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ABSTRACT

The theranostic sodium iodide symporter (NIS) gene allows detailed molecular 
imaging of transgene expression and application of therapeutic radionuclides. As 
a crucial step towards clinical application, we investigated tumor specificity and 
transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes 
as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse 
model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human 
disease. PDAC was induced in mice by pancreas-specific activation of constitutively 
active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-
PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol 
and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing 
plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell 
explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated 
high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 
123I gamma camera imaging and three-dimensional high-resolution 124I PET showed 
significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/
NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in 
significantly reduced tumor growth compared to controls as determined by magnetic 
resonance imaging, though survival was not significantly prolonged. This study opens 
the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after 
systemic non-viral NIS gene delivery.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is 
currently the fourth leading cause of cancer-related 
mortality in developed countries despite its comparably 
low incidence of less than 3 %, clearly demonstrating 
the lack of effective therapeutic strategies. The five-year 
survival rate is around 7 % for all stages of the disease and 
drops to below 2 % and a median survival of less than a 
year for patients with metastatic disease, mostly due to late 
diagnosis at the stage of inoperability and the unusually 
high resistance of PDAC to conventional radiation 
and chemotherapy [1, 2]. Despite intensive scientific 
and industrial efforts, so far no significant extension of 
survival could be achieved by any of the numerous therapy 
approaches tested [3].

The genetic and morphological changes in the 
carcinogenesis of PDAC are well known and include 
the initiation and progression of premalignant lesions 
to invasive and metastatic pancreatic cancer [3–6]. The 
genetic hallmark of PDAC development is an activating 
mutation in the KRAS oncogene, followed by other genetic 
changes, commonly including inactivation of the tumor 
suppressors TP53, CDKN2A (P16INK4A) and SMAD4, and 
activation of several growth factor receptors, such as the 
epidermal growth factor receptor (EGFR) [3, 7].

Against this background, several complex 
genetically modified mouse models of PDAC that mirror 
the typical changes found in human patients, have been 
generated in recent years [3, 4, 8–10]. One such model is 
the Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (Kras;p53) mouse. 
Here, PDAC is induced by pancreas-specific activation 
of constitutively active KrasG12D in combination with 
conditional deletion of Trp53 [8]. To restrict these genetic 
modifications to the pancreas, mice with the mutated 
alleles are interbred with animals that express the Cre 
recombinase driven by the pancreas-specific promoter for 
Ptf1a, a subunit of pancreas transcription factor 1 (Ptf1) 
that is required to commit cells to a pancreatic fate during 
embryonic development [4, 11]. Thus, the activation of 
the oncogenic KrasG12D via excision of a transcriptionally 
inhibitory LSL (loxP-STOP-loxP) construct and deletion of 
the floxed tumor suppressor Trp53 occur in the pancreas 
only, leading to ductal lesions with complete penetrance 
[4, 12]. The development of endogenous mouse models 
away from the usual transplant models represents a 
significant step in the evolution of preclinical models 
[13]. The morphological and molecular composition of 
endogenous tumors far better reflects human disease, 
making them highly suitable to predict the clinical 
effectiveness of a specific treatment strategy.

The sodium iodide symporter (NIS; SLC5A5) 
mediates the uptake of iodide into thyroid follicular cells 
allowing both diagnostic and therapeutic application of 
radioiodide in thyroid cancer patients [14, 15]. In our 
previous work, we have extensively investigated the dual 

reporter/therapy capacity of NIS in various non-thyroidal 
tumors and have proven the feasibility of extrathyroidal 
radioiodide therapy after tumor-selective NIS gene 
transfer [16–26]. Transfection of cancer cells with the 
NIS gene allows non-invasive monitoring of functional 
NIS expression and in vivo biodistribution before the 
application of a therapeutic dose of radioiodide. One of 
the major hurdles of efficient and safe application of the 
NIS gene therapy concept in the clinical setting is optimal 
tumor-specific targeting in the presence of low toxicity and 
high transfection efficiency of gene delivery vectors, with 
the ultimate goal of systemic vector application.

In a previous study, we used synthetic polyplexes 
based on pseudodendritic oligoamines with high intrinsic 
tumor affinity for NIS gene therapy in a syngeneic 
neuroblastoma mouse model as well as a subcutaneous 
human hepatocellular carcinoma mouse model [16, 18]. 
After systemic NIS gene transfer, the tumor-selective 
accumulation of radioiodide was sufficient for a significant 
therapeutic effect. In addition to an intrinsic tumor affinity 
due to the so-called enhanced permeability and retention 
(EPR) effect based on “leaky” tumor vasculature, the 
tumor targeting of polyplexes can be further optimized by 
the attachment of tumor-specific ligands. To this end, in 
a subsequent study, we used LPEI-PEG-GE11 polymers 
composed of linear polyethylenimine (LPEI), shielded by 
polyethylene glycol (PEG) and coupled to the synthetic 
peptide GE11 as an EGFR-specific ligand for NIS gene 
delivery [17]. After systemic application of these polymers 
condensed with NIS DNA, tumor-specific radioiodide 
accumulation demonstrated effective and EGFR-specific 
tumor targeting in a high EGFR-expressing xenograft 
mouse model of hepatocellular carcinoma. After the 
injection of a therapeutic dose of 131I, tumoral iodide 
uptake was sufficiently high for a significant delay of 
tumor growth and prolongation of animal survival [17].

Based on our previous work and the well-known 
characteristic upregulation of EGFR in PDAC, we 
investigated the potential of EGFR-targeted polyplexes 
for systemic NIS gene therapy in an advanced endogenous 
mouse model of PDAC as a next step towards clinical 
application.

RESULTS

Iodide uptake studies in vitro

In order to optimize transfection conditions for 
LPEI-PEG-GE11 polymers condensed with the NIS 
plasmid (LPEI-PEG-GE11/NIS) in high EGFR-expressing 
PDAC cell explants derived from Kras;p53 mice (Figure 
1A), radioiodide uptake activity was evaluated 24 h after 
polyplex application (data not shown). A conjugate to 
plasmid (c/p) ratio of 0.8 resulted in highest transfection 
efficiency at lowest cytotoxicity. Therefore, this c/p 
ratio was used in all subsequent experiments. Twenty-
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four hours after transfection with LPEI-PEG-GE11/NIS, 
cell explants from three different mice showed a 22-26-
fold increase in 125I accumulation as compared to cells 
incubated with the empty control vector LPEI-PEG-GE11 
(Figure 1B). Transfection with untargeted LPEI-PEG-
Cys/NIS (targeting ligand GE11 replaced by a cysteine 
residue) resulted in significantly lower iodide uptake 
activity compared to EGFR-targeted LPEI-PEG-GE11/
NIS (Figure 1B). In both cases, iodide uptake was blocked 
upon additional treatment with the NIS-specific inhibitor 
perchlorate.

To further verify EGFR-specificity of the targeting 
ligand GE11, we performed additional iodide uptake 
studies in EGFR-ablated PDAC cell explants from Ptf1a+/

Cre;Kras+/LSL-G12D;Trp53loxP/loxP;Egfrfl/fl (Kras;p53;Egfr) mice. 
No significant difference between transfection with targeted 
LPEI-PEG-GE11/NIS or untargeted LPEI-PEG-Cys/NIS 
polyplexes was observed (Figure 1C). Polyplex-mediated 
NIS gene transfer did not affect cell viability for any of 
the treatment conditions compared to untreated cells as 
measured by MTS assay (data not shown).

123I scintigraphy and 124I PET imaging of EGFR-
targeted NIS gene delivery

Functional NIS expression in mice with high 
EGFR-expressing PDAC was imaged by whole body 123I 
gamma camera and 124I PET imaging. Polyplexes were 
administered intravenously (i.v.) either 24 or 48 h before 
injection of the respective radionuclide for imaging.

In vivo 123I gamma camera imaging revealed high 
levels of NIS-mediated radionuclide accumulation in 
pancreatic tumors both at 24 and 48 h after systemic 
injection of EGFR-targeted LPEI-PEG-GE11/NIS 

(Figures 2A, 2B). Tumors accumulated 10.8 ± 0.7 % of the 
injected dose per gram (ID/g) with an average biological 
half-life of 4 h at 24 h and 14.2 ± 1.4 % ID/g with an 
average biological half-life of 4.5 h at 48 h (Figure 2E). 
For 131I, a tumor-absorbed dose of 74.7 mGy/MBq/g tumor 
with an effective half-life of 3.2 h (24 h after polyplex 
administration) and 96.5 mGy/MBq/g tumor, effective 
half-life 4.5 h (48 h after polyplex administration), was 
calculated. In contrast, injection of non-coding control 
polyplexes LPEI-PEG-GE11/antisenseNIS (NIS sequence 
back to front) resulted in no significant tumoral radioiodide 
accumulation (Figure 2C). In addition to 123I uptake in the 
tumor, radioiodide accumulation was also observed in 
the stomach, the thyroid and the salivary glands, as they 
physiologically express NIS, as well as in the urinary 
bladder due to renal radionuclide elimination (Figures 
2A-2C). To further confirm that tumoral iodide uptake 
was indeed NIS-mediated, LPEI-PEG-GE11/NIS-injected 
mice were additionally treated with the competitive NIS-
inhibitor perchlorate 30 min before 123I administration, 
which completely blocked polyplex-mediated tumoral 
iodide accumulation in addition to physiological uptake 
in the stomach, the thyroid gland and the salivary glands 
(Figure 2D).

To better distinguish tumoral uptake from iodide 
accumulation in the stomach, we additionally employed 
three-dimensional high-resolution 124I PET to image 
radioiodide biodistribution. Again, systemic injection of 
LPEI-PEG-GE11/NIS resulted in strong transfection of 
tumor tissue at both time points (Figures 2F, 2H), an effect 
that was not seen in mice treated with LPEI-PEG-GE11/
antisenseNIS (Figures 2G, 2I). Quantification of tumoral 
124I uptake again revealed significantly higher radioiodide 
accumulation 48 h after i.v. injection of LPEI-PEG-

Figure 1: Iodide uptake in PDAC cell explants in vitro. Kras;p53 mice develop PDAC that occupies a large portion of the abdominal 
cavity below the stomach (A). (B) PDAC cell explants from three separate mice (three technical replicates per mouse) transfected in vitro 
with LPEI-PEG-GE11/NIS showed a significant increase in perchlorate- (ClO4

--) sensitive 125I accumulation compared to transfection with 
LPEI-PEG-Cys/NIS (mean ± S.E.M.; *p<0.05; **p<0.01; ***p<0.001). No iodide uptake above background levels was observed in cells 
transfected with LPEI-PEG-GE11 alone. (C) Transfection of EGFR-ablated PDAC cell explants from two mice (three technical replicates 
per mouse) with LPEI-PEG-GE11/NIS and LPEI-PEG-Cys/NIS showed no significant differences between transfection with targeted or 
untargeted polyplexes, demonstrating EGFR-specificity of the targeting ligand GE11 (mean ± S.E.M.).
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GE11/NIS as compared to 24 h after NIS gene transfer 
(Figure 2J).

Ex vivo analysis of NIS expression in PDAC

48 h after polyplex administration, mice were 
sacrificed and dissected. Tumors and non-target organs 
(liver, lung) were analyzed for NIS mRNA expression by 
quantitative real-time PCR (qPCR). A 20-fold increase 
in NIS mRNA expression was detected in PDAC lesions 
from mice injected with LPEI-PEG-GE11/NIS as 
compared to untreated tumors (Figure 3A). In contrast, 
no significant NIS mRNA expression above background 
levels was observed in non-target organs and tumors 
of mice treated with the control vector LPEI-PEG-
GE11/antisenseNIS (Figure 3A). In tumors from LPEI-

PEG-GE11/NIS-treated mice, areas of NIS-specific 
immunoreactivity were observed surrounding ductal 
lesions by immunohistochemical and immunofluorescence 
staining using a human NIS-specific antibody (Figure 
3B). NIS staining was found to be both cell membrane-
associated and cytoplasmic. In contrast, tumors from 
mice treated with the control vector LPEI-PEG-GE11/
antisenseNIS showed no NIS-specific immunoreactivity 
(Figure 3B).

NIS-mediated 131I therapy of PDAC

PDAC-bearing mice were treated with three cycles 
of LPEI-PEG-GE11/NIS followed by 131I 48 h later – the 
optimal time point for radionuclide injection based on 
the imaging studies. Controls were injected with non-

Figure 2: In vivo imaging of NIS-mediated iodide uptake. 123I scintigraphy revealed pancreatic tumoral radioiodide uptake 24 h 
(A) and 48 h (B) after injection of mice with LPEI-PEG-GE11/NIS that was not seen after injection with non-coding LPEI-PEG-GE11/
antisenseNIS (C) Iodide uptake was perchlorate-sensitive (D) and therefore indeed NIS-mediated. (E) Radionuclide retention time in 
tumors was determined by serial scanning over 10 h (mean ± S.E.M.; 24 h: n=9, 48 h: n=7). 124I PET-imaging confirmed findings of 
scintigraphy and allowed better differentiation between tumoral and stomach radioiodide uptake (F, H) After injection of the control vector 
LPEI-PEG-GE11/antisenseNIS (G, I), no pancreatic iodide uptake activity above background levels could be detected. Significantly higher 
radioiodide accumulation 48 h after gene transfer as compared to 24 h was confirmed by PET (mean ± S.E.M.; n=5 each; *p<0.05) (J) SG: 
salivary glands.
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Figure 3: Analysis of NIS mRNA and protein distribution ex vivo. NIS-specific qPCR analysis revealed a 20-fold increase of NIS 
mRNA expression in pancreatic tumors of mice injected with LPEI-PEG-GE11/NIS as compared to tumors of untreated mice. In contrast, 
NIS mRNA was not increased in non-target organs and in tumors of mice injected with the control vector LPEI-PEG-GE11/antisenseNIS 
(mean-fold change ± S.E.M.; ***p<0.001) (A) Both immunohistochemical (B, upper three panels; magnification: 10×, 20× and 40×) 
and immunofluorescence staining (B, bottom panel; magnification: 200×) of sections of pancreatic tumors revealed areas of NIS-specific 
immunoreactivity after systemic application of LPEI-PEG-GE11/NIS. In contrast, tumors treated with the control vector LPEI-PEG-GE11/
antisenseNIS showed no NIS-specific immunoreactivity.
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coding LPEI-PEG-GE11/antisenseNIS and 131I or saline 
only. Tumor progression was monitored by magnetic 
resonance imaging (MRI). Mice in the therapy group 
showed a significant stabilization of tumor growth and, 
in two cases, even a reduction in tumor volume (Figures 
4A, 4D), while aggressive tumor growth was observed 
in both control groups (Figures 4B-4D). This led to an 
enhanced survival in the therapy group that lived up to 28 
days post therapy start with a median survival of 25 days, 
as compared to the antisenseNIS group that survived up 
to 13 days with a median survival of 11 days and saline 
controls that lived up to 21 days, median survival 21 days 
(Figure 4E). The effect on mouse survival was, however, 
not significant.

DISCUSSION

While the incidence of PDAC is gradually 
increasing, the prognosis of patients with pancreatic 
cancer has not significantly changed over the last 20 
years – despite numerous advances in diagnostic imaging, 

surgical techniques and chemotherapeutic strategies 
[3, 27]. Intensified chemotherapy protocols in patients 
with advanced pancreatic cancer show a significant, 
yet still unsatisfactory survival benefit [28]. So far, no 
targeted agent or approach has changed this fatal course 
of the disease, even though preclinical trials in in vitro 
cell culture systems and in vivo xenograft models had 
shown promising results [3, 28]. These set-backs can 
mainly be attributed to the complexity of the disease. 
The homogeneous molecular equipment, simple stromal 
architecture and immune deficiency of xenograft 
models limits their transferability to the clinical setting. 
Endogenously grown tumors, in contrast, are genetically 
and morphologically heterogeneous, less vascularized and 
harbor a far more complex microenvironment with high 
immunosuppression and extensive desmoplasia [29, 30]. 
Genetically engineered mouse models that closely reflect 
the key aspects of pancreatic carcinogenesis have been 
shown to correlate well with data from clinical trials and 
provide an exciting new platform to predict human tumor 
responses to treatment [13].

Figure 4: Therapeutic application of 131I after NIS gene transfer in vivo. Kras;p53 mice were treated with three cycles  
of i.v. injection of polyplexes on days 0/4/7 followed by i.p. injection of 55.5 MBq 131I 48 h later, on days 2/6/9. Tumor sizes were 
monitored weekly by MRI. Exemplary MRI images of endpoint tumor sizes from an LPEI-PEG-GE11/NIS + 131I- (A), an LPEI-PEG-GE11/ 
antisenseNIS + 131I- (B) and a NaCl + NaCl-treated Kras;p53 mouse are shown (C). Tumors are highlighted by red dotted lines. (D) Mice 
treated with LPEI-PEG-GE11/NIS + 131I (n=6) showed a stabilization in tumor volume compared to control groups LPEI-PEG-GE11/
antisenseNIS + 131I (n=3; mean ± S.E.M.; *p<0.05) and NaCl + NaCl (n=4; **p<0.01). Mean tumor volumes (solid lines) and volumes for 
individual mice (dotted lines) are shown. (E) Injection of LPEI-PEG-GE11/NIS + 131I led to an increased overall and median survival in the 
therapy group (n=6) compared to control groups injected with LPEI-PEG-GE11/antisenseNIS + 131I (n=3; n/s) or NaCl + NaCl (n=4; n/s).
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After the proof-of-principle of our polyplex-
mediated NIS gene therapy concept in different 
subcutaneous xenograft tumor models [16–18], the 
genetically engineered mouse model of PDAC used in 
this study provides an important step towards further 
development towards clinical application. Based on the 
known activity of EGFR in PDAC and this model, we 
chose EGFR-targeted LPEI-PEG-GE11 polymers as 
delivery vehicles for the NIS gene [17, 31, 32].

Transfection of PDAC explant cell cultures with 
LPEI-PEG-GE11/NIS led to significant perchlorate-
sensitive and therefore NIS-mediated radioiodide 
accumulation. The empty vector LPEI-PEG-GE11 did 
not result in iodide accumulation above background 
levels, further confirming NIS-dependency of radioiodide 
accumulation. Iodide uptake was significantly reduced 
after transfection with non-targeted LPEI-PEG-Cys/
NIS, demonstrating improved transfection efficiency 
using the targeting ligand GE11. EGFR-specificity of 
targeting was further substantiated by the observation that 
in EGFR-negative cultures derived from Kras;p53;Egfr 
mice, no significant difference between transfection with 
EGFR-targeted or non-targeted vectors was observed. 
Translating these promising in vitro results to systemic 
vector application in vivo, intravenous administration of 
LPEI-PEG-GE11/NIS resulted in a significant perchlorate-
sensitive tumor-specific iodide uptake in mice harboring 
endogenous PDAC tumors, as demonstrated by 123I gamma 
camera imaging. Three-dimensional 124I PET imaging 
with increased sensitivity and resolution was employed 
for more accurate quantification of tumoral radioiodide 
uptake, as radionuclide signals from pancreatic lesions 
partially overlap with stomach signals based on 
physiological gastric NIS expression. Results from PET 
imaging confirmed gamma camera imaging results with 
strong radioiodide signals in pancreatic tumors. Control 
experiments with LPEI-PEG-GE11/antisenseNIS showed 
no significant tumoral radioiodide accumulation above 
background levels, confirming NIS-specificity of tumoral 
tracer uptake. These molecular imaging data were further 
corroborated by NIS-specific immunohistochemistry and 
immunofluorescence as well as qPCR analysis.

Both the abundance and the permeability of the 
tumor’s vasculature are crucial for sufficient transgene 
delivery into the tumor [33, 34]. One of the main factors 
thought to hamper efficient drug delivery to PDAC, 
is its highly desmoplastic stroma alongside its high 
interstitial pressure and poor vascularization [35]. Thus, 
the enhanced permeability and retention effect that is 
caused by the irregular, “leaky” tumor vasculature and 
is usually exploited for passive targeting of therapeutic 
agents to tumor sites, is limited in PDAC [34, 36]. For 
this reason, an additional tumor-targeting strategy is 
particularly important. Our imaging data convincingly 
demonstrate that targeting our polyplexes to EGFR 

allows strong transfection of pancreatic tumors with NIS. 
In a previous study, using the same vector construct in a 
subcutaneous hepatocellular carcinoma xenograft model, 
a tumor-absorbed dose of 47 mGy/MBq/g was calculated 
for 131I 24 h after polyplex administration [17], while in the 
current study, a dose of 74.7 mGy/MBq/g tumor 24 h post 
polyplex injection was achieved. We mainly attribute this 
significantly enhanced tumoral radioiodide uptake to the 
very high EGFR expression in PDAC. NIS staining was 
restricted to areas of high EGFR expression surrounding 
ductal lesions [7]. This focal pattern of transgene 
expression further underlines the advantage of NIS as 
therapy gene in this setting, as the high radionuclide 
bystander effect allows destruction of tumor cells beyond 
transfected cells.

Building on these promising results, the next logical 
step was to evaluate the therapeutic effectiveness of 
131I in the PDAC mouse model after LPEI-PEG-GE11-
mediated systemic NIS gene delivery. We were able 
to demonstrate stabilization, and, in two cases, even a 
pronounced reduction, of tumor growth after application 
of three cycles of LPEI-PEG-GE11/NIS followed by 
131I. Mouse survival was prolonged in the therapy group, 
especially compared to the non-coding LPEI-PEG-GE11/
antisenseNIS-treated control group, although without 
reaching statistical significance, despite the strong effects 
on tumor growth. Interestingly, while animals in the saline 
group had to be sacrificed due to compromised well-
being owing to excessive tumor growth, the non-coding 
control group showed signs of ill health at much lower 
tumor volumes and had to be sacrificed. Similarly, effects 
on animal health were observed in the therapy group, 
though to a lower extent. We attribute this observation to 
toxicity of the LPEI-based conjugates, possibly combined 
with effects from 131I. Due to the stabilization of tumor 
growth in therapy animals, they fared better than the non-
coding control group that was potentially affected by 
side effects from polyplex and radioiodide injection in 
addition to rapid tumor growth. To date, the use of LPEI-
based polymers did not affect animal health in any of our 
previous studies, nor was viability of PDAC cell explants 
affected in the current study. LPEI has been shown to 
exhibit certain cytotoxic effects both in vitro and in vivo 
[37–41], though LPEI-based polyplexes have already 
been tested in a clinical trial for bladder cancer therapy 
and no adverse effects were reported [42]. Similarly, 
we have so far only encountered side effects from 131I 
in one previous study with the objective to radioablate 
mouse thyroids under intentional stimulation of thyroidal 
radioiodide uptake [43]. Symptoms developed with a 
delay of seven days after radioiodide application, while 
in the current study, animal health deteriorated from the 
beginning of treatment [43]. However, our earlier work 
was done in subcutaneous xenograft models, where tumor 
growth per se has no impact on animal health. In contrast, 
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Kras;p53 mice with their extremely aggressive pancreatic 
tumor growth and subsequent rapid health deterioration, 
seem to react more unfavorably to the polyplexes and/
or radioiodide treatment. LPEI is seen as the “gold 
standard” for non-viral DNA delivery, as it shows such 
high transfection efficiency and flexibility at relatively 
low toxicity, compared to other viral and non-viral gene 
delivery approaches. To further refine our approach and 
solve the toxicity issue, we are currently developing 
sequence-defined polymers with higher biocompatibility 
for targeted NIS gene delivery [26].

In conclusion, our data clearly show the high 
potential of EGFR-targeted nanoparticle vectors to target 
the NIS gene to PDAC. After systemic application of 
LPEI-PEG-GE11/NIS, we were able to reach sufficient 
iodide concentrations at the tumor site to (1) produce a 
strong enough signal to image pancreatic tumors in situ 
and (2) provoke a therapeutic effect. Based on its role as 
potent and well characterized reporter gene, NIS allows 
non-invasive imaging and detailed characterization of 
in vivo biodistribution of functional NIS expression 
as an essential prerequisite for exact planning and 
monitoring of clinical gene therapy trials with the aim of 
individualization of the NIS gene therapy concept in the 
clinical setting.

MATERIALS AND METHODS

Establishment of genetically modified mice

Establishment of the Kras;p53 (Ptf1a+/Cre;Kras+/

LSL-G12D;Trp53loxP/loxP) and Kras;p53;Egfr (Ptf1a+/Cre;Kras+/

LSL-G12D;Trp53loxP/loxP;Egfrfl/fl) strains has been described 
previously [4, 11, 12, 44, 45]. Mouse strains were 
maintained on a mixed C57BL/6;129/Sv background. 
Animals were kept under specific pathogen-free conditions 
with access to mouse chow and water ad libitum. Both 
male and female mice at 5-7.5 weeks of age were used 
for experiments. The experimental protocol was approved 
by the regional governmental commission for animals 
(Regierung von Oberbayern, Munich, Germany).

Preparation and culture of PDAC cell explants

Cell explants from primary PDAC of Kras;p53 and 
Kras;p53;Egfr mice were isolated as described previously 
[46] and cultured in DMEM high glucose medium 
(Invitrogen, Karlsruhe, Germany) supplemented with 
10% fetal bovine serum (v/v; PAA, Colbe, Germany), 100 
U/mL penicillin/100 μg/mL streptomycin (Invitrogen) 
and 1% non-essential amino acids (v/v; Invitrogen). Cells 
were maintained at 37°C and 5% CO2 in an incubator 
with 95% humidity. Cell culture medium was replaced 
every second day and explants were passaged at 85% 
confluency.

Plasmid and polymer synthesis and polyplex 
formation

The human NIS-encoding plasmid and LPEI-based 
conjugates were cloned and synthesized, respectively, as 
described previously [17]. Plasmid DNA was condensed 
with polymers at indicated c/p ratios (w/w) in HEPES-
buffered glucose (HBG: 20 mmol/L HEPES, 5% glucose 
(w/v), pH 7.4) as described previously [47] and incubated 
at room temperature for 20 min before use. Final DNA 
concentrations were 2 μg/mL for in vitro studies and 200 
μg/mL for in vivo studies.

Transient transfection

For in vitro transfection experiments, PDAC cell 
explants were grown to 60-80% confluency. Explants 
were incubated for 4 hours with polyplexes in the absence 
of serum and antibiotics followed by incubation with 
complete growth medium for 24 h. Either LPEI-PEG-
GE11/NIS (EGFR-targeting of NIS due to the EGFR-
specific ligand GE11), LPEI-PEG-Cys/NIS (no active 
targeting of NIS to EGFR, as the ligand GE11 is replaced 
by a cysteine residue), or LPEI-PEG-GE11 alone (polymer 
without NIS DNA) were added in c/p ratios as indicated. 
Transfection efficiency was evaluated by measurement of 
iodide uptake activity as described below. Transfections 
were done in triplicate for each separate explant.

In vitro 125I uptake assay

Following transfections, iodide uptake of PDAC 
cell explants was determined at steady-state conditions as 
described previously [48, 49]. Results were normalized to 
cell viability that was measured using the commercially 
available MTS-assay (Promega, Mannheim, Germany) as 
described previously [50].

Radioiodide uptake after systemic NIS gene 
transfer in vivo

For the proof-of-principle of NIS-mediated tumor-
specific radioiodide accumulation in vivo, polyplexes 
(LPEI-PEG-GE11/NIS, c/p 0.8) were applied via 
the tail vein at a DNA dose of 2.5 mg/kg (50 μg DNA 
in 250 μL HBG). Mice received 18.5 MBq 123I (GE 
Healthcare, Braunschweig, Germany) intraperitoneally 
(i.p.) 24 h (n=9) or 48 h (n=7) after polyplex injection 
and radioiodide distribution was monitored by serial 
imaging on a gamma camera (Forte, ADAC Laboratories, 
Milpitas, CA, USA) equipped with a VXHR (ultra-high 
resolution) collimator as described previously [50]. 
Regions of interest were quantified and expressed as a 
fraction of the total amount of applied radionuclide per 
gram tumor tissue. The retention time within the tumor 
was determined by serial scanning after radioiodide 
injection. A subset of mice (n=2 for each time point) was 
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pretreated i.p. with 2 mg of the competitive NIS inhibitor 
sodium perchlorate (NaClO4; Sigma-Aldrich, Taufkirchen, 
Germany) 30 min before 123I administration. Dosimetric 
calculations for 131I were made using the Medical Internal 
Radiation Dose (MIRD) technique and a RADAR dose 
factor (http://www.doseinfo-radar.com). In order to 
achieve better discrimination between uptake in the tumor 
and the adjacent stomach, 24 or 48 h after i.v. injection of 
polyplexes (LPEI-PEG-GE11/NIS, each time point n=5; 
LPEI-PEG-GE11/antisenseNIS, each time point n=1) 
mice received 10 MBq 124I (Perkin Elmer, Waltham, MA, 
USA) i.p. and radioiodide biodistribution was monitored 
by static acquisition 3 h post injection using a micro PET 
system (Inveon, Siemens Preclinical Solutions, Erlangen, 
Germany). Mean tumoral radioiodide uptake was 
calculated in MBq/mL by manually placing 3D regions of 
interest in the tumor.

Analysis of NIS mRNA expression by 
quantitative real-time PCR

Total RNA was isolated from PDAC or non-
target tissues (liver, lung) using the RNeasy Mini 
Kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s recommendations. Single-stranded 
oligo (dT)-primer cDNA was generated using Super 
Script III Reverse Transcriptase (Invitrogen). qPCR 
was performed with the cDNA from 1 μg RNA using 
SYBR Green PCR master mix (Qiagen) in a Rotor 
Gene 6000 (Corbett Research, Morthlake, New South 
Wales, Australia). The following primers were used: NIS, 
forward 5′-ACACCTTCTGGACCTTCGTG-3′, reverse 
5′-GTCGCAGTCGGTGTAGAACA-3′ and GAPDH, 
forward 5′-GAGAAGGCTGGGGCTCATTT-3′, reverse 
5′-CAGTGGGGACACGGAAGG-3′. Relative expression 
levels were calculated using the comparative ΔΔCt method 
and internal GAPDH for normalization.

Analysis of tissue sections

Immunohistochemical and immunofluorescence 
staining of NIS was performed using a mouse monoclonal 
antibody directed against human NIS (kindly provided by 
John C Morris, Mayo Clinic, Rochester, MN, USA) as 
described previously [20, 51].

Radioiodide therapy

Starting when mice were around 30 d of age, tumor 
sizes were assessed weekly by high resolution MRI on a 
3T clinical scanner (Philips Ingenia 3.0T; Royal Philips 
Electronics, Eindhoven, The Netherlands). Once tumors 
reached the inclusion size of 200-450 mm3, therapy 
trials were started. To this end, 48 h after systemic 
administration of LPEI-PEG-GE11/NIS or, as control, 
LPEI-PEG-GE11/antisenseNIS, a therapeutic dose of 55.5 

MBq 131I (GE Healthcare) was administered i.p. (LPEI-
PEG-GE11/NIS + 131I n=6; LPEI-PEG-GE11/antisenseNIS 
+ 131I n=3). A second control group received saline only 
(n=4). The cycle consisting of systemic NIS gene transfer 
followed by radioiodide was repeated for a total of three 
times on days 0/2, 4/6 and 7/9. Mice from all groups 
were sacrificed when at least one endpoint criterion was 
reached. Endpoint criteria included a tumor volume >1000 
mm3, a body weight loss >15%, as well as a number of 
general physical, clinical and behavioral criteria. Body 
condition was monitored by independent animal care 
personnel blind to treatment and hypothesis.

Statistics

Results are reported as mean ± S.E.M., mean-
fold change ± S.E.M. or, for survival plots, percent. 
Statistical significance was generally tested by two-tailed 
Student’s t-test except for the therapy study. For tumor 
volumes, one-way ANOVA was performed, followed by 
Tukey’s Honestly Significant Difference test. Statistical 
significance of Kaplan-Meier plots was analyzed by log-
rank test. p-values <0.05 were considered statistically 
significant (*p<0.05; **p<0.01; ***p<0.001; n/s not 
significant).
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