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Spontaneous Raman processes in cold atoms have been widely used in the past decade for generating
single photons. Here, we present a method to optimise their efficiencies for given atomic coherences
and optical depths. We give a simple and complete recipe that can be used in present-day experiments,
attaining near-optimal single photon emission.

1. Introduction

On-demand single photon sources are appealing ingredients for many quantum information tasks. Examples
include the distribution of entanglement over long distances using quantum repeaters or quantum
communications with security guarantees which remain valid, independent of the details of the actual
implementation [1, 2]. These tasks necessitate stringent purity and efficiency requirements on the performance
of the single photon sources used. Techniques based on spontaneous Raman processes in cold atoms are among
the most advanced single-photon sources with such characteristics. The basic principle is to use an ensemble of
three-level atoms in a A-configuration and two pulsed laser fields (see figure 1(a)). The first write pulse—the
write control field—off-resonantly excites one transition, which can spontaneously produce a frequency-shifted
photon—the write photon field—along the second transition through a Raman process. Since all the interacting
atoms participate in the process, and there is no information about which atom emitted the photon, the
detection of this write photon heralds the existence of a single delocalised excitation across the sample—an
atomic spin wave. Once the spin wave has been prepared, the atomic sample is ready to be used as a source, and a
second pulse—the read control field—along the second transition performs a conversion of the atomic spin
wave into a second photon—the read photon field. If the duration of the process is short enough with respect to
the atomic coherence times, and the optical depth of the sample sufficiently high, then the read photon is
emitted efficiently in a well defined mode and the protocol provides a viable single photon source.

Such sources have been at the core of numerous experiments during the last decade following the seminal
paper of Duan, Lukin, Cirac and Zoller [3], showing how they could be used for long-distance quantum
communication based on quantum repeater architectures (for reviews, see [4—7]). Recently, they have been used
as quantum memories with storage times up to 200 ms [8, 9] or as a source producing pure single photons with a
temporal duration that can be varied over up to 3 orders of magnitude while maintaining constant efficiencies
[10]. We stress that the efficiency of such a source is a critical parameter for the implementation of efficient
quantum repeater architectures. While very high efficiencies of ~90% are essential, a reduction of the source
efficiency by 1% can reduce the repeater distribution rate by 10%-20%, depending on the specific
architecture [4].

Several solutions can be envisioned to ensure high efficiencies. One solution relies on the use of an optical
cavity to enhance the spinwave-light conversion efficiency. Experimental efforts along this direction have
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Figure 1. A energy level scheme and schematic of the proposed single photon source. (a) Write (read) control fields are indicated with
Rabi frequencies (dy (€2g) and write (read) photon fields are indicated with quantum fields & (£;), each along their respective
transitions. In our model the excited level |e) is capable of spontaneous emission to the metastable states |¢) and [s). (b) A schematic of
the protocol indicates the sequence of events. A fast resonant write control field of duration 7y followed by a write photon field
detection in a short time window 74 heralds a spatially varying spin wave. A fast m-pulse of duration 7y then enables the retrieval of the
stored excitation. Laser pulses are shaded darker to indicate their stronger intensities as compared to the weaker photon emissions.

(c) A backward retrieval configuration with counterpropagating control fields results in photon field emissions in opposing directions.

resulted in efficiencies of up to 84% [11, 12]. An alternative solution involves increasing the atomic density in
order to obtain a larger optical depth [13]. This however makes operations like optical pumping and noise free
operations more challenging. This naturally raises the following question: What is the optimal efficiency that can
be achieved with a bulk atomic ensemble having a certain optical depth? This question has been previously
addressed for memory protocols where single photons are first absorbed before subsequently retrieved in a well
defined mode [14, 15].

Inspired by these works, we first examine the conditions on the spin wave shape for achieving optimal
photon retrieval efficiencies given the optical depths and specified energy levels in the atomic species. We
observe that the optimal spin waves are decreasing functions in space whose decay depends on the optical depth.
The intuition is that the reemission process is a collective effect in which the fields emitted by each atom interfere
with each other. The best possible way for these fields to add up constructively is that the field amplitude
increases as it propagates into the medium. After finding the optimal spin wave shapes, we recognise that current
approaches using off-resonant write control fields create non-ideal flat spin excitations in the sample (previously
studied in works such as [16]), since such control fields do not experience significant intensity depletion during
propagation. To achieve better retrieval efficiencies, we propose a concrete solution (see figure 1(b)) to spatially
shape the spin wave using resonant, temporally shaped write control fields. Combined with fast read control
fields during the retrieval process, we show that our recipe achieves near-optimal retrieval efficiencies.

This paper is structured as follows: in the first section we discuss the optimal retrieval efficiency from a spin
excitation. For completeness, we first quickly review derivations in [ 15] that allow us to find the expression for
the retrieval efficiency of a complete retrieval process, where we begin with only |g) — |s) coherences and
transfer all atoms to |g). We then find the shapes of the spin excitation that yield the optimal retrieval efficiency
when complete retrieval is performed. In the second section we propose the use of a resonant write control field
to create heralded spin excitations similar to those that allow for optimal retrieval. We then give explicit
expressions for retrieval when using a quick read control field with a constant Rabi frequency. Finally, we include
a feasibility study in the case of a gas of Rubidium-87.

2. Optimal retrieval

2.1. Efficiency of a complete retrieval process
We first review a derivation in [ 15] giving the dependency of the efficiency of the retrieval process on the relevant
quantities in the physical setup. This yields an expression for the retrieval efficiency, that depends only on the
shape of the spin wave from which the retrieval is performed, and on the optical depth of the relevant transition.
We emphasise that the work in [ 15] focuses on absorptive memory protocols where a field is first absorbed in
an atomic medium, creating a spin wave that can be read out later to re-emit the field in a well defined spatio-
temporal mode. To justify the relation to [15], in our proposal the spin wave creation is instead heralded by the
detection of the write photon field, but the readout process is analogous, allowing us to make use of [ 15] to
deduce the spin wave shapes that maximise the retrieval efficiency.
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We consider a three-level atomic system in a A-configuration (see figure 1(a)) with spin excitations present
in the form of |g) — |s) coherences. In the situation where almost all the atoms remain in |¢) and in a rotating
frame, the backward wave propagation equation (see figure 1(a)) along with the Heisenberg—Langevin equations
of motion yield

.
08,z 1) = 1| “E Pz, 1),
cL
. .| Arege
0P (z, t) = — (Y + iA)P (2, t) + i i &z t)

+ iQR(t)S(Z, t) + FP(Z) t)’
9,5(z, 1) = —0S(z, 1) + i) P(z, £) + Fs(z, 1), )

where P(z, t) = VN og(z, t)e " and S(z, 1) = VN Ogs (2, t)e i@=w) " are rescaled and slowly varying
atomic operators (see appendix for details), with w; (w,) referring to the energy transition of the [e) — |g)

(le) — |s)) transition. g (7o) refers to the decay rate of the [e) — |g) (g) — [s)) transition. L denotes the length
of the atomic sample and N the number of atoms within this sample. Fsand Fpindicate the noise operators
associated to Sand P, respectively. Qp (A) refers to the Rabi frequency (detuning) of the classical write control
field onthe |e) — |g) transition, and &, denotes the quantum field of the retrieval emission. The optical depth d
characterises the absorption of resonant light in the sample, such that the outgoing light intensity is

Iy(z = L) = e 2I(z = 0), valid when the spectrum of the incoming light is well contained within the atomic
bandwidth.

Here, we consider the situation where retrieval is completed well within the spin wave decoherence time, and
thus ignore 7,. In computing the spin and photon numbers, we also ignore the Langevin noise terms Fsand Fpas
they appear in normal ordered form, and in the situation where almost all the atoms are in the ground state these
do not contribute.

Defining first the reversed functions P(L — z, t) = P(z, t), S(L — z,t) = S(z, t)and E(L — z, t) =
&.(z, 1), then taking the Laplace transforms of equations (1) from L — z = z’ — u, we begin with the following

set of transformed equations
_ eed 1 -
Ew, 1) = 128 PG, 1), @
cL u

0:P(u, t) = —[’yeg(l + Li) + iA]P(u, t) + iQr(®)S(u, t) 3)
u

0S8 (u, t) = i) P(u, 1). 4

From equations (3) and (4) we first obtain the following result

%«p%(ub t)P(uy, t) + ST (uy, 1)S (12, 1))

= ’Yeg(_z - i - i)uﬁ-(ul: t)p(uZ) t)) (5)

Lu1 Luz

With equation (2) we can then rewrite the number of emitted photons 7 in terms of P(u, £)

_c o, _
n_Lj; dt (Ez =0, NE@E =0, 1))

b
Z]—

C L R '73gd 1 _ _
=15t dt ——(PT(uy, )P (up, t
I 2£) I u1u2< (th, )P (ua, 1))

z2’—>L

where £; ! indicates the instruction to take the Laplace inverses of both u; and u, separately. With the use of
equation (5) we can next rewrite (P7(u, t) P (1, t)) asa full derivative and perform the integral to get

_1d -1
n==~Ly —
L (u + w)d + 2Luju,
X (<p1-(u1> 1P (uy, 1)) + <§*(U1> 1Sz, 1)) 110 |2/—L

z3—L

=Ly 4 (87, 05 (e, 0)) |,
I? d(M1 + ) + 2Luju, 2/ —~L
z3—L

where the last equality comes from the conditions we assume in a complete retrieval process, i.e. that we begin
withonly|g) — |s) coherences and at the end of the process all atoms are in |g). By performing the inverse

3



I0OP Publishing NewJ. Phys. 20 (2018) 123018 MHoetal

— d=0.1
d=1
d=10

— d=100

z/L

Figure 2. Optimised spin wave shapes for retrieval in the backward direction (solid lines) when compared to the best fitting
exponential shapes created by our resonant write protocol (dotted lines).

Laplace transforms one sees that for complete retrieval in the backward direction®,

1 pL 1 plL
n= fj(; dzlffo dz, k(L — z, L — 2)
X <ST(L - 2 O)S(L - 2 0)>) (6)

where k,(z, z,) = ;e*d e Iy (% (212, ) and I,,(x) indicates the modified nth Bessel function of the first kind. We

proceed by considering the situation where there is originally a single spin wave in the sample (such that

% j(; t S*(z, 0)S(z, 0) dz = 1), and thus interpret 7 as the efficiency of the retrieval process. The retrieval
efficiency nis independent of the details of the read control field used, and is a result of the ratio between desired
and undesired modes that are retrieved from the spin wave.

2.2. Optimal spin shapes for complete retrieval

Having shown the dependence of the retrieval efficiency on the spin wave shape and optical depth, we now look
to gain some intuition on how one might obtain the optimal retrieval efficiencies, by plotting the spin shapes that
maximise the retrieval efficiency for given depths.

To do this, we recognise equation (6) as the continuous form of a product of discretised versions of k, (in the
form of a matrix) and |S) (in the form of a vector). Cast in this light, this integral can be computed by performing
amatrix multiplication between the discretised versions of k, and |S), and in this discrete approximation the
optimal spin shape is the eigenvector of k, with the largest eigenvalue. One can then interpolate the resulting
vector to obtain optimised spin shapes, which are shown as solid coloured lines in figure 2.

The best spin shapes for optimal retrieval show a clear spatial dependence with a bias (depending on the
optical depth d) towards placing larger excitation probabilities towards the retrieval direction (backwards in this
case). Intuitively, we see these shapes representing the best way to obtain constructive interference throughout
the retrieval process. As the optical field is converted from the spin wave towards the retrieval direction, it
benefits from encountering a higher excitation from the atoms it next encounters. We will denote the retrieval
efficiencies from these optimal spin shapes as 1.

3. Practical recipe for achieving near-optimal retrieval efficiencies

3.1. Heralding spatially varying excitations from write photon detections

In the previous section, we have outlined how the retrieval efficiency depends on the shape of the given spin
excitation, and also how the optimal spin shapes can be computed. Here we propose a method of conveniently
creating spin shapes that yield near-optimal retrieval efficiencies. In contrast to creating spin excitations using
spontaneous Raman processes enabled by far-detuned write control fields, we explore the use of resonant
control fields instead, which create spin excitations with significantly position-dependent excitation profiles.
These profiles can be controlled by tuning the duration of the write control field, which is in turn related to the

In [15], equation (6) is said to describe the optimal retrieval efficiency from a given spin wave. For us, we see this retrieval efficiency function
as a description of complete retrieval in the absence of spin wave decoherence, which is made optimal only when provided with the correct
spin excitation.
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frequency spread. A shorter (longer) write field duration implies that it has a wider (sharper) spread in
frequency, and this thus affects how quickly the write pulse is depleted within the sample.

We give a detailed derivation of the write process in appendix B.1. To summarise (see figure 1(b)), beginning
with all atoms in the |g)-level, we send a short rising exponential resonant write pulse with Rabi frequency
Qw (0, t) = QW™ e!/™ that does not significantly excite the atoms to the le)level (™ Tw < 1). If sentwitha
sufficiently short duration (7w < 1/7eg Tw < 1/7.5) and shut offat ¢ = 0, one can consider only the dynamics
alongthe |g) — |e) transition, and obtain atomic coherences of the form (see appendix B.2)

az

Oge(2, 0) = eFvZpe™ 7, )

max
. QW Tw

Veg TW
where 6, = i *

,af2 =d ™ 1ond k, indicates the wave vector for the write photon, which is
L4y Tw 14 Tw L

described using a quantum field £,,. Immediately after the preparation, we look for the detection of write
photons within a short detection window 74 as a herald for single spin excitations. This avoids potential

dephasing effects from the decoherence of the |e) level. In this short detection window of duration

- ol )1
T4 < min (21 , 2%), and where 7y < {d Vel Ool? 1 aeL L } , ensuring the number of emitted write photons #,,
les leg
is much smaller than 1, we obtain (see appendices B.3 and B.4)
- 1 — e of
ny = (d YesTa) | 0o ———, 3
al

where 7, (d) refers to the decay rate (optical depth) of the |e) — |s) transition. The write photon number 7, is
simply the product of d 7, 74 and the fraction of excited atoms (averaged across the sample).
In this same regime for 74, to leading order the corresponding heralded spin state is (see appendix B.5)

St(z, ) = —i f%aoeﬂzﬂ f e Nt g (0, 1) di, )
0

which has an exponentially decaying spatial dependence from the z = 0 side of the sample. The extent of this
spatial decay is characterised by «, which does depend on the given properties of the atomic sample, but can be
controlled by varying the write control field duration 7. One can compare this class of heralded spin shapes
(created from exponentially rising write pulses) to the optimal spin shapes in figure 2.

3.2. Performing fast retrieval
We now proceed with the retrieval process, and spell out the exact requirements for a certain implementation of
retrieval—the fast m-pulse using a square waveform of duration 7x. Once again, we focus on retrieval processes
completed well within the spin wave decoherence time and performed under relevant experimental conditions.
We thus ignore both the spin decoherence and Langevin noise terms in equation (1). Here we have implicitly
assumed that the energy levels of the |¢) and |s) levels are degenerate’. See [15, 17] for details.

With a resonant square retrieve pulse in the backward direction (see figure 1(c)) one finds the following
simple expression for the dynamics of the spin wave (details given in appendix A.1)

SQu, t) + AS(u, t) + BS(u, t) = 0, (10)

where A = ’yeg(l + Liu) and B = Q3 (for real {2y), and we have taken the Laplace transform L — z = z/ — u.
In the regime® where 20 > %g(l + d), wefind 4B >> A%, and obtain the following solution

S(u, t) = e A2 cos(RH)S(u, t = 79), (11)

which yields the following expression

_ |
P(u,t)=—0S(u, t
(u, t) o (u, 1)
= Le*?‘(é cos(Qrt) + O sin(QRt))S(u, t=T4), (12)
Or 2

where we then see that with a sufficiently fast w-pulse (such that 2Qz 7y = 7) obeying v, (1 + d) Tp < 2, 0ne
can convert S to Pwithoutloss, yielding

7 The phase-matching condition in one dimension is fully satisfied for co-propagating pulses and emissions, even in the non-degenerate
case. For counterpropagating strategies like the one we suggest, one requires the condition |Ak|L < 1, where Ak = kw — ky(=kgp — k;)
refers to the difference in wave vector along our 1-dimensional system for the write (read) control and photon fields (see appendix C).

8 A . = s .. .

In considering the lossless preparation of P (u, t) from S(u, t = 74), requiring 2Q2g > (1 + d) for the m-pulse can be demanding.
However, we show in appendix A.3 that one can achieve the same retrieval efficiency even in the slow readout regime where we do not
separate the P preparation process from the emission.
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Figure 3. Retrieval efficiency as a function of the optical depth. Blue circles indicate the retrieval efficiency from the optimal spin wave.

Yellow triangles (green diamonds) indicate the efficiency from backward (forward) retrieval for the proposed recipe that uses an
exponentially rising write control field. The black dashed line indicates the retrieval efficiency using the standard approach with off-

(13)

resonant write control fields.

Plu, m + 1) =~ iS(u, t = 19).
The emitted read photon field can then be obtained by solving the set of equations in (1) after the fast read

control field has ended (see appendix A.2), giving

. ’Yegd _ L ’Vegd "
E0, 1) =1, | —=—e Tt 2 t(L —
()1,/6Le fofo L )

(14)

P(L — z/, = + 1) dz/".

Along with equation (13) and noting that fOOC e ], (2BVx)], 2yVx)dx = é[,, (%) (—%) [18],

this emitted field then yields a retrieval efficiency given by equation (6).

3.3. Comparison

We have seen that the proposed retrieval protocol yields a dependence on the spin shape, as described by
equation (6). Hence we now compare the retrieval efficiencies attainable with our protocol and compare them to

the optimal ones.

We can estimate the achievable efficiency of our protocol by choosing a write pulse duration such that the
heralded spin shape best fits the optimal spin shape. A good approximation to this write pulse duration is well

described in [19], and given by
1 1 (15)

approx __
TP = — -
Veg 1 + 3

As we show below, this simple expression for the write pulse duration essentially produces the optimal efficiency
available for a given optical depth. This is hence the write pulse duration we recommend.

We also compute the retrieval efficiencies 77" that would be obtained if the resonant write pulse of duration
were to be followed by a co-propagating retrieve pulse instead. This would result in a situation where the

approx
Tw
spin wave would be far from optimal with respect to the retrieval direction. In figure 3, we compare the optimal
and 1™ obtained with our proposal (from a spin wave created from a resonant

efficiency 7%, the efficiencies "

exponential pulse with duration 73/P"*) together with the efficiency of the standard approach using far off-
resonant write pulses, for which the efficiency is bounded by the complete retrieval efficiency from a flat spin
(16)

wave [15]
nofffres -1 — e*d(lo(d) + L(d)),

which we have verified numerically. This retrieval efficiency is valid for retrieval from both the forward and

backward directions from a flat spin wave.
Our proposal approaches optimal efficiencies, performing within ~10> of * and compares favourably
with respect to the standard off-resonant case. The improvement in efficiency is dependent on the optical depth,

and we present some values in table 1.
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Table 1. Comparison of retrieval efficiency from different

spin shapes.

d 77l"wd nofff res nrcs 77*
0.1 0.047 6 0.047 6 0.047 6 0.047 6
1 0.3140 0.326 3 0.330 5 0.330 5
10 0.567 1 0.750 9 0.813 4 0.814 2
20 0.618 3 0.8227 0.892 1 0.897 3

100 0.760 0 0.920 3 0.972 8 0.974 5

Finally, we have also investigated the on-resonance retrieval with an exponentially increasing write pulse
using non optimised pulse widths (ryy = fye_gl), but find a saturation of only ~67 % of the retrieval efficiency for

high optical depths.

3.4. Retrieval into a single mode

For a single photon source to be useful, one needs to not only efficiently emit a single photon, but also to ensure
that the said photon is emitted in a single mode. In our model we have assumed that the write and read photons
are each in a single mode.

For an actual implementation, one way to check that a single mode for the write and read photons are
collected and detected, is to perform an autocorrelation measurement with two detectors after a 50-50
beamsplitter (see appendix D). Under the assumption that the write and read photons are correlated through
vacuum squeezing processes, this measurement allows us to determine the number of emission modes K, as it
gives g@ ~ 1 + % [20] (valid in the absence of detector noise and for small emission probabilities).

4. Feasibility study of Rubidium-87

For a feasibility study we consider a A-system consisting of the following energy levels from the D-2 transition of
Rubidium-87: |g) = |5%S,/2, F = 2, mp = 2), |s) = |5°S;/2, F = 1, mp = 0)and |e) = |5°P;,5, F =
2, mp = 1). By taking into account the relevant branching ratios, we take Vog = %(2%)6.067 MHzand v, =

%(277)6.067 MHz.

We first consider an optical depth of d = 20 on the |e) — |g) transition. From equation (15), we find thata
suitable write control field duration is given by ~,, 7{{*** = 0.09. This implies a field duration of 73{*"** ~ 29

ns. Further considering an optical depth of d = 20 onthe |e) — [s) transition and a weak write control field such
that Q™ 7y = 0.01, the number of write photonsis 7, = 2 x 10~ * within a short detection window of
Tq & 100 ns. We note that the ability to create pulses with a rising exponential shape with field amplitude
duration as low as 20 ns has already been demonstrated in works such as [21, 22].

Subsequently, the retrieval pulse on the |e) — |g) transition requires a Rabi frequency of
Qr > (2m)5.3 MHz, with a predicted retrieval efficiency of 89%, essentially achieving 17 (see table 1). This
compares favourably to the retrieval efficiency from a flat spin wave 1°f~7¢ = 829%.

5. Conclusion

In this work, we have discussed conditions for the optimal generation of single photons from spontaneous
Raman processes in cold atoms.

We have first recognised that the ability to create favourable spin wave shapes can significantly improve the
heralded retrieval efficiency. Since the reemission process is collective, the retrieval process benefits from all
atoms participating favourably, in this case benefitting from a particular optimal spin shape. A resonant write
pulse offers the option to create spatially varying waves due to its significant interaction through the sample. We
have thus proposed a detailed recipe to create single photons with efficiencies that compare favourably to
standard strategies utilising flat spin waves.

The recipe focuses on cases where the spin coherence time is longer than the optical coherence times and
consists in first specifying the decay rates 7, and 7,; from the excited states and the optical depths dand d on the
le) — |g)and|e) — [s) transitions. Then the recipe fixes the duration of the detection window to be smaller than
the shortest decoherence times, that is, the minimum of 1/ ., and 1/7,, while maintaining that the number of
write photons is sufficiently low. Finally, the recipe proposes to take for the write pulse an exponential rising

-1
function in time, whose duration is given by 7/P* = 'ye_g] (1 + %) . To estimate the heralding rates, one can
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next compute the write photon number with the formula in equation (8) given the Rabi frequency of the write
pulse. The readout efficiency obtained with a fast readout pulse, that is a readout pulse with a duration much
smaller than the atomic coherence times, reaches the values given in figure 3 (yellow triangles) as soon as the
corresponding Rabi frequency defines essentially a m-pulse. This recipe describes a convenient way to come close
to the optimal efficiency of single photon sources with given optical depths based on spontaneous Raman
processes. This work could help in the implementation of the first quantum repeater protocol successfully
outperforming the direct transmission of photons [4].
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Appendix A. Retrieval process

A.1. Retrieval emission dynamics

Webegin from the Hamiltonian H = Hy + V (see [15]), where we consider an atomic sample of length L, and a
classical field sent from the z = Lside of the sample. Choosing |¢) to be the energy level reference for the atomic
states, we have

N
Hy = f dwiwdla, + S (iwol, + fiw,ol,) 17)
i=1

N . . . —z;
V= —/iZ(QR(t _Lza ; Z’)U;e‘i“ZteJr'“z(Lf )

i=1

+g /L fdw awei“’gaig + h.c.], (18)
27c

where UL,, = |u); (v indicates atomic level operators for the ith atom, and a,, indicates the annihilation operator
for the photonic mode at frequency w. w, (w1) indicates the frequency of the read control (photon) field,
respectively. Note that we are considering resonant pulses, so we have w; (w,) = w, (w;). Using

N

A=W — w)o's + hnol] + fw f dw £l E( 1),
i=1

U= efiAt/)'z,

for the change of frame, then in the continuum limit, we obtain
Hyew =UHU — A
- f dw fwalay — fin f dz Ei(z, HE(z, 1)
+ %f dz{—/1Ok(z, t)0w(z, et = + H.c.

— 8&:(z, 1) 0y (2, f)etiwtes 4 H.c.},
L—z

where we have defined a real Rabi frequency Qg (z, t) = Qr(t — Yand E(z, t) =

c

L i (w—wpk=z Tros . . . . .
N f dw e“ifa,el@=“0" Using the field propagation equation along with the Heisenberg-Langevin
equations of motion, we have in a moving coordinate frame, ignoring spinwave decoherence and the noise
terms, and also considering that o, ~ 1,

8z‘c/’r(z) ) =-— z, t)

OP(z, 1) = —eP(z, ) + igVNE(z, 1) + iR (H)S(z, 1)
8tS(Z) t) = iQR(t)P(z) t))

ig\/ﬁp(
c
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d L1z : -z .
where g’N = %, P(z, t) = \Nog(z, t)e 1 and S(z, t) = VN (z, t)e~ i@ Tn the continuum
limit, the spin and field operators obey the following commutation relations

L
[0'(1/3(2; £, 0'/11/(2/; B] = N(S(Z - Z/)(§s3u0'(x1/(zy t) — bua (19)
(€ 1), €z 1] = L6t — 1. (20)
(s

Rewriting equations (A.1) in the reverse direction e.g. £.(2’, t) = E(L — z, t) = &.(z, t), and taking the
Laplace transform from z’ — u we obtain

2wt = SN s Lew =0,
cu u
OP(u, t) = =Y P(u, 1) + igVNE(u, t) + iQ(t)S(u, 1),
OS(u, t) = I (P (u, 1). (21)

We can combine these three equations into a single differential equation, where we have ignored the boundary
term &,(z' = 0, t) since we send the read control field into the z = L side of the atoms. On resonance (A = 0),

let A= Vg T g:—uNandB = f tosee

S(u, t) + AS(u, t) + BS(u, t) = 0. (22)

A.2.Fastretrieval
In the strong regime for the read control field, one requires 2|z | > Vg (1 + d), which implies

d !/
20 > %g(l + TZ)

d
=20 > %g(l + —),
Lu

which then yields the regime 4B > A2
The solution for equation (22) in this regime is

Su, t) = e A2 cos(Ort) G (1) + e 4/ 2sin(Qrt) Ca (1),

where the initial condition implies
S(u, t) = e A2cos(Qrt)S(u, t = 0).

One can then find the prepared polarisation in terms of the intial spin condition,

P(u: t) = éatg(u) t)
R

i

= —e*?’[g cos(Qt) + sin(QRt)]g(u, t=0).

In the limit where we have a sufficiently strong read control field (202 > %% g(l + d)), the m-pulse is
completed quickly and we obtain a lossless preparation of P (u, t) from S(u, t = 0) in the form

P(u, 1) = iS(u, t = 0). (23)
Once the polarisation is prepared, we find the emission by solving for the dynamics in the absence of the laser,

gVN

c
(at + Weg)p(z) ) = igmgr(za £).

Taking the Laplace transform from L — z = z’ — u and neglecting the boundary term since it does not
contribute to the photon number, we have

0,&(z, t) = —i P(z, 1),

gJIN
cu

Eu, 1) =i P(u, 1),

_ . - g°N
O + %) P(u, t) = igINE(u, t) = —=—P(u, 1).
cu
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This yields the evolution of P(u, t) after its preparation from S(u, ),

N
P(u, t) = o () WPy, w), (24)

and gives an emitted field of

] N
g, 1) = T,

c
z/ 2
X f dz%lz\/ﬂ(tm)(z’z”)]ﬁ(z', ™,
0 (o

where J, [x] refers the nth Bessel function of the first kind. Now with z/ = L — z, we require the fieldatz = 0
for backward retrieval, and we finally obtain

&N

t

gr(o) t) = -

y fL dZ//]Olz g2—Nt(L _ Z”)]S(L _ Z”, 0)’ (25)
0 c

where we have used equation (23) for alossless preparation.

e e

A.3. Slow retrieval
In the weak regime for the read control field, one requires 2|Qg| < Veg? which implies

d
ZQR < ’Yeg(l + Tz)
d
=20 < | 1+ =1
Lu

which then yields the regime 4B < A%
The solution for equation (22) in this regime is

§(u, t) = ef%(A+~/A274B)tCu(l) + ef%(A—\/AzleB)tCu(z)'

When there is no laser (B = 0), there should be no spinwave decay since we have considered zero spin wave
decoherence, sowe set C,(1) = 0and obtain

S(u, t) = e s AVABNG (4 ¢ — (),
Now, in this regime when the Rabi frequency is small, we have

e—sA—VA—4B) _ ef%(AfA 1-45)t

_By
e 4
2
Q ot
=e Uty

This gives
S(u, t) = e KieaS(u, t = 0),

where K = X and s = %. One can proceed to find P (u, t) = %85(14, t)and E(u, t) = igmp(u, 1), giving
v 1R u

eg ¢
gmﬁ[ 1 Kt+f<t(siu)]s‘(u, t=0).
Cc QR

u-+s

Eu, t) = —
This yields

gm K

c

X f e 2Kis(z' — 2")S (2", t = 0)dz”. (26)
0

One can then compute the retrieval efficiency from a single spin wave, and this is found to yield the optimal
retrieval efficiency.

EZ,t)=—

10
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f T dr £(E70, DEO, 1)
0 L

00 2 L L
— f dt %&e—m f dz/" f dz! e—teL—z{—z})
0 L* g 0 0

d d
X IO[ZJKtZ(L -z ]10[2\/102@ —zj ]
X (ST(L — 2/, t=0)S(L — 2, t = 0))

1 fL 1 L d se-zpra-zp
= — dz/” —f dz," —e 21
1 2
LJo LJo 2

"

x Io[d\/L ad \/L—Zz]@*(L — 2/ t=0)SIL — 2/, t = 0))

L L

where I,,[x] denotes the nth modified Bessel function of the first kind. We have made use of the fact that
L) = Gz andalso [ e, QAVEILGrvE) dx = 11, () exp (- 212),

Appendix B. Write process

B.1. Heisenberg-Langevin equations for the atomic coherences
The goal here is to first derive the expressions for the evolution of the atomic coherences in the write process. We
begin from the Hamiltonian H = Hy + V

N
Hy, = fdwmai,aw + 3" (Tl + fiw,al,) @7)

i=1

N
V==Y (Qu(t — zi/c)ol e wit=2/0

i=1
_| L A wzifc i
+g —fdw awe‘“’z*/caes—FH.c.). (28)
2mc

Using

N

A=Y (Mol + Mwoty) + fwn f dz &z, ENz, 1),
i=1

U = e iAt/7

for the change of frame, then in the continuum limit, we obtain
Hyew =U'HU — A
= fdw fala, — Jiws fdz El(z, )EW(z, 1)

T %fdz{fﬁ(lw(t — 2/c) o (2, )€1/ + H.c.

— g&.(z, t)ou(z, f)eiw2z/c + H.c.}, (29)
where we have defined £,,(z, t) = ./ ﬁ elwat fdw a,elw-wiz/c,
Assuming a real Rabi frequency 2, this yields the Heisenberg—Langevin equations as follows:
a'(0—56 = ~VesOse + iQWeiwlz/co—sg
- iggweiwzz/c(o'ee - Uss) + Ee
Owog = — Y005 + e 1 o,
_ iggweiwzz/c%g + Fsg
8t0-eg = —VegTeg — iQWe_iwlz/co-gg + E > (30)
where w; (w5) indicates the frequency of the write control field (write photon field), respectively,
and g’N = %.

B.2. Creating atomic coherences
During the write process we account for possible depletion of the write laser intensity, and hence do not assume
Quw(r, t) to be constant throughout the sample. As a result of the laser we create coherences between the |g) — |e)

11



10P Publishing

NewJ. Phys. 20 (2018) 123018 MHoetal

transition, which forms the initial state for the write photon field. Here we proceed to find the atomic coherences
prepared as a result of our exponential shaped resonant write control field.

For a sufficiently short write control field, the dynamics of the field and the atoms can be described with the
dynamics alongthe |g) — [e) transition. Ignoring the noise terms on o, and making the analogy between the
classical and quantum fields on the |g) — |e) transition,

c0,Qw(z, 1) = ig?Nog (2, t)e 17/,
ato'ge = —Veg Oge + iQW(Z’ t)eJriwlz/CJgg
~ T e e i > iy >
N —Yeg O + 1Qw (2, t)etirz/c 31
where we have assumed that almost all atoms remain in the |g) level.

Let us first assume a write control field with Rabi frequency 2y that begins at t = 0. Taking the Laplace
transforms from ¢t — w, we find

2
N .
0, Qw(z, w) = ig—age(z, w)e iz/e, (32)
c
Oge(2, W) = [iQw (2, w)e“1/¢ + g (2, t = 0)]. (33)
w+ ’Yeg
Insert equation (33) into equation (32), and use the initial condition o(z, ¢ = 0) = 0to obtain
N 1
0, (z, w) = _&R Qw(z, w),
c AW+ Y%

yielding
()
Qwz, w) =e ") Qw(z = 0, w).

Insert this into equation (33) to obtain

1 Gl

1
B
e " " Qw(z =0, w)].

Uge(za w) = (ieiwlz/c)
W+ Vg

After inverting the Laplace transform, we now shift the limits to consider a write control field with support on
negative times, giving

. 3 "
Oz 1) = (ie117/°) f et
—00

d
X ]0[2 %i (t — tl”)z]Qw(z =0, t")dt/, (34)
where J,,(x) indicates the nth Bessel function of the first kind.
Thus, with an exponential write control field Qw (0, t) = Q™ e!/™ sent up to t = 0, we evaluate the
atomic coherence at t = 0 with the help of fo At Jol2 JBtldt = %e*B /A and finally obtain
Oge(2, 0) = e“17/Gpe~ %, (35)
_ s QT _ Teg TW 1
where 6, = L o and a/2 = d1 P

B.3. Write photon emission
After the preparation of atomic coherences, we begin to see spontaneous emission from the |e) level. Along with
the field propagation equation, the relevant Heisenberg—Langevin equations are

c0,Ey = igNe “?/g, (2, 1),
8!@5 = —VesTse — iggweiwzz/c(aee - 0'55) + Ee-

Defining Q" = /Ne~2%/¢g,,, we will consider the write emission for short detection times. Using (35) we
thus replace o,, — o with its mean value at position zand t = 0 to obtain

c0,E(z, ) = igVNQ'(z, 1),
9:Q(z, t) = Q7 (z, 1) — igJN bl e™?E (2, 1)
+ Fj(z, 1). (36)

12
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Performing first the Laplace transform in space (z — s)
Sgw(sa t) - EW(Z =0, t) =A QT(Sr t)>
0iQ'(s, 1) = =% Q" (s, 1) + BEW(s + a, 1)
+EY(s, 1),
and then in time (t — w), we get
SSW(S, w) - SW(Z =0, U}) =A QT(S) w))
Q' (s, w) =

BEW(s + a, w) + Fj(s, w) + Q' (s, t = 0),
VYes + w

where A = i¥% and B = —igJN ;.
Substltutmg the second line into the first, we eliminate Q(s, w) and are left with aboundary term in Q:

A

sE(s, w) — E(z =0, w) ( )[BE(S + a, w)
w

Ves

Fg(s, w) + Qf(s, t = 0)].

The following formula also holds with a shift from stos + o

s+ )u(s+ a,w) — Ew(z =10, w)

= ( )[ng(s + 20, w) + Fi(s + o, w) + Q' (s + a, £ = 0)].
Yes + W

By substituting £,,(s + «a, w) into the previous equation we can find &(s, w) in terms of E,(s + 2, w), and
by taking the substitution into the nth step we have

Ew(s, w) = K(w)'D(n)Ey(s + na, w)
+ %Z KW)D(HFys + (G — Da, w)
j=1

+ %2 K@)/D()Q' (s + (j — Da, ! = 0)
=1

+ K1) JIK W) D(NIEw(Z = 0, w),

j=1

where K (w) =

and D(n) Hk 0 m
Taking the limit of n — 00, the first term disappears, and we proceed to perform the inverse transform

s — z. With ashiftin theindex j, L7[D(j + 1)] = 7(%) and the shifting property of the Laplace

Transform,
Ewlz, w)
1 N U e il g
I Z K(w)]+1f — e—joz Fg)(z”, w) dz”
Bi= o j! o

_ a2z
z l(l e alz—z )ejazﬁQT(Z”, - 0) dZ//
7!

1 & .
Fpo ke,

«

L Sk e 1= OV 00w
K( )] . o w >

A z [ 1
= f eL%estw
VYes + w J0
[ ele=res oier, v = 0)d
0

X //)e—rvz ]Fé(z”) w)dzll

’yes + w
+ M@0 (7 = 0, w), (7)

where M (z/, z") = %[1 _ ez,

13
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Finally, noting that
c—l[ 1 ] _ e VARV RQVAD + hVAD,
Yes + W
E_l[eﬁ] = e_’yest|:\/§ll(2\/A_t) + (5(t):|,
we get

Ewlz, t) = Af f e =D H[a, z, z{', t, t] ]Fg(z1 , t{hdt/"dz/
+A f e =OH[a, z, 2", t, 01Q' (2!, 0)dz,"
0

t
+ f e " Hy(a, 2, 0, t, t")E,(0, t")dt"
0
+ &40, 1), (38)

where

Hi(w, 21, 23, 1, 1) = Io[2yM (21, Z) e "%2(t) — 1) ],
M(z, z —
Hy(a, z, 2, 11, 1) = | %ﬁ 2JM (21, z)e %(t — 1) ].
1— b

B.4. Number of write photons

Computing the photon flux requires the commutation relations for Q and a 2-point noise correlation function
involving Fy,. In a short time window 74 where o, — 0,is not changing, and with the Einstein relations (see Ch
15.5 of [23]), the Langevin equations for system operators can be written

= D,(t) + E,(1). (39)
The corresponding memoryless noise correlations for operators p and v are such that
(B(E") = 2(Dp)6(t" — t"), (40)
where
d
2<DW> = - <A#D,,> - <D#A,,> + a <AuAu>- (41)

Thus, identifying terms in equation (36) with terms in equation (39), we make use of

[Q(z, 1), Q'(Z/, )] = N[0es(z, 1), 0we(2’, 1)]
= Lé(z — 2')|0)2e %, (42)

then we make use of the fact that (Q(z, t)Q(Z/, t)) right after our preparation of atomic coherences is zero,
giving (Q(z, 1) Q' (2, t)) = Lé(z — 2')|fpl2e 7.
Then one obtains

2<DQ,Q*> = ZVesLleolzei(u(S(z - 2), (43)
yielding
(Fo(z, DFY(', 1)) = 2%LlOgPe 26 (z — 2)6(t — 1), (44)

valid when o, — ois not changing.
This yields a photon flux of

L< F(L DEWL, D)) = Cg f “2utH[a, L, 2", t, OPV]6olPe = dz/"

2
+ ig_Nf f e 2t tl)I—I][a,L z/, t, P

% 2 L|Bo2eo7 dz/" 1.

For sufficiently short detection times 7y < 21 , the noise contribution (second term) can be ignored, and

les

52 _ e—al -1 X
furthermore when the photon number is much smaller than 1 (1g < { ¥|90|2 (%) } ) we can consider

just the leading term in the series expansion, and observe a constant flux

14
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%<51\;\7(L) Td) EW(L) Td)>

gzN L " "
= £ [ (12 MIL, 2/le T r etz

g_'zN L n "

~ 7|90|Zj; (1 + 2M[L, z{"le 4 7y + O(13))e = dz/"
—2N _ a~—al

=i ——. (45)

1—e ol

52
We therefore obtain a photon number of ¥|00|2 74 within this short detection window. This is

«
precisely the excited atom fraction multiplied by d, 74, since the fraction of atoms that were excited after the

write pulse is %fOL (Oee (2, 0))dz = %fOL |60 e=2dz = |6,

1— e—aL

al *

B.5. Number of prepared spins
We start with the description of the spin operator from equation (30), by defining S = /N s e iwi—w)z/c and
replacing o,.(z, t) by its mean value f e~/ 2e~112/¢
@+ 7082 D) = Fl(z, ) = —ig VNl 1E, (2, 1oy
= —igVNEu(z, )[0Fe /2.

Take the Laplace transform from ¢ — w to see
W+ 7087z w) = STz, t = 0) — F{(z, w) = C(2)Eulz, w),

where C(z) = —ig+/N0e 2%/2, Then we have

C(2) 1

ST(z, w) = Ewlz, w) + St(z, t = 0) + Fl(z, w), (46)
w =+ Y w+ Y w~+ 7
and noting that Eil[wi 70] = e W' yields
S'(z, 1) = C(2) fo e, (2, )t
+ e NS (z, t = 0) + j; t e W= Fl(, t')dt, (47)

where the field expression £ from the previous subsection is required. Ignoring terms that do not show up in the
normal ordered (S'S), we have

t
Sz 1) = C(z) f dtle—lt—1
0

t!
X ( dt"e """V (a, z, 0, t/, ") E4(0, t") + E£4(0, t’))- (48)
0

Computing (STS) requires the commutator [€,,(z, 1), El@, t"] = Lé[z — z' — c(t — t')]and yields 4 terms.

29,

es

In the short time window where one can ignore the atomic dephasing (Td < %, L), and also where the
0

52 —al -1
photon number is much smaller than 1 (Td < { ¥|90|2 (%) } ), only one term dominates (the term

independent of H,). The number of spins is then equivalent to the photon number

t ’N _ el
lf (S'(z 7)S(z, 7)) dz ~ S g L .
L Jo c o

Appendix C. Phase matching

By assuming the retrieval process to perform retrieval from the exact same spin wave function S(z, t) that has
been created by the write pulse, we have assumed the degeneracy of the two metastable states |¢) and |s). In
general, the metastable states could have different energies which would lead to a read process from

S(z, t)e?w—wz/c However, this effect is negligible in the regime |w, — wslf < 1.
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Appendix D. Second order coherence

D.1. Multi-pair two-mode squeezing
To ensure that a single photon source is single mode in all degrees of freedom, one would have to verify that the
outgoing emission is not produced in a combination of modes. In the system that we consider, one cause for
multi-mode emission are multiple two mode squeezing processes occurring during the initial write process.
Thereafter, the subsequent retrieval process yields a read photon in more than one mode. Here, we include a
short section to explain how the unconditional autocorrelation measurement (g(z)(O)) scales with the number of
driven mode pairs [20], and this allows one to verify that no higher-number two mode squeezing processes have
occured.

Let us first consider the state created by K vacuum squeezing processes

s = (1 = p)¥| e P01 2) (Qe P T vt | (49)

where |?) indicates the vacuum in all modes. Now consider a detector that sees all the K modes, giving a number
operator of the form

K
Ny =Y ala.. (50)
c=1
This yields
I 2
Tr| 3 0 ajacaspp | = [ 2| & + K), 51)
c,d=1 1 - p
- p
Tr Zajaﬂpmulti = —K, (52)
c=1 1 — p

giving the unconditional autocorrelation of the a modes
K ot
Zc)dzlac ajacag
K + 2
(Eiela)

1
< (53)

@ _

multi

which leads us to check if our photon field is indeed consistent with that coming from a single-pair two-mode
squeezing process.
We thus compute the unconditional autocorrelation function of the read photon field at time ¢

) (£1(0, H)ELO, 1)E0, H)EO, 1))

read — (E1(0, H)E0, 1))

In the regime we consider, where we have a short detection time and a fast readout, developing the numerator of
the ¢ function leads to the term

(Ew(0, 1) E(0, 1) EL(O, 1) ELLO, 1)
= <£w(0> fa)[giv((), tc)gw(oy tb) + £5(tb - tc):lgw(()) td)>
Cc

2 2
— (L) o~ 00— 10+ (£) 66— o, — 10,
Cc Cc
which yields
2 2{EH0, )&, 1)
gread = F 2 =2
(€100, )EA0, 1))

asit should, since we assume a mono-mode emission (K = 1). Here we have used equation (25) and the leading
term of equation (48).

ORCIDiDs

Melvyn Ho ® https://orcid.org/0000-0002-2459-1306

16


https://orcid.org/0000-0002-2459-1306
https://orcid.org/0000-0002-2459-1306
https://orcid.org/0000-0002-2459-1306
https://orcid.org/0000-0002-2459-1306

I0OP Publishing NewJ. Phys. 20 (2018) 123018 MHoetal

References

[1] Eisaman M D, Fan ], Migdall A and Polyakov SV 2011 Rev. Sci. Instrum. 82071101
[2] Sangouard N and Zbinden H 2012 J. Mod. Opt. 59 1458
[3] Duan L-M, Lukin M D, CiracJIand Zoller P 2001 Nature (London) 414 413
[4] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[5] Simon Cetal2010 Eur. Phys.]. D58 1
[6] Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Simon C and Tittel W 2013 J. Mod. Opt. 60 1519
[7] HeshamiK, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J and Sussman B J 2016 J. Mod. Opt. 63 2005
[8] RadnaevA G, DudinY O, ZhaoR, Jen HH, Jenkins S D, Kuzmich A and Kennedy T A B 2010 Nat. Phys. 6 894
[9] YangS], Wang X-], Bao X-H and Pan J-W 2016 Nat. Photonics 10 381
[10] Farrera P, Heinze G, Albrecht B, Ho M, Chévez M, Teo C, Sangouard N and de Riedmatten H 2016 Nat. Comm. 7 13556
[11] Simon J, Tanji H, Thompson ] K and Vuleti¢ V 2007 Phys. Rev. Lett. 98 183601
[12] Bimbard E, Boddeda R, Vitrant N, Grankin A, Parigi V, Stanojevic J, Ourjoumtsev A and Grangier P 2014 Phys. Rev. Lett. 112 033601
[13] ChoY-W, Campbell G T, Everett ] L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K and Buchler B C 2016 Optica
31
[14] Gorshkov AV, André A, Fleischhauer M, Serensen A S and Lukin M D 2007 Phys. Rev. Lett. 98 123601
[15] Gorshkov AV, André A, Lukin M D and Serensen A S 2007 Phys. Rev. A76 033805
[16] Mendes M S, Saldanha P L, Tabosa ] W R and Felinto D 2013 New J. Phys. 15075030
[17] Hammerer K, Sgrensen A S and Polzik E $ 2010 Rev. Mod. Phys. 82 1041
[18] GradshteynISand Rhyzik I M 2007 Table of Integrals, Series and Products (Amsterdam: Elsevier)
[19] Vivoli V, Sangouard N, Afzelius M and Gisin N 2013 New J. Phys. 15095012
[20] Sekatski P, Sangouard N, Bussiéres F, Clausen C, Gisin N and Zbinden H 2012 J. Phys. B: At. Mol. Opt. Phys. 45 124016
[21] Golla A, Chalopin B, Bader M, Harder I, Mantel K, Maiwald R, Lindlein N, Sondermann M and Leuchs G 2012 Eur. Phys. J. D 66 190
[22] Dao HL, Aljunid S A, Maslennikov G and Kurtsiefer C 2012 Rev. Sci. Instrum. 83 083104
[23] Meystre P and Sargent M II1 1999 Elements of Quantum Optics (New York: Springer)

17


https://doi.org/10.1063/1.3610677
https://doi.org/10.1080/09500340.2012.687500
https://doi.org/10.1038/35106500
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1140/epjd/e2010-00103-y
https://doi.org/10.1080/09500340.2013.856482
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1038/nphys1773
https://doi.org/10.1038/nphoton.2016.51
https://doi.org/10.1038/ncomms13556
https://doi.org/10.1103/PhysRevLett.98.183601
https://doi.org/10.1103/PhysRevLett.112.033601
https://doi.org/10.1364/OPTICA.3.000100
https://doi.org/10.1103/PhysRevLett.98.123601
https://doi.org/10.1103/PhysRevA.76.033805
https://doi.org/10.1088/1367-2630/15/7/075030
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1088/1367-2630/15/9/095012
https://doi.org/10.1088/0953-4075/45/12/124016
https://doi.org/10.1140/epjd/e2012-30293-y
https://doi.org/10.1063/1.4739776

	1. Introduction
	2. Optimal retrieval
	2.1. Efficiency of a complete retrieval process
	2.2. Optimal spin shapes for complete retrieval

	3. Practical recipe for achieving near-optimal retrieval efficiencies
	3.1. Heralding spatially varying excitations from write photon detections
	3.2. Performing fast retrieval
	3.3. Comparison
	3.4. Retrieval into a single mode

	4. Feasibility study of Rubidium-87
	5. Conclusion
	Acknowledgements
	Appendix A.
	A.1. Retrieval emission dynamics
	A.2. Fast retrieval
	A.3. Slow retrieval

	Appendix B.
	B.1. Heisenberg–Langevin equations for the atomic coherences
	B.2. Creating atomic coherences
	B.3. Write photon emission
	B.4. Number of write photons
	B.5. Number of prepared spins

	Appendix C.
	Appendix D.
	D.1. Multi-pair two-mode squeezing

	References



