direct 

and indirect exercise‐induced effects on the vasculature.  

This is the first study in ageing subjects with increased CV risk to report that exercise‐induced 

downregulation of p66Shc gene expression is associated with a reduction of oxidative stress. 

In this regard, it is well established that ONOO‐ formation originating from the reaction of NO 

and  O2‐  contributes  to  increased  3‐NT  plasma  levels17,  18.  This  study  shows  that  HIIT,  by 

rescuing methylation of p66Shc promoter, can reduce p66Shc gene transcription that, in turn, 

may contribute  to a decrease of 3‐NT plasma  levels. We have previously demonstrated  in 

experimental models of diabetes and in patients with T2DM that hypomethylation of p66Shc 

promoter  causes  gene overexpression,  oxidative  stress  and endothelial  dysfunction19,  7.  In 

addition, genetic deletion of p66Shc protects against age‐induced, ROS‐mediated endothelial 

dysfunction, most likely by restoring NO bioavailability20.  

Our  intervention trial  investigates  for  the  first  time the  interconnection between exercise, 

microvascular  phenotype  and  epigenetics  in  ageing  subjects  with  increased  CV  risk. 

Interestingly, p66Shc methylation is dynamic showing robust changes in the post‐HIIT group. 

Our study provides a proof of concept that epigenetic regulation of p66Shc is related to age‐

induced oxidative stress and microvascular phenotype. Although only part of the epigenetic 

crosstalk has been elucidated, the present findings shed light on a key epigenetic mark linking 

exercise‐induced  reprogramming  of  p66Shc  expression,  decreased  ROS  generation  and 

improved  microvascular  health.  The  conclusion  of  our  work  is  summarized  in  Figure  2. 

Previous evidence  suggest mechanistic  links between p66Shc  transcription, oxidative  stress 

and endothelial function9, 20, 21. It is therefore plausible to hypothesize that exercise‐induced 

downregulation  of  p66Shc  transcription  via  DNA  methylation  contributes  to  rescue 
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microvascular function. Future research has to prove the causative  link  in this setting. The 

disentanglement  of  single  molecular  pathways  with  their  systemic  impact  and  potential 

effects on complex organ function in humans remains a major scientific challenge. 

 
Figure 2.  

Take‐home  figure  shows  exercise‐induced  improvement  of  microvascular  phenotype  and 

reprogramming  of  p66Shc  DNA  methylation.  HIIT  improves  microvascular  phenotype. 

Reprogramming  of  DNA  methylation  mark  on  p66Shc  gene  promoter  may  represent  a 
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mechanistic link whereby physical exercise protects against age‐related oxidative stress in the 

microcirculation. HIIT, high intensity interval training. 

Our  study  validates  a  new  multidisciplinary  research  perspective  in  clinical  medicine 

encompassing  integrated  physiology  and  molecular  mechanisms.  In  conclusion,  exercise 

improves microvascular health in subjects with increased CV risk leading to healthier ageing 

and  eventually  better  CV  outcomes.  Reprogramming  of  DNA methylation  on  p66Shc  gene 

promoter  may  represent  a  putative  link  whereby  exercise  protects  against  age‐related 

oxidative stress. The entire mechanistic landscape remains to be addressed in future studies.  
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SUPPLEMENTARY MATERIAL 

Study design 

In this randomized controlled trial, we investigated the influence of a 12‐week high‐intensity interval 

training (HIIT) on retinal microvascular phenotype as well as targeted DNA methylation of p66Shc 

and oxidative stress in ageing sedentary subjects with increased cardiovascular (CV) risk (SR) in a 

two parallel group design. 

Anthropometric  measurements,  blood  sampling  and  vascular  imaging  were  performed  in  the 

morning  under  standardized  fasting  conditions.  All  examinations  and  the  exercise  training  took 

place at the Department of Sport, Exercise and Health in Basel, Switzerland. This study was planned 

and conducted according  to  the Helsinki Declaration  (World Medical Association, 2001) and  the 

CONSORT guidelines1. The Ethics Committee of Northwest and Central Switzerland (EKNZ 2015‐351) 

approved  the  study.  All  participants  signed  a  written  informed  consent.  The  study  has  been 

registered at ClinicalTrials.gov (NCT02796976). 

 

Inclusion and exclusion criteria 

From January 2016 to December 2017 we recruited sedentary (≤ 3 METs/week) men and women 

aged 50–80 years with increased CV risk (SR) (≥ two CV risk factors). The risk factors were defined 

as  hypertension  (≥ 140  mmHg  systolic  or  ≥ 90  mmHg  diastolic  blood  pressure  (BP)  during  24h 

monitoring or treatment with antihypertensive medications), body mass index (BMI) (≥ 30 kg/m2), 

high fasting plasma glucose levels (≥ 5.6 mmol/l or antidiabetic medications), high triglyceride levels 

(> 1.7 mmol/l), low high‐density lipoprotein levels (< 1.0 mmol/l (male); < 1.2 mmol/l (female)), high 

low‐density lipoprotein levels (> 4.9 mmol/l or cholesterol lowering drugs), current smoking status 

(supplementary  material  online,  Figure  S2).  Exclusion  criteria  were  decompensated 

cardiopulmonary disease or  chronic  inflammatory disease,  chronic eye disease or  compromising 

orthopaedic problems.  

 

Static Retinal Vessel Analysis (SVA) 

Retinal vessel diameters were measured using the Retinal Vessel Analyzer (RVA, IMEDOS Systems, 

Jena, Germany) and a fundus camera (450 FF, Carl Zeiss, Jena, Germany). After pupil dilatation with 

conventional eye drops (Tropicamide 0.5%) and 20 minutes of rest, three valid images were taken 

from one eye at an angle of 50°. The detailed procedure has been described elsewhere2. Briefly, the 
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diameters of retinal arterioles and venules were analyzed semi‐automatically  in an area of 0.5‐1 

disc‐diameter  from  the  optic  disc margin  using  the  analyzing  software  (Vesselmap  3.0,  Visualis, 

Imedos  Systems  UG).  Diameters  were  averaged  to  central  retinal  arteriolar  (CRAE)  and  central 

retinal venular (CRVE) equivalents using the Paar‐Hubbard formula3. Vessel diameters are presented 

in µm, as one measuring unit of the imaging device relates to 1 µm in the model of Gullstrand‘s 

normal eye. The arteriolar‐to‐venular diameter ratio (AVR) was calculated from CRAE and CRVE. All 

fundus  images  were  taken  and  analyzed  by  the  same  experienced  investigator  to  eliminate 

interobserver variation. The investigator was blinded for group allocations. In our study, after re‐

analysis  of  30  images,  the  correlation  coefficient  (CC)  for  CRAE  was  r =0.98,  the  coefficient  of 

variation (CVar) was 8.30%. For CRVE, the CC was r =0.97 and the CVar was 6.27% (AVR: r =0.97 and 

CVar =9.84%), proving high reproducibility for all three retinal parameters (p <0.001 each). 

 

Blood sampling 

All blood samples were withdrawn by venipuncture of the cubital fossa of the right or left arm by 

trained medical staff in a fasting state. Peripheral blood mononuclear cells (PBMCs) were isolated 

from peripheral blood following classical density gradient separation protocol using Ficoll®‐Paque 

(GE  Healthcare  Europe  GmbH,  Switzerland)  and  LeucosepTM  50ml  tubes  (Greiner  BIO‐ONE, 

Germany). Isolated PBMCs were washed with PBS, resuspended in 600µl RLT buffer (RNeasy Mini 

Kit, Qiagen, Switzerland) and stored at ‐80°C for subsequent analysis. All researchers performing 

further analysis of blood samples were blinded for group allocation.  

 

3‐nitrotyrosine plasma levels  

Levels of oxidative stress marker 3‐nitrotyrosine (3‐NT) in plasma were measured in all participants 

using  OxySelectTM  Nitrotyrosine  ELISA  kit  (Cell  Biolabs,  CA,  USA)  following  the  manufacturer`s 

instructions. Briefly, 50 µl of nitrated bovine serum albumin (BSA) standard and plasma samples 

were added to nitrated BSA pre‐absorbed enzyme‐inmmunoassay (EIA) plate and incubated for 10 

min. Anti‐nitrotyrosine antibody was added and incubated for one hour followed by the addition of 

horseradish peroxidase (HRP) conjugated secondary antibody. Warm substrate solution as well as 

stop  solution  were  added  and  absorbance  was  immediately  read  at  450  nm  using  a 

spectrophotometer. Nitrotyrosine was determined by comparison with a standard curve prepared 

from predetermined nitrated BSA standards.  
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p66Shc gene expression  

Gene expression  of  p66Shc was  assessed before  and  after HIIT  or  standard physical  activity  (PA) 

recommendations in 20 subjects randomly selected from each group. The analysis of p66Shc gene 

expression was performed in PBMCs by real‐time quantitative polymerase chain reaction (RT‐qPCR). 

RNA was extracted with Direct‐ZolTM RNA miniprep kit  (Zymo  research, CA, USA) and cDNA was 

synthesized with  high  capacity  cDNA  conversion  kit  (Applied  Biosystems,  Foster  City,  CA,  USA). 

p66Shc mRNA levels were detected by RT‐qPCR using ABI 7900HT system (Applied Biosystems, Foster 

City, CA, USA) and FastStart Universal SYBR Green technology (Roche, Basel, Switzerland). Actin‐

Beta (ACTB) gene was used as endogenous control for normalizing RNA concentration. Differences 

in  cycle  threshold  (Ct)  values  between  test  gene  and  endogenous  control  (ACTB;  ΔCt)  were 

calculated and used for statistical analysis. 

 

DNA methylation analysis  

DNA methylation analysis was performed in the same 20 subjects before and after HIIT or standard 

PA  recommendations. Genomic DNA was purified  from PBMCs using phenol:chloroform:isoamyl 

alcohol (Sigma Aldrich, St. Louis, USA), nucleospin Gel and PCR cleanup kit (Macherey‐Nagel, PA, 

USA).  Purified  DNA  (1µg)  was  used  to  assess  DNA  methylation  of  p66Shc  promoter.  Briefly, 

methylated cytosines were captured with MethylMiner Enrichment Kit  (Invitrogen, CA, USA) and 

level of methylation was assessed with promoter specific primers coupled with ABI 7900HT RT‐qPCR 

system  and  fluorescence‐based  FastStart  Universal  SYBR  Green  technology  (Roche,  Basel, 

Switzerland). Methylated  and  non‐methylated  control  duplexes  provided  by manufacturer were 

used as controls for methyl‐CpG‐binding‐domain (MBD) capture. The amount of DNA pulled down 

by MBD protein was normalized to input (starting DNA material) of each sample. The primers used 

for detection of CpG islands in the p66Shc promoter are indicated in supplementary material online, 

Table S4. 

 

Anthropometry, physical fitness and activity 

All anthropometric measurements were performed according to standard procedures as described 

in  detail  in  our  published  study  protocol2.  Cardiorespiratory  fitness  was  measured  with  an 

individualized treadmill ramp protocol as previously recommended2, 4, 5. We measured ventilatory 

parameters including maximal oxygen uptake (VO2max) and maximal heart rate (HRmax) using the 
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Cortex  Metalyzer  R  3B  metabolic  test  system  (Cortex  Biophysik  GmbH,  Leipzig,  Germany).  All 

participants wore an Aipermotion 440 accelerometer (Aipermon GmbH, Munich, Germany) on six 

consecutive days on their left hip. From the five most active days, we calculated total steps per day 

and minutes of walking per day using  the AiperView 440 and ActiCoach MPAT2Viewer Software 

(Aipermon GmbH, Munich, Germany). This system has been extensively validated6, 7. The Freiburg 

Questionnaire  of  Physical  Activity  (FQPA)  was  used  to  assess  self‐reported  sport  activities8  in 

metabolic equivalents (METs) per week based on the Ainsworth Compendium8, 9 

 

Exercise intervention  

SR group were randomized to the intervention or control group by blind drawing pieces of paper 

from an envelope by an independent research assistant. The physical exercise intervention for the 

SR  group was  a  12‐week Nordic Walking‐based  and  supervised HIIT  performed  three  times  per 

week. In the first week, the participants trained with an intensity of 75% of HRmax to get familiarized 

with a continuous walking training. In the second week, we performed a stepwise increase of the 

intensity with up to 80‐90% of HRmax. In the following 10 weeks, the participants performed the 

HIIT based on the following protocol and with a total duration of 45 minutes per session: warm‐up 

for 10 minutes at 60‐70% HRmax followed by a high‐intensity interval consisting of 4x4 minutes at 

80‐90% HRmax with 3min. of active recovery at 60‐70% HRmax and a cool‐down with 10 minutes at 

60‐70% HRmax. HR was monitored during training by standard heart rate sensors. The control group 

received  PA  recommendations  based  on  the  European  Guidelines  on  Cardiovascular  Disease 

Prevention in Clinical Practice10.  

 

Statistical analysis and sample size calculation 

The primary outcome was the effect of exercise training on AVR in the HIIT group compared to the 

control group. We used mean and standard deviation to describe baseline characteristics and effects 

of exercise training and control condition. To visualize primary and secondary outcomes we used 

boxplots. We used analysis of covariance to compare differences in primary and further outcomes 

between  the  control  and  the  intervention  group  corrected  for  the  baseline  value  and  main 

confounders11. We  calculated  t‐tests  for  dependent  samples  to  describe  differences  in  the HIIT 

group and control group separately. All statistical tests with a 2‐sided confidence interval of 95% 

were  calculated  using  R  version  3.5.0.  For  the  intension  to  treat  analysis  we  used  multiple 
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imputation by chained equations using the “mice” package (version 3.3.0)  in R (version 3.5.2) to 

impute  the  missing  data12,  13.  Specifically,  we  imputed  320  datasets  with  10  iterations  each. 

Convergence was  assessed  graphically. We  applied  predictive mean matching  for  imputation  of 

continuous variables and  logistic  regression  for binary variables. The results  from the regression 

models  based  on  the  imputed  datasets  were  pooled  using  Barnard‐Rubin  adjusted  degrees  of 

freedom for small samples14. 

For the sample size calculation, we assumed an expected difference in AVR of 0.05 with a standard 

deviation  of  0.05  in  SR  after  12 weeks  between  intervention  and  control  group15.  Thus,  a  total 

sample size of 68 participants in the SR group was needed to reach a target power of 80% with a 2‐

sided significance level of 0.05. POWER and GLMPOWER procedures in SAS 9.3 (SAS Institute Inc., 

Cary, NC, USA) were used to perform the sample size calculations. 
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Figure S1. Flow‐chart 

*unrelated to exercise training.  
 

 

Figure S2. Definition and distribution of CV risk factors in the 

EXAMIN AGE Study. 
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SUPPLEMENTARY TABLES  

Table S1. Population characteristics in sedentary at risk before and after intervention. 

  SR intervention group (n=40)  
mean (SD) 

SR control group (n=34)  
mean (SD) 

  pre  post  p  pre  post  p 
Anthropometry data             
Age (years)  59 (6)      58 (7)     
Sex (f/m)  18/22      20/14     
Weight (kg)  94.3 (12.7)  93.14 (12.7)  0.003  93.2 (14.5)  92.4 (14.2)  0.012 
BMI (kg/m2)  32.9 (3.3)  32.5 (3.4)  0.008  32.9 (4.8)  32.6 (4.7)  0.085 
WC (cm)  110 (9)  108 (10)  0.032  111 (13)  110 (13)  0.812 
Fat mass (kg)  36.6 (8.8)  34.6 (9.1)  0.000  38.9 (10.7)  38.7 (10.1)  0.768 
Muscle mass (kg)  32.1 (7.1)  32.7 (7.0)  0.016  30.1 (6.1)  29.8 (5.5)  0.328 
Rest systolic BP (mmHg)  134 (14)  134 (12)  0.854  129 (14)  131 (15)  0.205 
Rest diastolic BP (mmHg)  88 (10)  90 (7)  0.318  85 (10)  84 (10)  0.599 
24h. systolic BP (mmHg)  130 (11)  133 (12)  0.179  129 (9)  125 (11)  0.154 
24h. diastolic BP (mmHg)  82 (7)  83 (8)  0.236  79 (8)  78 (10)  0.799 
Fasting glucose (mmol/l)  5.8 (2.1)  5.7 (1.7)  0.177  5.8 (1.4)  5.6 (1.2)  0.320 
Triglyceride (mmol/l)  1.8 (1.0)  1.8 (1.1)  0.526  1.6 (0.8)  1.8 (1.0)  0.098 
HDL (mmol/l)  1.3 (0.3)  1.3 (0.3)  0.487  1.4 (0.3)  1.4 (0.4)  0.781 
LDL (mmol/l)  3.3 (0.8)  3.0 (0.8)  <0.001  3.0 (0.7)  2.9 (0.8)  0.268 
Activity and fitness             
FQPA (METs)  1.6 (3.3)  23.1 (18.0)  <0.001  0.9 (2.1)  1.8 (4.2)  0.056 
Steps per day (n)  8591 (3628)  9064 (3497)  0.423  9255 (3648)  8920 (4108)  0.455 
Walking per day (min)  103 (44)  109 (43)  0.405  111 (42)  108 (47)  0.534 
VO2max (ml/min/kg)  26.4 (3.8)  28.7 (4.0)  <0.001  26.1 (5.0)  25.0 (4.0)  0.004 
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Abbreviations: SR, sedentary at risk; BMI, body mass index; WC, waist circumference; BP, blood pressure; 

HDL,  high‐density  lipoprotein,  LDL,  low‐density  lipoprotein;  VO2max,  maximal  oxygen  uptake;  CRAE, 

central retinal arteriolar equivalent; CRVE, central retinal venular equivalent; AVR, arteriolar‐to‐venular 

diameter ratio; SD, standard deviation; p, level of significance pre‐ to post‐intervention. 

 

Retinal vessel diameter             
CRAE (µm)  175 (14)  181 (13)  0.001  168 (14)  170 (16)  0.108 
CRVE (µm)  222 (14)  220 (14)  0.007  214 (17)  214 (17)  0.255 
AVR  0.79 (0.04)  0.82 (0.05)  <0.001  0.79 (0.05)  0.79 (0.05)  0.494 
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Table S2. Adjusted group differences of retinal vessel diameters, p66Shc expression and oxidative stress in sedentary at risk before and 

after intervention. 

 

 

 

 

 

 

 

 

 

 

Abbreviations: CRAE, central retinal arteriolar equivalent; CRVE, central retinal venular equivalent; AVR, arteriolar‐to‐venular diameter 

ratio; Ct  , cycle threshold; ACTB, actin beta; AU, arbitrary units; 3‐NT, 3‐nitrotyrosine; HIIT, high‐intensity  interval  training (n=40); CC, 

control condition (n=34); CI, confidence interval; p, level of significance for the regression. Model 1 adjusted for age; Model 2 adjusted for 

age and delta body mass index (ΔBMI). Model 3 adjusted for age, ΔBMI, systolic and diastolic blood pressure. Model 4 adjusted for age, 

ΔBMI, systolic and diastolic blood pressure and cardiovascular (CV) medication; Model 5 adjusted for age, ΔBMI, systolic and diastolic 

blood pressure, CV medication and Δ maximal oxygen uptake. 

    CRAE (µm)  CRVE (µm)  AVR   ΔΔCt(p66Shc/

ACTB) (AU) 

  3‐NT 

(µg/mL) 

 

  Model  β (95% CI)  p  β (95% CI)  p  β (95% CI)  p  β (95% CI)  p  β (95% CI)  p 

HIIT  

vs.  

CC 

1  5.02 
(2.20;7.85) 

<0.001  ‐3.26  
(‐6.13;‐0.39) 

0.027  0.03 
(0.02;0.04) 

<0.001  ‐5.31  
(‐10.27;‐0.34) 

0.037  ‐2.45  
(‐3.96;‐0.94) 

0.002 

2  5.04 
(2.17;7.91) 

<0.001  ‐3.39  
(‐6.30;‐0.49) 

0.023  0.03 
(0.03;0.04) 

<0.001  ‐5.15  
(‐10.17;‐0.12) 

0.045  ‐2.25  
(‐3.74;‐0.77) 

0.003 

3  5.59 
(2.66;8.52) 

<0.001  ‐2.64  
(‐5.61;0.33) 

0.080  0.04 
(0.03;0.05) 

<0.001  ‐5.23  
(‐10.52;0.05) 

0.052  ‐2.35  
(‐3.81;‐0.90) 

0.002 

4  4.13 
(0.47;7.79) 

0.024  ‐3.07  
(‐7.74;1.59) 

0.189  0.03 
(0.02;0.05) 

<0.001  ‐6.05  
(‐12.02;‐0.09) 

0.047  ‐4.01  
(‐6.31;‐1.72) 

0.001 

5  1.98  
(‐2.50;6.47) 

0.373  ‐4.47  
(‐10.39;1.45) 

0.134  0.03 
(0.01;0.05) 

0.008  ‐7.46  
(‐14.80;‐0.12) 

0.047  ‐4.28  
(‐7.31;‐1.24) 

0.007 
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Table S3. Intension to treat analysis of retinal vessel diameters in sedentary at risk before and after 

intervention. 

 

 

 

 

 

Abbreviations: CRAE, central retinal arteriolar equivalent; CRVE, central retinal venular equivalent; AVR, 

arteriolar‐to‐venular diameter ratio; HIIT, high‐intensity interval training (n=40); CC, control condition 

(n=34);  CI,  confidence  interval;  p,  level  of  significance  for  the  regression. Model  1  adjusted  for  age; 

Model 2 adjusted for age and delta body mass index (ΔBMI). Model 3 adjusted for age, ΔBMI, systolic 

and diastolic blood pressure. Model 4 adjusted for age, ΔBMI, systolic and diastolic blood pressure and 

cardiovascular (CV) medication; Model 5 adjusted for age, ΔBMI, systolic and diastolic blood pressure, 

CV medication and Δ maximal oxygen uptake. 

 

    CRAE (µm)  CRVE (µm)  AVR  

  Model  β (95% CI)  p  β (95% CI)  p  β (95% CI)  p 

HIIT  

vs.  

CC 

1  5.46 (1.19;9.73)  0.013  ‐1.54 (‐6.17;3.08)  0.506  0.03 (0.01;0.05)  <0.001 
2  5.56 (1.41;9.71)  0.009  ‐1.55 (‐6.20;3.10)  0.505  0.03 (0.01;0.05)  <0.001 
3  6.44 (1.76;11.12)  0.008  ‐0.67 (‐5.76;4.42)  0.793  0.03 (0.01;0.05)  0.002 
4  6.43 (1.72;11.13)  0.009  ‐0.59 (‐5.73;4.55)  0.818  0.03 (0.01;0.05)  0.002 
5  4.54 (‐2.06;11.14)  0.169  ‐1.38 (‐8.70;5.93)  0.703  0.03 (0.00;0.06)  0.049 
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Table S4. Primers used in the EXAMIN AGE Study. 

Primer Name  Sequence (5'‐3') 

ACTB_FRT  GTTGTCGACGACGAGCG 

ACTB_RRT  GCACAGAGCCTCGCCTT 

p66Shc_FRT  CTGACACTTTCAAAGCGGTG 

p66Shc_RRT  GTATGTGCTCACTGGCTTGC 

p66Shc_CpGisland1_F  TCTACCTCAGGGTCCCTCCT 

p66Shc_CpGisland1_R  AGCCTCCGATTGGCTTAGAT 

p66Shc_CpGisland2_F  GGACGCGAACTTCAGACTTC 

p66Shc_CpGisland2_R  CAACGATCCTCGGCTAACTC 

p66Shc_CpGisland3_F  GGAGTTTCAGGGATTGACGA 

p66Shc_CpGisland3_R  GCCCAGAAGTCTGAAGTTCG 
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Abstract 

The aim of this study was to investigate, for the first time, the effects of high-intensity interval 

training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk 

patients. In the randomized controlled trial, 84 middle-aged and previously sedentary 

patients with increased CV risk (aged 58±6 years) with ≥two CV risk factors were randomized 

into a 12-week HIIT (n=44) or control group (CG, n=40) with standard physical activity 

recommendations. A blinded examiner measured retinal endothelial function by flicker light-

induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under 

the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. 

Standardized assessments of CV risk factors, cardiorespiratory fitness and retinal endothelial 

function were performed before and after HIIT. HIIT reduced body mass index, fat mass, low-

density lipoprotein and increased muscle mass and maximal oxygen uptake (VO2peak). Both 

ADmax (pre: 2.7±2.1%, post: 3.0±2.2%, p=0.018) and AFarea (pre: 32.6±28.4%*s, post: 

37.7±30.6%*s, p=0.016) increased after HIIT compared to CG (ADmax, pre: 3.2±1.8%, post: 

2.9±1.8%, p=0.254; AFarea, pre: 41.6±28.5%*s, post: 37.8±27.0%*s, p=0.186). Venular 

function remained unchanged after HIIT. There was a significant association between ∆-

change VO2peak and ∆-changes ADmax and AFarea (p=0.026, R2=0.073; p=0.019, R2=0.081, 

respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients 

with increased CV risk independent of the reduction of classical CV risk factors. Exercise has 

the potential to reverse or at least postpone progression of small vessel disease in older adults 

with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to 

be a sensitive tool to detect treatment effects of exercise interventions on retinal 

microvascular endothelial function in middle-aged individuals with increased CV risk.  
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Introduction 

Cardiovascular (CV) disease remains to be the main health care burden in western countries. 

Microvascular endothelial dysfunction is a key driver for CV disease progression1. It is 

estimated that 90% of endothelial cells are located in the microcirculation. The retinal 

microcirculation is an accessible vascular bed for the assessment of microvascular function2, 

3. It shares the embryological origin and morphological as well as physiological properties with 

the cerebral circulation and is considered as a marker of cerebrovascular disease. Analysis of 

static retinal vessel diameters enhances the accuracy of CV diagnosis, documented by a 21% 

and 10.1% reclassification rate for CV events4 and stroke5. Narrower arteriolar and wider 

venular diameters are associated with an increased risk of coronary heart disease6, stroke7 as 

well as CV mortality8. Although retinal vessel diameters are key regulators of microvascular 

blood flow, they do not reflect microvascular endothelial function per se. Dynamic retinal 

vessel analysis (DVA) is a new diagnostic tool for the assessment of microvascular endothelial 

function by flicker light-induced retinal vessel vasodilatation over time9. Few studies exist that 

investigated the association of flicker light-induced dilatation and CV disease. The Maastricht 

Study, a large population-based cohort study, found a reduced retinal arteriolar flicker 

response in patients with pre-diabetes, which was further blunted in patients with type 2 

diabetes compared to patients with a normal glucose metabolism10. A reduction of the retinal 

arteriolar flicker response has been shown in patients with increased CV disease risk, with 

further reductions in the presence of chronic heart failure11. In the same cohort flow-

mediated vasodilatation (FMD), as the gold standard for endothelial function in the 

macrocirculation, did not distinguish between healthy controls, patients with increased CV 

risk and heart failure.11 There is a significant but only moderate correlation between large 

artery FMD and retinal microvascular endothelial function11, 12. The retinal flicker response is 

a new non-invasive microvascular biomarker for cardiovascular risk and has been described 

as a window to the heart2.  

High levels of physical activity have been associated with a reduction of CV disease risk and a 

lower incidence of stroke and coronary heart disease13. High-intensity interval training (HIIT) 

has been shown to not only increase cardiorespiratory fitness but also to efficiently reduce 

CV disease risk and improve vascular function, comparable14 or even more effective than 

moderate continuous training15, 16. The low risk for adverse events during HIIT in CV risk 
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patients has been shown to be comparable to moderate continuous training17. Our study was 

designed to investigate, for the first time, the effects of HIIT on retinal microvascular 

endothelial function in patients with increased CV risk from the EXAMIN AGE cohort18. 

 

Methods 

Design and study population 

The present randomized controlled trial investigated the effects of HIIT on retinal endothelial 

function in patients with increased CV risk. Patients were randomized into a 12-week HIIT or 

physical activity recommendations according to current guidelines19 as control condition. 

Recruitment was performed from January 2016 to December 2017 through our Outpatient`s 

Sports Medicine and Prevention Clinic or advertisements in local newspapers in and around 

the City of Basel. An independent and blinded research assistant drew group allocation from 

an envelope to performed randomization after baseline assessments. Anthropometric 

measurements and dynamic retinal vessel analysis were performed in the morning under 

fasting conditions. Appointments took place at the Department of Sport, Exercise and Health 

in Basel, Switzerland. This study was approved by the Ethics Committee of Northwest and 

Central Switzerland (EKNZ 2015-351) and conducted according to the Helsinki Declaration 

(World Medical Association, 2001) and the CONSORT Guidelines. All participants signed a 

written informed consent before the first measurement took place. The study was registered 

at ClinicalTrials.gov (NCT02796976). 

 

Inclusion and exclusion criteria 

Previously sedentary men and women aged 50-80 years with increased CV risk were included. 

Participants needed to have at least two of the CV risk factors described in Table 1. Exclusion 

criteria were decompensated cardiopulmonary disease, chronic inflammatory disease, 

chronic eye diseases or compromising orthopaedic problems. 
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Table 1. Definition and distribution of risk factors. 

Abbreviations: HIIT, high-intensity interval training group; CG, control group; sys, systolic; 

dia, diastolic; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density 

lipoprotein. 

 

Dynamic retinal vessel analysis 

We measured the right eye following standardized procedures after pupil dilatation with 

Tropicamide 0.5% SDU Faure (THEA Pharma, Schaffhausen, Switzerland) using the retinal 

vessel analyzer system (IMEDOS Systems Ltd., Jena, Germany) and a fundus camera (FF450; 

Carl Zeiss Ltd., Jena, Germany). In six patients, we measured the left eye due to local eye 

diseases on the right eye. All measurements took place in a quiet, dark and temperature-

controlled room (20-22°C). To measure the region of interest, we used a fixation needle that 

additionally reduced eye movements of the patients. In the upper temporal quadrant, a 

straight arteriolar and venular segment one optic disc diameter away from the optic disc edge 

were marked for continuous diameter recording (Figure 2a). Identical segments were 

measured pre- and post-intervention in each patient. The total duration of retinal vessel 

recording was 350 seconds, divided into a 50 seconds baseline period and three cycles of 20 

seconds flicker light stimulus followed by 80 seconds recovery. Raw data of all three cycles 

were combined and averaged to analyze maximal arteriolar (ADmax) and venular (VDmax) 

flicker response and area under the arteriolar (AFarea) and venular (VFarea) flicker curve in 

response to the resting value during the first 50 seconds. Two blinded and experienced 

Risk factor Definition HIIT CG 
  n n 
High body mass index ≥ 30 kg/m2 33 24 
Hypertension ≥ 140 mmHg sys. or ≥ 90 mmHg dia. BP during 

24h monitoring or  
9 3 

 treatment with antihypertensive medications 18 18 
Diabetes fasting glucose ≥ 5.6 mmol/l or  15 16 
 antidiabetic medications 5 6 
Hypertriglyceridemia Triglyceride > 1.7 mmol/l 9 14 
Smoking current smoking status  11 11 
Low HDL < 1.0 mmol/l (male); < 1.2 mmol/l (female) 9 4 
High LDL > 4.9 mmol/l or  4 0 
 cholesterol lowering drugs 5 8 
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scientists independently judged the quality of every signal as previously described20. Only 

signals with sufficient quality were included in the final analysis. The intra-class correlation 

coefficient for the same protocol of flicker light-induced retinal arteriolar dilatation has 

previously been reported to be 0.8221.  

 

Patients` characteristics 

Standard procedures of anthropometric measurements were performed according to the 

description in our published study protocol18. Blood pressure (BP) was measured twice after 

ten minutes of rest with the automatic BP monitor system (Omron Healthcare, Germany) just 

before the retinal analysis and in a 24h monitoring using an oscillometric cuff-based 

sphygmomanometer on the right arm (Mobil-O-Graph®, I.E.M GmbH, Germany). Mean 

arterial pressure (MAP) after 10 minutes of rest was calculated with the following formula: 

MAP = [2 × rest diastolic blood pressure + rest systolic blood pressure] / 3. An individualized 

treadmill ramp protocol was used to analyse cardiorespiratory fitness as previously 

recommended18, 22, 23. Briefly, the speed or incline of the treadmill were increased every 

minute until individual exhaustion. Two independent sport scientist inspected individual 

exhaustion criteria by evaluation of maximal heart rate (HRmax), respiratory exchange ratio 

(RER), VO2 levelling off, Borg scale, blood lactate as well as blood pressure immediately after 

termination of the exercise test. Three out of five parameters needed to be fulfilled. In seven 

patients, the cardiorespiratory exercise test had to be repeated because exhaustion criteria 

were not met. We measured maximal heart rate and ventilator parameters including 

VO2peak using the Cortex Metalyzer R 3B metabolic test system (Cortex Biophysik Ltd, 

Leipzig, Germany). 

 

Exercise intervention and control condition 

Patients were randomized into a 12-week HIIT group, three times per week, or a control group 

(CG) after the last baseline assessment. The intervention groups were trained and supervised 

by experienced sport scientists. Three sport scientist supervised a group of 10 participants. 

Standard heart rate sensors measured participant`s heart rate during the training sessions. 

Sport scientists controlled the heart rate of each participant during and after every training 
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session. The first two weeks of the HIIT training included a technical orientated Nordic-

Walking training with a stepwise increased intensity (75-90% of HRmax). In the following ten 

weeks, the HIIT groups performed a standardized protocol with a total duration of 45 minutes: 

warm-up at an intensity of 60-70% HRmax for ten minutes, 4x4 minutes at 80-90% HRmax 

with three minutes of active recovery in between at 60-70% HRmax and ten minutes cool-

down at 60-70% HRmax. Participants needed to successfully complete 80% of the sessions 

during the 12-week intervention. We defined a session as completed if the patients were in a 

HR zone between 80-90% for at least 16 minutes with three clear recovery phase in between. 

The CG received PA recommendations based on the European Guidelines on Cardiovascular 

Disease Prevention in Clinical Practice.19 Our recommendations were to be active for at least 

30min/day up to 5 days/week in a moderate intensity or 15min/day for 5 days/week in a 

vigorous intensity. 

 

Statistical analysis and sample size calculation 

Primary outcome for the dynamic retinal vessel analysis was the change in maximal flicker 

induced arteriolar dilatation (ADmax) in response to HIIT compared to CG. We used mean and 

standard deviation to describe baseline and follow-up characteristics. A multiple linear 

regression model was used to describe the relationship between the delta change in 

microvascular responses and the delta change of classical risk factors such as body weight, 

body mass index (BMI), waist circumference, fat mass, VO2peak, systolic and diastolic BP, 

fating glucose levels, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and high 

sensitivity C-reactive protein (Hs-CRP). We calculated paired sample t-tests to describe 

differences in the HIIT group and CG separately. To analyse possible intervention effects, we 

used an ANCOVA to correct for the individual baseline value of each parameter. Additionally 

we calculated an ANCOVA for the retinal flicker response parameter (ADmax, VDmax, AFarea 

and VFarea) corrected for baseline as well as for age, sex, change (Δ) BMI, MAP and 

ΔVO2peak.24 We used the MAP measured directly before the dynamic retinal vessel analysis 

because the actual BP affects retinal endothelial function directly.25 All statistical tests were 

two-sided and used a significance level of 0.05. The Graph was generated in Excel 2016 based 
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on the median flicker response calculated for every second separately in the intervention 

group. All statistical tests were performed with R version 3.5.0.  

To date, no studies on the effects of exercise on retinal microvascular endothelial function 

exist. Therefore, we used our previous data on the effects of a 10-week exercise intervention 

on static retinal microvascular diameters to estimate our sample size. Changes in retinal 

vessel diameter reflect structural and functional adaptations and endothelial function is 

thought to contribute to changes in retinal vessel diameter26. We found significant retinal 

arteriolar widening in a group of 15 obese younger individuals (aged 40±6 years) after 10 

weeks of moderate-to-high intensity continuous endurance training26. Taking these results 

and possible dropouts into account, we conservatively estimated our sample size and planned 

to include 40 participants in each group to assess the effects of HIIT on retinal endothelial 

function. We additionally calculated the sample size based on a previous publication of our 

group in patients with metabolic syndrome compared to healthy normal weight subjects.27 

Based on this group difference we assumed a difference in mean maximal arteriolar dilation 

between the HIIT and CG group of 1.2% with a standard deviation of 1.8% after 12 weeks. To 

reach a target power of 80% with a 2-sided significance level of 0.05, we needed a total 

sample size of 74 participants. Taken dropouts into account, we aimed to include 40 patients 

in each group. We used G*Power software 3.1.9.2 for the sample size calculation.28 

 

Results 

Population characteristics 

After screening for inclusion and exclusion criteria, 84 patients were randomized into HIIT or 

CG. The follow-up assessment was performed in 74 patients. Thirty-three controls and 36 

patients undergoing HIIT reached sufficient video quality and were included in the final 

analysis (Figure 1). All participants included in the final analysis completed at least 80% of the 

training sessions with a sufficient intensity as described above. Two patients refused to 

perform the training and two patients dropped out due to illness or injury during the training 

phase not related to the intervention (Figure 1).  
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The distribution of risk factors is listed in Table 1. Seven patients in the intervention group 

had two, eleven patients had three, eleven patients had four and seven patients had ≥five CV 

risk factors. Seven patients in the control group had two, 13 patients had three, four patients 

had four and nine had ≥five CV risk factors. Detailed baseline characteristics of both groups  

 

Figure 1. Flow-chart 

*unrelated to exercise training. 

 

at baseline as well as group alterations after the intervention period are presented in Table 

2. Both groups reduced weight but only the patients undergoing HIIT reduced BMI, fat mass, 

LDL, increased muscle mass, physical activity (FQPA) and VO2peak. Triglycerides increased 

and VO2peak decreased in the CG during the 12 weeks (Table 2). No HIIT-related adverse 

events were observed. 
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Table 2. Population characteristics in patients with increased CV risk before and after exercise or control condition. 

 Intervention group (n=36)  
mean (SD) 

 Control group (n=33)  
mean (SD) 

 

 pre  post pa  pre  post pb pc 
Patients` characteristics         
Age (years) 58 (5)    58 (7)    
Sex (f/m) (16/20)    (19/14)    
Weight (kg) 95.6 (12.3) 94.3 (12.5) 0.003  92.9 (14.6) 92.1 (14.3) 0.011 0.440 
BMI (kg/m2) 33.3 (3.2) 32.8 (3.4) 0.007  32.7 (4.8) 32.5 (4.7) 0.085 0.266 
WC (cm) 111 (9) 109 (11) 0.051  110 (13) 110 (13) 0.085 0.271 
Fat mass (kg) 36.8 (8.5) 35.1 (8.8) 0.000  38.4 (10.5) 38.3 (10.0) 0.768 0.027 
Muscle mass (kg) 32.8 (7.2) 33.2 (7.2) 0.037  30.2 (6.2) 29.8 (5.6) 0.328 0.026 
VO2peak (ml/min/kg) 26.6 (3.8) 28.7 (4.1) <0.001  26.3 (4.9) 25.2 (4.0) 0.002 <0.001 
FQPA (METs) 1.2 (2.3) 23.6 (18.7) <0.001  0.9 (2.2) 1.9 (4.2) 0.056 <0.001 
Rest systolic BP (mmHg) 133 (14) 133 (12) 0.851  129 (14) 131 (15) 0.302 0.970 
Rest diastolic BP (mmHg) 89 (10) 87 (7) 0.326  85 (10) 84 (10) 0.650 0.427 
MAP(mmHg) 103 (9) 103 (8) 0.553  100 (10) 100 (11) 0.945 0.693 
24h. systolic BP (mmHg) 129 (10) 132 (12) 0.147  127 (9) 125 (11) 0.286 0.057 
24h. diastolic BP (mmHg) 82 (7) 83 (8) 0.232  78 (8) 78 (9) 0.776 0.281 
Fasting glucose (mmol/l) 5.9 (2.2) 5.7 (1.8) 0.202  5.8 (1.5) 5.6 (1.2) 0.349 0.899 
Triglyceride (mmol/l) 1.8 (1.1) 1.9 (1.2) 0.451  1.5 (0.7) 1.8 (1.0) 0.035 0.136 
HDL (mmol/l) 1.3 (0.3) 1.3 (0.3) 0.547  1.4 (0.3) 1.4 (0.4) 0.755 0.731 
LDL (mmol/l) 3.3 (0.9) 3.1 (0.9) <0.001  3.0 (0.7) 2.9 (0.8) 0.447 0.079 
Hs-CRP (mg/l) 3.43 (2.5) 3.07 (2.2) 0.197  3.93 (5.9) 3.05 (3.4) 0.135 0.379 
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Abbreviations: BMI, body mass index; WC, waist circumference; VO2peak, maximal oxygen uptake; FQPA, Freiburg 

Questionnaire of Physical Activity; METs, metabolic equivalents; BP, blood pressure; MAP, mean arterial pressure; 

HDL, high-density lipoprotein; LDL, low-density lipoprotein; Hs-CRP, high sensitivity C-reactive protein; ADmax, 

maximal arteriolar dilatation; VDmax, maximal venular dilatation; AFarea, integral under arteriolar flicker curve; 

VFarea, integral under venular flicker curve; SD, standard deviation; pa, p-value for paired sample t-tests pre- to 

post-intervention; pb, p-value for paired sample t-tests pre- to post-control condition; pc, p-value for the intervention 

effect analyzed by ANCOVA corrected for baseline. 

 

Retinal flicker response 
ADmax(%) 2.7 (2.1) 3.0 (2.2) 0.027  3.2 (1.8) 2.9 (1.8) 0.254 0.036 
VDmax(%) 4.0 (1.6) 3.8 (1.6) 0.355  4.4 (2.8) 4.0 (2.0) 0.132 0.863 
AFarea (%*s) 32.6 (28.4) 37.7 (30.6) 0.034  41.6 (28.5) 37.8 (27.0) 0.186 0.034 
VFarea (%*s) 43.4 (21.1) 41.7 (20.2) 0.545  48.6 (31.6) 42.2 (26.2) 0.060 0.415 
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Retinal microvascular flicker response  

At baseline, retinal flicker response did not differ between the two randomized groups. ADmax 

and AFarea increased after HIIT compared to CG (Figure 2b), even after adjustment for the 

value at baseline, age, sex, Δ-change BMI and MAP (Table 3). Improvements of ADmax and 

AFarea were dependent on ∆-change in VO2peak (Table 3). There was a significant association 

between ∆-change VO2peak and ∆-change ADmax (F(1, 66)=5.224, p=0.0255) and AFarea (F(1, 

66)=5.836, p=0.018). One ml/min/kg increase in VO2peak was associated with a 0.12% 

increase in ADmax as well as a 1.9%*s increase of AFarea. Exercise-related changes of classical 

risk factors such as reduction in body weight, BMI, fat mass and LDL were not statistically 

significantly associated with improvements of microvascular endothelial function (p>0.05 in 

all cases). In the CG, no changes in retinal flicker response parameters were observed (Figure 

2c). Parameters of venular function (VDmax and VFarea) did not change after HIIT (Table 2 

and 3).  
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Table 3. Adjusted models of retinal flicker light response in patients with cardiovascular disease after HIIT compared to control condition. 

 

 

 

 

 

 

Abbreviations: HIIT, high-intensity interval training; CG, control group; ADmax, maximal arteriolar dilatation; VDmax, maximal venular 

dilatation; AFarea, integral under arteriolar flicker curve; VFarea, integral under venular flicker curve; CI, confidence interval; p, level of 

significance for the regression models (ANCOVA). Model 1, adjusted for baseline, age and sex; Model 2, adjusted for baseline, age, sex 

and change (Δ) body mass index (BMI); Model 3, adjusted for baseline, age, sex, ΔBMI and mean arterial pressure (MAP); Model 4, 

adjusted for baseline, age, sex, ΔBMI, MAP and Δmaximal oxygen uptake.

  ADmax (%) VDmax (%) AFarea VFarea  
  β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) p 
 Model        

HIIT  
vs.  
CG 

1 0.51 (0.05;0.95) 0.029 0.01 (-0.49;0.52) 0.955 7.92 (0.77;15.09) 0.031 2.79 (-4.64;10.22) 0.456 
2 0.55 (0.09;1.01) 0.020 0.10 (-0.41;0.61) 0.706 8.69 (1.50;15.88) 0.019 3.47 (-4.11;11.05) 0.363 
3 0.55 (0.10;1.01) 0.018 0.11 (-0.41;0.62) 0.680 8.59 (1.63;15.56) 0.016 3.67 (-3.92;11.26) 0.338 
4 0.14 (-0.49;0.77) 0.649 -0.39 (-1.10;0.32) 0.275 3.39 (-6.51;13.29) 0.495 -0.15 (-11.14;10.83) 0.978 
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Figure 2. Fundus image and averaged retinal arteriolar dilatation in response to flicker light 

before and after HIIT 

Detection of retinal arterioles and venules in the upper temporal quadrant before dynamic 

retinal vessel analysis (a). Retinal arteriolar dilatation in response to flicker light as % change 

compared to baseline in the intervention group (b) and the control group (c) before (pre) and 

after (post) HIIT or control condition. 

 

Discussion 

The present study demonstrates for the first time that short-term HIIT exercise training has 

the potential to improve retinal microvascular endothelial function in older patients with 

increased CV risk. HIIT-induced amelioration of microvascular function was independent of 

improvements of classical risk factors. The effects of exercise on arteriolar endothelial 

function are likely to be multifactorial but improvements of cardiorespiratory fitness as 

measured by VO2peak contribute to improved microvascular health. 

 

Exercise, risk factors and microvascular endothelial function 

Previous studies have reported associations of higher body weight27, hypertension29 as well 

as hypercholesterolemia30 with decreased retinal endothelial function. After HIIT, we 

observed a reduction in BMI, fat mass and LDL levels whereas blood pressure and other 

classical risk factors remain unchanged. Interestingly, the improvements of microvascular 

endothelial function after HIIT were independent of changes in BMI as well as classical risk 

factors at baseline but depend on changes in VO2peak (Table 3). Exercise-induced 

improvements of VO2peak were significantly associated with improvements of arteriolar 

endothelial function. Five percent of changes in ADmax were explained by the increase in 

VO2peak after HIIT. Our findings demonstrate that cardiorespiratory fitness is an important 

mediator of the amelioration of microvascular endothelial function in patients with increased 

CV risk. A relative short-term HIIT intervention of three months has beneficial effects on 

retinal endothelial function even in middle-aged patients. ADmax in CV disease risk cohorts 

using the same device and protocol has been previously reported to be in the range of 2.3-

2.4%11, 31, which is comparable to our findings. The prevalence of CV risk factors was slightly 
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lower in our cohort and which might explain the disparity in ADmax compared to previous 

reports. ADmax in healthy and low risk individuals in a comparable age-range have been 

reported to be in the range of 3.6-3.8%11, 32. Our cohort showed an improvement of ADmax 

from 2.7% pre- to 3.0% post-exercise. The clinical relevance of this improvement needs to be 

verified in future studies.  

Improvement of cardiorespiratory fitness rather than reduction of classic CV risk factors 

seems to play a key role for improvement of microvascular endothelial function after short-

term exercise. Since classic risk factors have been associated with microvascular endothelial 

dysfunction in previous studies10, 11, 27, 32-34, their reduction is likely to affect microvascular 

health long-term. However, we would like to speculate that unlike reduction of classic CV risk 

factors, HIIT-induced improvement of VO2peak has significant effects on retinal endothelial 

function. This is of high clinical relevance, since endothelial dysfunction in the 

macrocirculation has been shown to predict CV disease progression and event rates35. In 

patients at risk of coronary artery disease (CAD), endothelial dysfunction was associated with 

worse CV outcome35. It has also been argued that endothelial dysfunction may contribute to 

cerebral ischaemia and stroke36. However, the predictive value of retinal microvascular 

endothelial function for CV outcomes are not yet available. As a putative clinical perspective, 

our findings seem to strengthen recommendations for early exercise-based rehabilitation 

programs in patients at high risk, for example following CV events such as myocardial 

infarction or stroke. Improvement of cardiorespiratory fitness seems to induce immediate 

and direct effects on microvascular endothelial function before reduction of classic CV risk 

factors improve microvascular end-organ function. Dynamic retinal vessel imaging seems to 

be a valid diagnostic tool to detect microvascular endothelial function in patients at risk and 

to monitor lifestyle and potentially drug treatment effects.  

 

Potential mechanisms 

Exercise is a known modulator of nitric oxide (NO) bioavailability37, which is considered to be 

the main local regulator of blood flow and endothelial function38. Increase in local blood flow 

during exercise is mediated by shear stress-induced production of NO. Higher intensities are 

thought to generate higher rates of shear stress and increased NO bioavailability39. Dorner et 
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al. showed that inhibition of NO can reduce retinal vessel dilatation in response to flicker light, 

proving NO dependence of retinal endothelial function40. NO blockage did not result in 

complete absence of dilation which suggests that other factors may also play a role. 

Nonetheless, the improvement of retinal microvascular endothelial function after HIIT can be 

explained, in large part, by an exercise-induced increase in NO bioavailability. Indeed, we have 

previously shown that regular exercise can decrease circulating levels of the NO inhibitor 

asymmetric dimethylarginine (ADMA) in obese subjects, which was associated with an 

increase in arteriolar diameters26.  

Another potential mechanism for an exercise-induced improvement of microvascular 

endothelial function is a reduction of inflammation in patients with CV disease. Exercise is 

known for its potential to reduce inflammation and improve CV outcome41. However, in our 

study, no reduction in high sensitivity C-reactive protein (hs-CRP) as a marker of systemic 

inflammation was observed. The low baseline levels of hs-CRP did not allow for significant 

changes after HIIT. The anti-inflammatory effects of HIIT on the improvement of retinal 

endothelial function could not be demonstrated in our study. Future investigations may have 

to include more specific inflammatory markers for further differentiation. 

It remains to be discussed why exercise did not affect retinal venular dilatation. Venular wall 

shear stress has been shown to be much lower in post-capillary venular vessels compared to 

arterioles42. Much of the exercise-induced increase in shear stress is likely to be buffered by 

arterioles and the capillary system. Retinal venular vessels possess endothelial cells but only 

thin layers of smooth muscle cells, making it a more passive microvascular structure. 

Moreover, arterioles as the resistance vessels are predominantly affected by risk factors of 

arteriolosclerosis and microvascular remodelling compared to venules43.  

 

Dynamic retinal vessel analysis as a clinical diagnostic tool in cardiovascular prevention 

DVA is a new non-invasive diagnostic tool that may help optimize CV risk stratification and 

monitoring of treatment effects on the microvascular target organ. Few previous studies have 

shown that dynamic retinal vessel analysis can differentiate between healthy controls and 

patients with heart failure11, diabetes and pre-diabetes10 as well as patients with metabolic 

syndrome27 by quantifying retinal microvascular endothelial dysfunction. The reactive 

capacity of retinal arterioles to dilate in response to flicker light has been shown to be 
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predictive for the presence of heart failure and coronary artery disease11, 31 and has been 

described as a window to the heart2. This is the first study to demonstrate that DVA can 

sensitively detect effects of exercise as an add-on treatment in patients already receiving 

medication for CV risk factors. In patients with CAD, immediate improvement of coronary 

endothelial function by short-term exercise, independent of achieving risk factor reduction, 

would have high potential to improve CV outcome. It remains to be shown whether exercise-

induced improvements of retinal endothelial function does really reflect improvements of 

endothelial function in the coronary microcirculation. Moreover, prospective long-term 

follow up studies are warranted to determine the predictive value of retinal endothelial 

function for development of CV disease and for CV mortality. 

 

Limitations 

Some limitations apply to our study. We have investigated the short-term effects of HIIT on 

retinal endothelial function in older sedentary adults with increased CV risk as prove of 

principle. The effects of long-term exercise interventions need to be assessed in future 

studies. Moreover, our data cannot per se be generalized to younger or healthy populations. 

It would be of considerable scientific interest and clinical relevance to elucidate whether HITT 

is more effective than, for example, moderate continuous exercise training with respect to 

improvement of microvascular endothelial function. This will have to be examined in future 

studies and was beyond the scope of our current approach. Risk factors of our patients have 

been very well characterized and potential mechanisms have been discussed on the basis of 

the available data. While we have included Hs-CRP as a circulating inflammatory biomarker, 

future studies may need to focus on more specific molecular mechanisms that help explain 

the effects of exercise on microvascular endothelial function. No outcome data is currently 

available on the predictive value of retinal endothelial function for CV morbidity and 

mortality. Long-term prospective follow-up studies are warranted to show that exercise-

induced improvements of retinal endothelial function have added value for CV risk 

stratification and better CV outcome.  
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Conclusions and perspectives 

Dynamic retinal vessel analysis is a non-invasive measurement of in-vivo microvascular 

endothelial function9. Short-term HIIT can improve microvascular endothelial function 

independent of improvements in classical risk factors. Exercise in addition to medication in 

older patients with increased CV risk has the potential to postpone progression of 

microvascular dysfunction and the process of vascular aging. HIIT has the potential to restore 

microvascular endothelial function beyond improvement of classical risk factors. The 

amelioration of arteriolar function is associated with improvement of cardiorespiratory 

fitness. Exercise as add-on therapy for middle-aged patients with increased CV risk factors has 

the potential to reverse or at least postpone progression of microvascular dysfunction and 

the process of vascular aging.  

Future studies need to determine whether exercise-induced improvements of retinal 

microvascular endothelial function in patients with CV disease are associated with better CV 

outcome. Dynamic retinal vessel analysis allows access to the cerebrovascular bed and seems 

to be a sensitive diagnostic tool to detect treatment effects of exercise interventions on 

retinal microvascular endothelial function in patients with increased CV risk.  
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Introduction: Dynamic retinal vessel analysis (DVA) is a new non-invasive method to
quantify microvascular endothelial dysfunction by flicker light-induced dilatation (FID).
FID has been shown to be impaired in type 2 diabetes as well as heart failure. The
aim of the study was to analyze FID in healthy active versus healthy sedentary and
cardiovascular (CV) risk patients in addition to corresponding static vessel diameters.

Methods: Thirty-one healthy active (HA, mean age 60 ± 8 years), 33 healthy sedentary
individuals (HS, 59 ± 7 years) and 76 sedentary patients with increased CV risk (SR,
58 ± 6 years) were included in this cross-sectional study. Group differences in CV risk
factors and cardiorespiratory fitness, maximal arteriolar (ADmax) and venular (VDmax)
dilatation as well as the arteriolar (AFarea) and venular (VFarea) area under the flicker
curve were analyzed. The central retinal arteriolar and venular diameters were used to
calculate the arteriolar-to-venular diameter ratio (AVR).

Results: HS [ADmax = 3.5 (2.1)%; AFarea = 48.2 (31.9)%∗s] showed higher FID
compared to SR [ADmax = 2.7 (1.8)%, p = 0.021; AFarea = 34.5 (26.5)%∗s, p = 0.006]
and HA [AFarea = 32.8 (23.1)%∗s, p = 0.029]. HA and SR did not significantly differ. HA
had a higher AVR (0.87 ± 0.05) compared to HS (0.83 ± 0.04, p < 0.001) with further
deterioration in SR (0.79 ± 0.05, p < 0.001). Interestingly, 28 participants had impaired
FID but normal AVR and 43 participants had normal FID but impaired AVR.

Discussion: FID can differentiate between sedentary low and high risk individuals.
However, FID in healthy active persons (HA) seemed impaired with a concomitant
higher AVR. We postulate that lower FID in HA may be explained by predilatated
arterioles and a reduced dilatation reserve. We recommend combination of FID with
analysis of retinal vessel diameters to differentiate functional non-responders from
manifest microvascular endothelial dysfunction and, thereby, improve microvascular risk
stratification in a personalized medicine approach.

Clinical Trial Registration: ClinicalTrials.gov: NCT02796976 (https://clinicaltrials.gov/
ct2/show/NCT02796976).

Keywords: microcirculation, flicker light-induced dilatation, retinal vessel diameters, physical activity,
cardiovascular disease

Frontiers in Physiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 831

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00831
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.00831
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00831&domain=pdf&date_stamp=2019-07-05
https://www.frontiersin.org/articles/10.3389/fphys.2019.00831/full
http://loop.frontiersin.org/people/498251/overview
http://loop.frontiersin.org/people/761654/overview
http://loop.frontiersin.org/people/508048/overview
http://loop.frontiersin.org/people/729363/overview
http://loop.frontiersin.org/people/483501/overview
https://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02796976
https://clinicaltrials.gov/ct2/show/NCT02796976
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00831 July 4, 2019 Time: 16:10 # 2

Streese et al. Retinal Endothelial Function as a Diagnostic Challenge

INTRODUCTION

Dynamic retinal vessel analysis is a new non-invasive diagnostic
tool to assess microvascular endothelial dysfunction. Flicker
light-induced dilatation (FID) of arterioles seem to reflect
cardiovascular (CV) risk at a subclinical stage. Nägele et al.
showed that FID is reduced in patients with CV risk factors
compared to healthy controls with further deterioration in
heart failure patients (Nagele et al., 2018b). Sörensen et al.
(2016) demonstrated reduced FID in patients with prediabetes
compared to healthy individuals with further impairments in
patients with manifest type 2 diabetes (Sörensen et al., 2016).
Impaired FID has also been associated with hypertension
(Machalinska et al., 2018), hypercholesterolemia (Nagele et al.,
2018a), obesity (Kotliar et al., 2011) and higher age (Kneser et al.,
2009). With respect to static retinal vessel diameters, narrower
arterioles, wider venules and a resulting lower arterio-venous
ratio (AVR) have been associated with incidence hypertension
(Wang et al., 2003; Wong et al., 2004; Ikram et al., 2006b),
stroke (Ikram et al., 2006a; McGeechan et al., 2009) and
a higher CV morbidity and mortality (Wang et al., 2007;
Seidelmann et al., 2016). No studies to date have combined
dynamic and static retinal vessel analysis in an individual patient-
orientated approach.

Physical inactivity is a major risk factor for development
of non-communicable chronic diseases such as CV disease.
Lower physical activity (PA) is associated with a higher CV
mortality (Handschin and Spiegelman, 2008). Blair et al. (1995)
demonstrated a mortality risk reduction of 44% in individuals
who improved their lifestyle from unfit to fit compared to
participants who remained unfit (Blair et al., 1995). Moderate
PA of 90 min per week has been associated with a reduction of
all-cause mortality by 14% (Wen et al., 2011). Age and physical
fitness are known to affect microvascular function. Bioavailability
of nitric oxide (NO), a key modulator of endothelial function,
is higher in young physically active individuals compared to
sedentary controls and has been associated with improved
microvascular endothelial function in the skin (Franzoni et al.,
2004). Favorable retinal vessel diameters have previously been
associated with higher PA and fitness (Anuradha et al., 2011;
Hanssen et al., 2011; Streese et al., 2019). To date, no data
are available on the association of PA and fitness with retinal
microvascular endothelial function in healthy individuals and in
patients with CV disease.

The aims of the study were twofold. We aimed to compare FID
in healthy active (HA) with healthy sedentary (HS) individuals
to determine the impact of lifelong PA on retinal endothelial
function. Moreover, we aimed to compare HS with sedentary
individuals at increased CV risk (SR) to determine the impact

Abbreviations: ACmax, maximal arteriolar constriction; ADmax, maximal
arteriolar dilatation; AFarea, arteriolar area under the flicker curve; AVR,
arteriolar-to-venular diameter ratio; DVA, dynamic retinal vessel analysis; FID,
flicker light-induced dilatation; FQPA, Freiburg Questionnaire of physical activity;
HA, healthy active individuals; HS, healthy sedentary individuals; NO, nitric
oxide; PA, physical activity; SR, sedentary patients with increased cardiovascular
risk; VCmax, maximal venular constriction; VDmax, maximal venular dilatation;
VFarea, venular area under the flicker curve.

of CV risk factors on FID. We hypothesized that HA would
have aggravated FID whereas SR would present with a blunted
microvascular response. Our study, for the first time, aimed to
report individual retinal FID in relation to the corresponding
vessel diameters by combining dynamic and static retinal
vessel analysis.

MATERIALS AND METHODS

Design and Study Population
Participants from the EXAMIN AGE cohort (Streese et al.,
2018) were recruited from January 2016 till December 2017
through local sports and running clubs, advertisements in local
newspapers in and around the city of Basel and through
our Outpatient Prevention Clinic. All participants signed a
written informed consent before the first measurement at
the Department of Sport, Exercise and Health in Basel,
Switzerland took place. Anthropometric measurements and
retinal vessel analysis were performed in the morning under
fasting conditions. This study was approved through the Ethics
Committee of Northwest and Central Switzerland (EKNZ 2015-
351) and conducted according to the Helsinki Declaration
(World Medical Association, 2013). The study is registered at
ClinicalTrials.gov (NCT02796976).

Inclusion and Exclusion Criteria
Men and women aged 50–80 years were included in the study.
Inclusion criteria for HA was an active lifestyle [>9 metabolic
equivalents (METs)/week]. Inclusion criteria for HS and SR was
a sedentary lifestyle (≤3 METs/week). Additionally, SR needed to
have at least ≥2 CV risk factors as described in Figure 1A.

Exclusion criteria for HA and HS were any risk factor
described in Figure 1A, macular degeneration, glaucoma or any
eye disease or history of CV, pulmonary or chronic inflammatory
diseases. Exclusion criteria for patients with increased CV risk
were chronic eye disease, decompensated cardiopulmonary or
chronic inflammatory disease and/or restricting orthopedic
problems. Two sport scientists independently allocated
participants to the active or sedentary groups or to exclude
the subject on mutual grounds on the basis of PA history,
self-reported freiburg questionnaire of physical activity (FQPA),
accelerometer data and maximal oxygen uptake (VO2max).

Retinal Vessel Analysis
After pupil dilatation of the right eye (in 16 patients the left
eye was measured due to local eye problems) with Tropicamide
0.5% SDU Faure (THEA Pharma, Schaffhausen, Switzerland)
and 10 min of rest, retinal endothelial function was measured
using the retinal vessel analyzer system (IMEDOS; GmbH, Jena,
Germany) and a fundus camera (FF450; Carl Zeiss GmbH,
Jena, Germany). The measurements took place in a quiet, dark
and temperature-controlled room (20–22◦C). To reduce eye
movements and to measure the region of interest, a fixation
needle was used. One straight arteriolar and venular segment
in the upper temporal quadrant, one optic disk diameter away
from the optic disk edge were marked. Diameters of these
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FIGURE 1 | Cardiovascular risk factors (A) and flow-chart (B).

segments were continuously recorded for 350 s. The first 50 s
(baseline) were followed by three cycles of 20 s flicker light
(flicker frequency 12.5 Hz) followed by 80 s of recovery (green
light without flicker). Based on the raw data we averaged
the flicker cycles to calculate maximal arteriolar (ADmax) and
venular (VDmax) flicker response, maximal arteriolar (ACmax)

and venular (ACmax) constriction as well as the integral under
the arteriolar (AFarea) and venular (VFarea) flicker curve. In
order to improve the data quality, two experienced scientists
independently judged the quality of every raw signal as previously
described (Kotliar et al., 2017). Only raw signals with sufficient
quality were included in the final analysis (Figure 1B). Al-Fiadh
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previously reported an interclass correlation coefficient of 0.82
for the arteriolar dilatation using the same flicker protocol (Al-
Fiadh et al., 2014). AVR was calculated from central retinal
arteriolar (CRAE) and central retinal venular (CRVE) equivalents
which were measured as previously described (Hanssen et al.,
2011) using the Paar-Hubbard formula (Hubbard et al., 1999).
Previous studies indicate that ADmax values below 2.5%
(Al-Fiadh et al., 2015; Sörensen et al., 2016; Nagele et al.,
2018b) as well as lower AVR values in the range of <0.82
(Wong et al., 2004; Ikram et al., 2006a) are associated with
increased CV risk.

Anthropometry, Physical Fitness and
Activity
All anthropometry measurements were performed as described
in our published study protocol (Streese et al., 2018). Blood
pressure (BP) was measured in a 24 h monitoring and twice
before the microvascular assessments after 10 min of rest.
Cardiorespiratory fitness including VO2max and maximal heart
rate (HRmax) was measured according a treadmill ramp protocol
as previously recommended (Bader et al., 1999; Myers and
Bellin, 2000; Streese et al., 2018) using the Cortex Metalyzer
R 3B metabolic test system (Cortex Biophysik GmbH, Leipzig,
Germany). Participants wore an Aipermotion 440 accelerometer
(Aipermon GmbH, Munich, Germany) on their left hip
for six consecutive days to evaluate daily PA. Total steps
per day and minutes of walking per day were calculated
from the five most active days using AiperView 440 and
ActiCoach MPAT2Viewer Software (Aipermon GmbH, Munich,
Germany) (Jehn et al., 2009a,b). Additionally, participants
reported total sports activities using the FQPA (Frey et al.,
1999). The intensity in this questionnaire is represented
in METs based on the updated Ainsworth Compendium
(Ainsworth et al., 2011). Based on the available data we
calculated the PROCAM Score as previously recommended
(Assmann et al., 2002).

Statistical Analysis and Sample Size
Calculation
We characterized our cohort by reporting baseline characteristics
as mean and standard deviation (SD). Group effects were
analyzed by using a one-way ANOVA with a 2-sided 95%-
confidence interval or Mann–Whitney-U-Test if no normal
distribution was assumed. Data distribution was analyzed
graphically. Turkey HSD tests were used to differentiate group
effects. Linear regression models were used to calculate a
potential association between ADmax and AVR, ADmax, and
AFarea, as well as to calculate the influence of classical risk factors
on arteriolar FID. The graphs were generated in Excel 2016 and
RStudio. All statistical tests were performed with RStudio, version
1.1.463 (R Development Core Team, 2008).

To date, no study on PA and retinal endothelial function exists.
Therefore, we calculated the sample size based on our previous
study where we investigated static retinal vessel diameter in three
different groups with a total sample size of 45 participants. AVR
differentiated between obese runners, lean amateur and elite

runners (Hanssen et al., 2011). Based on an expected slightly
higher variability for DVA, we conservatively planned to include
30 participants in each group to detect group differences with
ADmax as the main outcome.

RESULTS

Population Characteristics
Thirty-one HA (mean age 60 ± 8 years, 45% female), 33
HS (mean age 59 ± 7 years, 69% female) and 76 SR
(mean age 58 ± 6 years, 51% female) were included in the
final analysis (Figure 1B). Distribution of CV risk factors
in SR is shown in Figure 1A. Population characteristics are
presented in Tables 1–4.

Retinal Microvascular Function
Healthy sedentary showed higher FID compared to SR [HS:
ADmax = 3.5 (2.1)%; AFarea = 48.2 (31.9)%∗s vs. SR:
ADmax = 2.7 (1.8)%, p = 0.021; AFarea = 34.5 (26.5)%∗s,
p = 0.006] and HA [HA: AFarea = 32.8 (23.1)%∗s, p = 0.029]
(Figure 2 and Table 3). FID in HA and SR did not significantly
differ (Figure 2 and Table 4). Median flicker response calculated
separately for every second and group is shown in Figure 3.
We found little evidence for other group differences in ADmax,
AFarea, VDmax, and VFarea (Tables 1–4). Higher age was
significantly associated with reduced ADmax and AFarea. No
significant associations were observed for body mass index
(BMI), 24 h systolic and diastolic blood pressure, fasting glucose,
high-density lipoprotein (HDL), low-density lipoprotein (LDL),
triglyceride, PA or fitness. However, patients with diabetic
medications or elevated fasting glucose levels (n = 32) showed
reduced ADmax [2.3 (1.7)% vs. 3.2 (1.8)%, p = 0.092] and
significantly blunted AFarea [24.7 (23.1)%∗s vs. 41.7 (26.7)%∗s,
p = 0.031] compared to non-diabetic SR (n = 44). Other risk
factors were not associated with FID. No gender-specific group
differences were observed.

HA showed a higher AVR compared to HS with a further
decline in SR (0.87 ± 0.05 vs. 0.83 ± 0.04 vs. 0.79 ± 0.05,
p < 0.001). Mean AVR in our cohort was 0.82. Of the 84
participants who had an AVR < 0.82, 39 had ADmax values
<2.5% and 43 individuals >2.5%. Of the 58 participants who had
an AVR > 0.82, 28 had ADmax values <2.5% and 30 individuals
>2.5% (Figure 4).

Linear regression model between ADmax and AVR showed
no statistically significant association [r(138) = 0.013,
p = 0.093]. ADmax and AFarea were highly correlated
[r(138) = 39.35; p < 0.001].

DISCUSSION

Arteriolar FID can differentiate between HS and at risk (SR)
individuals with better retinal endothelial function in healthy
individuals. However, several individuals in the HA group
seemed to present with impaired FID, which was accompanied
by a higher AVR. AVR was higher in HA compared to
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TABLE 1 | Overall population characteristics.

HA (n = 31) mean (SD) HS (n = 33) mean (SD) SR (n = 76) mean (SD) p

Population characteristics

Sex (f/m) 14/17 23/10 39/37 0.137

Age (years) 60 (8) 59 (7) 58 (6) 0.286

Height (cm) 171 (7) 168 (9) 169 (8) 0.390

Weight (kg) 63.9 (5.9) 70.8 (9.9) 94.8 (13.9) <0.001

BMI (kg/m2) 21.9 (1.6) 24.9 (2.5) 33.2 (4.1) <0.001

WC (cm) 82.0 (6.6) 90.1 (8.9) 111.2 (11.6) <0.001

Fat mass (kg) 12.4 (3.8) 22.8 (5.7) 38.0 (9.7) <0.001

Muscle mass (kg) 28.5 (4.2) 26.2 (4.7) 31.6 (7.0) <0.001

Rest systolic BP (mmHg) 127 (16) 128 (15) 132 (14) 0.165

Rest diastolic BP (mmHg) 77 (8) 81 (8) 88 (9) <0.001

24 h. systolic BP (mmHg) 120 (7) 121 (7) 130 (11) <0.001

24 h. diastolic BP (mmHg) 76 (5) 76 (6) 81 (8) <0.001

Fasting glucose (mmol/l) 4.7 (0.4) 4.7 (0.5) 5.8 (1.9) <0.001

Triglyceride (mmol/l) 1.0 (0.3) 1.1 (0.3) 1.8 (1.1) <0.001

HDL (mmol/l) 1.9 (0.4) 1.7 (0.4) 1.3 (0.3) <0.001

LDL (mmol/l) 2.8 (0.8) 3.2 (0.8) 3.1 (0.8) 0.183

PROCAM Score 28.2 (6.5) 32.6 (9.6) 41.3 (9.3) <0.001

Activity and fitness

FQPA (METS) 44.7 (33.3) 1.9 (2.3) 1.0 (2.1) <0.001

Steps per day (n) 12492 (4230) 10298 (3914) 8697 (3591) <0.001

Walking per day (min) 142 (49) 124 (45) 105 (43) <0.001

VO2max (ml O2/min) 43.3 (8.7) 29.8 (4.2) 26.1 (4.2) <0.001

Retinal microcirculation

AVR 0.87 (0.05) 0.83 (0.04) 0.79 (0.05) <0.001

ADmax (%) 2.7 (1.6) 3.5 (2.1) 2.7 (1.8) 0.099

AFarea (%∗s) 32.8 (23.1) 48.2 (31.9) 34.5 (26.5) 0.037

ACmax (%) −1.4 (1.2) −1.3 (1.2) −1.3 (1.0) 0.807

VDmax (%) 4.2 (1.8) 4.0 (2.0) 4.0 (2.1) 0.914

VFarea (%∗s) 41.0 (21.7) 43.6 (25.7) 43.4 (24.6) 0.876

VCmax (%) −0.9 (0.7) −0.8 (0.9) −0.7 (0.6) 0.266

HA, healthy active; HS, healthy sedentary; SR, sedentary at risk; BMI, body mass index; WC, waist circumference; BP, blood pressure; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; FQPA, Freiburg questionnaire of physical activity; METS, metabolic equivalents; VO2max, maximal oxygen uptake; AVR, arteriolar-to-
venular diameter ratio; ADmax, maximal arteriolar dilatation; AFarea, integral under arteriolar flicker curve; ACmax, maximal arteriolar constriction; VDmax, maximal
venular dilatation; VFarea, integral under venular flicker curve; VCmax, maximal venular constriction; SD, standard deviation; p, level of significance for overall group
differences (ANOVA). Bold values are statistically significant p-values (p < 0.05).

HS with further deterioration in SR. When analyzing the
combination of individual dynamic FID with concomitant static
retinal vessel diameters, we identified patients with impaired
FID but normal AVR and vice versa. Both dynamic FID and
static retinal vessel diameters have previously been shown
to be associated with CV risk and incidence CV disease.
Our current findings pose a diagnostic challenge and need
to be addressed in order to put into perspective the use of
retinal microvascular function as a diagnostic tool for CV
risk stratification.

To date, few data are available on DVA as a new method
to assess retinal microvascular endothelial function in health
and disease. To verify our results, we need to compare our
findings in active and sedentary individuals with previous reports
in individuals with low and high CV risk. In our study,
sedentary healthy individuals showed an ADmax of 3.5%. In
comparison, FID in healthy older individuals, measured by

the same flicker protocol, has been previously described to
be between 3.6% (Nagele et al., 2018b) and 3.8% (Seshadri
et al., 2016), which is in line with our findings. In our study,
HS were explicitly screened for sedentary behavior which is
likely to explain the slightly lower arteriolar FID compared
to previous reports. Sedentary patients with increased CV
risk (SR) had a mean ADmax of 2.7% in our study. This
is comparable to the few previous reports in patients with
CV risk ranging between 2.3% (Nagele et al., 2018b) and
2.4% (Al-Fiadh et al., 2015). The slight difference to previous
reports may be explained by a lower CV risk profile in our
patients. It can therefore be concluded that our findings of FID
in sedentary healthy and diseased individuals stand in good
agreement with the available but scarce literature. No study to
date has investigated the impact of PA and fitness on retinal
endothelial function. Most interestingly, we found a blunted
FID (2.7%) in HA which was comparable to our findings in
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TABLE 2 | Group differences between healthy active and healthy
sedentary individuals.

HA (n = 31)
mean (SD)

HS (n = 33)
mean (SD)

p

Population characteristics

Sex (f/m) 14/17 23/10 0.088

Age (years) 60 (8) 59 (7) 0.799

Height (cm) 170 (7) 168 (9) 0.204

Weight (kg) 63.9 (5.9) 70.8 (9.9) 0.010

BMI (kg/m2) 21.9 (1.6) 24.9 (2.5) <0.001

WC (cm) 82.0 (6.6) 90.1 (8.9) <0.001

Fat mass (kg) 12.4 (3.8) 22.8 (5.7) <0.001

Muscle mass (kg) 28.5 (4.2) 26.2 (4.7) 0.076

Rest systolic BP (mmHg) 127 (16) 128 (15) 0.882

Rest diastolic BP (mmHg) 77 (8) 81 (8) 0.046

24 h. systolic BP (mmHg) 120 (7) 121 (7) 0.363

24 h. diastolic BP (mmHg) 76 (5) 76 (6) 0.914

Fasting glucose (mmol/l) 4.7 (0.4) 4.7 (0.5) 0.680

Triglyceride (mmol/l) 1.0 (0.3) 1.1 (0.3) 0.086

HDL (mmol/l) 1.9 (0.4) 1.7 (0.4) 0.027

LDL (mmol/l) 2.8 (0.8) 3.2 (0.8) 0.111

PROCAM Score 28.2 (6.5) 32.6 (9.6) 0.020

Activity and fitness

FQPA (METS) 44.7 (33.3) 1.9 (2.3) <0.001

Steps per day (n) 12492 (4230) 10298 (3914) 0.100

Walking per day (min) 142 (49) 124 (45) 0.212

VO2max (ml O2/min) 43.3 (8.7) 29.8 (4.2) <0.001

Retinal microcirculation

AVR 0.87 (0.05) 0.83 (0.04) <0.001

ADmax (%) 2.7 (1.6) 3.5 (2.1) 0.152#

AFarea (%∗s) 32.8 (23.1) 48.2 (31.9) 0.029#

ACmax (%) −1.4 (1.2) −1.3 (1.2) 0.611#

VDmax (%) 4.2 (1.8) 4.0 (2.0) 0.639#

VFarea (%∗s) 41.0 (21.7) 43.6 (25.7) 0.815#

VCmax (%) −0.9 (0.7) −0.8 (0.9) 0.059#

HA, healthy active; HS, healthy sedentary; BMI, body mass index; WC, waist
circumference; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; FQPA, Freiburg questionnaire of physical activity; METS, metabolic
equivalents; VO2max, maximal oxygen uptake; AVR, arteriolar-to-venular diameter
ratio; ADmax, maximal arteriolar dilatation; AFarea, integral under arteriolar flicker
curve; ACmax, maximal arteriolar constriction; VDmax, maximal venular dilatation;
VFarea, integral under venular flicker curve; VCmax, maximal venular constriction;
SD, standard deviation; p, level of significance for independent samples t-test or
Mann–Whitney-U-Test#. Bold values are statistically significant p-values (p < 0.05).

sedentary patients at risk (SR; 2.7%). As described before, PA and
fitness are associated with reduced CV mortality and improved
microvascular endothelial function (Blair et al., 1995; Franzoni
et al., 2004; Wen et al., 2011). Why then do HA present
with a blunted FID similar to patients with CV risk in the
SR group?

A previous conference report from the annual meeting of
the Association for Research in Vision and Ophthalmology
in 2007 supports our findings of a reduced FID in active
individuals. Lovasik et al. (2007) investigated arteriolar FID
in ten healthy endurance-trained runners and ten healthy
sedentary controls. Runners showed a reduced arteriolar FID
(−2.3%) (Lovasik et al., 2007) and wider arteriolar diameters

TABLE 3 | Group differences between healthy sedentary and sedentary individuals
with increased CV risk.

HS (n = 33)
mean (SD)

SR (n = 76)
mean (SD)

p

Population characteristics

Sex (f/m) 23/10 39/37 0.037

Age (years) 59 (7) 58 (6) 0.452

Height (cm) 168 (9) 169 (8) 0.089

Weight (kg) 70.8 (9.9) 94.8 (13.9) <0.001

BMI (kg/m2) 24.9 (2.5) 33.2 (4.1) <0.001

WC (cm) 90.1 (8.9) 111.2 (11.6) <0.001

Fat mass (kg) 22.8 (5.7) 38.0 (9.7) <0.001

Muscle mass (kg) 26.2 (4.7) 31.6 (7.0) <0.001

Rest systolic BP (mmHg) 128 (15) 132 (14) 0.171

Rest diastolic BP (mmHg) 81 (8) 88 (9) 0.003

24 h. systolic BP (mmHg) 121 (7) 130 (11) 0.002

24 h. diastolic BP (mmHg) 76 (6) 81 (8) 0.022

Fasting glucose (mmol/l) 4.7 (0.5) 5.8 (1.9) <0.001

Triglyceride (mmol/l) 1.1 (0.3) 1.8 (1.1) 0.042

HDL (mmol/l) 1.7 (0.4) 1.3 (0.3) <0.001

LDL (mmol/l) 3.2 (0.8) 3.1 (0.8) 0.135

PROCAM Score 32.6(9.6) 41.3 (9.3) 0.007

Activity and fitness

FQPA (METS) 1.9 (2.3) 1.0 (2.1) 0.205

Steps per day (n) 10298 (3914) 8697 (3591) 0.138

Walking per day (min) 124 (45) 105 (43) 0.174

VO2max (ml O2/min) 29.8 (4.2) 26.1 (4.2) <0.001

Retinal microcirculation

AVR 0.83 (0.04) 0.79 (0.05) <0.001

ADmax (%) 3.5 (2.1) 2.7 (1.8) 0.021#

AFarea (%∗s) 48.2 (31.9) 34.5 (26.5) 0.006#

ACmax (%) −1.3 (1.2) −1.3 (1.0) 0.412#

VDmax (%) 4.0 (2.0) 4.0 (2.1) 0.455#

VFarea (%∗s) 43.6 (25.7) 43.4 (24.6) 0.579#

VCmax (%) −0.8 (0.9) −0.7 (0.6) 0.820#

HS, healthy sedentary; SR, sedentary at risk; BMI, body mass index; WC, waist
circumference; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; FQPA, Freiburg questionnaire of physical activity; METS, metabolic
equivalents; VO2max, maximal oxygen uptake; AVR, arteriolar-to-venular diameter
ratio; ADmax, maximal arteriolar dilatation; AFarea, integral under arteriolar flicker
curve; ACmax, maximal arteriolar constriction; VDmax, maximal venular dilatation;
VFarea, integral under venular flicker curve; VCmax, maximal venular constriction;
SD, standard deviation; p, level of significance for independent samples t-test or
Mann–Whitney-U-Test#. Bold values are statistically significant p-values (p < 0.05).

(Kergoat et al., 2008) compared to healthy controls. In our
study, HA significantly differed in baseline retinal vessel
diameters compared to SR. HA had a higher AVR compared
to HS with a further decline in SR. It therefore seems
plausible to speculate that the reduced FID in active peers
is a sign of a physiologic adaptation to exercise training,
leading to arteriolar predilatation and a subsequent reduced
dilatation capacity rather than a sign of manifest endothelial
dysfunction. The physiologic importance of baseline diameter
or dilatation status for interpretation of retinal arteriolar
endothelial function has been addressed previously. Neumann
et al. (2016) measured retinal vessel diameters as well as FID
under normal and hypoxic conditions (Neumann et al., 2016).
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TABLE 4 | Group differences between healthy active and sedentary individuals
with increased CV risk.

HA (n = 31)
mean (SD)

SR (n = 76)
mean (SD)

p

Anthropometry data

Sex (f/m) 14/17 39/37 0.572

Age (years) 60 (8) 58 (6) 0.315

Height (cm) 171 (7) 169 (8) 0.627

Weight (kg) 63.9 (5.9) 94.8 (13.9) <0.001

BMI (kg/m2) 21.9 (1.6) 33.2 (4.1) <0.001

WC (cm) 82.0 (6.6) 111.2 (11.6) <0.001

Fat mass (kg) 12.4 (3.8) 38.0 (9.7) <0.001

Muscle mass (kg) 28.5 (4.2) 31.6 (7.0) 0.001

Rest systolic BP (mmHg) 127 (16) 132 (14) 0.234

Rest diastolic BP (mmHg) 77 (8) 88 (9) <0.001

24 h. systolic BP (mmHg) 120 (7) 130 (11) 0.001

24 h. diastolic BP (mmHg) 76 (5) 81 (8) 0.018

Fasting glucose (mmol/l) 4.7 (0.4) 5.8 (1.9) <0.001

Triglyceride (mmol/l) 1.0 (0.3) 1.8 (1.1) 0.004

HDL (mmol/l) 1.9 (0.4) 1.3 (0.3) <0.001

LDL (mmol/l) 2.8 (0.8) 3.1 (0.8) 0.762

PROCAM Score 28.2 (6.5) 41.3 (9.3) <0.001

Activity and fitness

FQPA (METS) 44.7 (33.3) 1.0 (2.1) <0.001

Steps per day (n) 12492 (4230) 8697 (3591) <0.001

Walking per day (min) 142 (49) 105 (43) 0.003

VO2max (ml O2/min) 43.3 (8.7) 26.1 (4.2) <0.001

Retinal microcirculation

AVR 0.87 (0.05) 0.79 (0.05) <0.001

ADmax (%) 2.7 (1.6) 2.7 (1.8) 0.318#

AFarea (%∗s) 32.8 (23.1) 34.5 (26.5) 0.264#

ACmax (%) −1.4 (1.2) −1.3 (1.0) 0.205#

VDmax (%) 4.2 (1.8) 4.0 (2.1) 0.247#

VFarea (%∗s) 41.0 (21.7) 43.4 (24.6) 0.898#

VCmax (%) −0.9 (0.7) −0.7 (0.6) 0.235#

HA, healthy active; SR, sedentary at risk; BMI, body mass index; WC, waist
circumference; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; FQPA, Freiburg questionnaire of physical activity; METS, metabolic
equivalents; VO2max, maximal oxygen uptake; AVR, arteriolar-to-venular diameter
ratio; ADmax, maximal arteriolar dilatation; AFarea, integral under arteriolar flicker
curve; ACmax, maximal arteriolar constriction; VDmax, maximal venular dilatation;
VFarea, integral under venular flicker curve; VCmax, maximal venular constriction;
SD, standard deviation; p, level of significance for independent samples t-test or
Mann–Whitney-U-Test#. Bold values are statistically significant p-values (p < 0.05).

Under hypoxic conditions, retinal arterioles dilated as a
physiologic autoregulatory response to low oxygen partial
pressure. It was shown that FID was blunted after hypoxia-
induced predilatation of the arteriole (Neumann et al., 2016).
It therefore seems plausible that exercise-induced dilatation
of arterioles may lead to a reduced dilatation reserve and
blunted retinal FID.

The following discussion of large artery endothelial function
in athletes aims to support and generalize our hypothesis. It
is well established that endurance training is associated with
peripheral conduit artery remodeling with larger arteries in
the exercised limbs (Schmidt-Trucksass et al., 2000; Huonker
et al., 2003; Rowley et al., 2011). The existence of an

“athlete’s artery” has previously been proposed addressing
the paradox why endothelial function is not enhanced in
long-term trained athletes (Green et al., 2012). Endothelial
function, as measured by flow-mediated dilatation (FMD)
in the brachial artery, has been shown to be increased,
normal or even decreased in athletes, questioning the long-
term effects of exercise on arterial function (Green et al.,
2013; Montero et al., 2013). The mechanisms remain unclear
but the baseline diameter at rest seems to play a key role.
Celermajer et al. (1992) found a strong correlation between
resting arterial diameter and FMD, a direct measure of
endothelial function in the brachial artery (Celermajer et al.,
1992). Narrower arteries had a greater dilatation response
and healthy subjects with large baseline arteries showed a
blunted FMD. These results were confirmed by Rembold
et al. (2003). The correlation between FMD and retinal FID
are low to moderate (Pemp et al., 2009; Nagele et al.,
2018b), nonetheless the underlying mechanisms may indeed be
comparable. Both methods measure shear stress-induced and
NO-mediated vascular dilatation (Corretti et al., 2002; Dorner
et al., 2003) in response to different stimuli. It therefore seems
reasonable to hypothesize that the same physiologic principle of a
reduced dilatation reserve in predilatated large and small arteries
may account for reduced endothelial response in physically active
and fit subjects.

To illustrate the resting diameter, we used AVR and not
CRAE because CRAE has a high inter-individual variability
depending on the magnification factor and the anatomy and
height of the individual. AVR represents the ratio between CRAE
and CRVE which neutralizes these inter-individual differences.
The use of AVR may help put into perspective the role of
the arteriolar baseline diameter and the interpretation of FID
as a vascular biomarker for CV risk. In Figure 4 we plotted
arteriolar FID against the corresponding AVR for all individuals
in our study. Individuals with a high AVR and a coinciding high
FID present with a favorable, healthy microvascular phenotype
(green area), whereas it appears eminent that persons with a
low AVR and a coinciding low FID present with an impaired
microvascular phenotype associated with an increased CV risk
(red area). However, a high fluctuation of arteriolar FID becomes
evident in patients with the same AVR. Several subjects with
a favorably high AVR present with low arteriolar FID. At the
other end of the scale, several subjects with a critically low AVR
present with high FID (gray areas). How can this conundrum
be explained?

Individuals with a high AVR but blunted FID are
predominantly physically active and fit. An exercise-induced
predilatation with a reduced dilatation reserve my lead to the
reduction in FID. Individuals with low AVR but high FID are
predominantly SR. Differences in functional and structural
narrowing of the baseline diameters may help explain this
phenomenon. Patients with narrow arterioles and low AVR
with normal endothelial function are likely to have functional
narrowing of the arterioles, for example due to higher blood
pressure. Increase in blood pressure stimulates myogenic
vasoconstriction (Bayliss effect) and is associated with functional
narrowing of arterioles (Lip and Hall, 2007), which may still
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FIGURE 2 | Arteriolar and venular flicker response in healthy active (HA), healthy sedentary (HS) and sedentary individuals with increased CV risk (SR). ADmax,
maximal arteriolar dilatation; VDmax, maximal venular dilatation; AFarea, integral under arteriolar flicker curve; VFarea, integral under venular flicker curve; ∗p < 0.05
for Mann–Whitney-U-Test.

be reversible. Long-term hypertension may induce structural
remodeling and severe vascular damage. Patients with narrow
arterioles and low AVR as well as impaired endothelial function
are prone to have structural damage, which is less likely to
be reversible. It is of utmost interest for future studies to
investigate whether these patients differ in long-term CV
outcome and prognosis. In our study, no associations of DVA
with classic CV risk factors were found. This does not appear
to be surprising on the basis of the above arguments. Due
to the necessary differentiation of microvascular function
in active and sedentary individuals the mere association of
risk factors with FID may get blurred. The combined use
of static and DVA gives information beyond association
of risk factors.

From a clinical perspective it is necessary to define cut-
off values for both the arteriolar flicker response and retinal
vessel diameters. No such cut-off values have been defined as
yet. However, ADmax values between 2.3 and 2.4% or lower

have been associated with CV risk factors (Al-Fiadh et al., 2015;
Nagele et al., 2018b), diabetes (Sörensen et al., 2016) or
heart failure (Nagele et al., 2018b). Lower AVR values are
associated with hypertension (Ikram et al., 2006b), diabetes
and inflammation (Wong et al., 2006) as well as coronary
heart disease (Wong et al., 2002), stroke (Ikram et al., 2006a)
and a higher CV mortality (Wang et al., 2007) and AVR
levels below the mean of our cohort (0.82) are generally
considered as pathological. We therefore set our intra-cohort
study cut-off levels at a FID of 2.5% and AVR of 0.82.
Definite cut off values need to be defined in future prospective
long-term outcome trials. Moreover, there seems to be an
urgent need for individual differentiation of the physiologic
or pathophysiologic principles underlying retinal microvascular
impairments. In an individualized diagnostic approach, a
healthy active individual should not be diagnosed with retinal
endothelial dysfunction in the presence of a high AVR and
in the absence of CV risk factors. In sedentary patients with
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FIGURE 3 | Median arteriolar flicker response in healthy active (blue), healthy sedentary (yellow) and sedentary individuals with increased CV risk (red).

FIGURE 4 | Maximal arteriolar dilatation in % (ADmax) and arteriolar-to-venular diameter ratio (AVR) of every study participant. HA, healthy active; HS, healthy
sedentary; SR, sedentary patients with increased CV risk.

known CV risk factors, a sustained normal FID is a good
sign, however, a low AVR may indicate functional arteriolar
narrowing and a remaining CV risk. In a population-based
approach with large cohorts these differentiations may be
negligible and may be lost in the statistical deviation. Findings
of previous population-based large cohort studies on associations
of retinal vessel phenotype with CV risk and risk prediction
are very valuable. However, it does not necessarily mean
that these findings can equivalently be transferred into a
personalized medicine approach. The combination of impaired

FID and low AVR are indeed associated with increased
CV risk. But for individual risk stratification and treatment
recommendations, the proposed differentiation of arteriolar
FID in relation to the AVR seems clinically indicated and is
strongly recommendable.

This study has some limitations. Participants in our study were
between 50 and 80 years old. Our findings and interpretation
of results cannot be generalized to other age groups. The
discussion of the results is based on sound physiologic principles
and previous findings. Nonetheless, we are aware that the
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interpretation of our results remains hypothesis-driven. The
discussed physiologic mechanisms need to be confirmed in
future studies which was beyond the scope of our current study
approach. Future research needs to apply patient-orientated
differentiated diagnostics on the retinal microvascular phenotype
in long-term follow up studies to correctly stratify individual risk
and estimate prognosis as well as offer appropriate treatment
recommendations. Our study is cross-sectional and effects of
therapeutic interventions on retinal microvascular phenotype
need to be elucidated. Inclusion criteria for SR were ≥2 CV
risk factors out of seven. The study was not designed to
discriminate between these CV risk factors. Further research
in larger population-based cohorts is needed to evaluate the
influence of these CV risk factors on the retinal microvascular
function separately.

To conclude, arteriolar FID assessed by DVA differentiates
between low and high CV risk in older adults. Physically
fit individuals show a blunted FID comparable to patients
with CV disease. A possible explanation may be a reduced
dilatation reserve as a result of arteriolar predilatation in
exercise-trained subjects. Our results demonstrate that a
differentiated assessment of retinal endothelial function in
combination with retinal vessel diameters is warranted to
meet the diagnostic challenge of an individualized personal
medicine approach.
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Abstract  

Background: Narrower retinal arterioles and wider venules are linked to worse cardiovascular 

(CV) outcome. The adaptor protein p66Shc is a key driver of oxidative stress and is modulated 

by DNA methylation of its promoter. We aimed to investigate the link between physical 

activity, retinal vessel diameters and the p66Shc pathway. 

Design/Methods: Out of 158 subjects (mean age 59.4±7.0 years) included in the cross-

sectional study, 38 were healthy active (HA), 36 healthy sedentary (HS) and 84 sedentary at 

increased CV risk (SR). Central retinal arteriolar (CRAE) and venular (CRVE) diameters and the 

arteriolar-to-venular diameter ratio (AVR) were measured using a retinal vessel analyzer. 

Plasma 3-nitrotyrosine (3-NT) was measured by ELISA as a marker of oxidative stress. Gene 

expression of p66Shc and DNA methylation analysis were assessed in peripheral blood 

mononuclear cells (PBMCs) by RT-qPCR and Methylminer qPCR.  

Results: Our results demonstrated wider CRAE (179±14µm) and narrower CRVE (204±17µm) 

in HA compared to HS (CRAE: 172±11 µm; CRVE: 209±11 µm) resulting in a higher AVR in HA 

(0.88±0.05) compared to HS (0.83± 0.04, p<0.001). By contrast, SR showed narrower CRAE 

(171±14 µm) and wider CRVE (218±16µm, p<0.05; AVR: 0.79±0.05, p<0.001) compared to HS. 

In both sedentary groups, higher p66Shc expression and increased plasma levels of 3-NT were 

associated with hypomethylation of p66Shc promoter.  

Conclusions: We conclude that physical activity has the potential to counteract microvascular 

dysfunction in older subjects. Downregulation of p66Shc expression via DNA methylation may 

represent a putative mechanistic link whereby active lifestyle promotes healthy 

microvascular ageing. 
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Introduction 

Retinal vessels represent a window to assess subclinical vascular remodelling and 

microvascular aging1. Retinal vessel analysis as a diagnostic tool can improve CV risk 

stratification and alterations of retinal vessels have been shown to be predictive of long-term 

CV outcome2, 3. Narrower retinal arterioles and wider venules have been associated with 

increased CV events in the elderly such as stroke4, coronary heart disease5 as well as higher 

CV mortality6. In a previous study, we have found that moderate continuous exercise training 

can improve retinal microvascular phenotype by modulating the nitric oxide (NO) pathway in 

lean and obese middle-aged subjects7. Whether long-term physical activity can preserve 

retinal microvascular phenotype in healthy older individuals compared to sedentary healthy 

and diseased individuals has not been investigated to date. 

Endothelial dysfunction is caused by a disturbed homeostasis between NO bioavailability and 

reactive oxygen species (ROS)8. The mitochondrial adaptor p66Shc plays a key role in ageing-

induced oxidative stress9. We recently reported a significant upregulation of p66Shc in 

peripheral blood mononuclear cells isolated from patients with type 2 diabetes10. This 

elevated expression of p66Shc correlated with in vivo markers of oxidative stress and 

endothelial dysfunction10. Epigenetic signatures at the gene promoter were found 

responsible for increased p66Shc gene expression10.  

The precise molecular and epigenetic mechanisms of how PA may affect CV health remain to 

be fully understood. Few studies have shown that regular exercise can modulate methylation 

levels, which translate into differential gene expression11, even at the genome-wide level in 

healthy men and women12. The role of PA in epigenetic regulation of p66Shc, ROS generation 

and microvascular phenotype remains unknown.  

 

Methods 

Study design  

Based on data from the EXAMIN AGE study13, we investigated the association of long-term PA 

on retinal microvascular phenotype and analysed DNA methylation of p66Shc promoter as well 

as systemic oxidative stress levels in healthy older active (HA), healthy older sedentary (HS) 

and older sedentary with increased CV risk (SR). Inclusion and exclusion criteria are described 

in detail in the supplement material.  
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The study was performed at the Department of Sport, Exercise and Health in Basel, 

Switzerland. The molecular and epigenetic analyses were performed at the Department of 

Medicine, Karolinska University Hospital, Sweden. The study was planned and conducted in 

accordance to the protocol and principles stated in the Helsinki Declaration (World Medical 

Association, 2001). The study approval was obtained from the Ethics Committee of Northwest 

and Central Switzerland (EKNZ 2015-351). All participants signed a written informed consent. 

A detailed study protocol has been published13 and the study has been registered at 

ClinicalTrials.gov (NCT02796976). 

 

Static Retinal Vessel Analysis (SVA) 

The Retinal Vessel Analyzer (RVA, IMEDOS Systems, Jena, Germany) and a fundus camera (450 

FF, Carl Zeiss, Jena, Germany) were used to measure retinal vessel diameters after pupil 

dilatation with Tropicamide 0.5%. Three valid images were taken from one eye at an angle of 

50°. The detailed procedure has been described previously7, 13. Average diameters were taken 

as central retinal arteriolar (CRAE) and central retinal venular (CRVE) equivalents using the 

Paar-Hubbard formula14. Retinal vessel diameters are presented in µm, as one measuring unit 

of the imaging device relates to 1µm in the model of Gullstrand’s normal eye. The ratio 

between CRAE and CRVE was calculated and presented as the arteriolar-to-venular diameter 

ratio (AVR). To avoid inter-observer variation, all fundus images were taken and analysed by 

the same experienced investigator who was blinded for group allocations. In our study, we 

repeated analysis of 30 images and calculated the correlation coefficient (CC) and the 

coefficient of variation (CVar). The CC for CRAE was r =0.98, the CVar was 8.30%. For CRVE, 

the CC was r =0.97 and the CVar was 6.27% (AVR: r =0.97 and CVar =9.84%), indicating high 

reproducibility for all three retinal parameters (P<0.001 each). 

 

Isolation of mononuclear cells and measurement of plasma 3-nitrotyrosine 

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll®-Paque (GE Healthcare 

Europe GmbH, Switzerland) and LeucosepTM 50ml tubes (Greiner BIO-ONE, Germany). 

Isolated PBMCs were washed in PBS and stored in RLT buffer (RNeasy Mini Kit, Qiagen, 

Switzerland) at -80°C for DNA and RNA isolation. Plasma was also stored at -80°C. Oxidative 

stress marker 3-nitrotyrosine (3-NT) was measured in plasma using OxySelectTM Nitrotyrosine 

ELISA kit (Cell Biolabs, CA, USA) following the manufacturer`s instructions. Plasma 
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nitrotyrosine levels were determined by comparison with a standard curve prepared from 

predetermined nitrated bovine serum albumin standards.  

 

RT qPCR  

Gene expression of p66Shc was assessed in 20 HA, 20 HS as well as in 40 SR individuals. Gene 

expression analysis of p66Shc was performed in PBMCs by real-time quantitative polymerase 

chain reaction (RT-qPCR). RNA was extracted with Direct-ZolTM RNA miniprep kit (Zymo 

research, CA, USA) and cDNA was synthesized with high capacity cDNA conversion kit (Applied 

Biosystems, Foster City, CA, USA). mRNA levels of p66Shc gene were detected by RT-qPCR using 

ABI 7900HT system (Applied Biosystems, Foster City, CA, USA) and FastStart Universal SYBR 

Green technology (Roche, Basel, Switzerland). Actin-Beta (ACTB) gene was used as 

endogenous control for normalizing RNA concentration. Differences in cycle threshold (Ct) 

values between test gene and endogenous control (ACTB; ΔCt) were calculated and used for 

statistical analysis. 

 

Promoter DNA methylation 

DNA methylation analysis of p66Shc promoter was performed in the same 20 HA, 20 HS and in 

40 SR individuals. Genomic DNA was isolated from PBMCs using phenol:chloroform:isoamyl 

alcohol (Sigma Aldrich, St. Louis, USA), nucleospin Gel and PCR cleanup kit (Macherey-Nagel, 

PA, USA). One µg of purified DNA was used to assess methylation status of p66Shc promoter. 

Methylated cytosines were captured with MethylMiner Kit (Invitrogen, CA, USA) and the level 

of methylation was assessed with promoter specific primers, ABI 7900HT RT-qPCR system and 

fluorescence-based FastStart Universal SYBR Green technology (Roche, Basel, Switzerland). 

Methylated and non-methylated control duplexes provided by the manufacturer were used 

as controls for methyl-CpG-binding-domain (MBD) protein capture. The amount of DNA 

captured by MBD protein was normalized to the input (starting DNA material) of each sample. 

The primer sets used for detection of p66Shc promoter methylation are indicated in 

supplementary material online, Table S1. 

 

Anthropometry, physical activity and fitness 

All anthropometric measurements were performed according to standard procedures 

described previously13. With the use of the Cortex Metalyzer R 3B metabolic test system 
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(Cortex Biophysik GmbH, Leipzig, Germany), we measured circulatory and ventilatory 

parameters including VO2max during an individualized treadmill ramp protocol as previously 

described13. Study participants wore an Aipermotion 440 accelerometer (Aipermon GmbH, 

Munich, Germany) on their left hip on six consecutive days. We calculated total steps per day 

and minutes of walking per day using the AiperView 440 and ActiCoach MPAT2Viewer 

Software (Aipermon GmbH, Munich, Germany) from the five most active days15, 16. The self-

reported sport activities were assessed using FQPA17 in metabolic equivalents (METs) per 

week based on the Ainsworth Compendium17, 18. 

 

Statistical analysis and sample size calculation 

The primary outcome of the cross-sectional approach was the difference in AVR between HA, 

HS and SR. Boxplots were used for the visualization of primary and secondary outcomes. We 

applied analysis of variance to compare the AVR and secondary outcomes between HA, HS 

and SR. Linear regression model was used to analyse the association of VO2max with AVR. 

Statistical program R (version 3.5.0) was used for the generation of graphs and for statistical 

tests with a 2-sided confidence interval of 95%.  

Based on previous studies we assumed AVR values of 0.88, 0.83 and 0.78 for HA, HS and SR 

with a standard deviation of 0.057, 19. To reach a target power of 90% with a 2-sided 

significance level of 0.05, we needed 36 participants in each group. 

 

Results 

We finally included 158 individuals (38 HA, 36 HS and 84 SR) to analyse the association of 

long-term PA and fitness with retinal vessel diameters, p66Shc expression and oxidative stress 

levels (Figure S1). All groups were age-matched and differed in anthropometric data (Table 

1). Table S2 shows the distribution of CV risk factors of the SR group. 

 

 

 

 

 

 



Publication 5   
 

109 
 

Table 1. Population characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: HA, healthy active; HS, healthy sedentary; SR, sedentary at risk; BMI, 

body mass index; WC, waist circumference; BP, blood pressure; HDL, high-density 

lipoprotein, LDL, low-density lipoprotein; FQPA, Freiburg questionnaire of physical 

activity; METs, metabolic equivalents; VO2max, maximal oxygen uptake; SD, standard 

deviation; P, level of significance for overall group differences 

 

Retinal microvascular phenotype  

HA individuals showed wider arterioles (179±14µm vs 172±11µm) and narrower venules 

(204±17µm vs 209±11µm) compared to HS individuals resulting in a significant higher AVR 

(0.88±0.05 vs 0.83±0.04, P<0.001) independent of confounders (Figure 1A; Table 2). CRAE did 

not differ between HS and SR (171±14µm). Wider venules were found in SR (218±16µm, 

P=0.013) compared to HS resulting in a lower AVR (0.79±0.05, P<0.001). This finding was 

 HA (n=38) 
mean (SD) 

HS (n=36) 
mean (SD) 

SR (n=84) 
mean (SD) P 

Patients’ characteristics 
Sex (f/m) 

 
17/21 

 
26/10 

 
42/42 

 
0.036 

Age (years) 60 (7) 60 (7) 59 (6)  0.570 
Height (cm) 171.1 (7.7) 167.5 (8.8) 168.9 (8.0)  0.160 
Weight (kg) 64.5 (6.5) 70.2 (9.9) 94.7 (14.0) <0.001 
BMI (kg/m2) 22.1 (1.7) 24.8 (2.4) 33.2 (4.1) <0.001 
WC (cm) 82.1 (6.6) 89.4 (8.9) 111.4 (11.5) <0.001 
Fat mass (kg)  13.0 (3.8) 22.8 (5.9) 37.9 (9.7) <0.001 
Muscle mass (kg) 28.6 (4.4) 25.9 (4.8) 31.6 (6.9) <0.001 
Rest systolic BP (mmHg) 128 (15) 127 (15) 132 (15)  0.594 
Rest diastolic BP (mmHg) 78 (8) 81 (8) 87 (10)  0.007 
24h. systolic BP (mmHg) 120 (6) 121 (7) 130 (11) <0.001 
24h. diastolic BP (mmHg) 76 (5) 76 (6) 81 (8) <0.001 
Fasting glucose (mmol/l) 4.7 (0.4) 4.7 (0.5) 5.8 (1.8)   0.014 
Triglyceride (mmol/l) 0.9 (0.3) 1.1 (0.3) 1.8 (1.1)   0.002 
HDL (mmol/l) 2.0 (0.4) 1.7 (0.4) 1.3 (0.3) <0.001 
LDL (mmol/l) 3.0 (0.7) 3.2 (0.8) 3.2 (0.8)  0.535 

Activity and fitness 
FQPA (METs) 

 
46.2 (36.3) 

 
1.7 (2.3) 

 
1.3 (2.8) 

 
<0.001 

Steps per day (n) 13267 (4869) 10105 (3828) 8711 (3588) <0.001 
Walking per day (min) 148 (52) 121 (44) 105 (43) <0.001 
VO2max (ml/min/kg) 42.5 (8.3) 29.9 (4.3) 26.0 (4.3) <0.001 
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dependent of BMI, blood pressure, CV medications and VO2max (Table 2). VO2max (β =0.004, 

P<0.001) adjusted for age and sex explained 27% of AVR variance including the whole study 

population (R2=0.268) (Figure S2).  

 

Gene expression of p66Shc and oxidative stress 

Gene expression of mitochondrial adaptor p66Shc was significantly elevated in PBMCs isolated 

from HS and SR as compared to HA at baseline (6.4±5.6 and 6.4±7.7 vs 1.9±0.9 arbitrary units 

(AU) respectively, P<0.01, Figure 1B). In accordance with the upregulation of p66Shc, 3-NT 

levels were higher in both HS and SR as compared to HA (5.6±3.4µg/ml and 6.0±4.6µg/ml for 

HS and SR vs 3.8±1.8µg/ml in HA, respectively, P<0.05) (Figure 1B). 

 

Promoter DNA methylation of p66Shc gene 

The human p66Shc gene has a CpG island within the proximal promoter. DNA methylation 

analysis of p66Shc promoter was performed using Methylminer combined with qPCR. Three 

different sets of primers were used to comprehensively examine the methylation status of 

the p66Shc promoter (-225/+676bp of the transcription start site (TSS)) (Figure 1C). 

Interestingly, DNA methylation of p66Shc promoter showed lower levels of methylation in HS 

and SR as compared to HA (Figure 1C). 
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Table 2. Adjusted group differences of retinal vessel diameters. 

 

 

 

 

 

 

 

 

 

 

HA, healthy active (n=38); HS, healthy sedentary (n=36); SR, sedentary at risk (n=84); CRAE, central retinal arteriolar 

equivalent; CRVE, central retinal venular equivalent; AVR, arteriolar-to-venular diameter ratio; CI, confidence interval; 

P, level of significance for the regression; Model 1, adjusted for age and sex; Model 2, adjusted for age, sex and body 

mass index (BMI); Model 3, adjusted for age, sex, BMI, systolic and diastolic blood pressure; Model 4 adjusted for age, 

BMI, systolic and diastolic blood pressure and cardiovascular (CV) medication; Model 5 adjusted for age, BMI, systolic 

and diastolic blood pressure, CV medication and maximal oxygen uptake. 

  CRAE (µm)  CRVE (µm)  AVR  
 Model β (95% CI) P β (95% CI) P β (95% CI) P 

HA  
vs.  
HS 

1 6.69 (-1.16; 14.55) 0.111 -4.41 (-13.15; 4.33) 0.458 0.05 (0.03; 0.08) <0.001 
2 6.02 (-2.79; 14.24) 0.195 -4.32 (-13.47; 4.84) 0.506 0.05 (0.02; 0.07) <0.001 
3 5.41 (-2.56; 13.39) 0.246 -4.58 (-13.76; 4.59) 0.465 0.05 (0.02; 0.07) <0.001 
4 5.27 (-2.65; 13.20) 0.260 -4.69 (-13.90; 4.49) 0.449 0.05 (0.02; 0.07) <0.001 
5 9.53 (-0.62; 19.68) 0.070 -1.15 (-13.01;10.66) 0.971 0.05 (0.02; 0.09) <0.001 

HS 
vs.  
SR 

1 0.74 (-6.08; 7.56) 0.965 -9.17 (-16.77; -1.58) 0.013 0.04 (0.02; 0.06) <0.001 
2 -1.27 (-11.11; 8.56) 0.949 -8.89 (-19.85; 2.07) 0.137 0.03 (-0.01; 0.06) 0.120 
3 -1.88 (-11.47; 7.72) 0.889 -9.23 (-20.27; 1.80) 0.120 0.02 (-0.01; 0.06) 0.138 
4 -4.47 (-14.66; 5.71) 0.552 -11.14 (-22.90; 0.65) 0.068 0.02 (-0.01; 0.05) 0.292 
5 -3.76 (-13.93; 6.41) 0.656 -10.46 (-22.30; 1.38) 0.095 0.02 (-0.01; 0.06) 0.272 

HA  
vs.  
SR 

1 7.43 (0.82; 14.04) 0.023 -13.59 (-20.94; -6.23) <0.001 0.09 (0.07; 0.11) <0.001 
2 4.75 (-6.76; 16.26) 0.593 -13.20 (-26.04; -0.37) 0.042 0.07 (0.04; 0.11) <0.001 
3 3.54 (-7.70; 14.77) 0.737 -13.81 (-26.74; -0.89) 0.033 0.07 (0.03; 0.11) <0.001 
4 0.80 (-10.99; 12.58) 0.986 -15.83 (-29.50; -2.18) 0.019 0.06 (0.03; 0.10) <0.001 
5 5.77 (-13.93; 6.41) 0.656 -11.61 (-27.50; 4.29) 0.198 0.07 (0.03; 0.12) <0.001 
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Figure 1. Group specific differences in retinal microvascular phenotype, p66Shc gene 

expression and 3‐nitrotyrosine levels. 



Publication 5   
 

113 
 

(A) Central retinal arteriolar (CRAE) and central retinal venular (CRVE) diameter equivalents 

as well as arteriolar-to-venular diameter ratio in 38 healthy active (HA), 36 healthy sedentary 

(HS) as well as in 84 sedentary at risk (SR) individuals. (B) Expression of p66Shc relative to ACTB 

measured in 20 HA and 20 HS as well as in 40 SR individuals and oxidative stress measured as 

plasma 3-nitrotyrosine levels in 38 HA, 36 HS as well as in 84 SR individuals. (C) p66Shc gene 

and CpG islands proximal to p66Shc promoter (red lines indicate CpG rich regions amplified 

with specific primers). Levels of DNA methylation at region 3, 2 and 1 of p66Shc promoter in 

20 HA, 20 HS as well as in 40 SR individuals. Values are expressed as mean±SD. ANOVA P-

values are shown for multiple comparisons; *P<0.05, **P<0.01, ***P<0.001. ACTB, actin beta. 

 

Discussion 

The present study demonstrates that long-term PA and fitness are associated with a more 

favourable microvascular phenotype known to be associated with better CV outcome. 

Moreover, long-term PA in healthy individuals is associated with downregulation of p66Shc 

gene expression via DNA methylation and a concomitant reduction of oxidative stress levels.  

Long-term PA was associated with a microvascular phenotype characterized by wider 

arteriolar and narrower venular diameters. This phenotype has been linked with a lower 

incidence of coronary heart disease-related deaths20, atherosclerotic CV events2, stroke3 and 

reduced CV mortality6. The fact that 27% of the AVR variance at baseline was explained by 

cardiorespiratory fitness (VO2max) emphasizes the importance of improving physical fitness 

to support healthy microvascular aging. Restoration of NO bioavailability and blunting of 

oxidative as well as inflammatory processes are likely to play a major role in mediating PA-

induced improvements of microvascular function. Our results suggest that healthy 

microvascular ageing can be achieved by active lifestyle and higher fitness. 

HA and HS did not differ significantly with respect to age, sex and CV risk factors but merely 

differed in long-term PA and fitness levels. Active lifestyle and fitness are therefore 

considered the most important mediators of lower oxidative stress, lower p66Shc expression 

and methylation regulators in the HA group. HS and SR did not significantly differ in 

methylation status, p66Shc expression and oxidative stress levels. This suggests that 

sedentariness alone may modulate the described epigenetic pathway comparable to the 

more common CV risk factors.  
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The results of our study demonstrate that promoter DNA methylation is essential for p66Shc 

gene downregulation. PA-mediated methylation of p66Shc promotor, subsequent 

downregulation of p66Shc gene expression and associated reduction of systemic oxidative 

stress may prove to be key pathways to ensure healthy microvascular phenotype8, 9. By 

contrast, it is well-known that ONOO- formation originating from the reaction of NO and O2- 

increases 3-NT levels21, 22. Accordingly, plasma levels of 3-NT were lower in HA compared to 

SR subjects. In the HS and SR group, hypomethylation of p66Shc promoter facilitating p66Shc 

transcription contributed to oxidative stress. 

We have previously demonstrated in a rodent model of diabetes and cell culture that 

hypomethylation of p66Shc promoter causes gene overexpression, oxidative stress and 

endothelial dysfunction23. Inactivation of p66Shc gene seems to protect against age-induced, 

ROS-mediated endothelial dysfunction, possibly contributing to the extended life span of 

p66Shc deficient mice24. In addition, we have recently shown that adverse epigenetic changes 

are responsible for continuous p66Shc upregulation, oxidative stress and endothelial 

dysfunction in patients with type 2 diabetes10. Collectively these studies suggest that p66Shc 

expression regulated by epigenetic changes of DNA complexes contribute to oxidative stress 

and endothelial dysfunction. DNA methylation has been reported to play a key role in 

exercise-induced gene expression in skeletal muscle, leukocytes and adipose tissue in a highly 

gene specific manner12, 25-27. PA-induced methylation of p66Shc promoter in circulating PBMCs 

may be associated with improvements of microvascular phenotype, although the causative 

link remains to be established in prospective exercise interventions. Our study however, 

provides first evidence for PA-induced methylation of p66Shc promotor, subsequent 

downregulation of p66Shc transcription, decreased systemic ROS generation and improved 

microvascular health as summarized in the conclusion diagram (Figure 2). 

Some limitations of the present study are noteworthy. Our study did not aim to assess the 

whole epigenetic landscape but instead focused on DNA-methylation und expression of a key 

gene involved in the process of vascular ageing and oxidative stress generation. The study is 

cross-sectional and our findings are thus associative in nature. Other sources of oxidative 

stress exist and may have influenced our results. Nonetheless, we were able to provide a 

proof of concept that epigenetic regulation of p66Shc gene is linked to ageing associated 

oxidative stress and microvascular phenotype. Our study applies translational clinical 

research combining epigenetic pathways with microvascular end organ phenotype. 
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In conclusion, long‐term PA is associated with a healthier microvascular phenotype in older 

adults.  Reprogramming  of  DNA  methylation  on  p66Shc  gene  promoter  may  represent  a 

putative mechanistic link whereby PA and fitness protect against age‐related oxidative stress. 

Our  findings  offer  new  insights  into  clinically  relevant  target  pathways  of  PA  and  fitness 

ranging from microvascular amelioration to epigenetic modulation of oxidative stress in older 

individuals. 

 

 

Figure 2. Conclusion diagram. 

Healthy active individuals showed a preferential retinal microvascular phenotype compared 

to  healthy  sedentary  individuals.  Sedentary  at  risk  patients  showed  impaired  retinal 

microvascular  phenotype  compared  to  healthy  active  and  healthy  sedentary  subjects. 

Preserving  the DNA methylation mark on p66Shc  gene promoter may  represent a putative 

mechanistic link whereby physical activity protects against age‐related oxidative stress in the 

microcirculation. PA, physical activity. 
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SUPPLEMENTARY MATERIAL 

Methods 

Inclusion and exclusion criteria 

The recruited men and women were in the age range of 50‐80 years. We recruited healthy active 

individuals  (HA)  (>9  metabolic  equivalents  [METs]/week)  without  any  of  the  CV  risk  factor 

described in Table S1 and sedentary  individuals (HS)  (≤3METs/week) with BMI ≤29.9kg/m2, as 

well as sedentary (≤3METs/week) individuals with increased CV risk (SR) (≥two CV risk factors). 

Exclusion criteria for healthy individuals were history of CVD, pulmonary or chronic inflammatory 

disease, any of the risk factors described  in Table S1, macular degeneration, glaucoma or any 

chronic eye disease. Exclusion criteria for individuals with increased CV risk were decompensated 

cardiopulmonary disease or chronic inflammatory disease, chronic eye disease or compromising 

orthopaedic  problems.  Based  on  PA  history,  self‐reported  Freiburg Questionnaire  of  Physical 

Activity (FQPA), accelerometer data and maximal oxygen uptake (VO2max), two sports scientists 

independently  judged  the  level of PA and decided  to either allocate  the participants  into  the 

active or sedentary group or to exclude the subject. 
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Figure S1. Flow‐chart  

Abbreviations: HA, healthy active; HS, healthy sedentary; SR, sedentary at risk, 
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Figure S2. Linear regression model for AVR and VO2max. 

Association  of  cardiorespiratory  fitness  and  retinal  microvascular  phenotype  in  the  study 

population. Abbreviations: AVR, arteriolar‐to‐venular diameter ratio; VO2max, maximal oxygen 

uptake.
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Table S1. Primers used in the ExAMIN AGE Study. 

Primer Name  Sequence (5'‐3') 

ACTB_FRT  GTTGTCGACGACGAGCG 

ACTB_RRT  GCACAGAGCCTCGCCTT 

p66Shc_FRT  CTGACACTTTCAAAGCGGTG 

p66Shc_RRT  GTATGTGCTCACTGGCTTGC 

p66Shc_CpGisland1_F  TCTACCTCAGGGTCCCTCCT 

p66Shc_CpGisland1_R  AGCCTCCGATTGGCTTAGAT 

p66Shc_CpGisland2_F  GGACGCGAACTTCAGACTTC 

p66Shc_CpGisland2_R  CAACGATCCTCGGCTAACTC 

p66Shc_CpGisland3_F  GGAGTTTCAGGGATTGACGA 

p66Shc_CpGisland3_R  GCCCAGAAGTCTGAAGTTCG 
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Table S2. Risk factors. 

Abbreviations:  BMI,  body  mass  index;  sys,  systolic;  dia,  diastolic;  BP,  blood 

pressure; HDL, high‐density lipoprotein; LDL, low‐density lipoprotein.  

risk factor  definition  N (%) 

Obesity  BMI ≥30 kg/m2  71 (85) 

Hypertension 

≥140 mmHg sys. or ≥90 mmHg dia. BP during 
24h monitoring or  
treatment with antihypertensive medications 

18 (21) 
 

38 (45) 

Diabetes 
fasting glucose ≥5.6 mmol/l or  
antidiabetic medications 

24 (29) 
10 (12) 

Smoking  current smoking status  28 (33) 
Low HDL  <1.0 mmol/l (male); <1.2 mmol/l (female)  28 (33) 
Hypertriglyceridemia  triglyceride >1.7 mmol/l  24 (29) 

High LDL 
>4.9 mmol/l or  
cholesterol lowering drugs 

2 (2) 
15 (18) 
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7. Synthesis, Discussion and Perspectives 

 

This PhD thesis was performed within the EXAMIN AGE study. The first publication “Exercise, 

Arterial Crosstalk-Modulation, and Inflammation in an Aging Population: The EXAMIN AGE 

Study” is a detailed study protocol of the EXAMIN AGE trial. This chapter summarises and 

discusses the main results of the thesis, including the accepted manuscript of the second 

publication “High-intensity interval training modulates retinal microvascular phenotype and 

DNA methylation of p66Shc gene: a randomized controlled trial (EXAMIN AGE)”. In addition, 

three further manuscripts are summarised and discussed, all of which have been submitted; 

“Retinal endothelial function in cardiovascular risk patients: a randomized controlled exercise 

trial”, “Retinal endothelial function, physical fitness and cardiovascular risk: a diagnostic 

challenge” and “Association of physical activity and cardiovascular risk with retinal 

microvascular phenotype: p66Shc expression as a putative mechanistic link”. Taken together, 

these manuscripts are the backbone of my PhD “Exercise and microvascular health in an 

ageing population: The EXAMIN AGE study”. The three manuscripts will be referred to as 

publication three, four and five in the following discussion. 

 

7.1 Synthesis  

 

This part of the thesis gives an overview on the main findings of my PhD thesis and addresses 

the pre-defined hypotheses. Table 1 summarises the main findings of PA and exercise in 

relation on the retinal microvascular phenotype from all the publications included in my PhD, 

divided into the cross-sectional and interventional approach. Long-term PA as well as short-

term HIIT effects on the retinal vessel phenotype are shown. A favourable retinal 

microvascular phenotype was previously defined as wider central retinal arteriolar (CRAE) and 

narrower venular (CRVE) diameters as well as higher flicker light-induced retinal vessel 

dilatation (FID). 
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Table 1: Physical activity and exercise in relation to the retinal microvascular phenotype. 

Abbreviations: PA, physical activity; HIIT, high-intensity interval training; SVA, static retinal 

vessel analysis; DVA, dynamic retinal vessel analysis; VO2peak, maximal oxygen consumption; 

Δ, delta-change; CRAE, central retinal arteriolar equivalents; CRVE, central retinal venular 

equivalents; AVR, arteriolar-to-venular diameter ratio; ADmax, maximal arteriolar dilatation; 

AFarea, arteriolar area under the flicker curve; VDmax, maximal venular dilatation; VFarea, 

venular area under the flicker curve; HA, healthy active; SR, sedentary at risk; HS, healthy 

sedentary; n.s., not significant; CG, control group. 

 

7.1.1 Hypothesis 1: Healthy older adults with high levels of PA and fitness have wider retinal 

arterioles and narrower venules as well as higher FID compared to healthy sedentary peers. 

 

Healthy long-term physically active individuals (HA) showed wider arteriolar (179 ±14µm vs 

172 ±11µm, p>0.05) and narrower venular (204 ±17µm vs 209 ±11µm, p>0.05) diameters 

compared to healthy sedentary individuals (HS) resulting in a significantly higher AVR 

(0.88 ±0.05 vs 0.83 ±0.04, p<0.001). This result remained significant after adjustment for age, 

BMI, systolic and diastolic blood pressure, CV medication and VO2peak. VO2peak (β = 0.004, 

 

 

  
Cross-section 

(long-term PA) 
Intervention 

(short-term HIIT) 

Method  
Retinal 

phenotype 
Group 

differences 

Correlation of 
phenotype 

with VO2peak 

Intervention 
effects 

Correlation of 
Δphenotype 

with ΔVO2peak 

SVA 

CRAE (µm) HA>SR n.s. HIIT>CG yes 

CRVE (µm) 
HA<SR 
HS<SR 

Yes HIIT<CG n.s. 

AVR 
HA>HS  
HA>SR 
HS>SR 

Yes HIIT>CG yes 

DVA 

ADmax (%) HS>SR n.s. HIIT>CG yes 

AFarea (%) 
HS>HA 
HS>SR 

n.s. HIIT>CG yes 

VDmax (%*s) n.s. n.s. n.s. n.s. 
VFarea (%*s) n.s. n.s. n.s. n.s. 
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p<0.001) adjusted for age and sex explained 27% of AVR variance observed in the whole study 

population (R2 = 0.268). High fitness levels were associated with higher AVR (publication five). 

HS showed higher area under the arteriolar flicker curve (AFarea) compared to HA 

(48.2 ±31.9%*s vs. 32.8 ±23.1%*s, p=0.029) (publication four). Our results match the 

hypothesis that healthy older adults with high levels of PA and fitness show favourable 

microvascular diameters. However, we did not expect HS to show higher FID compared to HA.  

 

7.1.2 Hypothesis 2: Sedentary older adults with increased CV risk have narrower retinal 

arterioles and wider venules as well as reduced FID compared to healthy sedentary peers. 

 

Older adults with increased CV risk (SR) showed comparable retinal arteriolar (171 ±14µm vs. 

172 ±11µm, p>0.05) but wider venular diameters (218 ±16µm vs. 209 ±11µm, p=0.013) 

compared to HS resulting in a significantly reduced AVR (0.79 ±0.05 vs 0.83 ±0.04, p<0.001). 

This result remained significant after adjustment for age and sex but was not independent of 

group differences in BMI, systolic and diastolic blood pressure, CV medication and VO2peak 

(publication five). HS showed higher maximal arteriolar dilatation (ADmax) and AFarea 

(ADmax = 3.5 ±2.1%; AFarea = 48.2 ±31.9%*s) compared to SR (ADmax = 2.7 ±1.8%, p=0.021; 

AFarea = 34.5 ±26.5%*s, p=0.006) (publication four). These results are in agreement with our 

hypothesis that sedentary older adults with increased CV risk show an impaired retinal 

microvascular phenotype compared to healthy sedentary peers. 

 

7.1.3 Hypothesis 3: Twelve-weeks of HIIT increases central retinal arteriolar diameters, 

decreases central retinal venular diameters and improves FID in older adults with increased 

CV risk compared to a control group with standard physical activity recommendations. 

 

After twelve-weeks of HIIT, retinal arteriolar diameters increased (pre: 175 ±14µm vs post: 

181 ±13µm, p=0.001) and venular diameters decreased (pre: 222 ±14µm vs post: 220 ±14µm, 

p=0.007) in SR compared to the control group, while there were no changes observed either 

for arteriolar (pre: 168 ±14µm vs post: 170 ±16µm, p=0.108) or venular (pre: 214 ±17µm vs 
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post: 214 ±17µm, p=0.255) diameters. Arteriolar widening and venular narrowing were 

dependent on changes in VO2peak. The increased AVR in the intervention group (pre: 

0.79 ±0.04 vs post: 0.82 ±0.05, p<0.001) was independent of age, change (Δ) in BMI, systolic 

and diastolic blood pressure, CV medication and ΔVO2peak. Exercise-induced arteriolar 

widening but not venular narrowing remained significant after an intention-to-treat analysis 

(publication two). Additionally, the HIIT group showed increased ADmax (pre: 2.7 ±2.1%, post: 

3.0 ±2.2%, p=0.018) and AFarea (pre: 32.6 ±28.4%*s, post: 37.7 ±30.6%*s, p=0.016) compared 

to the control group after the intervention (ADmax, pre: 3.2 ±1.8%, post: 2.9 ±1.8%, p=0.254; 

AFarea, pre: 41.6 ±28.5%*s, post: 37.8 ±27.0%*s, p=0.186). Improvements of ADmax and 

AFarea remained significant even after adjustment for baseline, age, sex, ΔBMI and mean 

arterial pressure but were dependent on ∆VO2peak. There was a significant association 

between ∆VO2peak and ∆ADmax and ∆AFarea (R2=0.073, p=0.026; R2=0.081, p=0.019, 

respectively). No changes in venular flicker response were observed (publication three). Our 

findings confirm the assumption that a twelve-week HIIT improves the retinal microvascular 

phenotype in older adults with increased CV risk.  

 

7.2 Discussion 

 

7.2.1 Exercise as important lifestyle factor to improve retinal microvascular phenotype 

 

Long-term physically active individuals showed wider arteriolar and narrower venular 

diameters compared to their sedentary peers. This resulted in a significant higher AVR in the 

active group. This constellation was previously associated with a lower incidence of stroke99 

and coronary heart disease100 as well as lower CV mortality101. Additionally, there is evidence 

that these favourable diameters are associated with lower risk for hypertension102, 103, 

diabetes, obesity, dyslipidaemia and inflammation100, 104. It is important to mention that the 

differences between HA and HS were independent of group differences in age, BMI, systolic 

and diastolic blood pressure, CV medication and VO2peak. This shows that long-term PA leads 

not only to higher CRF, but also to an improved retinal microvascular phenotype independent 
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of higher fitness levels. In particular, narrower venular diameters and a higher AVR were 

significantly associated with higher VO2peak (Table 1). Braun et al. found similar results. 

Venular narrowing and higher AVR, but not arteriolar diameters, were independently 

associated with VO2peak in 260 mainly obese individuals117. No correlation between VO2peak 

and arteriolar diameters was found117. However, increased CRF seems to have a strong impact 

on retinal microvascular improvements. Looking at the study population as a whole, 27% of 

the AVR variance at baseline could be explained by VO2peak, highlighting the importance of 

high levels of physical fitness for microvascular health. Higher CRF levels were previously 

associated with lower mortality risk11, 12, 16, 19, 22 possibly in large part due to improved vascular 

function compared to relatively unfit individuals (Figure 1). The possible mechanisms 

responsible for exercise-induced amelioration of the retinal microvasculature will be 

discussed in chapter “7.2.2 Mechanisms of exercise-induced improvements of retinal 

microvascular phenotype”. 

Healthy sedentary individuals with a low CV risk profile (HS) showed comparable arteriolar 

diameters but significantly narrower venular diameters compared to sedentary individuals 

with a high CV risk profile, resulting in a reduced AVR in the high CV risk group (SR). These 

findings were independent of age and sex but dependent on group differences in BMI, systolic 

and diastolic blood pressure, CV medication and VO2peak (publication five). In particular, 

venular widening seemed to explain the AVR differences between these two groups. Wider 

retinal venular diameters were previously associated with a higher risk of obesity, 

independent of other risk factors such as hypertension, diabetes or lipids118. Sixty-two 

individuals of SR (74%) were obese, which seems to be a possible explanation for venular 

widening in this group. In a population-based cohort study of >5 000 individuals of 55 years or 

older, venular widening was linked to higher inflammation independent of further CV risk 

factors119, 120. Klein et al. showed that venular widening was associated with high serum levels 

of high-sensitivity C-reactive protein and interleukin 6 after adjusting for age, smoking and 

diabetes status, serum high-density lipoprotein cholesterol, and haematocrit. The authors 

concluded that venular widening may be a marker for systemic inflammation121. Even SR had 

a higher fat mass and waist circumference compared to HS (publication five), no significant 

group differences in mean high sensitivity C-reactive protein levels, a marker of systemic 

inflammation, were observed between HS (2.0 ±2.9mg/l) and SR (3.6 ±4.1mg/l, p=0.062). High 



Synthesis, Discussion and Perspectives   

 
128 

 

sensitivity C-reactive protein is an acute-phase and a nonspecific inflammatory protein. More 

studies with a specific focus on inflammatory markers in relation to retinal vessel diameters 

are needed to investigate the impact of inflammation on retinal vessel alterations in detail. 

The multi-ethnic study of atherosclerosis (MESA) demonstrated that arteriolar narrowing and 

venular widening were both related to higher blood pressure and hypertension, alcohol 

consumption, higher BMI, diabetes and smoking habits122. Interestingly, only venular widening 

was associated with inflammation122. Available literature as well as our findings seem to 

suggest that the underlying mechanisms for arteriolar narrowing and venular widening are 

multifactorial as discussed below (“7.2.2 Mechanisms of exercise-induced improvements of 

retinal microvascular phenotype”). 

SR showed lower FID compared to HS. FID of HS in our study was comparable to other reports 

of healthy non-risk cohorts106, 109 (publication four). SR showed a slightly higher arteriolar 

dilatation response compared to previous reports of populations at CV risk106, 123. The slightly 

higher arteriolar FID in our cohort can be explained by a lower CV risk profile compared to 

previous publications using the same flicker protocol (publication four). However, alterations 

in retinal vessel diameters as well as reduced retinal endothelial function in SR compared to 

HS lead to the assumption that SR are characterized by an impaired microvascular phenotype, 

indicative of higher CV risk, advanced vascular ageing and potentially a higher CV mortality 

(Figure 1)97, 98, 111.  

Patients of the SR group were not previously exercising and had a sedentary lifestyle 

(publication one) resulting in low CRF levels (VO2 peak 26.4±3.8 ml/min/kg and 7.5 METs) and, 

as previously discussed, an impaired retinal microvascular phenotype. We motivated these 

previously sedentary patients with increased CV risk to participate in a twelve-week HIIT 

programme. Personal interaction with each participant in a small group setting, the gradual 

increase of exercise intensity over the first two weeks, supervised training sessions and time 

allocated for individualised recommendations induced a high degree of motivation and 

compliance, a positive group dynamic and eventually to a low dropout rate. No adverse effects 

were observed supporting previous reports of a well-tolerated exercise regime with a low risk 

for exercise-related CV events during HIIT interventions46 (publication two and three). SR 

showed wider arteriolar and narrower venular diameters as well as increased retinal arteriolar 
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endothelial function (FID) after the twelve‐week HIIT. These results demonstrated for the first 

time  that  exercise  interventions  lead  to  an  improved  retinal  microvascular  phenotype  in 

previously sedentary older adults with increased CV risk. Interestingly, post‐exercise AVR in 

SR was restored to levels comparable to HS independent of age, ΔBMI, systolic and diastolic 

blood pressure, CV medication and ΔVO2peak, showing that microvascular impairments can 

be  reversed by HIIT  independent of  classical  risk  factor  improvements  in older adults with 

increased  CV  risk  (publication  two  and  five).  In  addition,  SR  improved  their  CRF  from  pre 

VO2peak of 26.4±3.8 ml/min/kg and 7.5 METs to post VO2peak of 28.7±4.0 ml/min/kg and 8.2 

METs.  This  corresponds  to  an  improvement  in  CRF  of  about  9%.  Myers  et  al.  previously 

demonstrated  that  each MET  increase  leads  to  a mortality  risk  reduction  of  about  twelve 

percent19. Laukkanen et al. showed a 17‐29% risk reduction of non‐fatal, and a 28‐51% risk 

reduction of fatal cardiac events per MET increase20. As a hypothesis‐driven summary it may 

be  concluded  that  exercise  in  patients  at  increased  CV  risk  improves  the  microvascular 

phenotype, therefore postponing the process of vascular ageing and potentially reducing CV 

mortality (Figure 1). If improvement of the retinal microvascular phenotype is really associated 

with reduction of CV mortality, remains to be elucidated in future follow‐up studies.  

 

Figure  1.  Physical  activity  and  exercise  intervention:  effects  on  retinal  microvascular 

phenotype and potential implications for CV mortality. 

An active lifestyle leads to favourable retinal microvascular phenotype, which is considered a 

biomarker  for  reduced vascular ageing and  reduced CV mortality. A healthy but  sedentary 

lifestyle was  associated with  a  normal  retinal microvascular  phenotype, which  is  linked  to 

normal vascular ageing and a “normal” CV mortality. A sedentary lifestyle combined with CV 
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normal vascular ageing and a “normal” CV mortality. A sedentary lifestyle combined with CV 

risk factors leads to an impaired retinal microvascular phenotype, advanced vascular ageing 

as well as increased CV mortality. Exercise interventions can improve the retinal microvascular 

phenotype, which leads to improved vascular ageing and consequently to improved CV 

mortality.  

 

7.2.2 Mechanisms of exercise-induced improvements of retinal microvascular phenotype  

 

Long-term PA as well as short-term exercise interventions seem to have a beneficial effect on 

the retinal microcirculation. This chapter will discuss potential mechanisms underlying the 

microvascular adaptations to exercise training. A key regulator of microvascular function is NO 

bioavailability as NO is responsible for smooth muscle cell relaxation and vasodilation. Exercise 

increases blood flow resulting in an increase in sheer stress which stimulates the release of 

NO124. Hanssen et al. demonstrated previously that a ten-week endurance-training 

programme improved retinal microvascular diameters in healthy lean and obese individuals 

with different fitness levels. These improvements seemed to be mediated in large part by a 

higher NO bioavailability96. Dorner et al. showed in their experimental approach that FID was 

significantly reduced after inhibition of NO synthase, supporting the assumption that NO is a 

key player in the regulation of retinal microvascular function125. Paneni et al. described the 

imbalance between NO bioavailability and ROS as the key driver for vascular dysfunction59. 

Lower ROS levels have been associated with reduced production of O2- leading to a higher NO 

bioavailability60. Francia et al. demonstrated in a mouse model that inactivation of p66Shc 

reduced aortic O2- production, which reduced systemic oxidative stress and increased NO 

bioavailability. These processes seemed to protect against age-related endothelial 

dysfunction in long-living p66Shc-/- mice60. Costantino et al. showed an upregulation of p66Shc 

gene, oxidative stress and endothelial dysfunction in patients with type 2 diabetes126. 

Endothelial function, p66Shc gene expression and oxidative stress did not change after 

intensive glycaemic control in these patients126. In publication two, we demonstrated for the 

first time an exercise-induced downregulation of the p66Shc gene via DNA hypermethylation 

of p66Shc promoter, which resulted in reduced systemic oxidative stress levels. This 
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modulation of the epigenetic pathway was accompanied by an improved retinal microvascular 

phenotype, which is a biomarker for healthier vascular ageing. Furthermore, we 

demonstrated in publication five that long-term physically active individuals showed a 

hypermethylation of p66Shc promoter, which led to reduced p66Shc gene expression and at the 

end, to lower systemic ROS levels. Additionally, long-term physically active individuals showed 

an improved retinal microvascular phenotype suggesting that this epigenetic pathway is a 

putative mechanistic link whereby PA and CRF protect against retinal microvascular 

dysfunction. Interestingly, the methylation status of p66Shc promoter, p66Shc gene expression 

as well as systemic ROS levels did not significantly differ between HS and SR. Physical inactivity 

and a low CRF alone appear to have a similar impact on this epigenetic pathway compared to 

sedentariness with increased CV risk.  

In addition to higher ROS levels, lipoproteins seems to reduce NO activity127. In our cohort, we 

found a significant group difference in high-density lipoprotein as well as reduced low-density 

lipoprotein levels after HIIT. In particular, high levels of low-density lipoprotein were 

previously associated with reduced NO-dependent vascular relaxation127, 128. These results 

lead to the assumption that differences in PA and lipoprotein levels in the cross-sectional 

approach and improvements in CRF and lipoprotein levels in the interventional approach 

could be responsible for enhanced NO-dependent vascular function. Another potential 

mechanism for exercise-induced retinal microvascular benefits are reduced inflammatory 

cytokines in active individuals. Exercise in general is known for its potential to reduce 

inflammation129 and a high degree of inflammation has been previously associated with an 

impaired retinal microvascular phenotype104, 111. However, in our cohort we did not find 

inflammatory differences between the groups (data not shown) or changes in inflammation 

after HIIT (publication three). All three groups showed low inflammation, which may explain 

the lack of significant group differences and exercise intervention effects. Future research 

seems to be necessary to investigate the influence of PA or exercise intervention on various 

inflammatory markers and their effects on the retinal microcirculation. Additionally, lower 

visceral adiposity, improved insulin sensitivity or lower blood pressure could also have 

influenced the retinal microvascular phenotype indirectly. Previous studies have 

demonstrated that obesity96, 115, diabetes95 and hypertension102, 103, 107, 115 are associated with 

an impaired retinal microvascular phenotype. However, in our cohort we did not find any 
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significant associations with these markers on the retinal microvascular phenotype. Group 

differences in retinal microvascular phenotype in the cross-sectional approach as well as HIIT 

effects in the interventional approach were independent of these classical risk factors 

(publication two and five). However, it cannot be ruled out that these classical risk factors 

affected the retinal microcirculation in our cohort.  

Exercise seems to have no impact on venular FID. Neither significant group effects in the cross-

sectional part of the study nor significant training effects in the interventional approach were 

observed (Table 1). Previous studies demonstrated that venular wall sheer stress is much 

lower in venular vessels compared to arterioles130. This leads to the assumption that the 

arterioles and the capillary system may buffer the exercise-induced increase in sheer stress, 

resulting in reduced vascular adaptations in the venular system after exercise. Additionally, 

FID is mainly affected through a NO-dependent relaxation of smooth muscle cells125. The fact 

that only thin layers of smooth muscle cells surround retinal venular vessels supports the 

concept that venular vessels are part of a more passive microvascular system leading to a 

lower exercise adaptivity compared to the arteriolar vessels. 

To conclude, NO bioavailability seems to be the key mechanism behind exercise-derived 

benefits on the retinal microcirculation. However, these benefits on the microcirculation are 

multifactorial. Further multidisciplinary research approaches are needed for a better 

understanding of retinal microvascular adaptations in response to exercise and the potential 

molecular mechanisms.  

 

7.2.3 Retinal vessel phenotype as biomarker of CV risk 

 

This chapter will discuss the potential to use retinal vessel phenotype as a biomarker of CV 

risk based on our results and previous findings.  

In the cross-sectional approach we demonstrated that SVA differentiated between HA and HS. 

Both groups only differed in their activity status in the absence of CV risk factors. Additionally 

these findings were independent of group differences in classical risk factors (publication five). 

This underlines the high sensitivity of SVA in detecting microvascular changes, a biomarker of 
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vascular impairments, at a subclinical stage, independent of classical CV risk factors. This result 

supports previous findings of Seidelmann and colleagues. They demonstrated that the 

assessment of SVA, in addition to classical risk factor stratification, leads to a more precise 

reclassification from low to intermediate risk in every fifth woman with a low CV risk97. This 

demonstrates, on the one hand, the high sensitivity in detecting subclinical microvascular 

alterations before classical CV risk factors occur, and on the other hand, the high potential to 

use SVA additionally to classical CV risk assessments to enhance the timely and subclinical 

diagnosis of advanced microvascular impairments. A timely diagnosis of microvascular 

alterations has a high potential to reduce morbidity and mortality by initiating therapies at a 

stage of the disease where its progression is still modifiable. This would also lead to lower 

morbidity and mortality rates and an extreme reduction in health care costs.  

This PhD work has demonstrated for the first time that retinal vessel analysis (SVA and DVA) 

can be used to monitor treatment efficacy in older adults with increased CV risk. HIIT leads to 

improved retinal microvascular phenotype in SR (publication two and three). This has high 

clinical relevance because monitoring treatment efficacy is essential in a personalised 

medicine approach. Physicians may use these methods to differentiate non-responders and 

to intensify treatment strategies to achieve better vascular end-organ function. The benefits 

for patients are likely to be multifold, spanning from rescuing of the microvascular phenotype, 

better treatment adherence and motivation to the improvement in quality of life and 

potentially reduction of CV morbidity and mortality.  

In publication four, we discussed the diagnostic challenge of retinal endothelial dysfunction 

using the DVA. DVA differentiated between low-risk (HS) and high-risk (SR) individuals but 

seemed to be limited especially in highly active individuals because HA and SR showed 

comparable FID. In both groups, FID was significantly reduced compared to HS. We plotted 

the DVA and SVA results in one figure (see publication four Figure 3) to better understand the 

relation between individual FID and retinal vessel diameters. In this figure, we used the AVR 

and not the CRAE because the diameter equivalents have a high inter-individual variability 

depending on the magnification factor and the anatomy of each participant. We identified 

individuals with a high AVR and a high FID, which is associated with a favourable microvascular 

phenotype, and individuals with a low AVR and a low FID associated with impaired 
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microvascular phenotype. Interestingly, several patients with increased CV risk showed low 

AVR but high FID. Differences of functional or structural narrowing of arterioles seems to be 

responsible for this phenomenon. Patients with narrow arterioles and a low AVR with normal 

FID are likely to have functional narrowing of the arterioles, for example due to higher blood 

pressure at the time of measurement. High blood pressure stimulates myogenic 

vasoconstriction (Bayliss effect) and is associated with functional narrowing of arterioles131 

leading to higher dilatation reserve. This is more likely to be reversible compared to structural 

vascular remodeling and vascular damage due to long-term hypertension, characterized by a 

combination of narrow arterioles and low AVR as well as impaired FID. At the other end of the 

scale, several individuals with high AVR showed low FID. Individuals with high AVR and blunted 

FID were predominantly healthy and very active individuals. We tried to explain this 

phenomenon of a blunted FID in HA by pre-dilated arterioles as a physiological adaptation to 

long-term exercise training (publication four). Exercise training may lead to arteriolar pre-

dilated arterioles and a higher AVR as well as a consequent reduced dilatation capacity and 

cannot be taken as a sign of manifest endothelial dysfunction. In population-based large 

cohorts studies this phenomenon does not become apparent due to the large sample size and 

statistical averaging. However, for individual risk stratification and treatment 

recommendations the proposed differentiation of arteriolar FID in relation to the AVR seems 

to be strongly recommendable to meet the diagnostic challenge of an individualized personal 

medicine approach. 

Combining our results with the previously described evidence in chapter “1.3.2 Retinal vessel 

analysis in CV disease”, I would like to conclude that SVA and DVA are both assessments with 

a high potential to enhance CV risk stratification and monitor treatment efficacy. However, 

based on our results it seems to be essential to combine both measurements in an 

individualised approach to reliably detect microvascular dysfunction as well as to reduce false-

positive and false-negative diagnoses. 
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7.3 Strengths and limitations 

 

This project was the first to investigate the long-term PA and short-term exercise effects on 

the retinal microvascular phenotype in older adults with and without CV risk. However, our 

results cannot be generalised for other age groups. Although there are some indications that 

retinal microvascular diameters also improve in adolescents116 and younger adults96 after 

exercise, more studies are needed to confirm our findings. The short-term exercise effects 

were investigated after a HIIT programme. More studies with other exercise programmes, for 

example MCT, are needed to find the best exercise modalities to improve retinal 

microvascular phenotype in different age and patient groups.  

In publications two and five we investigated the epigenetic modulation of oxidative stress via 

p66Shc methylation status and p66Shc gene expression. For the first time we combined exercise 

as a treatment option and retinal microvascular phenotyping as an innovative new 

microvascular diagnostic approach with the assessment of potential epigenetic mechanisms. 

This is a very important and essential step to better understand the mechanistic cascade from 

epigenetic modulation to microvascular end-organ phenotype. However, the entire 

mechanistic landscape needs to be investigated in future studies to prove the causality of our 

results. The systemic impact of single molecular pathways on the microcirculation remains a 

future scientific challenge.  

In the EXAMIN AGE study, we described for the first time the combination of SVA and DVA in 

healthy active and sedentary patients with and without increased CV risk. Some patients with 

impaired retinal vessel diameters showed higher FID compared to healthy and very active 

individuals who showed favourable retinal microvascular diameters but reduced FID. These 

results seemed contradictory first but may well be explained by physiological principles, such 

as functional narrowing and pre-dilated arterioles. It seems essential to combine SVA and DVA 

to differentiate underlying microvascular impairments and their potential causes.  

We did not investigate other previously applied retinal biomarkers for CV risk such as 

branching or tortuosity of the retinal vessels. As a future perspective, we are using the EXAMIN 
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AGE data to develop new biomarkers for CV risk stratification in the retinal microcirculation, 

such as retinal vessel wall thickness or retinal pulse wave velocity.  

 

7.4 Conclusions  

 

Based on the previously described evidence on the demographic change, with an increasing 

number of individuals living longer and getting older, more people will be affected by chronic 

non-communicable diseases, CV disease being the most common and at the same time most 

challenging health burden. The timely diagnosis of vascular damage and dysfunction, 

conceptually termed early or advanced vascular ageing, and the timely initiation of treatment 

strategies even at older age are main health care challenges to reduce the growing 

socioeconomic burden of CV disease. The results of this PhD project support the growing 

evidence that long-term PA and higher CRF are associated with a favourable microvascular 

phenotype in older adults, which seems to have the potential to postpone vascular ageing and 

eventually reduced CV mortality. Furthermore, we demonstrated that older adults with 

increased CV risk showed an impaired but modifiable retinal microvascular phenotype. The 

impaired microvascular phenotype is reversible by means of exercise therapy, independent of 

classical risk factor reduction, even in older adults with increased CV risk. These improvements 

are associated with reduced vascular ageing and reduced CV mortality. Exercise-induced 

hypermethylation of the p66Shc promoter led to a downregulation of the p66Shc gene 

expression, which may represent a putative mechanistic link, whereby exercise protects 

against age-related oxidative stress.  

Additionally, our results demonstrated that a combined assessment of retinal endothelial 

function with retinal vessel diameters is essential to meet the diagnostic challenge of an 

individualised personal medicine approach. However, retinal vessel analysis seems to have the 

potential to improve CV risk stratification by screening subclinical microvascular alterations 

and monitor treatment efficacy. Improvements in CV risk stratification have the potential to 

optimize CV prevention programmes as well as to reduce future health care costs. 
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7.5 Outlook 

 

This PhD project demonstrates the clinical and diagnostic importance of SVA and DVA to 

differential individual CV risk on a microvascular level. It helps to add new physiological and 

mechanistic insights into the clinical application of the method under consideration of both 

benefits and possible pitfalls of the diagnostic approach. Moreover, this work demonstrates 

the beneficial long-term impact of PA and the short-term effects of intensive exercise training 

on microvascular health in the elderly. The work is suggestive of possible epigenetic 

involvement in the process of exercise-induced microvascular amelioration. However, several 

questions remain to be addressed in the future. To date there are various approaches, 

software use and protocols available to measure retinal vessel diameters and dynamic retinal 

endothelial function. A standardisation of these methods and protocols would facilitate 

comparability. Additionally, publication four showed the need for more evidence to 

differentiate structural from function alterations in the interpretation of combined SVA and 

DVA results. It seems to be clear that narrower arteriolar and wider venular diameters as well 

as reduced FID are associated with increased CV risk and mortality. However, clear cut-off 

values for SVA or DVA do not exist. Furthermore, no therapy guidelines exist as to how patients 

with reduced FID or retinal vessel diameter alterations should be treated. More representative 

data on healthy cohorts are warranted to define normal values. It is of great interest for 

clinicians in their daily routine to have mandatory guidelines of how to measure and interpret 

SVA and DVA results to enhance CV risk stratification in an individualised personal medicine 

approach. The retinal microcirculation was previously described as “window to the heart”112. 

While our work supports this notion, it remains to be elucidated whether the exercise-induced 

improvement in retinal microvascular phenotype can reduce CV outcome in older adults. 

If these questions can be addressed in the years to come, retinal vessel analysis may well have 

the potential for wide-spread use in daily clinical practice. Image analysis needs further 

simplification for use outside qualified research centres and the combined use of static and 

dynamic analysis needs to be transferred from a population-based approach to an individual 

patient-centred differentiated diagnostic approach. We used PA and exercise as a treatment 

concept in healthy older and diseased individuals and were able to demonstrate the potential 
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of retinal vessel analysis for optimization of CV risk stratification, treatment monitoring and 

future treatment guidance. Exploration of the association and effects of molecular and 

epigenetic pathways on retinal microvascular function may help develop new treatment 

strategies to combat the growing burden of CV disease and the associated health care costs.  

 



References   

 
139 

 

8. References 
1. World-Health-Organization. Global action plan for the prevention and control of 
noncommunicable diseases 2013-2020. Geneva: WHO Press; 2013. 
2. European-Commission. State of health in the EU. Luxembourg: Publications Office of the 
European Union; 2017. 
3. OECD/EU. Health at a Glance: Europe 2016 - State of Health in the EU Cycle. Paris: OECD 
Publishing; 2016. 
4. Bundesamt-für-Statistik. Szenarien zur Bevölkerungsentwicklung der Schweiz. Neuchâtel; 
2015. 
5. Schweizerischer-Bundesrat. Demografischer Wandel in der Schweiz: Handlungsfelder auf 
Bundesebene; 2016. 
6. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres 
JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, 
Liu SM, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, 
Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi 
A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, Comm AHAS, Subcomm SS. Heart Disease 
and Stroke Statistics-2015 Update A Report From the American Heart Association. Circulation 
2015;131(4):E29-E322. 
7. Nishida C, Uauy R, Kumanyika S, Shetty P. The joint WHO/FAO expert consultation on diet, 
nutrition and the prevention of chronic diseases: process, product and policy implications. Public 
Health Nutr 2004;7(1A):245-50. 
8. Sui X, Li H, Zhang J, Chen L, Zhu L, Blair SN. Percentage of Deaths Attributable to Poor 
Cardiovascular Health Lifestyle Factors: Findings from the Aerobics Center Longitudinal Study. 
2013;2013:1-9. 
9. Blair SN. Physical inactivity: the biggest public health problem of the 21st century. British 
Journal of Sports Medicine 2009;43(1):1-2. 
10. Myers J, McAuley P, Lavie CJ, Despres J-P, Arena R, Kokkinos P. Physical Activity and 
Cardiorespiratory Fitness as Major Markers of Cardiovascular Risk: Their Independent and Interwoven 
Importance to Health Status. Progress in Cardiovascular Diseases 2015;57(4):306-314. 
11. Kodama S. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and 
Cardiovascular Events in Healthy Men and Women. JAMA 2009;301(19):2024. 
12. Kokkinos P, Myers J. Exercise and Physical Activity: Clinical Outcomes and Applications. 
2010;122(16):1637-1648. 
13. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, Rsquo, Keefe JH, Milani RV, Blair SN, 
Church TS. Physical Activity, Cardiorespiratory Fitness, and Exercise Training in Primary and Secondary 
Coronary Prevention. Circulation Journal 2013;77(2):281-292. 
14. Faselis C, Doumas M, Pittaras A, Narayan P, Myers J, Tsimploulis A, Kokkinos P. Exercise 
Capacity and All-Cause Mortality in Male Veterans With Hypertension Aged ≥70 Years. Hypertension 
2014;64(1):30-35. 
15. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and 
statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. The Lancet 
2013;381(9864):394-399. 
16. Church TS, Cheng YJ, Earnest CP, Barlow CE, Gibbons LW, Priest EL, Blair SN. Exercise Capacity 
and Body Composition as Predictors of Mortality Among Men With Diabetes. Diabetes Care 
2004;27(1):83-88. 
17. Fogelholm M. Physical activity, fitness and fatness: relations to mortality, morbidity and 
disease risk factors. A systematic review. Obesity Reviews 2010;11(3):202-221. 
18. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Al-Hani AJ, Black 
HR. Exercise Capacity and the Risk of Death in Women. Circulation 2003;108(13):1554-1559. 



References   

 
140 

 

19. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise Capacity and 
Mortality among Men Referred for Exercise Testing. New England Journal of Medicine 
2002;346(11):793-801. 
20. Laukkanen JA, Kurl S, Salonen R, Rauramaa R, Salonen JT. The predictive value of 
cardiorespiratory fitness for cardiovascular events in men with various risk profiles: a prospective 
population-based cohort study. European Heart Journal 2004;25(16):1428-1437. 
21. Ekelund L-G, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical Fitness as a 
Predictor of Cardiovascular Mortality in Asymptomatic North American Men. 1988;319(21):1379-1384. 
22. Laukkanen JA, Mäkikallio TH, Rauramaa R, Kiviniemi V, Ronkainen K, Kurl S. Cardiorespiratory 
Fitness Is Related to the Risk of Sudden Cardiac Death. Journal of the American College of Cardiology 
2010;56(18):1476-1483. 
23. Ross R, Blair SN, Arena R, Church TS, Després J-P, Franklin BA, Haskell WL, Kaminsky LA, Levine 
BD, Lavie CJ, Myers J, Niebauer J, Sallis R, Sawada SS, Sui X, Wisløff U. Importance of Assessing 
Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific 
Statement From the American Heart Association. Circulation 2016;134(24):e653-e699. 
24. Blair SN. Changes in Physical Fitness and All-Cause Mortality. JAMA 1995;273(14):1093. 
25. Lee D-C, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, Stanford FC, Kohl HW, Blair SN. Long-
Term Effects of Changes in Cardiorespiratory Fitness and Body Mass Index on All-Cause and 
Cardiovascular Disease Mortality in Men. Circulation 2011;124(23):2483-2490. 
26. Wen CP, Wai JPM, Tsai MK, Yang YC, Cheng TYD, Lee M-C, Chan HT, Tsao CK, Tsai SP, Wu X. 
Minimum amount of physical activity for reduced mortality and extended life expectancy: a 
prospective cohort study. The Lancet 2011;378(9798):1244-1253. 
27. Gregg EW. Relationship of Changes in Physical Activity and Mortality Among Older Women. 
JAMA 2003;289(18):2379. 
28. Wannamethee SG, Shaper AG, Walker M. Changes in physical activity, mortality, and incidence 
of coronary heart disease in older men. The Lancet 1998;351(9116):1603-1608. 
29. Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post–
myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. 
American Heart Journal 2011;162(4):571-584.e2. 
30. Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-Based 
Cardiac Rehabilitation for Coronary Heart Disease Cochrane Systematic Review and Meta-Analysis. 
Journal of the American College of Cardiology 2016;67(1):1-12. 
31. Balady GJ, Ades PA, Bittner VA, Franklin BA, Gordon NF, Thomas RJ, Tomaselli GF, Yancy CW. 
Referral, Enrollment, and Delivery of Cardiac Rehabilitation/Secondary Prevention Programs at Clinical 
Centers and Beyond. Circulation 2011;124(25):2951-2960. 
32. Smith SC, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, Gibbons RJ, Grundy SM, 
Hiratzka LF, Jones DW, Lloyd-Jones DM, Minissian M, Mosca L, Peterson ED, Sacco RL, Spertus J, Stein 
JH, Taubert KA. AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients With 
Coronary and Other Atherosclerotic Vascular Disease: 2011 Update. Journal of the American College 
of Cardiology 2011;58(23):2432-2446. 
33. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Cosyns 
B, Deaton C, Graham I, Hall MS, Hobbs FDR, Lochen ML, Lollgen H, Marques-Vidal P, Perk J, Prescott E, 
Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WMM, 
Binno S, Group ESCSD. 2016 European Guidelines on cardiovascular disease prevention in clinical 
practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on 
Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies 
and by invited experts)Developed with the special contribution of the European Association for 
Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37(29):2315-2381. 
34. Liou K, Ho S, Fildes J, Ooi S-Y. High Intensity Interval versus Moderate Intensity Continuous 
Training in Patients with Coronary Artery Disease: A Meta-analysis of Physiological and Clinical 
Parameters. Heart, Lung and Circulation 2016;25(2):166-174. 



References   

 
141 

 

35. Barac A, Campia U, Panza JA. Methods for Evaluating Endothelial Function in Humans. 
Hypertension 2007;49(4):748-760. 
36. Ross R. Atherosclerosis — An Inflammatory Disease. New England Journal of Medicine 
1999;340(2):115-126. 
37. Panza JA. Endothelial dysfunction in essential hypertension. Clinical Cardiology 
1997;20(11):26-33. 
38. Halcox JPJ, Quyyumi AA. Coronary vascular endothelial function and myocardial ischemia: why 
should we worry about endothelial dysfunction? Coronary Artery Disease 2001;12(6):475-484. 
39. Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, Ferraro A, Chello M, 
Mastroroberto P, Verdecchia P, Schillaci G. Prognostic Significance of Endothelial Dysfunction in 
Hypertensive Patients. 2001;104(2):191-196. 
40. Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial 
dysfunction in hypertensive postmenopausal women. Journal of the American College of Cardiology 
2002;40(3):505-510. 
41. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The Impact of High-Intensity 
Interval Training Versus Moderate-Intensity Continuous Training on Vascular Function: a Systematic 
Review and Meta-Analysis. Sports Medicine 2015;45(5):679-692. 
42. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-
induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports 
Medicine 2014;48(16):1227-1234. 
43. Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of Low-Volume High-Intensity 
Interval Training (HIT) on Fitness in Adults: A Meta-Analysis of Controlled and Non-Controlled Trials. 
Sports Medicine 2014;44(7):1005-1017. 
44. Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA. High-intensity interval 
training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection 
fraction: a pilot study. Journal of Applied Physiology 2015;119(6):753-758. 
45. Lee D-C, Artero EG, Xuemei S, Blair SN. Review: Mortality trends in the general population: the 
importance of cardiorespiratory fitness. Journal of Psychopharmacology 2010;24(4_suppl):27-35. 
46. Rognmo Ø, Moholdt T, Bakken H, Hole T, Mølstad P, Myhr NE, Grimsmo J, Wisløff U. 
Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease 
Patients. Circulation 2012;126(12):1436-1440. 
47. D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General 
cardiovascular risk profile for use in primary care: The Framingham heart study. Circulation 
2008;118(4):E86-E86. 
48. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, 
Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, 
Wedel H, Whincup P, Wilhelmsen L, Graham IM, Grp SP. Estimation of ten-year risk of fatal 
cardiovascular disease in Europe: the SCORE project. European Heart Journal 2003;24(11):987-1003. 
49. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute 
coronary events based on the 10-year follow-up of the Prospective Cardiovascular Munster (PROCAM) 
study. Circulation 2002;105(3):310-315. 
50. Aktas MK, Ozduran V, Pothier CE, Lang R, Lauer MS. Global risk scores and exercise testing for 
predicting all-cause mortality in a preventive medicine program. Jama-Journal of the American Medical 
Association 2004;292(12):1462-1468. 
51. Nilsson PM, Boutouyrie P, Laurent SP. Vascular Aging. Hypertension 2009;54(1):3-10. 
52. Nilsson PM. Early vascular aging (EVA): consequences and prevention. Vasc Health Risk Manag 
2008;4(3):547-52. 
53. Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us 
deciphering systemic inflammation and sepsis? Biomarkers 2011;16(sup1):S11-S21. 
54. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: 
from mystery to reality. European Heart Journal 2012;33(22):2771-U39. 



References   

 
142 

 

55. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. 
2006;368(1-2):33-47. 
56. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Jr., Lerman A. Long-term follow-
up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 
2000;101(9):948-54. 
57. Douglas, Kristen, Anthony. Aging and vascular endothelial function in humans. Clinical Science 
2011;120(9):357-375. 
58. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging 
endothelial cells. 2015;89:122-135. 
59. Paneni F, Costantino S, Cosentino F. Molecular pathways of arterial aging. Clin Sci (Lond) 
2015;128(2):69-79. 
60. Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, 
Schiavoni M, Luscher TF, Volpe M, Cosentino F. Deletion of p66shc gene protects against age-related 
endothelial dysfunction. Circulation 2004;110(18):2889-95. 
61. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in 
cardiovascular disease. Circulation 2011;123(19):2145-56. 
62. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG. The 
p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 
1999;402(6759):309-13. 
63. Stehouwer CDA. Is measurement of endothelial dysfunction clinically useful? European Journal 
of Clinical Investigation 1999;29(6):459-461. 
64. Vlot AJ, Koppelman SJ, Bouma BN, Sixma JJ. Factor VIII and von Willebrand factor. Thrombosis 
and Haemostasis 1998;79(3):456-465. 
65. Lip GYH, Blann A. von Willebrand factor: A marker of endothelial dysfunction in vascular 
disorders? Cardiovascular Research 1997;34(2):255-265. 
66. Rumley A, Lowe GDO, Sweetnam PM, Yarnell JWG, Ford RP. Factor VIII, von Willebrand factor 
and the risk of major ischaemic heart disease in the Caerphilly Heart Study. British Journal of 
Haematology 1999;105(1):110-116. 
67. Jager A, van Hinsbergh VWM, Kostense PJ, Emeis JJ, Yudkin JS, Nijpels G, Dekker JM, Heine RJ, 
Bouter LM, Stehouwer CDA. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic 
and nondiabetic subjects - The Hoorn study. Arteriosclerosis Thrombosis and Vascular Biology 
1999;19(12):3071-3078. 
68. Folsom AR, Rosamond WD, Shahar E, Cooper LS, Aleksic N, Nieto FJ, Rasmussen ML, Wu KK. 
Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis 
Risk in Communities (ARIC) Study Investigators. Circulation 1999;100(7):736-42. 
69. Thompson SG, Kienast J, Pyke SDM, Haverkate F, Vandeloo JCW. Hemostatic Factors and the 
Risk of Myocardial-Infarction or Sudden-Death in Patients with Angina-Pectoris. New England Journal 
of Medicine 1995;332(10):635-641. 
70. Jansson JH, Nilsson TK, Johnson O. von Willebrand factor in plasma: a novel risk factor for 
recurrent myocardial infarction and death. Br Heart J 1991;66(5):351-5. 
71. Spencer CG, Gurney D, Blann AD, Beevers DG, Lip GY, Ascot Steering Committee A-SCOT. Von 
Willebrand factor, soluble P-selectin, and target organ damage in hypertension: a substudy of the 
Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Hypertension 2002;40(1):61-6. 
72. Lim HS, Chong AY, Freestone B, Blann AD, Lip GYH. The effect of multi-factorial intervention on 
plasma von Willebrand factor, soluble E-selectin and tissue factor in diabetes mellitus: implications for 
atherosclerotic vascular disease. Diabetic Medicine 2005;22(3):249-255. 
73. Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM, Haubitz M, Hebbel RP, Lip 
GYH, Mancuso P, Sampol J, Solovey A, Dignat-George F. Circulating endothelial cells - Biomarker of 
vascular disease. Thrombosis and Haemostasis 2005;93(2):228-235. 
74. Rajagopalan S. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway 
for abnormal vascular function and thrombosis propensity. Blood 2004;103(10):3677-3683. 



References   

 
143 

 

75. Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, Lerman A, Mancia G, Oliver 
JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Schiffrin EL, Taddei S, Webb DJ. Endothelial function and 
dysfunction. Part I: Methodological issues for assessment in the different vascular beds: A statement 
by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. 
Journal of Hypertension 2005;23(1):7-17. 
76. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield 
J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R. Guidelines for the ultrasound 
assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. Journal of the 
American College of Cardiology 2002;39(2):257-265. 
77. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF. Nitric-Oxide Is 
Responsible for Flow-Dependent Dilatation of Human Peripheral Conduit Arteries in-Vivo. Circulation 
1995;91(5):1314-1319. 
78. Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A. Prognostic Value of Flow‐Mediated 
Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and 
Meta‐Analysis. Journal of the American Heart Association 2015;4(11):e002270-e002270. 
79. Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk 
prediction: A systematic review with meta-analysis. International Journal of Cardiology 
2013;168(1):344-351. 
80. Laurent SP, Briet M, Boutouyrie P. Large and Small Artery Cross-Talk and Recent Morbidity-
Mortality Trials in Hypertension. Hypertension 2009;54(2):388-392. 
81. James MA, Watt PAC, Potter JF, Thurston H, Swales JD. Pulse Pressure and Resistance Artery 
Structure in the Elderly. Hypertension 1995;26(2):301-306. 
82. Struijkerboudier H. From Macrocirculation to Microcirculation: Benefits of Preterax. American 
Journal of Hypertension 2007;20(7):S15-S18. 
83. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new 
target for treatment? Circulation 2001;104(6):735-40. 
84. Pries AR, Secomb TW, Gaehtgens P. Structural autoregulation of terminal vascular beds - 
Vascular adaptation and development of hypertension. Hypertension 1999;33(1):153-161. 
85. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, 
Piek JJ, de Wit C. Coronary vascular regulation, remodelling, and collateralization: mechanisms and 
clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. 
Eur Heart J 2015;36(45):3134-46. 
86. Boulanger CM. Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology 
2016;36(4):e26-e31. 
87. Scioli M, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vascular Cell 
2014;6(1):19. 
88. Houben AJHM, Martens RJH, Stehouwer CDA. Assessing Microvascular Function in Humans 
from a Chronic Disease Perspective. Journal of the American Society of Nephrology 2017;28(12):3461-
3472. 
89. Antonios TFT. Rarefaction of skin capillaries in normotensive offspring of individuals with 
essential hypertension. Heart 2003;89(2):175-178. 
90. Serne EH, Gans ROB, ter Maaten JC, Tangelder GJ, Donker AJM, Stehouwer CDA. Impaired skin 
capillary recruitment in essential hypertension is caused by both functional and structural capillary 
rarefaction. Hypertension 2001;38(2):238-242. 
91. Tibirica E, Rodrigues E, Cobas RA, Gomes MB. Endothelial function in patients with type 1 
diabetes evaluated by skin capillary recruitment. Microvasc Res 2007;73(2):107-12. 
92. Clerk LH, Vincent MA, Jahn LA, Liu ZQ, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated 
microvascular recruitment in human forearm muscle. Diabetes 2006;55(5):1436-1442. 
93. Muris DM, Houben AJ, Kroon AA, Henry RM, van der Kallen CJ, Sep SJ, Koster A, Dagnelie PC, 
Schram MT, Stehouwer CD. Age, waist circumference, and blood pressure are associated with skin 
microvascular flow motion: the Maastricht Study. J Hypertens 2014;32(12):2439-49; discussion 2449. 



References   

 
144 

 

94. Rossi M, Bradbury A, Magagna A, Pesce M, Taddei S, Stefanovska A. Investigation of skin 
vasoreactivity and blood flow oscillations in hypertensive patients: effect of short-term 
antihypertensive treatment. J Hypertens 2011;29(8):1569-76. 
95. Sorensen BM, Houben AJ, Berendschot TT, Schouten JS, Kroon AA, van der Kallen CJ, Henry 
RM, Koster A, Sep SJ, Dagnelie PC, Schaper NC, Schram MT, Stehouwer CD. Prediabetes and Type 2 
Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study. 
Circulation 2016;134(18):1339-1352. 
96. Hanssen H, Nickel T, Drexel V, Hertel G, Emslander I, Sisic Z, Lorang D, Schuster T, Kotliar KE, 
Pressler A, Schmidt-Trucksass A, Weis M, Halle M. Exercise-induced alterations of retinal vessel 
diameters and cardiovascular risk reduction in obesity. Atherosclerosis 2011;216(2):433-9. 
97. Seidelmann SB, Claggett B, Bravo PE, Gupta A, Farhad H, Klein BE, Klein R, Di Carli M, Solomon 
SD. Retinal Vessel Calibers in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk 
in Communities Study. Circulation 2016;134(18):1328-1338. 
98. McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BE, Wang JJ, Mitchell P, Vingerling JR, 
de Jong PT, Witteman JC, Breteler MM, Shaw J, Zimmet P, Wong TY. Prediction of incident stroke 
events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. 
Am J Epidemiol 2009;170(11):1323-32. 
99. Ikram MK, de Jong FJ, Bos MJ, Vingerling JR, Hofman A, Koudstaal PJ, de Jong PT, Breteler MM. 
Retinal vessel diameters and risk of stroke: the Rotterdam Study. Neurology 2006;66(9):1339-43. 
100. Wong TY, Klein R, Sharrett AR, Duncan BB, Couper DJ, Tielsch JM, Klein BE, Hubbard LD. Retinal 
arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in 
Communities Study. JAMA 2002;287(9):1153-9. 
101. Wang JJ, Liew G, Klein R, Rochtchina E, Knudtson MD, Klein BE, Wong TY, Burlutsky G, Mitchell 
P. Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older 
populations. Eur Heart J 2007;28(16):1984-92. 
102. Wang JJ, Mitchell P, Leung H, Rochtchina E, Wong TY, Klein R. Hypertensive retinal vessel wall 
signs in a general older population: the Blue Mountains Eye Study. Hypertension 2003;42(4):534-41. 
103. Wong TY, Klein R, Sharrett AR, Duncan BB, Couper DJ, Klein BE, Hubbard LD, Nieto FJ, 
Atherosclerosis Risk in Communities S. Retinal arteriolar diameter and risk for hypertension. Ann Intern 
Med 2004;140(4):248-55. 
104. Wong TY, Islam FM, Klein R, Klein BE, Cotch MF, Castro C, Sharrett AR, Shahar E. Retinal 
vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of 
atherosclerosis (MESA). Invest Ophthalmol Vis Sci 2006;47(6):2341-50. 
105. Heitmar R, Summers RJ. Assessing vascular function using dynamic retinal diameter 
measurements: a new insight on the endothelium. Thromb Haemost 2012;107(6):1019-26. 
106. Nagele MP, Barthelmes J, Ludovici V, Cantatore S, von Eckardstein A, Enseleit F, Luscher TF, 
Ruschitzka F, Sudano I, Flammer AJ. Retinal microvascular dysfunction in heart failure. Eur Heart J 
2018;39(1):47-56. 
107. Machalinska A, Pius-Sadowska E, Babiak K, Salacka A, Safranow K, Kawa MP, Machalinski B. 
Correlation between Flicker-Induced Retinal Vessel Vasodilatation and Plasma Biomarkers of 
Endothelial Dysfunction in Hypertensive Patients. Curr Eye Res 2018;43(1):128-134. 
108. Kneser M, Kohlmann T, Pokorny J, Tost F. Age related decline of microvascular regulation 
measured in healthy individuals by retinal dynamic vessel analysis. Med Sci Monit 2009;15(8):CR436-
41. 
109. Seshadri S, Ekart A, Gherghel D. Ageing effect on flicker-induced diameter changes in retinal 
microvessels of healthy individuals. Acta Ophthalmol 2016;94(1):e35-42. 
110. Kotliar KE, Lanzl IM, Schmidt-Trucksass A, Sitnikova D, Ali M, Blume K, Halle M, Hanssen H. 
Dynamic retinal vessel response to flicker in obesity: A methodological approach. Microvasc Res 
2011;81(1):123-8. 
111. Gunthner R, Hanssen H, Hauser C, Angermann S, Lorenz G, Kemmner S, Matschkal J, Braunisch 
MC, Kuechle C, Renders L, Moog P, Wassertheurer S, Baumann M, Hammes HP, Mayer CC, Haller B, 



References   

 
145 

 

Stryeck S, Madl T, Carbajo-Lozoya J, Heemann U, Kotliar K, Schmaderer C. Impaired Retinal Vessel 
Dilation Predicts Mortality in End-Stage Renal Disease. Circ Res 2019. 
112. Flammer J, Konieczka K, Bruno RM, Virdis A, Flammer AJ, Taddei S. The eye and the heart. Eur 
Heart J 2013;34(17):1270-8. 
113. Tikellis G, Anuradha S, Klein R, Wong TY. Association between physical activity and retinal 
microvascular signs: the Atherosclerosis Risk in Communities (ARIC) Study. Microcirculation 
2010;17(5):381-93. 
114. Anuradha S, Healy GN, Dunstan DW, Klein R, Klein BE, Cotch MF, Wong TY, Owen N. Physical 
activity, television viewing time, and retinal microvascular caliber: the multi-ethnic study of 
atherosclerosis. Am J Epidemiol 2011;173(5):518-25. 
115. Köchli S, Endes K, Steiner R, Engler L, Infanger D, Schmidt-Trucksäss A, Zahner L, Hanssen H. 
Obesity, High Blood Pressure, and Physical Activity Determine Vascular Phenotype in Young Children. 
Hypertension 2019;73(1):153-161. 
116. Ludyga S, Kochli S, Puhse U, Gerber M, Hanssen H. Effects of a school-based physical activity 
program on retinal microcirculation and cognitive function in adolescents. J Sci Med Sport 2018. 
117. Braun G, Hafner B, Königstein K, Infanger D, Klenk C, Rossmeissl A, Schmidt-Trucksäss A, 
Hanssen H. Association of cardiorespiratory fitness with retinal vessel diameters as a biomarker of 
cardiovascular risk. Microvascular Research 2018;120:36-40. 
118. Wang JJ, Taylor B, Wong TY, Chua B, Rochtchina E, Klein R, Mitchell P. Retinal Vessel Diameters 
and Obesity: A Population-Based Study in Older Persons*. 2006;14(2):206-214. 
119. De Jong FJ, Ikram MK, Witteman JCM, Hofman A, De Jong PTVM, Breteler MMB. Retinal vessel 
diameters and the role of inflammation in cerebrovascular disease. Annals of Neurology 
2007;61(5):491-495. 
120. Ikram MK, de Jong FJ, Vingerling JR, Witteman JC, Hofman A, Breteler MM, de Jong PT. Are 
retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The 
Rotterdam Study. Invest Ophthalmol Vis Sci 2004;45(7):2129-34. 
121. Klein R, Klein BEK, Knudtson MD, Wong TY, Tsai MY. Are Inflammatory Factors Related to 
Retinal Vessel Caliber? Archives of Ophthalmology 2006;124(1):87. 
122. Wong TY, Islam FMA, Klein R, Klein BEK, Cotch MF, Castro C, Sharrett AR, Shahar E. Retinal 
Vascular Caliber, Cardiovascular Risk Factors, and Inflammation: The Multi-Ethnic Study of 
Atherosclerosis (MESA). Investigative Opthalmology & Visual Science 2006;47(6):2341. 
123. Al-Fiadh AH, Farouque O, Kawasaki R, Nguyen TT, Uddin N, Freeman M, Patel SK, Burrell LM, 
Wong TY. Retinal microvascular structure and function in patients with risk factors of atherosclerosis 
and coronary artery disease. Atherosclerosis 2014;233(2):478-484. 
124. Miller VM, Vanhoutte PM. Enhanced release of endothelium-derived factor(s) by chronic 
increases in blood flow. American Journal of Physiology-Heart and Circulatory Physiology 
1988;255(3):H446-H451. 
125. Dorner GT, Garhofer G, Kiss B, Polska E, Polak K, Riva CE, Schmetterer L. Nitric oxide regulates 
retinal vascular tone in humans. American Journal of Physiology-Heart and Circulatory Physiology 
2003;285(2):H631-H636. 
126. Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S, Tanese L, Russo G, 
Pitocco D, Lanza GA, Volpe M, Luscher TF, Cosentino F. Impact of Glycemic Variability on Chromatin 
Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients With Type 2 Diabetes and With 
Target HbA1c Levels. Diabetes 2017;66(9):2472-2482. 
127. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial derived relaxing factor by oxidized 
lipoproteins. J Clin Invest 1992;89(1):10-8. 
128. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-
dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 
1990;344(6262):160-2. 



References   

 
146 

 

129. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS, O'Keefe JH, 
Milani RV, Blair SN. Exercise and the cardiovascular system: clinical science and cardiovascular 
outcomes. Circ Res 2015;117(2):207-19. 
130. Nagaoka T, Yoshida A. Noninvasive evaluation of wall shear stress on retinal microcirculation 
in humans. Investigative Ophthalmology & Visual Science 2006;47(3):1113-1119. 
131. Lip GYH, Hall JE. Comprehensive hypertension. Philadelphia, Pa.: Mosby Elsevier; 2007. p. 579-
589. 

 



Appendix   

 
147 

 

9. Appendix 

 

9.1 Publication 6: Short- and Long-Term Effects of Bariatric Surgery on Vascular 

Phenotype 

 

Authors: 

Lukas Streese1† 

Karsten Königstein1† 

Lara Goricki1 

Denis Infanger1 

Bettina Wölnerhanssen2 

Thomas Peters2 

Arno Schmidt-Trucksäss1 

Henner Hanssen1 

1Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University 
of Basel, Basel, Switzerland 

2St. Clara Research Ltd, St. Claraspital, Basel, Switzerland 

†Authors contributed equally to this work 

 

Published in: 

Obesity Surgery. 2019; 29(4):1301-1308. 

doi: 10.1007/s11695-018-03679-2. 

The final manuscript is available at 

https://link.springer.com/article/10.1007%2Fs11695-018-03679-2



ORIGINAL CONTRIBUTIONS

Short- and Long-Term Effects of Bariatric Surgery on Vascular Phenotype

Lukas Streese1
& Karsten Königstein1

& Lara Goricki1 & Denis Infanger1 & Bettina Wölnerhanssen2
& Thomas Peters2 &

Arno Schmidt-Trucksäss1 & Henner Hanssen1

# Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Background Retinal microvascular diameters and large artery stiffness are valid biomarkers of cardiovascular risk. This study
assessed short- and long-term micro- and macrovascular improvements after bariatric surgery (BS).
Methods Sixteen patients (44 ± 12 years) underwent BS in this observational study. Two weeks before as well as 6 weeks and
4 years after surgery, retinal vessel analysis and assessment of brachial-ankle pulse wave velocity (baPWV), cardio-ankle
vascular index (CAVI), and anthropometry were performed. Three patients were lost to follow-up.
Results Six weeks after BS, retinal arteriolar diameters (CRAE) were wider (180.1 μm vs. 188.1 μm; p = 0.001), and the
arteriolar-to-venular diameter ratio (AVR) was higher (0.82 vs. 0.86; p < 0.001) compared to baseline levels. During the 4 years
of follow-up, the retinal changes sustained but further improvements did not occur. Both indices of large artery stiffness, baPWV
and CAVI, remained unchanged 6 weeks and 4 years after surgery.
Conclusions Retinal microvascular phenotype improved 6 weeks after BS. The improvements in microvascular health were
maintained during 4 years of follow-up but, despite significant further reductions in body mass index, did not improve further
long-term. baPWVand CAVI were unaffected after surgery indicating that BS primarily affects microvascular phenotype rather
than large artery stiffness. Retinal vessel imaging seems to be a feasible diagnostic tool to monitor microvascular health after BS.
Normalization of BMI and blood pressure may be necessary to achieve long-term improvement of large artery phenotype after
BS.

Keywords Retinal microcirculation . Arterial stiffness . Obesity . Bariatric surgery . Pulse wave velocity . Cardio-ankle vascular
index

Non-standard Abbreviations
AVR retinal arteriolar-to-venular diameter ratio
baPWV brachial-ankle pulse wave velocity (m/s)
BMI body mass index (kg/m2)
BS bariatric surgery
CAVI cardio-ankle vascular index
CRAE central retinal arteriolar equivalent (μm)
CRVE central retinal venular equivalent (μm)
MAP mean arterial pressure (mmHg)

PWV pulse wave velocity (m/s)

Introduction

Bariatric surgery (BS) reduces cardiovascular morbidity
and mortality [1–3] by improving associated risk factors,
such as high body fat, inflammatory status, glucose and
lipid metabolism, blood pressure, and left ventricular dia-
stolic function [4–6]. Several studies show that these
pleiotropic effects of weight-loss by surgery translate into
reduced cardiovascular risk by improving different vascu-
lar biomarkers. Habib et al. showed a reduced intima-
media thickness and higher flow-mediated dilation in 50
subjects 24 months after BS [7]. Aortic elastic properties
and left ventricular diastolic function improved during a
36 months follow-up after BS in 60 subjects [8].
Shargorodsky et al. showed improved large arterial elas-
ticity, which is assessed by pulse wave contour analysis in
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21 patients with a high cardiovascular risk 16 weeks after
BS [9]. Carotid intima-media thickness was reduced in a
type 2 diabetic population 12 months after BS [10].
Bäckdahl et al. found a reduced aortic pulse wave velocity
(PWV) in 82 subjects 2 years after BS and associated this
effect to a reduction in white adipose tissue [11].
However, the effects of BS on the microvascular structure
and function are less clear. Nerla and Tarzia showed an
improved microcirculatory coronary blood flow in re-
sponse to intravenous adenosine application and cold
pressure test 3 months and 4 years after BS [12, 13].
Martin-Rodriguez et al. found improved post-occlusive
reactive hyperemia in the forearm skin in obese patients
without signs of metabolic syndrome after BS [14].

No study to date has investigated the combined short- and
long-term effects of BS on macro- and microvascular pheno-
types in the same population. It remains to be shown which
vascular bed is most sensitive to the metabolic changes after
BS. Retinal vascular diameters and arterial stiffness are sensi-
tive micro- and macrovascular biomarkers, which may be
used for monitoring cardiovascular risk after BS. Therefore,
the aim of this observational study was to assess short- and
long-term improvements of both, small and large artery struc-
ture and function 6 weeks and 4 years after BS.

Methods

Study Design

Between January and June 2012, we recruited participants
scheduled for BS at St. Claraspital Basel (Switzerland).
After signing the informed consent, participants had to attend
three appointments: the pre-surgery appointment 2 weeks be-
fore surgery and two post-surgery appointments 6 weeks and
4 years after surgery. The surgery was performed in the
Claraspital Basel. All measurements and data analysis were
performed in the Department of Sport, Exercise, and Health of
the University Basel in accordance with the Declaration of
Helsinki. The local ethical committee (Ethikkommission
Nordwest- und Zentralschweiz 2015-00250) approved the
study.

Inclusion and Exclusion Criteria

Inclusion criteria were a (body mass index) BMI > 40 kg/m2

or a BMI > 35 with comorbidities, such as hypertension or
diabetes. Exclusion criteria were age > 65 years, macular de-
generation, glaucoma, or any chronic eye disease, which
might affect the retinal microcirculation.

Assessment of Anthropometric Data

Assessment of anthropometric data included standardized
measurement of height, total body mass, waist circumference,
and BMI.

Macrovascular Assessment

Patients were advised to refrain from moderate and vigorous
physical activity for 24 h, to refrain from smoking on the day
of assessment and to remain fasting for 12 h with the excep-
tion to drink water or unsweetened tea up to 2 h prior to the
appointment. We used the non-invasive oscillometric VaSera
VS-1500N vascular screening system (Fukuda Denshi Co.
Ltd., Tokyo, Japan) to obtain brachial-ankle pulse wave ve-
locity (baPWV) and cardio-ankle vascular index (CAVI).
Both parameters are well established and widely used as sur-
rogate markers of arterial stiffness and are associated with
overall cardiovascular morbidity and mortality [15].
Reproducibility of this method is excellent with mean varia-
tion coefficients of 3.9% for baPWV and 4.4% for CAVI,
respectively [16]. The basic methodological principle has
been described elsewhere, and the procedure was conducted
as previously described [16]. After the participant had rested
for at least 10 min in a lying position, two measurements on
each side were taken in a supine position at 3–5-min intervals.
Measurements with a good or very good quality, quantified by
the VaSera System, were used for further analysis.
Additionally, heart rate and oscillometric blood pressure were
measured non-invasively twice at each arm with a VaSera VS-
1500N device. Systolic and diastolic blood pressure and mean
arterial pressure (MAP = [2 × diastolic blood pressure + sys-
tolic blood pressure] / 3) were calculated as the mean of two
measurements on the left and two on the right side.

Microvascular Assessment

After 5minutes of rest in a sitting position, retinal microvascular
imaging was conducted with a static retinal vessel analyzer
(SVA-T, Imedos Systems UG, Jena, Germany). For static retinal
vessel analysis, we analyzed two valid pictures from both eyes
with an angle of 45° and the optic disc in the center. Venular and
arteriolar diameters were analyzed semi-automatically by cours-
ing through an area of 0.5–1 disc diameter from the optic disc
margin, at higher magnification and using special analyzing soft-
ware (Vesselmap 2, Visualis, Imedos Systems UG). Diameters
were averaged to the central retinal arteriolar equivalent (CRAE)
and the central retinal venular equivalent (CRVE) by using the
Parr-Hubbard formula [17]. The retinal arteriolar-to-venular ratio
(AVR) was calculated from the CRAE and CRVE. The inter-
observer and intra-observer interclass correlation coefficient for
the measurement of retinal vessel diameters ranges from 0.97 to
0.98.
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Statistical Analysis and Sample Size Calculation

Data analysis was performed with R version 3.4.2 for
Windows (R Foundation for Statistical Computing, Vienna,
Austria). Descriptive analysis included means and standard
deviation (SD). The level of significance was set at p < 0.05.
To analyze the progression of our main outcome (AVR) from
baseline to 4-years follow up, we usedmulti-level modeling as
an analysis tool for repeated measures data [18]. Model selec-
tion was based on Akaike’s information criterion. In case of
significance, we applied post hoc tests for pairwise analysis. In
the presence of repeated measurements, observations are no
longer independent, which makes usual analysis methods,
such as linear regression model unsuitable for the analysis of
our data. Multilevel models (or linear mixed models) are re-
gression models that take the correlation between repeated
measurements into account [18].

Based on previous findings, we assumed an expected dif-
ference in AVR between baseline and 4-years follow-up of
0.04 with a SD of 0.08 [19]. A total sample size of 15 patients
was needed to reach a target power of 80% with a two-sided
significance level of 0.05. G*Power software 3.1.9.2 was used
for the sample size calculation.

Results

Patients’ Characteristics at Baseline and 6 Weeks
and 4 Years After Bariatric Surgery

Sixteen participants with a mean age of 44 ± 12 years (22–
61 years, 13 male and three female) at the baseline appoint-
ment were included in this trial. Three participants refused to
participate in the follow-up appointment after a mean follow-
up of 4 years (Fig. 1). Three patients were smokers and seven
were ex-smokers. Fasting metabolic blood parameters at base-
line were total cholesterol (5.1 ± 1.1 mmol/L), high-density
lipoprotein (1.4 ± 0.3 mmol/L), low-density lipoprotein (3.1
± 0.9 mmol/L), triglycerides (1.4 ± 0.6 mmol/L), fasting blood
glucose (5.2 ± 1.1 mmol/L), and HbA1c (5.7 ± 0.4%). The
inflammatorymarkers were high sensitivity C-reactive protein
(5.0 ± 4.6 mg/L) and leucocytes (7.4 ± 2.0 × 109/L). Markers
for hepatic function were aspartate aminotransferase (25.2 ±
6.7 U/L), alanine aminotransferase (33.8 ± 18.3 U/L), and γ-
glutamyltransferase (42.3 ± 17.8 U/L). Ten participants took
anti-hypertensive medication, and ten patients were on lipid-
lowering medication. The surgical method of choice was lap-
aroscopic sleeve gastrectomy in five patients and Roux-en-Y
gastric bypass in 11 patients. Anthropometric measures and
blood pressure improved throughout the study period
(Table 1). Three participants reduced their anti-hypertensive
medications after 6 weeks post-surgery, and seven participants
reduced their anti-hypertensive medications until the follow-

up after 4 years. Despite improved blood pressure, three pa-
tients still had high-normal values, and six patients were hy-
pertensive 4 years after BS. The mean weight loss during the
study period was 39.5 kg (Fig. 2). Despite extensive weight
loss, six patients were still overweight and obesity remained in
seven patients after 4 years.

Microvascular Changes after Bariatric Surgery

The retinal microcirculation showed wider arteriolar diame-
ters 6 weeks and 4 years after BS compared to baseline, with-
out further significant improvements between 6 weeks and
4 years after BS (Table 1). Venular diameters did not change
between the time points. AVR increased 6 weeks and 4 years
after BS compared to baseline, without further changes be-
tween 6 weeks and 4 years after BS. Microvascular short-
and long-term effects were independent of MAP changes
(p < 0.01).

Macrovascular Changes After Bariatric Surgery

CAVI and baPWV did not change significantly during the
follow-up period compared to baseline in the models without
and with adjustment for MAP (Table 1).

Discussion

This study was designed to investigate microvascular and
macrovascular improvements 6 weeks and 4 years after BS.
Our preliminary results demonstrated an improved microvas-
cular phenotype independent of blood pressure changes in the
early post-surgical phase after 6 weeks. CAVI and baPWV did
not change, suggesting that the macrovascular system might
be less sensitive to early metabolic changes after BS than the
microvascular system. Neither retinal vessel diameters nor
CAVI or baPWV further improved during the 4 years of
follow-up despite ongoing body weight reduction in our
patients.

Short- and Long-Term Changes in Microvascular
Function After BS

Subacute improvements in the coronary microcirculation
and peripheral endothelial function after BS have been
shown before [12]. Our results demonstrate that retinal
vessels might also be sensitive to the surgery-related met-
abolic and physiological changes in the early post-surgical
period. These changes are reflected by reductions in blood
pressure and weight loss, which might therefore be the
main contributors for early microvascular improvements
after BS. Blood pressure changes are known as an impor-
tant factor for alterations of retinal arteriolar diameters
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[20]. Nevertheless, we demonstrated an MAP-independent
increase in AVR based on wider arteriolar diameters, in-
dicating that there are blood pressure independent mech-
anisms responsible for the microvascular improvements.
A previous meta-analysis demonstrated that higher BMI
is associated with narrower arterioles and wider venules

[21]. Systemic inflammation has been argued to be re-
sponsible for wider venular diameters in patients with
obesity [21]. Nevertheless, CRVE did not change in our
study population after BS, despite considerable improve-
ments in body composition. As overweight or obesity
were still prevalent in most patients at this point,

Table 1 Anthropometric and
vascular parameters at baseline
(n = 16), 6 weeks (6w-post; n =
16), and 4 years (4y-post; n = 13)
after BS

Baseline 6w-post 4y-post

Mean ± SD Mean ± SD pa Mean ± SD pb pc

Anthropometry

Weight (kg) 124.4 ± 19.4 111.9 ± 17.4 < .0001 88.2 ± 16.0 < .0001 < .0001

BMI (kg/m2) 43.0 ± 4.4 39.1 ± 3.5 < .0001 30.4 ± 3.1 < .0001 < .0001

WC (cm) 125.7 ± 15.3 118.4 ± 13.8 0.0492 95.2 ± 15.3 < .0001 < .0001

Sys. BP (mmHg) 138.9 ± 14.0 129.4 ± 10.3 0.0041 134.5 ± 22.3 0.8866 0.0030

Dia. BP (mmHg) 83.8 ± 8.1 80.4 ± 5.1 0.0801 82.0 ± 10.7 0.9924 0.0977

MAP (mmHg) 104.0 ± 7.4 96.7 ± 6.0 0.0126 99.5 ± 14.1 0.9547 0.0127

Vascular parameter

CAVI 6.6 ± 1.6 6.8 ± 1.2 0.6895 6.8 ± 0.9 0.9943 0.7849

baPWV (m/s) 12.0 ± 1.9 12.0 ± 1.3 0.5667 12.0 ± 1.8 0.9158 0.3881

CRAE (μm) 180.1 ± 17.0 188.1 ± 17.5 0.0011 186.1 ± 18.4 0.7938 0.0005

CRVE (μm) 218.0 ± 16.6 219.5 ± 16.4 0.4885 215.0 ± 14.8 0.5915 0.9973

AVR 0.82 ± 0.06 0.86 ± 0.05 0.0002 0.87 ± 0.07 0.1110 < .0001

BMI = body mass index, WC =waist circumference, Sys. BP = systolic blood pressure, Dia. BP = diastolic blood
pressure, MAP =mean arterial pressure, CAVI = cardio-ankle vascular index, baPWV = brachial-ankle pulse
wave velocity, CRAE= central retinal arteriolar equivalent, CRVE= central retinal venular equivalent, AVR=
retinal arteriolar-to-venular diameter ratio
a p value baseline vs 6w-post
b p value 6w-post vs 4y-post
c p value baseline vs 4y-post

Fig. 1 Flow-chart. PWV= pulse
wave velocity
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normalization of body weight might be necessary to
achieve relevant improvements of CRVE.

In contrast, retinal arterioles widened in our study popula-
tion post-surgery. Stapleton and colleagues showed that the
bioavailability of nitric oxide is reduced in an obesogenic
environment and that weight loss may lead to an attenuation
of this deficit [22]. Therefore, increased bioavailability of ni-
tric oxide after BS may be a main reason for the widening of
arterioles. Further studies should include biomarkers of sys-
temic inflammation, glucose, and lipid metabolism in order to
identify possible metabolic effects of BS on the
microcirculation.

Tarzia and colleagues showed no further changes of sub-
acute improvements in micro- and macrovascular function
4 years after BS despite ongoing weight loss and reduced
cardiovascular risk factors in 19 patients [13]. However, they
used flow mediated dilation and ultrasound-guided coronary
flow reserve as markers of vascular function. Thus, our study
is the first to investigate transition of short-term to long-term
changes in retinal microvascular health compared to large ar-
tery stiffness after BS. Our results are in line with findings of
Tarzia and colleagues, showing no additional improvement of
microvascular health despite ongoing weight loss and reduced
waist-circumference. Based on our results and two previous
studies on the effects of BS on retinal microvascular health,
we would like to postulate the following assumptions: The
positive effects of BS on retinal microvascular health seem
to occur during the first post-surgical year [19, 23]. We per-
formed a short-term follow-up after 6 weeks in our study, and
the effects of BS were more or less immediate. Lammert et al.
[18] found wider arterioles, narrower venules, and a higher
AVR 9 months after BS. However, the time of post-surgical
follow-up varied from six to 23 months in their sample of 30
patients. Bachmayer et al. [22] also observed an improved
microvascular phenotype in a population of 21 patients
10 months after BS. They reported narrower venules and a

higher AVR, whereas the retinal arterioles were unaffected
after BS. Depending on the development of the individual risk
profiles of the patients after BS, amelioration of retinal micro-
vascular health is detected by improvements of either retinal
arteriolar or venular diameter or both. This finding is support-
ed by the above-mentioned meta-analysis by Boillot et al.
[20], which demonstrated that obesity is associated with either
retinal arteriolar narrowing or venular widening. In line with
our findings, retinal arteriolar diameters have been found to be
more strongly associated with the CV risk profile in obesity.

Further improvements in microvascular health after BS do
not seem to be facilitated by further continuous weight loss
alone. Although considerable weight loss was achieved in our
patients, overweight or obesity was still prevalent, and blood
pressure levels were still elevated or high-normal in most of
our patients. Further improvements and actual amelioration of
microvascular health may depend on achieving normal values
for weight, blood pressure, and metabolic regulation. In addi-
tion to dietary measures and drug treatment of comorbidities,
an active lifestyle may play a key role in improvement of
microvascular health. We have previously shown that endur-
ance exercise training can reverse alterations of retinal vessel
diameters in individuals with obesity [24]. A tendency to-
wards further improvement of AVR after 4 years was detected
and may also have reached statistical and clinical significance
in a larger cohort.

Short- and Long-Term Changes in Macrovascular
Function After BS

In contrast to the microvascular markers, CAVI and baPWV
did not change during the early post-surgical phase, despite
reductions in blood pressure. These results are in contrast to
previous reports, which found a reduction in PWV after
weight loss [25, 26]. However, baseline baPWV was not ele-
vated in all but two of our patients, and a post-surgical

Fig. 2 Mean post-surgical weight
loss. Body weight at baseline
(0 months) and during follow-up
(n = 13) after bariatric surgery.
Bars depict standard deviation
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improvement was seen only in these two participants.
Accordingly, the previously reported independent effect of
weight loss on PWV might occur in people with increased
PWV but not in those with baPWV values within the normal
range [5]. Our observation that CAVI and baPWV did im-
prove neither short-term nor long-term after BS seems to stand
in contrast to several other studies [27, 28]. Based on our data,
we would like to speculate that baPWV and CAVI do not
improve after BS unless pre-surgical values are elevated.
Moreover, most of the above referenced studies assessed
carotid-femoral PWV, which is calculated including the super-
ficial distance between the two measurement points [29].
Hence, this method is vulnerable to overestimation of PWV
especially in individuals with extensive central obesity [30].
Therefore, the use of carotid-femoral PWV for monitoring of
changes in arterial stiffness after BS-induced weight loss
carries the risk of misinterpretation, as a reduction in follow-
up measurements might simply reflect the concurrent weight
loss. Utilization of baPWV might be advantageous in studies
with participants having morbid obesity, as the simplified
measurement of pulse wave travel distance, using linear re-
gression of body height, eliminates body surface-related mea-
surement errors [31]. This is also the reason why we applied
measures of systemic (global) arterial stiffness in our study
setting. We further considered the oscillometric nature of
baPWV and CAVI measurement to enhance accuracy com-
pared to tonometric measurement of arterial stiffness. This
study is the first to use markers of systemic arterial stiffness
(baPWV and CAVI) rather than central arterial stiffness to
assess changes in arterial wall integrity after BS. However,
systemic arterial stiffness may not be the best marker to pick
up changes in arterial stiffness after BS. Future studies should
consider the concomitant use of diagnostic methods to assess
both central and systemic arterial stiffness in patients with
metabolic disease.

Previous studies showed an association of PWV with col-
lagen depositioning, serum elastase activity, and metallopro-
teinase-9, suggesting that obesity might cause arterial stiffen-
ing by promotion of vascular wall remodeling [32]. The re-
gression of such profound structural alterations is likely to
take longer than a few weeks. Hence, post-surgical improve-
ments of central arterial stiffness may need months or years to
occur. This suggests that the macrovascular system might be
less sensitive to early metabolic changes after BS than the
microvascular system. However, in our study, baPWV and
CAVI did not change during the 4-year follow-up period de-
spite ongoing weight loss and blood pressure reduction. The
normal baseline values of baPWV and CAVI might help ex-
plain the results of our study. Moreover, arterial stiffness was
our secondary endpoint, and the study was not powered to
detect changes in large artery stiffness. Larger sample size
may be necessary to detect significant changes in arterial stiff-
ness after BS.

Limitations

This study was powered for the main outcome AVR. Due to
the patients lost to follow-up, the long-term follow-up was
slightly underpowered. Nevertheless, the retinal microcircula-
tion seems to be sufficiently sensitive to monitor vascular
regeneration after BS in a short- and a long-term setting.
Future prospective larger scale studies are warranted to inves-
tigate the predictive value of retinal microvascular health for
long-term cardiovascular outcome after BS.

In patients with metabolic syndrome, the effect of BS on
micro- and macrovascular health may be different compared
tometabolically healthy patients [14]. Hence, it is important to
note that the small sample size of our study did not allow
grouping of our patients according to metabolic criteria, such
as glucose tolerance, insulin sensitivity, blood lipids, free fatty
acids, and inflammatory markers. The normal baseline values
of baPWV and CAVI might be responsible for the lack of
significant results for these macrovascular biomarkers. In
terms of their interpretation, it is important to note that current
reference values only exist for central Asian populations [33,
34]. We did not monitor changes in lifestyle behavior.
Changes in physical activity and eating habits may influence
weight loss and should therefore be considered in future stud-
ies on vascular changes after BS. Three patients did not attend
the follow-up appointment 4 years after BS. However, tenden-
cies of changes in retinal vessel analysis parameters, CAVI
and baPWV in the early post-surgical appointment, were in
line with those of the whole study cohort.

Conclusions and Perspectives

This study is the first to investigate early post-surgical
changes of macro- and microvascular phenotype in pa-
tients with morbid obesity 6 weeks after BS and to track
long-term effects over a 4-year follow-up period. CAVI
and baPWV were used for the first time to investigate
macrovascular effects of BS. We found an amelioration
of the microvascular phenotype 6 weeks after BS, which
was maintained but not improved any further after 4 years,
despite further long-term reduction in BMI. Large artery
stiffness remained unaffected after BS both short- as well
as long-term. Despite extensive weight loss, normalization
of body weight and blood pressure might be necessary to
achieve further improvements of vascular health and risk
reduction. In the future, a larger prospective cohort study
should aim at exploring the underlying mechanisms and
causality of post-surgical changes in micro- and
macrovascular phenotype. Our results indicate that retinal
vessel phenotyping may proof to be a valid diagnostic and
more sensitive diagnostic tool than large artery stiffness to
monitor development of cardiovascular risk after BS.
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Abstract 

Objectives: Arterial stiffness (AST) is a main determinant of cardiovascular (CV) mortality. 

Long-term physical activity (PA) is considered to decrease age-related progression of AST but 

effects of short-term exercise interventions on AST remain unclear.  

 

Design: In a combined cross-sectional and interventional study approach, we investigated the 

effects of long-term PA and short-term high-intensity interval training (HIIT) on AST in an older 

population. 

 

Methods: 147 older individuals (mean age 59±7 years) were assigned to three groups 

according to their PA and CV risk profile and compared: healthy active (HA, n=35), healthy 

sedentary (HS, n=33) and sedentary at risk (SR, n=79). In addition, SR were randomized to 

either 12 weeks of HIIT or standard recommendations. Pulse wave velocity (PWV) was 

measured by applanation tonometry. Cardiorespiratory fitness (CRF) was performed by 

symptom-limited spiroergometry to determine maximal oxygen uptake (VO2max). 

 

Results: Higher CRF was associated with lower PWV (p<0.001) and VO2max explained 18% of 

PWV variance. PWV was higher in SR (8.2±1.4 m/s) compared to HS (7.5±1.6 m/s) and HA 

(7.0±1.1 m/s; p<0.001). 12 weeks of HIIT did not change PWV in SR. HIIT-induced reduction in 

systolic BP was associated with reduction in PWV (p<0.05).  

 

Conclusion: SR show higher PWV compared to HS and long-term PA is associated with lower 

PWV. Reduction of AST following short-term HIIT seems to depend on a concomitant decrease 

of blood pressure. Our study puts into perspective the effects of long- and short-term exercise 

on arterial wall integrity as treatment options for CV prevention in an older population. 
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Introduction 

Cardiovascular (CV) diseases are responsible for the majority of deaths in western countries 

and age has been identified as a main risk factor1, 2. Vascular tissue biomarkers such as arterial 

stiffness (AST) provide a means of optimized risk assessment to detect individual subclinical 

organ damage. Commonly measured as central pulse wave velocity (PWV), AST has gained 

clinical importance and has been proven to be a reliable predictor for CV risk in the general 

population3. Its addition to standard care can significantly improve CV risk prediction for the 

individual with a reclassification rate between 13-15%3, 4. Altered PWV indicates subclinical 

target organ damage and may be used to quantify cumulative damaging effects of CV risk 

factors on the aging arterial wall integrity. 

High cardiorespiratory fitness (CRF) is associated with reduced all-cause and CV mortality5. 

Previous studies on the effect of regular physical activity (PA) and exercise on indices of AST 

in the elderly have reported conflicting results6-8. High-intensity interval training (HIIT) is an 

exercise modality that has attracted attention for its potency to increase CRF and reduce CV 

risk in patients, for example, with metabolic syndrom9.  

Data on HIIT and its effects on PWV are scarce. Previous evidence suggests that HIIT may be 

superior regarding reductions in AST compared to moderate aerobic training in young patients 

with increased CV risk10, 11. However, a recent meta-analysis by Way et al. could not detect 

differences in AST reduction between the two training regimens 12. The effects of HIIT on AST 

in elderly people with increased CV risk have not been investigated to date. Our aim was to 

investigate the associations between long-term PA and central PWV in healthy and diseased 

elderly. Moreover, we aimed to examine the effects of 12 weeks of HIIT, defined as short-term 

exercise, on PWV in diseased elderly with clinical indications for add-on exercise treatment. 

 

Methods 

Study design and subjects 

The EXAMIN Age study (Exercise, Arterial Crosstalk-Modulation and Inflammation in an Ageing 

Population) is a combined cross-sectional and interventional study. In the cross-sectional part 

of the study, elderly participants aged between 50 and 80 years were recruited and assigned 

to three groups according to their PA and CV risk profile: healthy active (HA), healthy 
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sedentary (HS) and sedentary individuals with increased CV risk (SR). In the interventional part, 

SR were randomized into either a walking-based HIIT, performing a supervised training for 12 

weeks, or control condition receiving standard PA recommendations only2. Participants were 

recruited by advertisements in local newspapers as well as flyer distribution. Simple 

randomization was performed by drawing pieces of paper from an envelope by the study 

physician. 

All study visits took place between January 2016 and December 2017. The initial medical 

screening included a clinical assessment, 24-hour blood pressure (BP) measurement and blood 

sampling. If participants met inclusion criteria, two additional appointments were arranged to 

perform vascular measurements and assessment of CRF. Follow-up measurements in SR 

included three identical appointments after 12 weeks. Each participant provided written 

informed consent and the study design was approved by the local ethics committee and 

registered in advance. The study has been reported according to the CONSORT standards13 

and was performed according to the Helsinki Declaration for Good Clinical Practice14. 

 

Inclusion and exclusion criteria 

Inclusion criteria were as follows: Participants were aged between 50-80 years. HA and HS 

individuals had to be healthy without CV risk factors, whilst SR allocation required at least two 

of the following CV risk factors: high blood pressure (≥ 140 mmHg systolic or ≥ 90 mmHg 

diastolic during 24h monitoring or antihypertensive medications), obesity (body mass 

index ≥ 30 kg/m2), high fasting plasma glucose levels (≥ 5.6 mmol/l or antidiabetic 

medications), high triglyceride levels (≥ 1.7 mmol/l), low high-density lipoprotein levels 

(< 1.0 mmol/l (male); < 1.2 mmol/l (female)), high low-density lipoprotein levels (> 4.9 mmol/l 

or cholesterol lowering drugs) and current smoker. Additional exclusion criteria for healthy 

participants were history of CV, pulmonary or chronic inflammatory diseases. Exclusion 

criteria for individuals at risk were decompensated cardiopulmonary disease and chronic 

inflammatory diseases as well as compromising orthopaedic problems. PA of each participant 

was judged combining the participant`s PA history, questionnaire-based self-reported PA, 

objective accelerometers and maximal aerobic capacity (VO2max). Two sport scientists 

independently estimated the individual PA level and, if consensus was achieved, participants 

were assigned to the appropriate group. Further information on PA and CRF evaluation, 
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anthropometry and blood sampling are presented in the supplementary materials 

(Supplement S1). 

 

Pulse wave velocity 

PWV was measured according to recommendations of current guidelines15. To assure 

standardization, vascular measurements were performed in the morning and participants 

were asked to refrain from exercise 24 hours and from alcohol and caffeine consumption 12 

hours prior to the examination. Participants had to rest 10 minutes in a supine position after 

systolic and diastolic BP at rest were taken with a cuff from the right brachial artery, using an 

automatic BP monitor system (Omron Healthcare, Germany). PWV was measured using a 

standard device by use of applanation tonometry (SphygmoCor CPV®, ATCor Medical, 

Australia). High quality measurements with a deviation in pulse waveforms of less than 10% 

within 10-second recordings were considered valid. The mean value of two valid 

measurements with a mean difference ≤ 1 m/s was used for further calculations. Central PWV 

in m/s was calculated as distance divided by transit time of carotid and femoral pulse wave 

(foot-to-foot method). The distance for carotid-femoral PWV was determined by subtracting 

the suprasternal notch (SSN) to the carotid site distance from the SSN to the femoral site. All 

analyses were performed by the same experienced investigator who was blinded for group 

allocation. 

 

Exercise intervention 

In the interventional part of the study, a 12 week nordic walking-based HIIT, was applied in 

the SR group three times per week. Training sessions were supervised by sport scientists. 

Stepwise increase of intensity in the first two weeks was conducted to familiarize former 

sedentary participants with aerobic exercise. After two weeks, 4x4 minutes of HIIT at an 

intensity of 80-90% of maximum heart rate (HRmax) was performed. Recovery time between 

each interval lasted three minutes and was set at an intensity of 60-70% HRmax. Including 

warm-up and cool-down, an average training session lasted 60 minutes. 
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Statistical analysis 

Participants` characteristics are presented with mean (standard deviation (SD)) for continuous 

variables and frequency counts for categorical variables. Analysis of variance (ANOVA) was 

used to detect overall group differences in the cross-sectional approach. Multiple linear 

regression was performed to identify between group differences adjusting for possible 

confounders. The assumptions of the regressions were verified using residual plots. In the 

interventional approach we performed an analysis of covariance (ANCOVA) to detect and 

quantify differences between HIIT and control group adjusted for baseline values16. A multiple 

linear regression model was used to describe factors explaining the difference in central PWV 

following HIIT. We used two-sided tests with a significance level of 5% in all our analyses. Data 

were analysed using R (Version 3.5.1, www.r-project.org). Details on sample size are 

presented in the supplementary materials (Supplement S1). 

 

Results 

Participants 

The recruitment process is summarized in a CONSORT flow diagram (Supplement Figure S1). 

In the cross-sectional part, 35 persons were included in the HA group, 33 in the HS group and 

79 in the SR group. Eighty-six percent of the SR group were obese, 70% were hypertensive, 

56% suffered from dyslipidaemia, 41% were diabetics and 34% were smokers (Supplement 

Table S1). The participants` characteristics of all three groups including CV risk factors, PA and 

CRF data as well as the vascular indices are presented in Table 1. 

 

Cross-sectional part 

Overall higher CRF was significantly associated with lower central PWV (p<0.001) and VO2max 

explained 18% of the variance in PWV in all participants after adjustment for age and sex 

(Supplement Figure S2). An increase of 10 ml/min/kg in VO2max was associated with a decrease 

of PWV by 0.8 m/s (p<0.001). PWV increased with an increasing number of risk factors (p for 

Trend <0.01; Supplement Figure S3). In the between group comparison, PWV was highest in 
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Table 1. Participants` characteristics  
HA (n=35) HS (n=33) SR (n=79) p 

Clinical data     
Age, yr 60±7 59±7 58±6 0.325 
Female sex, n (%) 17 (49) 24 (73) 41 (52) 0.080* 
Height, cm 171±7.7  168±8.8 169±8.0  0.403 
Body mass, kg 64.4±6.6 70.7±10.2 95.5±13.9 <0.001 
BMI, kg/m2 22.2±1.7 24.9±2.5 33.4±4.0 <0.001 
WC, cm 82±7 89±9 112±12 <0.001 
HR, bpm 62±8 77±12 79±11 <0.001 
SBP at rest, mmHg 128±16 128±15 132±15 0.317 
DBP at rest, mmHg 78±8 81±8 88±10 <0.001 
PP at rest, mmHg 50±12 46±11 44±12 0.052 
24H SBP, mmHg 119±6 121±7 130±11 <0.001 
24H DBP, mmHg 76±6 76±6 81±8 <0.001 
Fasting glucose, mmol/l 4.6±0.4 4.7±0.5 5.7±1.8 <0.001 
Triglyceride, mmol/l 0.92±0.28 1.09±0.31 1.80±1.11 <0.001 
HDL, mmol/l 1.99±0.41 1.69±0.38 1.30±0.32 <0.001 
LDL, mmol/l 2.85±0.75 3.2±0.83 3.23±0.79 0.064 
hsCRP, mg/l 0.9±1.0 1.7±2.3 3.7±4.2 <0.001 

Physical activity and fitness   

 

Total PA, MET/week 171±8.4 135±56 126±55 <0.001 
Sport activity, MET/week 47±37 2±2 1±3 <0.001 
Steps per day, n 13800±4629 10222±3213 9028±3283 <0.001 
Walking per day, min 31±25 19±13 14±11 <0.001 
VO2max, ml/min/kg 42.6±8.2 29.7±4.0 26.1±4.4 <0.001 

Arterial Stiffness    

 

Central PWV, m/s 7.0±1.1 7.5±1.6 8.2±1.4 <0.001 
Abbreviations: HA, healthy active; HS, healthy sedentary; SR, sedentary at risk; BMI, 

body mass index; WC, waist circumference; HF, heart rate; SBP, systolic blood pressure; 

DBP, diastolic blood pressure; HDL, high-density-lipoprotein, LDL, low-density-

lipoprotein; hsCRP, high-sensitivity C-reactive Protein; PA, physical activity; MET, 

metabolic equivalent; VO2max, maximal oxygen uptake; PWV pulse wave velocity. Data 

are mean ± standard deviation. ANOVA was used to calculate overall group differences. 

*Chi-squared test was used 
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SR (8.2±1.4 m/s) compared to HS (8.2±1.4 m/s) and HA (7.0±1.1 m/s; Table 2). ANOVA revealed 

a significant overall group difference (p<0.001). Multiple linear regression revealed significant 

differences in PWV between all groups (Figure 1A; Supplement Table S2). 

 
Table 2. Population characteristics in sedentary at risk before and after HIIT 

Outcome 
Adjusted 

difference* 
Lower CI 

(95%) 
Upper CI 

(95%) p 

Anthropometric data     
Weight, kg -0.4 -1.5 0.7 0.45 
BMI, kg/m2 -0.2 -0.6 0.2 0.38 
WC, cm -1.2 -4.2 1.7 0.41 
Fat mass, % -2.0 -3.6 -0.5 0.01 
Muscle mass, % 1.0 0.2 1.9 0.02 
HR, bpm -2.9 -7.6 1.7 0.21 
SBP at rest, mmHg -1.0 -6.0 4.7 0.80 
DBP at rest, mmHg 1.6  -2.2 5.5 0.39 

Cardiorespiratory fitness    
VO2max, ml/min/kg 3.4  2.5 4.3 <0.001 

Arterial Stiffness     
Central PWV, m/s 0.1  -0.3 0.6 0.60 

Central PWV†, m/s 0.2  -0.2 0.6 0.29 
Abbreviations: CI, confidence interval; BMI, body mass index; WC, waist 

circumference; HF, heart rate; SBP, systolic blood pressure; DBP, diastolic 

blood pressure; PWV, pulse wave velocity. * Analysis of covariance was used 

to detect differences of post- versus pre-intervention values between 

intervention and control condition. †Additional adjustment for delta of 

systolic blood pressure (pre- minus post-value). 

 
Interventional part 

The final analysis was performed in 38 persons of the intervention group and 30 persons of 

the control group (Supplement Figure S1). After 12 weeks of HIIT, CRF improved significantly, 

but this was not accompanied by significant changes in central PWV (Table 2; Figure 1B). 

Adjustment for differences in systolic BP (pre- to post-training) did not change these results. 

Pre- and post- values for all measurements in the intervention and the control group are 
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presented in Supplement Table S3. Main determinants for the adaptations of PWV after HIIT 

were the baseline PWV (p<0.001) and changes in systolic BP (p<0.018). The association of 

changes in systolic BP with changes in central PWV is shown in Supplement Figure S4. 

 

 
Figure 1: Central pulse wave velocity in the cross-sectional (A) and interventional (B) 

approach. 

Abbreviations: HA, healthy active; HS, healthy sedentary; SR, sedentary at risk; *p<0.05; 

**p<0.01; ***p<0.001. 

 

Discussion 

Our study results demonstrate the importance of long-term PA and the limited impact of 

short-term exercise training on large artery stiffness in an older population. Long-term PA was 

associated with lower central PWV even in the absence of CV risk factors. PWV was higher in 

SR compared to HS. Overall, higher VO2max and fewer CV risk factors were associated with 

lower PWV. Most importantly, 12-weeks of HIIT did not reduce PWV in elderly at increased CV 

risk. 
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Aging is characterized by continuous remodelling of the arterial wall and Vaitkevicius et al. 

were the first to suggest that higher CRF may mitigate stiffening of the aging arterial tree17. In 

our study, with every 10 ml/min/kg increase in VO2max, PWV dropped by 0.8m/s. Active 

participants presented with 0.5 m/s lower central PWV than their sedentary counterparts. An 

increase of 1 m/s in central PWV has been associated with a 15% risk increase in CV and all-

cause mortality3. Thus, our cross-sectional findings indicate an 8% risk increase attributable to 

a sedentary lifestyle even in healthy elderly. 

Whether short-term exercise can postpone or even reverse the age- and disease- related 

progression of AST remained unresolved to date. HIIT has been shown to be effective in 

reducing CV risk in patients with metabolic syndrome9. Only few studies have evaluated the 

effects of HIIT on central PWV and these produced conflicting results. While Ciolac et al.11 and 

Guimarãres et al.10 were able to show a reduction of AST in response to HIIT in young 

individuals with increased CV risk, these findings could not be reproduced in healthy older 

persons by Kim et al.18. Our study is the first to examine the effects of 12 weeks of HIIT in 

sedentary elderly with CV disease, demonstrating that high-intensity exercise training does 

not improve large artery stiffness in older individuals. Several systematic reviews and meta-

analyses with inconsistent findings exist on the effects of exercise interventions on AST, but 

none of them set focus on elderly people19-22. Our results indicate a reduced vascular 

adaptability in older individuals and highlight the pivotal role of age when assessing the effect 

of exercise training on AST. 

This is underlined by our cross-sectional data showing that sustained long-term habitual PA is 

associated with better vascular function. This raises the question whether a threshold exercise 

duration may exist in order to achieve improvement of AST in elderly with CV disease. The two 

studies reporting reduced PWV after HIIT lasted 16 weeks but were conducted in younger 

individuals10, 11. In sedentary elderly persons, one year of aerobic exercise at moderate 

intensity did not reduce AST8. Moreover, it has previously been argued that significant 

improvements in VO2max are prerequisite for relevant reductions in PWV after short-term 

exercise20. In our study however, HIIT induced a significant increase of CRF without improving 

PWV in elderly with CV disease. In conjunction with the previous literature and our current 

findings it becomes evident that sustained long-term PA may be needed to improve, postpone 

or even reverse the increased PWV in elderly with CV disease. 
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Our results contradict Montero et al. who found that a reduction in central PWV was 

dependent on concomitant reductions in systolic BP22. From a physiological point of view, 

close associations between BP and PWV are to be expected23. Indeed, our intervention group 

showed significant associations between changes in central PWV and systolic BP. In addition, 

46% of our participants in the SR group were already treated for hypertension. In elderly 

persons pretreated for high BP, additional HIIT may have limited effects on further BP 

reductions, and the arterial capacity to adapt to exercise stimuli may be diminished.  

To put our findings into perspective and add to the debate on the effects of exercise on AST, 

possible underlying mechanisms need to be discussed. Vascular wall integrity is defined by 

functional as well as structural properties of the arterial wall24. Functional changes are largely 

dependent on vascular smooth muscle tone which is regulated locally by endothelial function. 

Structural properties depend, in large part, on the collagen and elastin composition of the 

vascular wall. Recently, the role of exercise as a modulator of AST in the context of the 

potential mechanisms involved has been adressed25. Though exercise affects functional as 

well as structural components of the arterial wall, Sacre et al. suggested that longer-term 

exercise would be needed to provoke structural changes in the arterial wall25. Our results 

support this postulation. This seems to be the case for older age in particular, where long 

lasting structural elastin degradation and collagen deposition cannot be reversed by relative 

short-term high-intensity exercise interventions. 

Few limitations have to be addressed. An unbalanced sex distribution is evident in HS. This 

may have tempered between group differences. However, sex does not account for normal 

values of PWV according to current recommendations26. Our results were adjusted for sex to 

minimize potential confounding and improve the proportion of explained variance. In 

addition, only sedentary persons at increased CV risk performed HIIT, as this group was 

expected to benefit most from aerobic exercise. Our Patients were characterized by a number 

of treated and untreated CV diseases that may have differential impacts on the arterial wall. 

We believe this represents the real life setting, as elderly persons are increasingly prone to 

comorbidities. 
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Conclusion 

In conclusion, CRF is a main determinant of central PWV in an aging population. Our results 

demonstrate that long-term active compared to sedentary lifestyle is associated with lower 

AST even in healthy elderly. This suggests that age- and disease- related vascular stiffening 

and the associated worse CV outcome can be postponed by long-term regular PA. Short-term 

exercise, even at higher intensities, cannot improve arterial stiffening in sedentary elderly with 

increased CV risk. Exercise-induced reductions of AST seem to depend on a concomitant 

decrease of BP. The results of our study shed light on the influence of long-term PA, CRF and 

the effects of short-term exercise on arterial stiffening as treatment options for CV disease 

prevention in an older population. 
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SUPPLEMENTARY MATERIAL 

Physical activity 

PA was obtained combining self-reported and objective techniques. During medical 

examination, participants gave information on past and current PA habits as well as regular 

sports participation within the last 10 years. A short form of the Freiburg Questionnaire of 

Physical Activity served to calculate metabolic equivalents (METs) based on the Ainsworth 

Compendium1, 2. This validated questionnaire allows for estimation of total METs per week as 

well as METs achieved during sport activities. Objective measurement of daily PA was assured 

by wearing an Aipermotion 440 accelerometer (Aipermon GmbH, Germany) for six 

consecutive days. Steps and minutes of walking per day were calculated using the AiperView 

440 and ActiCoach MPAT2Viewer Software (Aipermon GmbH, Germany).  

 

Cardiorespiratory fitness  

Maximal aerobic capacity was obtained by individual ramp protocols on a treadmill ergometry 

as recommended previously3. The protocol was chosen according to the estimation of the 

participant`s exercise capacity and were set to reach a test duration of 8-12 minutes as 

suggested by the American College of Sport Medicine. VO2max and maximum heart rate were 

recorded for each individual. Gas exchange was assessed using a calibrated breath-by-breath 

spirometric system (Metalyzer® 3B, MetaSoft®, CORTEX Biophysik GmbH, Germany). 

 

Anthropometry and blood sampling  

Anthropometric measurements and blood sampling were conducted in the morning under 

fasting conditions. Body height and body weight were measured to calculate body mass index 

(kg/m2). Body composition was assessed using a standard bio-impedance analyser (InBody 

720, Inbody Co., Ltd, Korea). Blood was drawn by venepuncture of the brachial vein in lithium 

heparin tubes. Platelet-free plasma was separated by centrifugation (3000g at room 

temperature for 10 minutes), pipetted in aliquots and stored at -80°C for subsequent 

measurement. High-sensitivity c-reactive protein (hsCRP) was assayed by turbidimetry. 24-

hour ambulatory BP was obtained by the use of an oscillometric cuff-based 
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sphygmomanometer on the right arm (Mobil-O-Graph®, I.E.M GmbH, Germany). Recordings 

were performed every 20 minutes during daytime and every 30 minutes during nighttime. 

 

Sample Size Calculation 

Details on sample size calculation have previously been published in the study protocol and 

were performed for the cross-sectional and interventional approach separately4. For the 

cross-sectional part we assumed that the expected central PWV corresponds to 8.5 m/s, 9.5 

m/s and 11.5 m/s for HA, HS and SR, respectively, and that the standard deviation given any 

particular group is 1.5 m/s5, 6. Central PWV was the main outcome and an 80% power on a 2-

sided significance level of 0.05 was targeted.  This resulted in 36 participants needed for each 

group in the cross-sectional approach. For the interventional part of the study, we assumed 

that the expected difference in central PWV after 12 weeks between SR in the intervention 

and those in the control group is 1.0 m/s and that the standard deviation is 1.5 m/s7 . This led 

to the calculation of a minimum number of 36 participants. Taking dropouts into account we 

aimed to reach 40 subjects in the HA and 10 HS group and 80 persons in the SR group (40 

intervention and 40 controls). For sample size calculation, we used the POWER and 

GLMPOWER procedure in SAS 9.3 (SAS Institute Inc., Cary, NC). 
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Figure S1. Flow-chart 
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Figure S2. 

Scatterplot showing maximal oxygen uptake by central pulse wave velocity (PWV) for healthy 

active (HA) and sedentary (HS) as well as sedentary at risk (SR). Regression line and 95% 

confidence intervall of mean standard deviation are visualized. Multiple linear regression was 

adjusted for age and sex. 
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Figure S3. Number of risk factors in participants and the corresponding mean central pulse 

wave velocity (PWV).  

*Jonckheere Trend Test. 
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Figure S4. Regression line and 95% confidence interval of standard deviation are visualized. 

Deltas were calculated subtracting pre from post value. *Multiple linear regression adjusted 

for age and sex, baseline central PWV and body mass index. Abbreviations: BP, blood pressure; 

PWV, pulse wave velocity. 
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Table S1. Risk factors in sedentary at risk   
    n % 
Obesity 68 86 
High Blood Pressure 48 61 
 SBP ≥ 140 mmHg or DBP ≥ 90 mmHg (24 hour) 17 32 
 Antihypertensive medication 36 46 
Dyslipidaemia 44 56 
 LDL > 4.9 mmol/l 2 3 
 HDL < 1.0 mmol/l (male) or < 1.2 mmol/l (female) 18 23 
 Triglycerides > 1.7 mmol/l 29 37 
 Cholesterol lowering medication 14 18 
Diabetes 32 41 
 Fasting glucose ≥ 5.6 mmol/l 32 41 
 Antidiabetic medication 8 10 
Smoking 27 34 

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood 
pressure; LDL, low-density lipoprotein, HDL, high-density lipoprotein. 

 

Table S2. Between group differences in central pulse wave velocity  
Model adj. R2 Mean difference (95% CI) p 

HA 
to 
HS 

1 0.34 0.64 (0.07, 1.20) 0.027 

2 0.38 0.63 (0.08, 1.18) 0.026 
HS 
to 
SR 

1 0.26 0.79 (0.25, 1.32) 0.004 

2 0.28 0.70 (0.17, 1.23) 0.010 
HA 
to 
SR 

1 0.32 1.37 (0.90, 1.84) <0.001 

2 0.33 1.33 (0.86; 1.81) <0.001 
Abbreviations: PWV, pulse wave velocity adj., adjusted; CI, confidence 

interval; HA, healthy active; HS, healthy sedentary; SR, sedentary at 

risk. Multiple linear regression for group differences central pulse 

wave velocity (m/s). Model 1: adjusted for age and sex Model 2: 

adjusted for age, sex and systolic blood pressure 
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Table S3. Population characteristics in sedentary at risk before and after HIIT 

 Intervention (n=38)   Control (n=30)  

Outcome Pre Post   Pre Post 

Clinical data      
Age, yr 58±5   57±6  

Female sex, n (%) 18   19  

Weight, kg 95.1±12.3 93.9±12.6  94.4±14.8 93.6±14.5 
BMI, kg/m2 33.3±3.0 32.8±3.2  33.1±5.1 32.8±5.0 
WC, cm 111±9 109±10  110±14 110±14 
Fat mass, % 40±8 38±8  42±8 42±7 
Muscle mass, % 32±7 33±7  30±6 30±5 
HF, bpm 79±12 74±11  76±9 75±11 
SBP at rest, mmHg 133±14 134±12  128±14 131±15 
DBP at rest, mmHg 88±10 87±7  86±10 85±11 
24h SBP, mmHg 130±10 132±12  128±10 126±11 
24h DBP, mmHg 82±7 83±8  79±8 79±9 
Fasting glucose, mmol/l 5.8±2.2 5.7±1.8  5.5±1.1 5.5±1.1 
Triglyceride, mmol/l 1.82±1.03 1.87±1.13  1.62±0.79 1.82±1.00 
HDL, mmol/l 1.29±0.3 1.29±0.28  1.37±0.31 1.35±0.34 
LDL, mmol/l 3.34±0.83 3.08±0.90  3.03±0.69 2.92±0.78 
hsCRP, mg/l 3.3±2.5 3.0±2.2  4.1±6.1 4.4±7.8 

Cardiorespiratory fitness     
VO2max, ml/min/kg 26.4±3.9 28.6±1.1  26.2±5.1 25.1±4.2 

Arterial Stiffness      
Central PWV, m/s 8.2±1.2 8.1±1.1  8.2±1.6 7.9±1.6 

Abbreviations: SD, standard deviation; BMI, body mass index; WC, waist circumference; 

HF, heart frequency; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; hsCRP, high-sensitivity C-reactive 

Protein; PWV, pulse wave velocity. Data are mean ± standard deviation. †Additional 

adjustment for delta of systolic blood pressure.  
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