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The solubility of luminescent quantum dots in solvents from 

hexane to water can be finely tuned by the choice of the 

countercations associated with carboxylate residues present 

on the nanocrystal surface. The resulting nanocrystals exhibit 

long term colloidal and chemical stability and maintain their 

photophysical properties. 

Quantum dots (QDs) are semiconductor nanocrystals endowed with 

unique size-dependent optical and electronic properties
1
 and are 

emerging as substitutes for molecular fluorophores
2
 for applications in 

chemo/biosensing,
3
 medical diagnostics and therapy,

4
 light-emitting 

devices,
5
 and solar cells.

6
 

Despite recent progress in the preparation of high quality QDs in 

aqueous media,
7
 most reliable and widely used synthetic approaches 

are based on reactions performed in organic solvents.
1
 Such methods 

enable the preparation of QDs with accurate control of their size and 

properties and afford nanocrystals whose surface is coated with a 

layer of highly hydrophobic molecular ligands.
8
 These QDs are, 

therefore, (moderately) soluble only in apolar organic solvents such as 

toluene, hexane or chloroform. However, several applications – 

particularly, bioimaging and medical therapy – require that the 

nanocrystals are compatible with, and soluble in, aqueous media. 

Encapsulation of QDs with amphiphilic polymers
9
 results in stability in 

water and preserves the photophysical properties, but the increased 

diameter of the encased nanoparticles is a limitation for biological and 

FRET applications.
3,4

 Furthermore, utilization in optoelectronic 

devices requires that the QDs are soluble in suitable solvents for the 

deposition of homogeneous thin films, or that they are miscible with 

charge transporting host materials. 

The control of the solubility of QDs in common solvents is crucial for 

viable processing of these nanomaterials. A frequently used 

methodology involves the replacement of the native capping ligands 

with other ligands that combine a surface anchoring unit with a 

functional (e.g., hydrophilic) module.
3,4

 Although exceptions exist,
10

 

ligand-exchanged QDs usually exhibit a degradation of the 

photophysical properties and a poor long-term chemical and 

photochemical stability.
11

 Ligands with multiple thiol anchoring 

groups, such as dihydrolipoic acid (DHLA) and related compounds, 

have become increasingly popular, owing to their ability to form 

robust capping monolayers on the surface of metal and 

semiconductor nanocrystals.
12

 DHLA is obtained from lipoic acid (LA) 

upon reductive cleavage of the S–S bond of its 1,2-dithiolane moiety. 

While such a reaction occurs spontaneously in the presence of a noble 

metal surface, LA must be chemically reduced to DHLA
12

 or UV-

irradiated
13

 prior to adsorption to semiconductor QDs. 

Here we describe a general route for converting LA-based ligands to 

the active DHLA derivatives and using them to replace the native caps 

of QDs. The procedure enables the phase transfer of the nanocrystals 

in polar and aqueous media and, if LA is used as the capping agent, a 

facile adjustment of their solubility in a wide range of solvents.
14

 

The method relies on the use of a borohydride-loaded ion-exchange 

resin
15

 for the reduction of the 1,2-dithiolane, as shown in Scheme 1. 

The resin is commercially available or can be prepared by stirring an 

aqueous solution of NaBH4 with an anion exchange resin (e.g., 

Amberlite® IRA-400).
16

 In our case the resin contained typically 2.5 

mmol of BH4
–
 per gram of polymer. The addition of the resin beads to 

a MeOH solution of lipoic acid (BH4
–
/LA ≈ 2:1) led, after 30 min stirring, 

to the conversion of LA to the DHLA
–
 anion (Scheme 1a). The process 

can be conveniently followed by absorption spectroscopy, monitoring 

the decrease of the disulfide band of lipoic acid at 330 nm. These 

measurements also suggest that DHLA is chemisorbed on the resin, 

most likely because of the interaction between the carboxylate and 

the ammonium moieties of the resin (Scheme 1a).
†
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Scheme 1  Reduction of lipoic acid with a borohydride exchanged resin (a) and 

extraction of DHLA
–
 from the resin beads (b). 

In order to extract the DHLA
–
 species from the resin, we treated the 

beads with a MeOH solution containing an excess of a metal or 

ammonium salt (M
+
X

–
, Scheme 1b). The X

–
 anion displaces DHLA

–
 

from the resin (which can be subsequently recovered), and a MeOH 

solution containing the active ligand as its M
+
 salt is obtained. It 

should be pointed out that the purification procedures
12

 usually 

carried out after the reduction of LA are not needed. At the end of the 

reaction, the excess reactant can be easily removed from the solution 

by decantation of the resin. The amount of DHLA just necessary for 

the cap exchange may be prepared, thus avoiding the storage of stock 

solutions of ligand under inert atmosphere at low temperature. 

 
Fig. 1  Transfer of the hydrophobic QDs in a polar solvent driven by cap exchange 

with DHLA
–
 ligands. The images refer to CdSe-5ZnS nanocrystals (dcore = 3.6 nm). 

The cap exchange was performed by adding a hexane solution 

containing the hydrophobic QDs capped with trioctylphosphine (TOP) 

and trioctylphosphine oxide (TOPO) to the DHLA
–
Na

+
 ligand, 

obtained using NaOH as the M
+
X

–
 species in Scheme 1b, in methanol. 

Upon stirring the biphasic mixture, a color change indicative of phase 

transfer of the QDs to methanol was readily observed (Fig. 1), 

indicating a fast and efficient ligand exchange. Alternatively, the 

hydrophobic QDs were added as a solid to the DHLA solution; in this 

case the cap exchange caused the rapid dispersion of the nanocrystals 

in the MeOH. After removal of the colorless hexane layer (if present) 

the MeOH suspension was washed with fresh hexane to take away 

any trace of hydrophobic ligands and unreacted nanocrystals. The 

methanol was then evaporated under vacuum and the dried DHLA
–

Na
+
 QDs were dissolved in water and purified.

†
 

Typically, 5-10 µM aqueous solutions of DHLA
–
Na

+
 capped 

nanocrystals of different structure and size were obtained, which 

resulted to be stable for at least 3 months. The minor shift in the 

absorption and emission peak wavelengths with respect to the 

starting QDs (Fig. 2) indicates that no aggregation takes place. In line 

with literature reports,
17

 CdSe cores were not emissive after phase 

transfer, whereas the luminescence efficiency of the final core-shell 

QDs in aqueous solution was 30-50% of that of the native hydrophobic 

nanoparticles.
†
 

 
Fig. 2  Absorption (full line) and emission (dashed line; λexc = 485 nm) spectra of 

CdSe-3ZnS QDs (dcore = 3.4 nm) TOP/TOPO capped in CHCl3 (black) and DHLA
–
Na

+
 

capped in H2O (grey). 

Activation with the resin was also effective for a ligand comprising a 

1,2-dithiolane moiety attached to a hydrophilic poly(ethylene glycol) 

domain (LA-PEG400)
12

 and phase transfer of QDs was observed.
†
 In 

such a case the reduced DHLA-based ligand did not bind to the resin 

and the extraction step described in Scheme 1b was not necessary. 

Interestingly, we found that the nature of the M
+
X

–
 species not only 

plays the important role of extracting DHLA
–
 from the resin (Scheme 

1b) but also determines the solubility of the final QDs. We performed 

several cap exchange reactions following the above described route 

and using different metal or ammonium salts or hydroxides in place of 

NaOH. As shown in Table 1, QDs capped with the same ligand (DHLA
–

) and different cations exhibit remarkably different solubility 

properties. Counterion effects in nanocrystals capped with ionic 

ligands have been studied
18

 but, to our knowledge, this is the first 

investigation highlighting the role of counterions for adjusting the QD 

solubility in polar solvents. The spectroscopic properties of the 

nanocrystals are maintained in all the dispersions listed in Table 1, 

with absorption and emission peaks shifts not exceeding 5 nm in 

comparison to the native QDs. As an example, Fig. 3 shows 

photographs of QDs capped with DHLA
–
TBA

+
 in different solvents. 

Although a rationalization of the pattern shown in Table 1 is not 

straightforward, the solubility of the DHLA
–
M

+
 QDs in which M

+
 is an 

alkali cation or a quaternary ammonium ions with short alkyl 

substituents (e.g. TMA
+
) in methanol or water can be explained 

considering the large solvation enthalpies of these cations in these 

solvents. Tetraalkylammonium ions with longer chains render the 

QDs compatible with less polar organic solvents, owing to Van der 

Waals forces between the solvent molecules and the alkyl chains. 

Other effects can be relevant in specific cases: for example, favorable 
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cation-π interactions of lithium ions with aromatic solvent molecules 

may explain why DHLA
–
Li

+
 QDs are soluble in toluene. It is 

noteworthy that TBA
+
 ions provide solubility of the anionic 

nanocrystals in a large variety of solvents (Table 1), suggesting that 

such cations can afford a good compromise in terms of lattice and 

solvation energies in media as different as chloroform and water.  

 
Fig. 3  Photographs of 0.5 µM CdSe-5ZnS QDs (entry 6 in Table 1) capped with 

DHLA
–
TBA

+
 in different solvents under ambient light (top) and UV light (λexc = 365 

nm, bottom). 

In summary, we have developed a simple method for the chemical 

activation of ligands based on the 1,2-dithiolane unit and their 

utilization for exchanging the native capping ligands of QDs. If the 

ligand is lipoic acid, the procedure enables the precise modulation of 

the QD solubility in a wide range of solvents with different polarity 

(from hexane to water). The final nanocrystals maintain their 

spectroscopic properties and exhibit long term colloidal and chemical 

stability. Indeed, the development of viable routes to program the 

solubility of QDs in common solvents without degrading their physical 

properties is an important requirement to foster the technological 

exploitation of these nanomaterials. 
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TOA+ e � � � � � � � � � 

CTA+ f � � � � � � � � � 
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