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Key Points: 

• Precision of the fused products obtained using suitable linear rescaling methods is similar 
to the ones obtained using nonlinear methods. 

• Selection of better reference dataset yield more precise fused product. 

• Application of a smooth-deviance decomposition rescaling technique improves 
correlations. 

  

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1029/2019WR025111

http://dx.doi.org/10.1029/2019WR025111
http://dx.doi.org/10.1029/2019WR025111


Water Resources Research 

 

Abstract 
In this study, the impact of various rescaling approaches in the framework of data fusion is 
explored. Four different soil moisture products (Advanced Scatterometer, ASCAT; Advanced 
Microwave Scanning Radiometer for EOS, AMSR-E; Antecedent Precipitation Index, API; 
Global Land Data Assimilation System, GLDAS-NOAH) are fused. The systematic differences 
between products are removed before the fusion utilizing various rescaling approaches focusing 
on different: methods (regression-, variance/CDF matching-, MARS-, and SVM-based), 
stationarity assumptions (constant or time-varying rescaling coefficients), and time frequency 
techniques (periodic or non-periodic high and low frequency components). Given that statistical 
descriptions (e.g., standard deviation, correlation coefficient) of reference datasets are utilized in 
rescaling approaches, the precision of the selected reference dataset also impacts the final fused 
product precision. Experiments are validated over 542 soil moisture monitoring sites selected 
from the International Soil Moisture Network datasets between 2007 and 2011. Overall, results 
highlight the importance of reference dataset selection - particularly that a more precise reference 
product yields a higher precision fused soil moisture product. This conclusion is neither sensitive 
to the number of fused products nor the rescaling procedure. Among rescaling approaches, the 
precision of fused products is most affected by the choice of rescaling stationary assumption and 
time frequency decomposition technique. Variations in rescaling methods have only a small 
impact on the precision of pair fused products. In contrast, utilizing a time-varying stationary 
assumption and non-periodic decomposition technique produces correlation improvements of 
0.07 [-] and 0.02 [-], respectively, versus the other widely implemented rescaling approaches. 

1 Introduction 

Soil moisture is a critical environmental parameter that significantly regulates the 
terrestrial carbon, energy, and water cycles [Koster et al., 2004]. Therefore, describing the spatial 
distribution and temporal changes of soil moisture contributes to the development of accurate 
climate, ecological and hydrological models at local, regional and global scales [Dorigo et al., 
2012]. 

Soil moisture can be estimated through multiple different methods (i.e., in-situ 
measurements, numerical modeling, and remote sensing). Direct monitoring methods, such as 
gravimetric sampling [Cosh et al., 2016] and dielectric probes, provide soil moisture information 
at very fine spatial resolutions (< 10 cm2) and high temporal sampling (e.g., every 30 min or 1 h). 
Even though such observations are critical for the satellite mission validation efforts, their use is 
often impractical for studies focusing on large spatial areas [Bulut et al., 2019]. Instead 
hydrological model- or satellite remote sensing-based soil moisture datasets are commonly used 
for coarse-scale applications related such as drought monitoring [Afshar et al., 2016], crop yield 
monitoring [Anderson et al., 2015; Anderson et al., 2016; Mladenova et al., 2017], and 
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improvement of hydrological models via data assimilation [Houser et al., 1998; Crow et al., 
2003; Yilmaz et el., 2011; Lievens et al., 2015].  

Owing to the large number of studies using these datasets in coarse-scale applications, 
many soil moisture products have been produced using hydrological model- and remote sensing-
based methods. Complex hydrological models (e.g., Mosaic, NOAH, the Community Land 
Model, and the Variable Infiltration Capacity) and much simpler hydrological models (e.g., the 
Antecedent Precipitation Index, API) offer spatiotemporally continuous soil moisture datasets. 
However, these models rely heavily on parameters that vary significantly in space and time and 
are often impractical to estimate. Remote sensing approaches also provide spatially continuous 
soil moisture datasets (e.g., the Advanced Scatterometer [ASCAT; Wagner et al., 1999], Soil 
Moisture and Ocean Salinity [SMOS; Kerr et al., 2001], and Soil Moisture Active Passive 
[SMAP; Entekhabi et al., 2010] missions). However, these datasets reflect conditions within only 
the top layer of the soil (~ 3-5 cm), typically have temporal and spatial resolutions that are 
coarser than models, and rely on retrieval algorithms that depend on multiple land surface 
parameters (related to, e.g., land cover, topography, and radiative activities). 

Given the common availability of multiple soil moisture datasets for the same time 
location, and the reality that all products have unique strengths and shortcomings, it is often 
desirable to fuse multiple products into an integrated estimate. Efforts to fuse satellite- and 
model-based soil moisture estimates are implemented using either simple merging 
methodologies [Liu et al., 2011; Liu et al., 2012; Wagner et al., 2012; Gruber et al., 2017; 
Dorigo et al., 2017; Yilmaz et al., 2012; van der Schalie et al., 2017; van der Schalie et al., 2018] 
or more complex data assimilation methodologies [Houser et al., 1998; Reichle & Koster, 2005; 
Gevaert et al., 2018].  

However, before such merging methodologies can be implemented, systematic 
differences between soil moisture estimates obtained from different platforms and/or sensors 
must be rectified  [Dirmeyer et al., 2004; Reichle & Koster, 2004; Reichle & Koster, 2005; 
Yilmaz & Crow, 2013; Yin et al., 2014; Su & Ryu, 2015; Afshar & Yilmaz, 2017]. To accomplish 
this, a number of different rescaling methods are commonly applied [Afshar & Yilmaz, 2017]. In 
all approaches, one dataset is selected as a reference, and the statistical moments of all other 
products are tuned to this reference dataset. The specific goals of this rescaling vary but can 
include: minimizing the variability of differences between the rescaled product and the reference 
product, maximizing the correlation between them or matching the total variability of an 
unscaled product to an arbitrary reference dataset [Hain et al., 2011; Miralles et al., 2011; 
Parinussa et al., 2011; Scipal et al., 2008; Stoffelen, 1998; Zwieback et al., 2012; Liu et al., 
2011]. Based on above mentioned goals, rescaling methods can be either linear [e.g., first order 
linear regression (REG), variance matching (VAR), etc.] or nonlinear [e.g., CDF matching 
(CDFM) and nonlinear techniques, multi adaptive regression splines (MAR), support vector 
machines (SVM), artificial neural networks (ANN)] in form.  
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Once a particular rescaling method (e.g., VAR, REG, CDFM, MAR, SVM, ANN) is 
selected for a specific application, this method can be implemented using different approaches 
that consider parameter variability at a range of different time scales [Yilmaz et al., 2016]. For 
example, a rescaling method can be tuned for the entire time series or, alternatively, for each 
month separately (that is, rescaling coefficients or product dependencies are assumed either to be 
constant or time-varying). If the reference product, that all other products are rescaled to, is more 
precise than the unscaled product, then the implementation of rescaling methods using time-
varying coefficients (e.g., using monthly rescaling coefficients rather than using a single 
coefficient for the entire time series) may yield a more precise rescaled product than 
implementation of them using constant coefficients. The inverse is also true that in the case of a 
relatively imprecise reference product. That is, a weakly rescaled product (using, for example, 
only a single set of long-term rescaling parameters) will yield a more precise rescaled product 
[Yilmaz et al., 2016].  

Given that rescaling approaches typically use reference dataset statistics to minimize 
systematic differences between datasets, the precision (i.e., high temporal correlation with true 
soil moisture values [Koster et al., 2009; Entekhabi et al., 2010]) of the reference dataset 
selection can impact the rescaled product precision via the statistics estimated in the rescaling 
process (details of this impact are presented below in section 2.4). Even though earlier studies 
have investigated the performance of different rescaling methodologies  [Yilmaz & Crow, 2013; 
Yilmaz et al., 2016], no study has specifically investigated the impact of the reference dataset 
selection on rescaled product precision. Additionally, no study has investigated the impact of 
more complex, nonlinear rescaling techniques like SVM and MARS [Afshar & Yilmaz, 2017] in 
a data-fusion methodology. 

Full data assimilation methodologies tend to be based on time-variant model error 
covariances corresponding to the moment when observations are ingested sequentially. In 
contrast, simple fusion methodologies often use a constant error variance (i.e., constant weight) 
assumption and can be implemented during the post-processing of datasets rather than on-line at 
each assimilation time step. Yilmaz & Crow [2013] investigated the optimality of the rescaling 
techniques using a simple API model and found that triple collocation-based rescaling 
consistently yielded better results than a regression-based rescaling methodology. The optimality 
difference between the two methodologies may be enhanced when datasets are rescaled to each 
other’s space via nonlinear rescaling approaches. Hence, we expect differences to emerge 
between the optimality of the rescaling methodologies for complex data assimilation (i.e., TCA; 
[Yilmaz & Crow, 2013]) versus simpler merging methodologies. 

The optimality of rescaling methods [Afshar & Yilmaz, 2017] depends in part on the goal 
of the rescaling methodology [Yilmaz & Crow, 2013]; however, the performance of such 
methods is also affected by the degree to which underlying assumptions of the rescaling methods 
are met  [Yilmaz & Crow, 2013] and by their rescaling method/approach selection [Yilmaz et al., 
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2016]. Hence, further investigation of the impact of various rescaling approaches over the 
rescaled/fused product precision is necessary for applications utilizing these rescaling 
approaches. Earlier studies [Yilmaz & Crow, 2013; Yilmaz et al., 2016] decomposed time series 
into high- and low-frequency components with the assumption that low-frequency components 
are annually periodic (i.e., do not have inter-annual variability), while a relaxed assumption (i.e., 
where high- and low-frequency components could be non-periodic) has not been investigated 
before in a data merging methodology. In addition, while the impact of various rescaling 
methodologies (e.g., VAR, REG, CDFM) on simple merging framework has been previously 
investigated in a few studies [Anderson et al., 2012; Yilmaz et al., 2012; Dorigo et al., 2017], the 
impact of rescaling stationarity assumptions (i.e., time varying versus constant coefficients) and 
time-frequency techniques (i.e. low versus high frequency decomposition) selection has not been 
investigated for simple merging methodologies. 

Accordingly, the goal of this study is to investigate the impact of: 1) reference dataset 
selection, 2) rescaling methodology/stationarity/technique selection, 3) relaxed low-frequency 
decomposition assumptions, and 4) the SVM and MARS rescaling methods selection on fused-
product skill in a simple soil moisture merging methodology. The methodologies and the datasets 
used in this study are given in the second section. Results are presented and discussed in the third 
section, and concluding remarks are provided in the last section. 

2 Rescaling 

Soil moisture time series (e.g., 𝑋 and 𝑌) are commonly represented via a linear, additive 
model as a combination of their mean, true anomaly, and random errors: 

𝑋 =  𝜇𝑋 + 𝛼𝑋𝑇 + 𝜖𝑋         (1) 
𝑌 =  𝜇𝑌 + 𝛼𝑌𝑇 + 𝜖𝑌         (2) 

where 𝜇𝑋 and 𝜇𝑌 are the mean values of 𝑋 and 𝑌; 𝑇 is the true soil moisture product; 𝛼𝑋 and 𝛼𝑌 
are the scaling factors of 𝑋 and 𝑌 to the space of 𝑇; 𝛼𝑋𝑇 and 𝛼𝑌𝑇 are the real signal components 
of 𝑋 and 𝑌, and 𝜖𝑋 and 𝜖𝑌 are the zero-mean random errors (i.e., the noise components) of 𝑋 and 
𝑌.  

In data fusion, the goal is to obtain a fused child product (𝐹) with a lower noise 
component (i.e., error variance) than the parent products 𝑋 and 𝑌. To reach this goal, the 
differences between the signal components of pair products need to be minimized before 
application of a particular data fusion methodologies. This is often achieved by multiplying the 
pair products (e.g., 𝑌) by a linear coefficient that is found by utilizing statistical descriptions 
(e.g., mean, and standard deviation) of a reference product (e.g., 𝑋): 

𝑌∗ = 𝜇𝑋 + (𝑌 − 𝜇𝑌)𝑐𝑌                                  (3) 

where 𝑌∗ is the rescaled form of 𝑌, and 𝑐𝑌 is the linear scaling coefficient. Here, it is stressed 
that nonlinear rescaling methodologies exist as well; however, the linear form is shown here for 
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brevity. Once the products are transformed into the same space (using the different rescaling 
methodologies elaborated below), data fusion can be expressed in its form as: 

𝐹 = 𝑤𝑋𝑋 + 𝑤𝑌∗𝑌∗                                  (4) 

where 𝑤𝑋 and 𝑤𝑌∗ are weights for 𝑋 and 𝑌∗. Here, different type of weights (e.g., time 
dependent or constant) can be used for 𝑤𝑋 and 𝑤𝑌∗ where the process of optimization of weights 
may involve different evaluation criteria. In addition, two different approaches are used for 
weighting of the soil moisture products. The first approach is based on simple merging which 
assigns equal weighting to each rescaled product. Our second approach uses triple collocation 
analysis (TCA) to assign (different) weights to the rescaled products as following:  

𝑤𝑋 =
𝜎𝜀𝑌
2

𝜎𝜀𝑋
2 +𝜎𝜀𝑌

2                                    (5) 

𝑤𝑌 =
𝜎𝜀𝑋
2

𝜎𝜀𝑋
2 +𝜎𝜀𝑌

2                                    (6) 

where 𝑤𝑋 and 𝑤𝑌∗ are the weights for 𝑋 and 𝑌, and 𝜎𝜀𝑋
2  and 𝜎𝜀𝑌

2  are TCA-derived error variances 
for the 𝑋 and 𝑌 products. In the TCA-based weighting approach, a third collocated independent 
product is required to derive error variances. In soil moisture studies this is often acquired from a 
land surface model. Here, surface soil moisture acquired from the NOAH land surface model is 
used for the third product. It is also used as the reference to derive weights for product pair to be 
fused. Based on TCA, error variances for the 𝑋 and 𝑌 products can be found in the form of: 

𝜎𝜀𝑋
2 =  𝜎𝑋2 −

𝜎𝑋,𝑌𝜎𝑋,𝑅
𝜎𝑌,𝑅

                                  (7) 

𝜎𝜀𝑌
2 =  𝜎𝑌2 −

𝜎𝑌,𝑋𝜎𝑌,𝑅
𝜎𝑋,𝑅

                                  (8) 

where 𝜎𝑋2 and 𝜎𝑌2 are the variances of 𝑋 and 𝑌 products; 𝜎𝑋,𝑌 and 𝜎𝑌,𝑋 are the covariance between 
𝑋 and 𝑌 products, and 𝜎𝑋,𝑅, and 𝜎𝑌,𝑅 are the covariance between pair products of 𝑋 and 𝑌 that 
are aimed to be fused over space of reference product which is denoted with subscript (𝑅). For 
more information about this approach, readers are referred to the study of Gruber et al. [2017]. 

2.1 Rescaling methods – linear and nonlinear methods 

  There are several different linear and nonlinear rescaling methods commonly applied in 
studies focusing on removing systematic differences between soil moisture products. Among 
them, the CDFM [Reichle & Koster, 2004] is arguably the most common. In addition, linear 
regression-  [Crow & Zhan, 2007], variance matching- [Draper et al., 2009], TCA- [Yilmaz & 
Crow, 2013], copula- [Leroux, et al., 2014], wavelet- [Su & Ryu, 2015], quadratic polynomial-  
[Zwieback et al., 2016], and GP-, MAR-, SVM-, ANN- [Afshar & Yilmaz, 2017] based methods 
have been also proposed. Inter-comparison of these rescaling methods have demonstrated that 

This article is protected by copyright. All rights reserved.



Water Resources Research 

 

MARS and SVM result in more precise rescaled products relative to other methods [Afshar & 
Yilmaz, 2017]. Accordingly, in addition to the linear rescaling methods (REG and VAR), three 
nonlinear methods (CDFM, MARS, and SVM) are also applied here. Since errors in the statistics 
(e.g., mean, standard deviation, correlation, covariance, etc.) underlying these rescaling methods 
depend, in part, on the precision of 𝑋 and 𝑌 (for details, see below in section 2.4), the selection 
of a better-quality reference dataset may yield more accurate statistics, and thus, more precise 
fused products.  

2.1.1 Regression- and variance-based rescaling methods 

  Methods based on the assumption that there is a linear relation between unscaled and 
reference soil moisture products, can be implemented with 𝑐𝑌 (eq. 3) derived via either a linear 
regression (REG) or variance matching (VAR) approach [Yilmaz & Crow, 2013]: 

cYR = |ρXY|σX σY⁄                                               (9) 
cYV = σX σY⁄                                                             (10) 

where 𝑋 is selected as the reference; 𝑌 is rescaled to the space of 𝑋; 𝑐𝑌𝑅 and 𝑐𝑌𝑉 are the rescaling 
factors for the REG and VAR methods, respectively; 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 
and 𝑌, respectively, and 𝜌𝑋𝑌 is the correlation coefficient between 𝑋 and 𝑌. 

For the case where the relation between 𝑋 and 𝑌 are represented using linear methods, it 
is trivial to analytically show such relations. It is more challenging when nonlinear methods are 
used. Nevertheless, we attempt to express such relationships using nonlinear methods described 
below.  

2.1.2 CDF matching 

  CDFM [Reichle & Koster, 2004; Afshar & Yilmaz, 2017] is one of the earliest and most 
commonly used approach in soil moisture rescaling studies. The aim of this method is to 
eliminate differences between all the statistical moments of two soil moisture datasets. To this 
end, CDFM simply matches the CDF of unscaled product (e.g., 𝑌) to the CDF of the reference 
product (𝑋). There are different ways available to use CDFM in order to remove the systematic 
differences between unscaled and reference soil moisture datasets [Zwieback et al., 2016]. In this 
study, the CDFM method is applied through the calculation of the CDF for unscaled and 
reference soil moisture products based on ranks of their observations and conveyed into the 
space of reference products through the inverse relation between real observation and the CDF of 
the reference product. For more details about CDFM and its application readers are referred to 
Afshar & Yilmaz, [2017]. 
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2.1.3 Multivariate adaptive regression splines 

  MARS [Friedman, 1991] is an advanced form of stepwise regression that makes no 
assumptions regarding to the functional relationship between dependent and independent 
variables (here unscaled and reference products). Instead MARS uses a series of basis functions 
to model nonlinearities in the relationship between the independent and dependent variables. The 
principle of MARS is to split the unscaled product’s space into distinct intervals and fit an 
individual spline (basis function) to each interval separately. The final model is built by 
connecting these basis functions at knot points looked at the endpoint of individual intervals. The 
general MARS model of reference (X) product with M basis functions can be written as: 

𝑌∗ = 𝑎0  + ∑ 𝑎𝑚𝐵𝑚(𝑌)𝑀
𝑚=1                                             (11) 

where 𝑎0 is a constant coefficient; 𝑎𝑚 is the coefficient of the 𝑚𝑡ℎ basis function; 𝐵𝑚(𝑌) is the 
𝑚𝑡ℎ basis function in the form of max (0,𝑌 − 𝑡) or max (0, 𝑡 − 𝑌) with a knot occurring at value 
𝑡, and 𝑀 is the number of basis functions built in the model. The MARS algorithm consists of 
separate forward and backward stepwise procedures. In the forward phase, the model adds basis 
functions and tries to find potential knots to reduce errors between rescaled and reference 
products in terms of mean square error (MSE), resulting in a complicated and (likely) over-fitted 
model. In the backward phase, the MARS model prunes the least effective terms among the 
previously added basis functions based on a generalized cross-validation (GCV) measure of 
MSE. The GCV procedure determines which basis function to keep in the model and which to 
eliminate by introducing a penalty to the system based on the number of terms (including 
intercepts) over the maximum number of terms allowed to be remained in pruned model (this 
threshold is semi-automatically calculated based on the number of variables). Here, the fitting 
phase of MARS to the unscaled and reference products is conducted in the R programming 
environment by using the Earth package [Miborrow, 2016]. For more information about MARS, 
see Hastie et al. [2009] and Sharda et al. [2008]. 

2.1.4 Support vector machines (SVM) 

  The SVM [Vapnik & Chervonenkis, 1974; Vapnik, 1998] is a technique based on 
statistical learning theory that uses the principle of structural risk minimization [Hernández et 
al., 2009]. In the regression model of SVM, a function associated with the dependent variable 
(here 𝑋), which itself is a function of independent variable (here 𝑌), is estimated [Olson & 
Delen, 2008]. As with other rescaling methods, it is assumed that the relationship between 𝑋 and 
𝑌 (which are assumed to be independent and identically distributed products) can be 
characterized as an algebraic function in the form: 
𝑓(𝑦) =  𝑊𝑇𝜑(𝑦) + 𝑏                                              (12) 
𝑌∗ = 𝑓(𝑦) + 𝑛𝑜𝑖𝑠𝑒                                         (13) 
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where 𝑌∗ is the rescaled product; φ(y) is a nonlinear mapping of the unscaled soil moisture 
products, and W and b are the weights and the bias values of regression function, respectively. 
These values are determined by minimizing the objective function of: 
𝑚𝑖𝑛𝑤,𝑒,𝑏𝑗(𝑤, 𝑒) = 1

2
𝑊𝑇𝑤 + 𝛾

2
∑ 𝑒𝑖2𝑁
𝑖=1                                 (14) 

subject to  
𝑒𝑖 = 𝑋𝑖 − 𝑌𝑖∗, 𝑖 = 1,2, … ,𝑁                                            (15) 

where γ is the real positive number that is used for penalizing an occurred error during 
calibration; 𝑒𝑖 is the amount of error at time step i; 𝑋𝑖 is the reference product at time step 𝑖, and 
𝑁 is the number of observations. The SVM solves this minimization problem via the Lagrange 
multipliers method and transforms it into the form: 
𝑓(𝑦) = ∑ 𝑎𝑖𝐾(𝑦,𝑦𝑖)𝑁

𝑖=1 + 𝑏                    (16) 

where 𝑎𝑖 is average of the Lagrange multipliers, and 𝐾(𝑦,𝑦𝑖) is the kernel function that can be 
written as an inner product in a feature space by following Mercer’s theorem. There are a 
number of different types of kernel functional forms (e.g., linear, polynomial, radial basis, and 
sigmoid) that the SVM method can utilize.  Here, the radial basis kernel function type was 
chosen based on results in Pasolli et al. [2011] and Afshar & Yilmaz [2017]. The above-
mentioned optimized problems are solved with the E1071 package [Meyer et al., 2015] in the R 
programming environment. Parameters of the kernel functions are found based on cross-
validation (obtained optimal parameter values are not shown). For more information about the 
SVM and its technical details, readers are referred to the studies of Vapnik [1998] and Smola and 
Scholkopf [2004]. 

2.2 Rescaling stationarity – use of time-varying coefficients 

The use of time-varying rescaling coefficients can improve the precision of a rescaled 
time series [Yilmaz et al., 2016] owing to nonstationary relationships that may exist between the 
products. Accordingly, the rescaling of soil moisture time series can be implemented using either 
constant or time-varying rescaling coefficients (recognized as relatively less and more aggressive 
approaches, respectively [Yilmaz et al., 2016]). Most studies use a less-aggressive rescaling 
approach, while more aggressive rescaling methodologies apply rescaling coefficients that vary 
periodically in time (e.g., fitting 12 different rescaling coefficients separately for each month of 
the year). Accordingly, two different rescaling stationarity selections are applied here: i) a single 
rescaling coefficient applied constantly in time and ii) rescaling coefficients that vary monthly. 
For the time-varying case, all soil moisture values obtained for a given month are rescaled 
against corresponding soil moisture values of the reference dataset for the same month-of-year 
(during all years of the data period). The process is then repeated separately for all 12 months to 
form a continuous monthly time series. Note that the application of different monthly rescaling 
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coefficients generally creates spurious temporal breaks in the resulting rescaled soil moisture 
time series. 

Here the errors of the statistics (e.g., mean, standard deviation, correlation, and 
covariance) used in the calculation of time-varying coefficients depend on the precision of 𝑋 and 
𝑌. This is particularly true when the datasets are subdivided to calculate various numbers of 
time-varying rescaling coefficients (due to the associated reduction in sample size). Hence, as 
with the case of rescaling method selection, the selection of a better-quality reference dataset will 
result in the more accurate sampling of time-varying rescaling coefficients. 

2.3 Rescaling techniques - seasonality-anomaly vs. smooth-deviance decomposition 

  As discussed above, rescaling methodologies are commonly implemented for the entire 
soil moisture time series. However, under the assumption that the rescaling coefficients of soil 
moisture time series can vary for the different time frequency components, rescaling methods 
can also be implemented separately for each component [Su & Ryu, 2015]. In such an approach, 
the time series is decomposed into its frequency components and rescaling methods are applied 
separately to each component using different rescaling coefficients (𝑐𝑌𝑗). Next, for the case of 
different rescaling coefficient scenario and linearly rescaling, these components are summed to 
derive a final rescaled soil moisture product as: 
𝑌 = ∑ 𝑌𝑗𝑘

𝑗=1                                      (17) 
𝑌∗ = ∑ 𝑌𝑗 

∗𝑘
𝑗=1                                      (18) 

𝑌𝑗 
∗ = 𝜇𝑋𝑗 + (𝑌𝑗 − 𝜇𝑌𝑗)𝑐𝑌𝑗                                   (19) 

where 𝑌∗ and 𝑌 are decomposed in to their different frequency components 𝑌𝑗 
∗and 𝑌𝑗, 

respectively (e.g., 𝑌𝑗 is the 𝑗𝑡ℎ component of 𝑌), and 𝑘 represents the total number of frequency 
components. Although some studies have utilized a large number of frequency components (e.g., 
8 components in the study of [Su & Ryu, 2015]), most studies have adapted a simply, two-
frequency component scenario [Yilmaz & Crow, 2013; De Lannoy & Reichle, 2016]. 
Accordingly, this study also adapts a two-frequency component solution. 

  Such high- and low-frequency decomposition can be done in several different ways. In 
many studies, the low-frequency component is assumed to be seasonally periodic [Yilmaz & 
Crow, 2013] and to lack inter-annual variability (i.e., calculated as the expected soil moisture 
value within a moving-window centered on a particular day-of-year). Alternatively, the low-
frequency component can be also calculated as non-periodic and containing inter-annual 
variability. Once the low frequency component is acquired, the high-frequency component can 
be obtained from subtracting the low-frequency component from the (complete) native time 
series: 
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𝑌𝑖,𝑗𝐿𝑜𝑤−𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 =
∑ ∑ 𝑌𝑗

𝑗+14
𝑗−14

𝑛
𝑖=1

29𝑛
          (20) 

𝑌𝑖,𝑗𝐿𝑜𝑤−𝑁𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 = ∑ 𝑌𝑖,𝑗𝑊𝑗
𝑗+14
𝑗−14         (21) 

𝑌𝑖,𝑗
𝐻𝑖𝑔ℎ = 𝑌𝑖,𝑗 − 𝑌𝑖,𝑗𝐿𝑜𝑤           (22) 

𝑉𝑅𝐻𝑖𝑔ℎ = 𝑣𝑎𝑟�𝑌𝐻𝑖𝑔ℎ�
𝑣𝑎𝑟(𝑌)           (23) 

𝑉𝑅𝐿𝑜𝑤 = 𝑣𝑎𝑟�𝑌𝐿𝑜𝑤�
𝑣𝑎𝑟(𝑌)           (24) 

where 𝑖 indexes a particular year (within total 𝑛 years) and  𝑗 the day of the year (DOY). The low 
frequency component of the products are represented by the 𝑌𝑖,𝑗𝐿𝑜𝑤 term for product 𝑌. It can be 
calculated using either a (𝑌𝑖,𝑗𝐿𝑜𝑤−𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐; hereinafter called “seasonality”) or non-periodic 
(𝑌𝑖,𝑗𝐿𝑜𝑤−𝑁𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐; hereinafter called “smooth”) approach. The term 𝑌𝑖,𝑗

𝐻𝑖𝑔ℎ refers to the high-
frequency time series component (hereinafter called “anomaly” and “deviance” for periodic and 
non-periodic cases, respectively). Moreover, 𝑊𝑗 is the weight to be used for window-averaging 
on DOY 𝑗. The variability of low and high frequency components are represented by the terms of 
𝑉𝑅𝐿𝑜𝑤, and 𝑉𝑅𝐻𝑖𝑔ℎ (the ratio of the variance of low/high components to the variance of entire 
series). Note that, for this study, the 𝑌𝑖,𝑗𝐿𝑜𝑤 and 𝑌𝑖,𝑗

𝐻𝑖𝑔ℎ components of 𝑌 vary on a daily timescale; 
however, another timescale could be easily implemented for a different application.  

  The seasonality of the dataset (Y) for any DOY is found as the average of a 29-day 
moving average window centered on a specific DOY and sampling across all available years of 
the dataset. However, the smooth component has been calculated by passing a smoothing filter 
over the time series using a weighted moving average window centered on a time step. 

  Daily weights for the calculation of the average value for any particular window differ in 
equations (20-21). While the seasonality/anomaly decomposition assumes equal weighting for 
the available days in any given window for any given DOY, the smooth/deviance decomposition 
assumes varying weights for any given DOY. Given soil moisture has high auto-correlation and 
is commonly over-sampled in time, an inverse relation is assumed here for daily weights based 
on their temporal distance from the center point of the window. Thus, days closer to the center of 
the 29-day window are assigned more weight than days towards the edges of the window: 

⎩
⎪
⎨

⎪
⎧𝐶𝑗 = �1

𝑗
�         − 14 < 𝑗 < 0

𝐶𝑗 = 1                      𝑗 = 0     

𝐶𝑗 = 1
𝑗

                0 < 𝑗 < 14
                                                                              (25) 

𝑊𝑗 = 𝐶𝑗
∑ 𝐶𝑗
𝑗+14
𝑗−14

           (26) 
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where 𝑗 refers to the day in the 29-day window; 𝐶𝑗 is a coefficient which relates the day j to its 
weight (𝑊𝑗), and the time domain is between [-14 to +14] days.  

  Here, three different rescaling techniques are used for temporal decomposition selection 
(i.e., no decomposition, seasonality-anomaly decomposition, or smooth-deviance 
decomposition).  Overall, the quality of the reference dataset impacts the precision of the 
decomposed high/low frequency components, which are further used in the calculation of other 
statistics related to our rescaling method or rescaling stationarity selection. This implies that the 
use of a better reference dataset selection will ultimately reduce the magnitude of errors and, 
subsequently, improve the precision of the decomposed and the rescaled datasets. 

2.4 Reference Dataset Selection 

Another aspect of rescaling procedure is related to the reference dataset selection (i.e., 𝑋). 
Rescaling methodologies utilize certain statistics (e.g., mean, standard deviation, correlation, and 
covariance) that are sampled from the reference dataset. Soil moisture dataset errors may reduce 
the precision of the rescaling parameters and the rescaled product, while unjustified assumptions 
(e.g., orthogonality and zero error cross correlations; [Yilmaz & Crow, 2014]) further diminish 
the precision. Accordingly, a more precise reference product may provide a better rescaling 
target. As a result, more precise reference datasets will yield improved rescaled products in terms 
of precision when more aggressive rescaling techniques (i.e., the use of different rescaling 
coefficients for the decomposed components or for different months) are used [Yilmaz et al., 
2016]. Hence, the choice of a rescaling technique should be made consistent with the reference 
dataset choice. For example, if a high-quality reference dataset is available - then a more 
aggressive methodology can be applied. In contrast, lower-skill products are likely to be better-
utilized using less-aggressive rescaling techniques [Yilmaz et al., 2016]. Although most soil 
moisture dataset fusion studies use model products as their reference [Dorigo et al., 2017; Liu et 
al., 2011; Yilmaz et al., 2012], other references (i.e., remotely sensed based soil moisture 
products) are considered here to evaluate the performance of rescaling methods for difference 
reference choices. Accordingly, each data set (introduced below) is selected, in turn, to serve as 
the reference product for a separate fusion experiment.   

When different products are used as reference, the precision of these products might 
impact the final rescaled product. This can be shown using regression-based rescaling coefficient 
starting with equation (9),  

 
cYR = 𝑐𝑜𝑣𝑋𝑌

σY
2           (27) 

Assuming the mean values do not impact the rescaling factors, (27) can be rewritten as: 
cYR = (𝛼𝑋𝑇+𝜖𝑋)(𝛼𝑌𝑇+𝜖𝑌)����������������������������

σY
2          (28) 
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cYR = 𝛼𝑋𝛼𝑌𝜎𝑇
2 

𝛼Y
2σT

2+2𝛼𝑌𝑇𝜖𝑌������ + 𝛼𝑋𝑇𝜖𝑌������ +𝛼𝑌𝑇𝜖𝑋������

𝛼Y
2σT

2+2𝛼𝑌𝑇𝜖𝑌������ +  𝜖𝑋𝜖𝑌�������
𝛼Y
2σT

2+2𝛼𝑌𝑇𝜖𝑌������     (29) 

where 𝜎𝑇2 is the variance of the true soil moisture signal. The first term in equation (29) is 
independent of random errors in the reference product 𝑋 (i.e., 𝜖𝑋), while the second and third 
terms are not. Assuming orthogonal (𝑇𝜖𝑋�����) and cross-correlated (𝜖𝑋𝜖𝑌������) covariances do not 
mutually cancel (Figure 1 of [Yilmaz and Crow, 2014]) (i.e., the strong seasonality in the soil 
moisture datasets results in non-orthogonal and cross-correlated error terms), the second and 
third terms in equation (29) will bias the rescaling coefficient cYR. Accordingly, it is expected that 
products with lower errors form a better reference product than those with higher errors (either 
random or systematic) in terms of rescaled product precision even though the same product (𝑌) is 
being rescaled. Similarly, it might be theoretically expected also for other rescaling 
methodologies that a reference product with lower errors might result in smaller uncertainty in 
the rescaling steps, though it may not be trivial to analytically prove it particularly for more 
complex methods (e.g., SVM). 

3 Data sets 
Various remote sensing and hydrological modelling soil moisture datasets (ASCAT, 

AMSR-E LPRM, NOAH, and API) available at a 0.25-degree spatial resolution are rescaled and 
fused. The validation of rescaled soil moisture products is based on station-based estimates of in-
situ measurements obtained over 542 globally distributed sites between January 2007 and 
October 2011. Data set details are given below. 

3.1 AMSR-E LPRM 

  The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on-board the 
NASA Aqua satellite is a passive microwave radiometer that provided near-daily observations at 
six different frequencies (between 6.9 and 89.0 GHz) in both horizontal and vertical 
polarizations between 2002 and 2011. The AMSR-E measured brightness temperature with daily 
ascending and descending overpasses over a swath width of 1445 km. These measurements have 
been converted into volumetric soil moisture estimates through various algorithms (e.g., REG 
[Al-Yaari et al., 2016], NN [Rodríguez-Fernández et al., 2016]) resulting in multiple different 
soil moisture datasets [Mladenova et al., 2014].  

  Among the different soil moisture datasets derived from AMSR-E observations, the Land 
Parameter Retrieval Method version 05 (LPRM; Owe et al., [2001, 2008])-based AMSR-E 
dataset is used in this study. LPRM is a radiative transfer model that retrieves soil moisture and 
vegetation water content simultaneously utilizing either soil or canopy temperature as well as 
passive microwave- based X-band and C-band observations from AMSR-E for the retrieval of 
the surface soil moisture content. The LPRM-based soil moisture datasets used here are acquired 
from Vrije Universiteit Amsterdam [personal communication with Robert Parinussa, 2013] and 
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are available online in a gridded format and spatial resolution of 0.25° between June 2002 and 
October 2011 (https://disc.gsfc.nasa.gov). For more details on the LPRM retrieval method, see 
Owe et al. [2001 and 2008]. 

3.2 ASCAT 

  The soil moisture product derived from the Advanced Scatterometer sensor onboard of 
the Metop satellite [Albergel et al., 2009; Bartalis et al., 2007; Wagner et al., 2007] retrieves 
estimates from C-band backscatter observations. This real-aperture radar sensor scans the globe 
using six antennas at different azimuth and viewing angles (three antennas on each side of the 
platform with 45°, 90°, and 135° viewing angles) and retrieves backscatter observations within 
an approximately 550-km swath width during 14 orbit revolutions per day - resulting in a ~1.5-
day revisit time globally and twice per day over western Europe. The WARP 5.5 ASCAT soil 
moisture dataset used in this study is acquired from the Technical University of Vienna [Wagner 
et al., 1999] with a spatial resolution of 25km. This product is accessible online for the time-
period January 2007 to May 2012 at http://hsaf.meteoam.it. For more information about the 
ASCAT soil moisture retrieval algorithm, see Wagner et al. [1999 and 2007].  

3.3 NOAH GLDAS 

  The NOAH land surface model [Chen et al., 1996; Koren et al., 1999; Ek et al., 2003] is 
a 1-D column model that can be executed in both offline and coupled modes. NOAH uses 
atmospheric data as well as soil and vegetation parameters to solve for the energy and the water 
balance equations for different layers of soil profile. NOAH soil moisture datasets used in this 
study are offline simulations provided by Global Land Data Assimilation System (GLDAS 
Version 2; [Rodell et al., 2004]) using NOAH v2.7 at spatial resolution of 0.25°. The GLDAS 
NOAH soil moisture datasets used here represent the top 10 cm of the soil column and are 
provided at three-hourly time steps. These soil moisture values were later averaged into daily 
values (0 to 24 UTC). The GLDAS NOAH soil moisture datasets used in this study are publicly 
available from January 2000 until present (http://disc.sci.gsfc.nasa.gov). For more details about 
NOAH and GLDAS simulations please, see Rodell et al. [2004]. 

3.4 API 

  The antecedent precipitation index (API; [Choudhury & Blanchard, 1983; Blanchard et 
al., 1981; McFarland & Blanchard, 1977]) is a proxy that estimates surface soil moisture based 
on either rainfall or rainfall and runoff [Blanchard et al., 1981]. The simple and practical form of 
the API has led to its popularity in exploratory data assimilation and fusion studies [Crow & Ryu, 
2009]. It assumed that soil moisture depletion can be simplified as an exponential function of the 
input moisture to the soil profile [Lindsey et al., 1949; Chow, 1964]. This exponential relation 
can also be presented in a linear form of:  

𝐴𝑃𝐼𝑖 = 𝛾𝑖𝐴𝑃𝐼𝑖−1 + 𝑃𝑖                                                (30) 
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where 𝐴𝑃𝐼 is the antecedent precipitation which will be considered as soil moisture; 𝑃 is the 
daily precipitation or infiltration amount; 𝛾 is a dimensionless depletion rate, and 𝑖 is the day of 
estimate. Here, 𝛾 is taken as a constant value of 0.85 following [Yilmaz & Crow, 2013]. As 
precipitation input, daily Tropical Rainfall Measuring Mission (TRMM) 3B42 version 7 product 
has been used [Huffman et al., 2007]. This product in available at a spatial resolution of 0.25° 
and available online from January 1998 until present (https://disc.gsfc.nasa.gov). For more 
details about the API model and its alternative shapes, see Blanchard et al. [1981].  

3.5 In situ measurements 

  For validation, in-situ soil moisture measurements were collected from 542 different soil 
moisture monitoring sites. These datasets were collected and archived within the International 
Soil Moisture Network (ISMN; a data host that collects the in-situ soil moisture measurements 
from networks and field validation sites all around the world and make them available online for 
users [Dorigo et al,. 2011 & 2013]). The datasets vary widely in terms of measuring depth, 
sensor types, and measurement period. Therefore, to make consistent time series of soil moisture 
measurements ready for the analysis, 2007-2011 observations flagged as “Good” in the ISMN 
system were collected at the highest (i.e., closest-to-surface) available depth of sensor 
measurement, ranging from zero to 0.3 meters, and converted into daily estimates. Moreover, to 
obtain robust statistical results in the evaluation part of the study, sites with less than 540 data 
points (~1.5 years of daily data) were masked out from 1033 available site in the ISMN system 
for the mentioned period. For further details about ISMN datasets used in this study, readers are 
referred to Table 1. Note that networks that have less than four sites later are combined to the 
“OTH” group (i.e., other) in the section 6 of this study. 

4 Fusion Scenarios  
  After a given rescaling approach is applied, the resulting rescaled soil moisture products 
are fused within three scenarios presented in Figure 1. The impacts of various: rescaling 
methods, rescaling stationarity selections, rescaling techniques, and reference dataset selections 
are investigated separately in via multiple numerical experiments that fuse satellite- and a model-
based estimates. Moreover, the impact of different weighting schemes are compared within 
fusion schemes using a simple equal weighting (i.e., naive merging [Yilmaz et al., 2012]) and 
complex merging approaches (e.g., TCA-based [Yilmaz et al., 2012; Gruber et al., 2017]). In 
particular, four separate soil moisture products (ASCAT, AMSR-E, API, NOAH) are used for 
fusing two or more two products while the comparison of weighting schemes are based on the 
pairwise merging of ASCAT, AMSR-E, API soil moisture products over the NOAH space. Note 
that the uncertainty that fusion process reduces arises from a broad range of sources including: 
poor spatial resolution, retrieval algorithm error, or sensor error-based uncertainty. Accordingly, 
in most cases it is not possible to differentiate these components from each other. 
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5 Evaluation   
  Soil moisture products can have markedly different levels of temporal variability, 
implying that error variance or root mean square error measure alone may not be appropriate 
statistics to objectively measure the skill of the fused product. Alternatively, a dimensionless 
statistic, correlation coefficient, is used for the assessment of the skill of native or fused soil 
moisture products:  

𝜌𝑖 = 𝑐𝑜𝑣(𝑆𝑡𝑎𝑖,𝑆𝑀𝑖)
𝜎𝑆𝑡𝑎𝑖𝜎𝑆𝑀𝑖

                                                                         (31) 

where 𝑆𝑡𝑎 and 𝑆𝑀 are the in-situ observations and the evaluated soil moisture products, 
respectively, and 𝜌𝑖 is the Pearson correlation over the 𝑖𝑡ℎ site (542 in total). Higher precision for 
any product is indicated by higher 𝜌𝑖. Here, evaluation is performed for native soil moisture 
products (ASCAT, AMSR-E, API, NOAH) as well as for generated fused products. Notice that 
the calculation of correlation coefficients between fused products and in-situ measurements are 
based on all available input observations. Separate analysis have been performed to examine the 
use of mutually available input observations (i.e., collocated observations among products 
involved in the fusion process) over fused product precision compared against the use of all 
available input observations. These analysis (not shown) demonstrate that, on average, the results 
only change marginally (less than 0.01 correlation), hence in this study all available datasets are 
used for rescaling and fusing. 

6 Results and Discussion 

  Based on the rescaling and the fusion setups described above, in scenarios one and two 
(see Figure 1), a 6-dimensional matrix (containing dimensions corresponding choices of: fused 
products, rescaling methods, rescaling techniques, rescaling stationarity selections, reference 
dataset selections, and validation locations) of correlation results versus ground-based soil 
moisture observations is constructed. While in a third scenario, the original 6-dimensional matrix 
is reduced to a 3-dimensional matrix (containing dimensions corresponding choices of: fused 
products, weighting scheme, and validation locations) by considering only the simplest rescaling 
approach (i.e., using of linear regression without considering any variation in stationarity 
assumption or decomposition technique). Below, results generated from the of above mentioned 
scenarios are presented in three subsections related to: the precision of the input datasets, the 
impact of rescaling options on the precision of fused products, and the precision gain of different 
products during the fusion process.  

6.1 Precision of Input Datasets 

  Before products are rescaled and fused within their selected reference dataset space, their 
precision is summarized in Table 2 and Figure 2. Overall, relative to ground-based observations, 
NOAH and AMSR-E soil moisture time series have higher (correlation-based) precision than 
ASCAT and API owing to the precision of their low-frequency (i.e., seasonality and smooth) 
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components, while the high- frequency skill of ASCAT and API (anomaly and deviance) are 
comparable to that of AMSR-E. NOAH exhibits the highest correlation against in-situ 
measurements with regards to both high and low frequency components amongst all the products 
(Figure 2). Low- and high-frequency variability compared to the entire time series variability 
(eqs. 20-24) results for all products are different for various temporal decomposition techniques 
(see the top part of Table 2). In particular, the smooth component generally contributes a higher 
percentage of the total variability than the seasonality component for all products (Table 2a). In 
fact, the seasonality variability is lower than the anomaly variability, while the smooth 
component contributes more variability than the deviance component.  

6.2 Impact of Rescaling Options 

   While our data fusion analysis generates a 6-dimensional correlation matrix, Figures 3 
and 4 select two dimensions for display and averages correlation values across the remaining 
four dimensions of the matrix. One of the displayed dimensions (i.e., the x-axis) always reflects 
variations in the reference dataset choice. The second displayed dimension (expressed via color 
variations summarized in the legend of each panel) varies from panel to panel. For example, the 
impact of rescaling method selection in a data fusion framework is presented in panel A of 
Figures 3 and 4. Overall, under identical experiment designs, the selection of NOAH as the 
reference dataset results in a more precise fused product than the selection of other datasets as 
reference (Figure 3 and 4). This tendency is not impacted by the number of fused products (two 
or more than two cases). The reference dataset selection also impacts the rescaling method 
performance. In particular, the nonlinear MAR and SVM methods yield a more precise fused 
product when NOAH (i.e., a more precise product) is used as the rescaling reference. On the 
other hand, the linear REG and VAR methods yield a more precise fused product when less 
correlated products (i.e., against in-situ measurements) are used as the rescaling reference (see 
correlation the difference between methods over different references in panel A of Figures 3 and 
4). 

  The impact of rescaling stationarity selection (i.e., the use of a constant or time-varying 
scaling coefficients) over the precision of fused products is shown in panel B of Figures 3 and 4 
for fusion of two and more than two products, respectively. Confirming the results of Yilmaz et 
al. [2016] the use of more aggressive (time-varying) rescaling stationarity selection results in 
degraded fused product in terms of precision when an imprecise reference dataset is used (see the 
correlation difference between time-varying stationarity assumptions over API and NOAH 
references presented with red color in panel B of Figures 3 and 4). In general, higher correlations 
are associated with the application of constant rescaling parameters, while the use of a more 
aggressive rescaling stationarity selection does not improve the correlation of the final fused 
product as much - particularly when the overall precision of the reference product is low (e.g., 
ASCAT and API). On the other hand, when products are fused using a good reference product 
(e.g., NOAH), the use of time-varying stationarity assumption improves the correlation of final 
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fused products. While this increment can be seen in both scenarios regardless of number of 
products involved in fusion process. 

  For all products, time series deviance components have lower autocorrelation and less 
cross-correlation (see the middle and bottom portions of Table 2, respectively) than comparable 
anomaly components, while the smooth components have higher cross-correlation and variability 
than the seasonality component (see the variability ratio difference between fifth and third 
column in top part of Table 2). Accordingly, smooth-deviance decomposition is expected to be 
more beneficial as a pre-processing step than seasonality-anomaly decomposition. Accordingly, 
when the autocorrelation and variability of decomposition techniques is compared in Table 2, the 
deviance high frequency product has lower variability and resembles a random noise process 
more than the seasonality-anomaly-based product (i.e., the deviance component is closer to a 
random noise process than the anomaly component for the same product). Expectedly, once 
these components are rescaled and fused, the smooth-deviance decomposition-based fused 
product results in a more precise fused product versus independent ground observations (see 
correlation difference between smooth-deviance and seasonality-anomaly techniques in panel C 
of Figures 3 and 4) than the comparable fused product derived via seasonality-anomaly 
decomposition.  

  Investigating the impact of product selection on the precision of the fused product (panel 
D of Figures 3 and 4) reveals that the rescaling procedure and reference dataset selection are 
critical for the fusion process - regardless of the number of products that are fused. The 
increment trend in correlation of fused products realized upon improving the precision of 
reference product is detectable in panel D of both Figures 3 and 4. On the other hand, adding 
additional products into the fusion process generally improves its precision. For example, the 
comparison of products based on the fusion of AMSR-E, ASCAT, and API (indicated with blue 
coloring in panel D of Figure 4) with products based on AMSR-E and ASCAT fusion 
(represented with blue coloring in panel D of Figure 3) shows that adding the API product into 
the fusion process provides a positive effect to the precision of fused product (see correlation 
differences shown in panel D of Figures 3 and 4). As expected, this improvement is more 
pronounced over sites where the products are less correlated with ground truth (that is, the lowest 
25% quantile shown in boxplots have higher improvements than higher quantiles).  

6.3 The Precision Gain from the Fusion Process 

  On average, when sampled across all possible reference choices, the simple fusion of 
products on average improves the correlation of the individual products by 0.06 when two 
products are fused (AMSR-E 0.108, ASCAT 0.114, API 0.121, and NOAH -0.097) and 0.10 
when more than two products are fused (AMSR-E 0.152, ASCAT 0.162, API 0.168, and NOAH 
-0.082). However, when NOAH is selected as the reference dataset, these correlation 
improvements increase to 0.10 when two products are fused (AMSR-E 0.15, ASCAT 0.16, API 
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0.16, and NOAH -0.08), and 0.22 when more than two products are fused (AMSR-E 0.27, 
ASCAT 0.27, API 0.28, and NOAH 0.04). Overall, AMSR-E, ASCAT, and API benefit from the 
fusion the most (i.e., correlation difference given in panel D of Figures 3 and 4, and Figure 2), 
particularly when more than two products are fused, and NOAH is selected as the reference. 

  Since the NOAH dataset is globally available, and the fused products have higher 
correlation with ground truth when NOAH is selected as the reference dataset, further analyses 
are performed for the case of using NOAH as the reference. Table 3 and Table 4 summarize the 
correlation statistics of fused products against in-situ measurements for the case of fusing two or 
more two products. On average, MAR and SVM perform better than other methods (CDFM, 
REG, and VAR). Although the correlation difference between nonlinear and linear methods is 
relatively marginal, when the reference dataset selection is changed from NOAH to in-situ, 
larger benefits are expected in the case of nonlinear methods since utilizing in-situ data as 
reference add less sampling uncertainty [Afshar & Yilmaz, 2017]. Overall, the implementation of 
time varying rescaling coefficients yields higher improvement compared to constant coefficients 
(i.e., on average the difference between the correlations under the columns of T and C in Tables 
3 and 4 is 0.043 and 0.076, respectively). Similarly, the selection of decomposition techniques 
yields more precise fused products compared to the fusing of products without first decomposing 
them (i.e., on average the differences between the correlations in front of the rows related to the 
seasonality-anomaly- and no decomposition- techniques are 0.013 and 0.006 in Tables 3 and 4, 
while the differences between rows associated with smooth-deviance- and no decomposition- 
techniques are 0.02 and 0.015 in Tables 3 and 4, respectively).  

  Given that the performance of a smooth-deviance decomposition technique is better than 
a seasonality-anomaly technique, and the fusing of AMSR-E and ASCAT soil moisture products 
provides an idea about the utility of rescaling approaches for the fusion of active and passive soil 
moisture products, Figure 5 investigates the performance of AMSR-E – ASCAT fusion over 
different networks separately. This investigation is based on comparison of the cross-correlations 
between the unscaled products and the fused products against in-situ datasets over different 
networks when different rescaling method and technique selections are used. Overall, the 
correlation improvement achieved by the smooth-deviance decomposition technique is observed 
over all the networks. The AMSR-E – ASCAT fusion product is more precise than its parent 
products individually. The single exception to this tendency is found in the UDC_SMOS 
network where both unscaled and reference soil moisture products are of low quality. The 
reduced precision of fused product with respect to the pair products is more pronounced when 
products are being rescaled aggressively. This illustrates – once again – the failure of aggressive 
approaches (i.e., nonlinear methods or time-varying stationarity assumptions) in cases where the 
reference product is inferior to the unscaled products that are being fused.  

 Overall, a time-varying rescaling coefficient assumption (e.g., monthly coefficients) clearly 
results in an improved fused product when the reference product is more correlated with the in 
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situ measurements [Yilmaz et al., 2016]. While aggressive implementation of the rescaling 
methods (including the time-varying assumptions) over a reference which is relatively less 
correlated with the truth, results in reduced fused product precision due to the over-fitting of the 
unscaled product to the reference product. For such cases, simpler linear rescaling methods can 
remove systematic differences in the unscaled dataset without compromising the precision of the 
fused product.  

  The comparison of different weighting approaches in data fusion framework is shown in 
Figure 6, where the AMSR-E, ASCAT, and API soil moisture products are fused in pairwise 
schemes based on two different weighting approaches (i.e., naive- and TCA-based). The overall 
average of three product pairs (see the last pair boxplots of Figure 6), indicate that the fusion 
framework of this study does not measurably benefit from TCA-based weighting of fused 
products. Although, these results are consistent with the results of Yilmaz et al., [2012] who 
suggest that there is rarely enough contrast between the precision of fused products for TCA-
based merging to be clearly beneficial, other studies have found that TCA-based weighting 
approach can improve the precision of fused products [Gruber et al., 2017 & 2019]. The TCA 
methodology for accurately estimating of errors, and hence weights, requires specific error 
assumptions to be met. Accordingly, the optimality of TCA implementations and the gained 
utility from this methodology may reasonably vary for different implementations. 

7 Conclusions 

  Most soil moisture applications require soil moisture product with a good precision. For 
such studies, an improved soil moisture dataset can be obtained by appropriately removing 
systematic differences between the multiple products and merging them with a proper 
methodology (i.e., simple fusion or data assimilation). However, the approach taken during the 
removal of systematic differences (i.e., rescaling) can also affect the precision of the final fused 
product. The present study investigates the impact of rescaling method choice and the 
implementation approaches with the aim of optimizing a simple data fusion framework for soil 
moisture. The fused products are compared against in situ measurements over 542 ISMN sites to 
evaluate the impact of various rescaling approaches (i.e., different rescaling methodologies, 
techniques, and stationarity selections) during the period of 2007-2011 on the precision of the 
resulting fused soil moisture product. 

  Here, in this study it is concluded that the precision of the fused product is most sensitive 
to variations in the dataset selected to serve as a reference (assuming other rescaling related 
choices are the same). After the reference dataset selection, the product selection (i.e., the 
selection of data products to be fused) matters the most. For example, AMSR-E and ASCAT 
precisions individually are not superior to NOAH - yet the fusion of them over a proper reference 
product and using a proper rescaling approach yields a superior fused product than the NOAH 
product. Additionally, among rescaling approaches, the implementation of nonlinear methods 
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(e.g., CDFM, SVM) marginally improve the precision of fused products (~0.01 correlation 
improvement) as compared to linear methods (e.g., REG); however, the implementation of linear 
methods with a proper decomposition technique (e.g., smooth-deviance decomposition) can yield 
higher correlations than use of nonlinear methods that are not enhanced with decomposition 
techniques and time-varying stationarity assumption. Overall, rescaling the high- and the low-
frequency components of soil moisture datasets using a smooth/deviance technique results in a 
more precise fused product than use of seasonality/anomaly technique. Nevertheless, the relative 
performance of different decomposition techniques, and also stationarity assumptions, should be 
further investigated in detail via follow-on studies utilizing more experiments with other 
different methods before making a general conclusion about the optimality of the high/low 
frequency decomposition technique and also different stationarity assumptions across the entire 
spectrum of soil moisture applications. 
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Figure 1. Schematic of various rescaling and data fusion procedures. Scenario 1 and 2 are 
focusing on impact of rescaling approaches on fusing of products based on simple merging 
scheme, while scenario 3 is focusing on comparison of merging schemes (simple- and TCA-
based- merging) utilizing the simplest rescaling approach. The distinction between Scenario 1 
and 2 is summarized in the number of products that they use in their fusion procedures. While 
Scenario 1 is developed based on fusing of pair products, scenario 2 is developed based on 
fusing of more than two (three or four) products. 

 

Figure 2. The correlation between in situ soil moisture observations and various remotely sensed 
and modelled soil moisture time series components defined in section 2.3 by eqs. 20-22.     
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Figure 3. For various rescaling reference selections (x-axis), correlation of pairwise fusion 
results against in situ values as a function of a) rescaling method, b) stationarity assumption, c) 
technique, and d) pairwise parent product selection.    
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Figure 4. For various rescaling reference selections (x-axis), correlation of three-way fusion 
results against in situ values as a function of a) rescaling method, b) stationarity assumption, c) 
technique, and d) three- and four-way data fusion products. 

This article is protected by copyright. All rights reserved.



Water Resources Research 

 

 

Figure 5. Correlation results of both native and fused soil moisture products for various 
networks (those networks which have less than four sites are combined to the “OTH” group; full 
names of the networks plotted along the x-axis are available in Table 1). Fused products are 
based on the pairwise merger of AMSR-E and ASCAT datasets using a NOAH rescaling 
reference. Rescaling is based on both the a) no decomposition and b) smooth-deviance 
techniques. 

This article is protected by copyright. All rights reserved.



Water Resources Research 

 

 

Figure 6. Impact of different weighting approaches (defined in section 2 by eqs. 4-9) on the 
accuracy of pairwise fusion products. 

Table 1. Description of in situ soil moisture networks used in this study. (Notice that the sites in 
the USDA-ARS network are comprised of an average of many different measurement locations. 
While in other networks the used sites are just one single instrument at one single location.)  

Table 2. Summary of statistical results comparing the variability and mutual dependency of 
different soil moisture products (statistics are averaged across 542 sites). a) The average ratio of 
both low- and high-frequency (see eqs. 23-24) soil moisture daily time series variance to daily 
total time series variance, b) The average auto-correlation of the soil moisture time series and 
their high-frequency components across 542 sites, and c) Average pairwise cross-correlation 
between different decomposed parts of soil moisture time series. 

Table 3. Impact of rescaling methods, techniques, and stationarity assumptions on correlation-
based accuracy (obtained from averaged comparisons with 542 in situ sites) of pairwise fusion 
data products (NOAH reference). Constant and time-varying stationarity assumptions are 
indicated with “C” and “T”, respectively (the best results in each row are written in bold). 
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Table 4. Impact of rescaling methods, techniques, and stationarity assumptions on correlation-
based accuracy (obtained from averaged comparisons with 542 in situ sites) of three- and four-
way data fusion products (NOAH reference). Constant and time-varying stationarity assumptions 
are indicated with “C” and “T”, respectively (the best results in each row are written in bold).  
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