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Abstract Methodologies are presented that enable the construction of prov-
ably linearly stable and conservative high-order discretizations of partial dif-
ferential equations in curvilinear coordinates based on generalized summation-
by-parts operators, including operators with dense-norm matrices. Specifically,
three approaches are presented for the construction of stable and conservative
schemes in curvilinear coordinates using summation-by-parts (SBP) operators
that have a diagonal norm but may or may not include boundary nodes: 1)
the mortar-element approach, 2) the global SBP operator approach, and 3) the
staggered grid approach. Moreover, the staggered grid approach is extended
to enable the development of stable dense-norm operators in curvilinear co-
ordinates. In addition, collocated upwind simultaneous approximation terms
for the weak imposition of boundary conditions or inter-element coupling are
extended to curvilinear coordinates with the new approaches. While the em-
phasis in the paper is on tensor-product SBP operators, the approaches that
are covered are directly applicable to multidimensional SBP operators.
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1 Introduction

The summation-by-parts (SBP) framework provides a systematic methodol-
ogy for the development and analysis of stable and conservative methods for
linear partial differential equations (PDEs) with variable coefficients (see the
review papers [20,46]). SBP operators are matrix difference operators that are
mimetic of integration by parts (IBP). The mimetic property of SBP opera-
tors is transferred to the complete discretization by combining SBP operators
with appropriate procedures for coupling and imposition of boundary condi-
tions (e.g. simultaneous approximation terms (SATs) [5,6,36,37,7]); in doing
so, stability is proven in a one-to-one correspondence with continuous stability
proofs. The SBP framework is attractive for the design and analysis of numer-
ical methods because stability and conservation proofs reduce to the exami-
nation of matrices and their properties. This makes the approach applicable
to the analysis of practical implementations of numerical algorithms, i.e., nu-
merical integration is easily included in the analysis. Moreover, the framework
is accessible to a broad range of researchers because it only requires simple
matrix algebra, for the discrete analysis, and introductory level calculus, for
the continuous analysis.

In recent years, there has been a sustained effort to extend the SBP con-
cept to include a broader set of existing and novel discretization strategies,
including continuous and discontinuous Galerkin [31,17] and flux reconstruc-
tion [42,41] methods as well as extensions to the analysis of nonlinear PDEs
and general element types such as tetrahedra [26,17,3,40,4,39,33,21,14,16,10,
19]. The resulting generalizations allow for the construction of schemes hav-
ing the SBP property on fairly arbitrary nodal distributions including those
that do not have nodes on the boundaries (this implies that the surface mass
matrix is not collocated). For curvilinear coordinates, until recently, it was un-
clear how to prove conservation for schemes constructed with SBP operators
that do not have collocated surface mass matrices. However, this issue was
solved by Crean et al. [16], in the context of multidimensional SBP operators
(the solution of which was applied in the context of p-refinement on tensor-
product operators by Ref. [18]). Another outstanding issue is construction of
stable schemes using SBP operators that have dense norms (mass matrix) in
curvilinear coordinates. Svärd [45] proves that, in general, a valid norm can-
not be constructed, and therefore energy stability cannot be proven, because
the norm matrix does not commute with the diagonal metric Jacobian matrix.
However, in the context of modal based schemes, the modal decoupled SBP op-
erators of Chan [10,11] result in provably stable discretizations for dense-norm
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3

operators. This approach circumvents the issues in Svärd [45] by incorporat-
ing the metric Jacobian into the norm matrix. The resulting schemes are the
modal equivalent of the staggered approach presented here (see also the work
of Chan et al. on the weight adjusted discontinuous Galerkin approach [12,9,
13]). Alternatively, Ranocha et al. [43] examine one-dimensional PDEs with
a varying metric Jacobian and construct dense matrices, J, such that Jdu

dt
approximates the metric Jacobian times the time rate of change of the solu-
tion. In order to obtain stability, the matrix J is constructed such that when
multiplied by the mass matrix, H, HJ = JTH and HJ is symmetric-positive
definite.

In this paper, the focus is on nodal SBP operators and construction of
stable and conservative schemes in curvilinear coordinates. In particular, the
objective is to present a number of alternative methods to handle diagonal-
norm generalized SBP (GSBP) operators that do not have a collocated surface
mass matrix and SBP operators with a dense norm. For diagonal-norm GSBP
operators, several constructions that lead to stable and conservative schemes
in curvilinear coordinates are presented, specifically:

– the mortar-element approach [30,18] that require metric approximations
based on Crean et al. [16]

– the global SBP approach
– the staggered grid approach [39,19]

In addition, the staggered grid approach is extended for the construction of
stable and conservative approximations in curvilinear coordinates using dense-
norm SBP operators. While we emphasize tensor-product SBP operators, the
developments in this paper can be directly applied to multidimensional SBP
operators. Moreover, because the resulting schemes have the SBP property,
they can be extended to entropy stable schemes for nonlinear conservation
laws [25,28,27,3,39,8,8,53,16,14,10,50,24,51,49,32,52].

The paper is organized as follows: the notation that is used is summa-
rized in Section 2 and a brief review of SBP operators is given. To motivate
the semi-discrete stability analysis, the continuous stability analysis of the
convection equation in curvilinear coordinates is reviewed in Section 3. The
schemes developed in this paper are provably element-wise conservative in
curvilinear coordinates and this is discussed in Section 4. Several approaches
for constructing stable and conservative discretizations using diagonal-norm
SBP operators are reviewed in Section 5 and presented and analyzed in Sec-
tions 6 and 7. Approximation of the metric terms that arise from transforming
PDEs into curvilinear coordinates such that a freestream is preserved is de-
tailed in Section 8. The staggered-grid approach is reviewed in Section 9. This
is followed by extension of the staggered-grid approach to dense-norm SBP
operators (Section 10). Compatible SATs for interface and boundary condi-
tions are presented in Section 11. A small set of numerical examples to verify
the theory presented in the paper are given in Section 12. Finally, conclusions
are drawn in Section 13.
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(i, j, k) min/max face number
i min 1
i max 2
j min 3
j max 4
k min 5
k max 6

Table 1 Face numbering convention

2 Notation, definitions, and review of SBP operators

The notation used in this paper is consistent with that in Refs. [18,21,33];
readers familiar with that notation and SBP operators can skip to Section 3.
Consider a hexahedral physical domain Ω ⊂ R

3, with boundary ∂Ω, in Carte-
sian coordinates (x1, x2, x3) ⊂ R

3. The domain, Ω, is partitioned into K non-
overlapping hexahedral elements, Ωκ, κ = 1, . . . ,K. Associating the index
3-tuple (i, j, k) with the computational coordinate 3-tuple (ξ1, ξ2, ξ3), then the
face numbering convention used in this paper is given in Table 2.

The domain of the κth element is denoted by Ωκ and has boundary Γκ ≡
∂Ωκ. In order to use differentiation matrices constructed on a reference ele-
ment, PDEs are solved in curvilinear coordinates, (ξ1, ξ2, ξ3) ⊂ R

3, where each
Ωκ is locally transformed to the computational domain Ω̂κ (e.g. the reference
element) with boundary Γ̂κ ≡ ∂Ω̂κ, under the following assumption:

Assumption 1 Each element in physical space is transformed using local and
invertible curvilinear coordinate transformations that are compatible at shared
interfaces, meaning that points in analogous locations in computational space
on either side of the shared surface are mapped to the same physical location.

Matrices are presented using capital letters in sans-serif font, for example
A, while vectors are denoted with lower-case bold font, for example ξ1 =
[ξ1,1, . . . , ξ1,N ]

T
. Continuous functions on a space-time domain are represented

by capital letters with script type. For example,

U (ξ1, ξ2, ξ3, t) ∈ L2 ([αξ1 , βξ1 ]× [αξ2 , βξ2 ]× [αξ3 , βξ3 ]× [0, T ])

denotes a square integrable function. The restriction of such functions onto a
grid is represented by lower-case bold font; for example the restriction of U
onto a grid of N1 ×N2 ×N3 nodes is given by the vector

u = [U(ξ1,1, ξ2,1, ξ3,1, t), . . . ,U(ξ1,N1 , ξ1,N2 , ξ3,N3 , t)]
T
.

2.1 Review of tensor-product SBP operators

In this paper, one-dimensional SBP operators are extended to multiple dimen-
sions using tensor products.
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5

Definition 1 The tensor product between matrices A ∈ R
n×m and B ∈ R

p×q

is denoted by

A⊗ B ≡






a1,1B . . . a1,mB

...
...

an,1B . . . an,mB






and has the following useful properties:

– (A⊗ B)
T
= AT ⊗ BT,

– (A⊗ B)
−1

= A−1 ⊗ B−1,
– if the products AC and BD exist then (A⊗ B) (C⊗ D) = AC⊗ BD.

SBP operators are matrix difference operators approximating derivatives at
mesh nodes; they can be characterized in terms of their degree, which is the
degree of monomial that they differentiate exactly. In this paper, the word
order is reserved to refer to the order of the solution error and the accuracy
of the discretization is exclusively discussed in terms of degree. The definition
of a one-dimensional SBP operator in the ξl direction is [17,20,46]:

Definition 2 Summation-by-parts operator for the first derivative:

A matrix operator, D
(1D)
ξl

∈ R
Nl×Nl , is an SBP operator approximating the

derivative ∂
∂ξl

on the nodal distribution ξl ∈ [αξl , βξl ], of degree p if

1. D
(1D)
ξl

ξkl = kξk−1
l , k = 0, 1, . . . , p;

2. D
(1D)
ξl

≡
(

H
(1D)
ξl

)−1

Q
(1D)
ξl

, where the norm matrix, H
(1D)
ξl

, is symmetric

positive definite, and;

3. Q
(1D)
ξl

=
(

S
(1D)
ξl

+ 1
2E

(1D)
ξl

)

, where S
(1D)
ξl

= −
(

S
(1D)
ξl

)T

, E
(1D)
ξl

=
(

E
(1D)
ξl

)T

,

and E
(1D)
ξl

satisfies

(
ξil
)T

E
(1D)
ξl

ξ
j
l = βi+j

ξl
− αi+j

ξl
, i, j = 0, 1, . . . , r, r ≥ p.

For the purpose of imposing boundary conditions or inter-element coupling

using SATs, it is convenient to decompose E
(1D)
ξl

as [17]

E
(1D)
ξl

= tβξl
tTβξl

− tαξl
tTαξl

,

where

tTαξl
ξk
l
= αk

l , tTβξl
ξk
l
= βk

l , k = 0, 1, . . . , r.

The tensor-product extension to three dimensions of the first-derivative SBP
operators is given as

Dξ1 ≡ D
(1D)
ξ1

⊗ Iξ2 ⊗ Iξ3 , Dξ2 ≡ Iξ1 ⊗ D
(1D)
ξ2

⊗ Iξ3 , Dξ2 ≡ Iξ1 ⊗ Iξ2 ⊗ D
(1D)
ξ3

,

where Iξl ∈ R
Nl×Nl are identity matrices for l = 1, 2, 3.
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For the purpose of analysis, it is convenient to rewrite the tensor-product
operators as multidimensional SBP operators; for example

Dξ1 ≡ H
−1

Qξ1 , Qξ1 ≡ Q
(1D)
ξ1

⊗ H
(1D)
ξ2

⊗ H
(1D)
ξ3

,

H ≡ H
(1D)
ξ1

⊗ H
(1D)
ξ2

⊗ H
(1D)
ξ3

Eξ1 ≡ Eβξ1
+ Eαξ1

, Eβξ1
≡ RT

βξ1
H⊥

ξ1
Rβξ1

, Eαξ1
≡ −RT

αξ1
H⊥

ξ1
Rαξ1

,

H⊥
ξ1

≡ H
(1D)
ξ2

⊗ H
(1D)
ξ3

,

Rβξ1
≡ tTβξ1

⊗ Iξ2 ⊗ Iξ3 , Rαξ1
≡ tTαξ1

⊗ Iξ2 ⊗ Iξ3 .

(1)

To clarify the meaning of each of the constituent matrices, i.e., H, Qξ1 , Eξ1 ,
etc., we link them here to various bilinear forms. Consider the vectors u and
v constructed from the evaluation of two continuous functions U and V on the
nodes of a tensor-product hexahedral element in computational coordinates,
then

vT
κHuκ ≈

∫

Ω̂κ

VκUκdΩ̂, vT
κQξ1uκ ≈

∫

Ω̂κ

Vκ

∂Uκ

∂ξ1
dΩ̂, vT

κ Eξ1uκ ≈

∮

Γ̂κ

VκUκnξ1dΓ̂ ,

vT
κ Eαξ1

uκ ≈

∮

Γ̂
αξ1
κ

VκUκnξ1dΓ̂ , vT
κ Eβξ1

uκ ≈

∮

Γ̂
βξ1
κ

VκUκnξ1dΓ̂ ,

where nξ1 is the ξ1 component of the unit normal, and Γ̂
αξ1
κ and Γ̂

βξ1
κ are the

surfaces perpendicular to the ξ1 coordinate. Furthermore, the operators Rαξ1

and Rβξ1
interpolate/extrapolate to opposing surfaces, i.e.,

Rαξ1
uκ ≈ Uκ

(
ξ
αξ1
1 , ξ

αξ1
2 , ξ

αξ1
3

)
Rβξ1

uκ ≈ Uκ

(

ξ
βξ1
1 , ξ

βξ1
2 , ξ

βξ1
3

)

,

where ξ
αξ1

i and ξ
βξ1

i , i = 1, 2, 3, are the coordinates of the nodes at the Γ̂
αξ1
κ

and Γ̂
βξ1
κ surface respectively.

3 Linear stability analysis of the convection equation in curvilinear
coordinates

The combination of SBP-SATs to discretize PDEs in a stable fashion is based
on the idea of mimicking, in a one-to-one fashion, the linear and nonlinear
stability proofs available for continuous PDEs. To motivate the semi-discrete
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7

stability analysis that appears later in this paper, the stability analysis of the
three-dimensional periodic convection equation,

∂U

∂t
+

3∑

m=1

∂U

∂xm

= 0, ∀ (x1, x2, x3) ∈ [0, 1]3 = Ω, t ≥ 0, (2)

is reviewed.

The initial and boundary conditions are

U(x1, x2, x3, 0) = U0(x1, x2, x3),

U(0, x2, x3, t) = U(1, x2, x3, t),

U(x1, 0, x3, t) = U(x1, 1, x3, t), ∀ (x1, x2, x3) ∈ [0, 1]3, t ≥ 0,

U(x1, x2, 0, t) = U(x1, x2, 1, t).

(3)

The domain Ω is partitioned into K sub-domains Ωκ and on each a time-
invariant curvilinear coordinate transformation is applied to (2). Thus, in
strong conservation form, on the κth element (2) becomes

Jκ

∂Uκ

∂t
+

3∑

l,m=1

∂

∂ξl

(

Jκ

∂ξl
∂xm

Uκ

)

= 0, (ξ1, ξ2, ξ3) ∈ Ω̂κ, (4)

where the metric invariants have been used to obtain this form:

3∑

l=1

∂

∂ξl

(

Jκ

∂ξl
∂xm

)

= 0, m = 1, 2, 3, (5)

and Jκ ≡ det
(

∂(x1,x2,x3)
T

∂(ξ1,ξ2,ξ3)
T

)

. By noting that

3∑

l=1

∂

∂ξl

(

Jκ

∂ξl
∂xm

Uκ

)

=
3∑

l=1

1

2

∂

∂ξl

(

Jκ

∂ξl
∂xm

Uκ +
1

2
Jκ

∂ξl
∂xm

∂Uκ

∂ξl

)

,

m = 1, 2, 3,

where the metric invariants (5) have again been used, the conservative form
of the convection equation (4) is recast in skew-symmetric form [28]

Jκ

∂Uκ

∂t
+

1

2

3∑

l,m=1

{
∂

∂ξl

(

Jκ

∂ξl
∂xm

Uκ

)

+ Jκ

∂ξl
∂xm

∂Uκ

∂ξl

}

= 0. (6)

This form is important in constructing a provably stable semi-discrete form.
Furthermore, it will be shown that in order to preserve a freestream and
element-wise conservation, the discrete metrics must satisfy the metric in-
variant condition discretely.
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Now, the energy method is used to show that the problem defined by (6)
(or equivalently (4)) with data (3) is stable. Multiplying (6) by the solution
and integrating in space results in

∫

Ω̂κ

(

UκJκ

∂Uκ

∂t

)

dΩ̂+

∫

Ω̂κ




Uκ

2

3∑

l,m=1

{
∂

∂ξl

(

Jκ

∂ξl
∂xm

Uκ

)

+ Jκ

∂ξl
∂xm

∂Uκ

∂ξl

}


dΩ̂ = 0. (7)

For the temporal term, the equality UκJκ
∂Uκ

∂t
= 1

2
∂Jκ(Uκ)

2

∂t
and then the Leib-

niz rule are used to bring the derivative outside of the integral. For the spatial
term, integration by parts is used, which results in

d

dt
‖Uκ‖

2
Jκ

+

∮

Γ̂κ







3∑

l,m=1

Jκ

∂ξl
∂xm

(Uκ)
2
nξl






dΓ̂ = 0, (8)

where nξl is the ξl component of the outward pointing unit normal and the
following norm is introduced:

‖Uκ‖
2
Jκ

≡

∫

Ω̂κ

U2
κJκdΩ̂.

Applying the boundary conditions, integrating in time, applying the initial
condition, and rearranging gives

‖Uκ‖
2
Jκ

= ‖U0‖
2
Jκ

, (9)

which shows that the solution is bounded by the data and therefore the prob-
lem is stable.

4 Conservation

The discussion in this section follows closely that in Ref. [18]. Our interest is in
solving nonlinear conservation laws; this implies that in finite time non-smooth
solutions can result even when the conservation law is closed with smooth data.
In the case of the linear variable coefficient hyperbolic conservation laws that
are analyzed in this paper, non-smooth solutions can only occur as a result
of the initial condition or the boundary conditions. In order to accommodate
non-smooth solutions it is necessary to consider the weak form of the conser-
vation law. The importance of the weak form is that it supports a restricted
class of discontinuous solutions, i.e., those that support the Rankine-Hugoniot
conditions.
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9

In this paper, semi-discrete forms are analyzed; thus, the appropriate weak
form is

∫

Ω̂κ



Vκ

∂Uκ

∂t
Jκ −

3∑

l,m=1

Jκ

∂ξl
∂xm

Fxm

∂Vκ

∂ξl



dΩ̂+

∮

Γ̂κ

Vκ

3∑

l,m=1

Jκ

∂ξl
∂xm

Fxm
nξldΓ̂ = 0, t ≥ 0, κ = 1, 2, . . . ,K, (10)

for all test functions Vκ ∈ C1
(

Ω̂κ

)

. The flux function Fxm
in the current

context is a scalar and is equal to Uκ.

At its core, the analysis that is employed relies on the Lax-Wendroff The-
orem [35]. To use this theorem, it is necessary to recast the schemes in tele-
scoping flux form, which in one dimension at node j over a control volume
[

xj− 1
2
, xj+ 1

2

]

reads

duj

dt
+

(

gj+ 1
2
− gj− 1

2

)

∆x
= 0,

where g is a unique general scalar flux function at the boundaries of the control
volume and ∆x is the mesh spacing. If a scheme can be recast in this way it
is said to be conservative.

4.1 Element-wise conservation

Here, the necessary tools are laid out to prove that the schemes have a tele-
scoping flux form at the element level. Recently, Shi and Shu [44] presented an
extension of the Lax-Wendroff Theorem [35] applicable to element-wise conser-
vation analysis for general multidimensional discretizations. Here, use is made
of Shi and Shu’s framework, as applied to curvilinear coordinates and SBP
operators as given in Ref. [18]. It is necessary to show that the semi-discrete
equations satisfy the following:

– Telescoping form: The schemes can be algebraically manipulated into a
general telescoping flux form at the element level given by

dūκ

dt
+

3∑

l=1

(

g(2l−1)
κ + g(2l)κ

)

= 0, (11)

where ūκ is a generalized locally conserved quantity and g
(2l−1)
κ and g

(2l)
κ

are generalized fluxes on the (2l − 1) and 2l faces of the element, respec-
tively. A necessary condition for the scheme to have the telescoping prop-
erty is that fluxes on any interface are unique.
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– Consistency: For a constant flow U = Uc

ūκ =

(∫

Ω̂κ

JκdΩ̂ +O(h)

)

Uc,

g(2l−1)
κ =

3∑

m=1

(
∮ (2l−1)

Γ̂κ

Jκ

∂ξl
∂xm

nξldΓ̂ +O(h)

)

Fxm
(Uc) ,

g(2l)κ =
3∑

m=1

(
∮ (2l)

Γ̂κ

Jκ

∂ξl
∂xm

nξldΓ̂ +O(h)

)

Fxm
(Uc) ,

(12)

where h is an appropriate measure of the element size.
– Boundedness: The generalized conserved quantity and fluxes are bounded

in terms of the L∞ norm of the numerical solution:

|ūκ (uh)− v̄κ (vh)| ≤ Chd ‖uh − vh‖L∞(Bκ)
,

∣
∣
∣g(2l−1)

κ (uh)− g(2l−1)
κ (vh)

∣
∣
∣ ≤ Chd−1 ‖uh − vh‖L∞(Bκ)

,
∣
∣
∣g(2l)κ (uh)− g(2l)κ (vh)

∣
∣
∣ ≤ Chd−1 ‖uh − vh‖L∞(Bκ)

,

(13)

where uh and vh are two discrete functions in the numerical solution space
and C is some positive constant. Moreover,Bκ ≡

{
x ∈ R

d : |x− xc| < ch
}
,

xc is the element center, c (> 1) is independent of mesh size, and d is the
spatial dimension (here d = 3).

– Global conservation:

K∑

κ=1

ūκ =

∫

Ω

UdΩ +O(h). (14)

Remark 1 The Shi and Shu framework is meant to deal with a very large
class of schemes; however, in the current context, the generalized quantities
approximate the following:

ūκ ≈

∫

Ω̂κ

UJκdΩ̂,

g(2l−1) ≈

3∑

m=1

∮

Γ̂
(2l−1)
κ

Jκ

∂ξl
∂xm

Fxm
nξldΓ̂ ,

g2l ≈

3∑

m=1

∮

Γ̂
(2l)
κ

Jκ

∂ξl
∂xm

Fxm
nξldΓ̂ .

5 Overview of the discretization approaches

The SBP framework provides a simple algebraic means of developing and
analyzing numerical methods and in recent years has been extended along the
lines of finite-element schemes. In that context, it is natural to introduce three
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11

solution nodes

flux nodes (volume quadrature/cubature nodes)

face quadrature/cubature nodes

Fig. 1 The various nodes used to construct an SBP operator.

sets of nodes, a set of solution nodes where the unknowns exist, a set of volume
quadrature/cubature nodes, where volume integrals are approximated (we will
think of them as flux nodes where derivatives are approximated), and a set of
surface quadrature/cubature nodes, where surface integrals are approximated
(on these surfaces, inter-element coupling or boundary conditions are weakly
imposed) see Figure 1. By combining different sets of nodes, different SBP
schemes emerge; construction of energy stable approximations in curvilinear
coordinates is the main focus of what follows. The extensions contained herein
allow for the SBP framework to be applied to the design and analysis of a
large set of existing and novel schemes with provable properties.

The first set of SBP operators that are consider are those where the solu-
tion nodes and volume quadrature nodes are collocated (by collocated we mean
that these two sets of nodes are identical) but where the surface quadrature
nodes are not. Two approaches are developed for constructing energy-stable
discretizations in curvilinear coordinates. In the first, the surface quadrature
nodes are conceptually located on a mortar element that resides between ele-
ments (the mortar element is one dimension lower than the volume elements,
i.e. 1D = point, 2D = surface, and 3D = plane). On this mortar element,
inter-element coupling and boundary conditions are weakly imposed. The main
difficulty resides in the construction of the metric terms that result from the
curvilinear coordinate transformation such that the resulting scheme is energy
stable, conservative, and freestream preserving. Alternatively, for this same
class of SBP operators, we consider constructing a global SBP operator over
the entire mesh, which allows for well-known freestream-preserving procedures
for the approximation of metric terms to be applied, such as the approach of
Thomas and Lombard [47].

Next we consider using distinct solution and volume quadrature nodes but
retain a diagonal-norm matrix (i.e., a mass lumped mass matrix which results
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by approximating the mass matrix using a quadrature rule on the solution
nodes). The technical challenge with this approach is constructing interpola-
tion/extrapolation operators from the solution nodes to the volume quadrature
nodes and back so that the SBP property is preserved. The resulting schemes
allow for the introduction of the concept of over-integration into the SBP
framework.

Finally, again considering distinct solution and volume quadrature nodes,
we consider the construction of stable SBP schemes where we do not mass
lump, i.e. the mass matrix is no longer diagonal and again, the difficulty resides
in how to construct proper interpolation/extrapolation operators.

6 The mortar-element approach

In this section, the construction of stable and conservative collocated GSBP
discretizations of linear PDEs in curvilinear coordinates is discussed. The re-
sulting discretization is an application of the work of Crean et al. [16] on
multidimensional SBP schemes to tensor-product SBP schemes. The critical
difficulty resides in how to construct the SATs and how to approximate the
metric terms (this is accomplished by introducing a fictitious surface between
abutting elements, the mortar element, on which the coupling terms are con-
structed). The discretization of (6) is given as

diag (J )κ
duκ

dt
+

1

2

3∑

l,m=1

(

Dξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

uκ =

H−1
3∑

l,m=1

{
1

2
Eξl diag

(

J
∂ξl
∂xm

)

κ

uκ −
1

2

(

E
κ,m

2lto(2l−1)u(2l−1) + E
κ,m

(2l−1)to2lu2l

)}

.

(15)

where, diag (J )κ and diag
(

J ∂ξl
∂xm

)

κ
are diagonal matrices with approxima-

tions to the metric Jacobian and metric terms along their diagonal, respectively
(how these terms are approximated is dealt with later). Furthermore, u2l and
u(2l−1) are the numerical solution in elements abutting the 2l and 2l−1 inter-
faces, respectively. Moreover, the RHS of (15) is composed of the SATs used
to weakly impose inter-element coupling or boundary conditions. The coupling
terms of the SAT, for example, Eκ,m

(2l−1)to2l which is associated with the metric

terms Jκ
∂ξl
∂xm

, couples the (2l − 1) face of the abutting element to the 2l face
of the κ element. Moreover, these coupling terms are then constructed to a)
preserve design order and b) so that skew-symmetry is maintained globally
(the construction of the coupling terms so that skew-symmetry is preserved is
discussed later).

To give further insight into the terms in (15), we recast into integral form by
multiplying by the restriction of a test function, Vκ, onto the element’s solution
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13

nodes, vκ and discretely integrating. This is accomplished by multiplying (15)
by vT

κH, resulting in

vT
κH diag (J )κ

duκ

dt

+
1

2
vT
κH

3∑

l,m=1

(

Dξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

uκ =

vT
κ

3∑

l,m=1

{
1

2
Eξl diag

(

J
∂ξl
∂xm

)

κ

uκ −
1

2

(

E
κ,m

2lto(2l−1)u(2l−1) + E
κ,m

(2l−1)to2lu2l

)}

.

Each of the terms approximates the following bilinear forms:

vT
κH diag (J )κ

duκ

dt
≈

∫

Ω̂κ

VκUκJκdΩ̂,

vT
κH

(

Dξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

uκ =

vT
κ

(

Qξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

uκ ≈

∫

Ω̂κ

{

Vκ

∂

∂ξl

(

Jκ

∂ξl
∂xm

Uκ

)

+ VκJκ

∂ξl
∂xm

∂Uκ

∂ξl

}

dΩ̂,

1

2
vT
κ Eξl diag

(

J
∂ξl
∂xm

)

κ

uκ ≈

∮

Γ̂κ

VκUκJκ

∂ξl
∂xm

nξldΓ̂ .

Finally, as will be shown later, the coupling terms are constructed to approx-
imate

vκE
κ,m

2lto(2l−1)u(2l−1) ≈

∮

Γ̂
(2l−1)
κ

VκU(2l−1)Jκ

∂ξl
∂xm

nξldΓ̂,

vκE
κ,m

(2l−1)to2lu2l ≈

∮

Γ̂ 2l
κ

VκU2lJκ

∂ξl
∂xm

nξldΓ̂.

The design principle used to construct (15) is to extend the SBP property to
the discretization over the full domain. To do so, the discretization must have
the SBP property Q+QT = E over the full domain. On interior elements, this
means that the SAT that is added— which can be thought of as the difference
between the numerical flux and the on element flux —must lead to a skew-
symmetric operator on the on-element contributions, i.e., uκ. What is required
is that the on-element contributions to the spatial derivative terms are skew-
symmetric with respect to the norm matrix H. Multiplying the on-element
contributions,

1

2

(

Dξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Dξl − H
−1

Eξl diag

(

J
∂ξl
∂xm

)

κ

)

,
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Mortar element: Metric terms specified

Discrete MI system 1

Discrete MI system 2

Fig. 2 Depiction of the metric invariant systems that are solved: square nodes are flux
nodes to which the solution is projected and at which the analytical metrics are used, while
circles are the nodes at which the numerical solution is solved for.

by H and using the SBP property, results in

1

2
Sξl diag

(

J
∂ξl
∂xm

)

κ

−
1

4
Eξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag

(

J
∂ξl
∂xm

)

κ

Sξl

+
1

4
diag

(

J
∂ξl
∂xm

)

κ

Eξl ,

which is skew-symmetric. What remains is to construct the coupling terms,
for example E

κ,m

2lto(2l−1), to maintain skew-symmetry.

6.1 Construction of the coupling terms

The construction of the coupling terms considered here borrows from the work
on h/p-refinement in curvilinear coordinates in Ref. [18,30,29], which itself is
based on the work in Crean et al. [16] on multidimensional SBP operators. The
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basic idea is to approximate the metric terms in such a way that a discrete
version of the metric invariants, local to the element, is exactly satisfied (this
is important in free-stream preservation and for nonlinear stability proofs). To
explain the idea, consider two-dimensional SBP operators constructed on the
degree 2 Gauss nodes and two elements with a shared vertical face as in Fig. 2.

The two elements interact at the flux nodes at the shared interface through
the coupling terms. On these nodes, the metric terms are specified and coupling
terms are created from the projection of the solution on either side using the
interpolation/extrapolation R operators. The form of the coupling matrices,
on the κth element, are given as

E
κ,m
1to2 ≡ RT

βξ1
H⊥

ξ1
diag

(

J
∂ξ1
∂xm

)2

Rαξ1
, Eκ,m

2to1 ≡ −RT
αξ1

H⊥
ξ1
diag

(

J
∂ξ1
∂xm

)1

Rβξ1
,

E
κ,m
3to4 ≡ R

T
βξ2

H
⊥
ξ2
diag

(

J
∂ξ2
∂xm

)4

Rαξ2
, Eκ,m

4to3 ≡ −R
T
αξ2

H
⊥
ξ2
diag

(

J
∂ξ2
∂xm

)3

Rβξ2
,

E
κ,m
5to6 ≡ RT

βξ3
H⊥

ξ3
diag

(

J
∂ξ3
∂xm

)6

Rαξ3
, Eκ,m

6to5 ≡ −RT
αξ3

H⊥
ξ3
diag

(

J
∂ξ3
∂xm

)5

Rβξ3
,

(16)

where the superscript on the mortar metric terms, e.g., diag
(

J ∂ξ1
∂xm

)2

denotes

the surface of the element κ element these terms are being used for. In the
coupling matrices, the metric terms are specified, for example using the ana-
lytical metrics. This means that any two elements sharing a surface have the
same metric terms at the nodes of the mortar element.

Remark 2 The SAT, besides leading to stable and conservative schemes, must
add design order terms; this is guaranteed by construction and the accuracy
of the R operators (see Ref. [18] for a thorough discussion).

We can see that by construction, for example,

vT
κ R

T
βξ1

H⊥
ξ1
diag

(

J
∂ξ1
∂xm

)2

Rαξ1
u1 ≈

∮

Γ̂κ

VκU1Jκ

∂ξl
∂xm

nξldΓ̂κ,

since the interpolation/extrapolation operators interpolate/extrapolate vκ and

u1 to the nodes of the mortar element and then H⊥
ξ1
diag

(

J ∂ξ1
∂xm

)2

approxi-

mates the above integral.
The first task is to show that using these coupling terms, the scheme is

stable.

Theorem 1 The semi-discrete scheme (15) is stable for the periodic problem
using the coupling terms (16). Therefore, using appropriate boundary SATs,
the schemes are stable for nonperiodic problems.

Proof See Refs. [18,30,29,16] for the required steps.
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As the interest is in the solution of conservation laws that may have dis-
continuous solutions, the scheme must be conservative, at least at the element
level. Moreover, having a discretization that is freestream preserving is desir-
able. In much the same way that the metric terms for standard SBP operators
need to be constructed in a particular way (see [48]) the metric terms for dis-
cretization (15) need to be computed so that a discrete version of the metric
invariants (5) is satisfied; this is discussed in the following theorem:

Theorem 2 If the metric terms satisfy the following discrete form of the met-
ric invariants (5):

3∑

l=1

Dξl diag

(

J
∂ξl
∂xm

)

κ

1 =

H
−1

3∑

l=1

{

Eξl diag

(

J
∂ξl
∂xm

)

κ

1−
(

E
κ,m

2lto(2l−1)1+ E
κ,m

(2l−1)to2l1
)}

,

m = 1, 2, 3, (17)

then discretization (15) is freestream preserving, element-wise conservative,
and can be algebraically manipulated into the general element-wise telescoping
form (11), where

ūκ ≡ 1T
H diag (J )κ uκ

g(2l−1)
κ ≡

1

2

3∑

m=1

(

uT
κE

κ,m

2lto(2l−1)1+ 1TE
κ,m

2lto(2l−1)u2l

)

,

g(2l)κ ≡
1

2

3∑

m=1

(

uT
κE

κ,m

(2l−1)to2l1+ 1TE
κ,m

(2l−1)to2lu(2l−1)

)

.

(18)

Proof See Ref. [18] for the required steps. Note that the conditions (17) can
be easily obtained by inserting the constant vector for the solution.

Construction of metric terms that satisfy (17) is addressed in Section 8.

7 The global SBP operator approach

As previously stated, the guiding design principle in the SBP-framework is to
extend the SBP property to the full domain discretization. In this section, this
is accomplished in a direct fashion by constructing a global SBP operator over
the domain and then using it to discretize (6). All SBP discretizations can
be viewed in this way, i.e. that they result in global SBP operators in physi-
cal space. Here, we are constructing a global SBP operator in computational
space (note that a global transformation is not assumed). The concept is best
illustrated with a simple one-dimensional example with three elements.
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17

Consider the approximation to the derivative ∂U
∂ξl

using SBP/GSBP oper-
ators

≡
(

H
g

ξl

)

−1

︷ ︸︸ ︷








(

H
(1D)
ξl

)−1

(

H
(1D)
ξl

)−1

(

H
(1D)
ξl

)−1









≡Q
g

ξl
︷ ︸︸ ︷





Q
(1D)
ξl

Q
(1D)
ξl

Q
(1D)
ξl






≡ug

︷ ︸︸ ︷




u1

u2

u3



 = D
g
ξl
ug,

where D
g
ξl

≡
(

H
g
ξl

)−1

Q
g
ξl
. The resulting differentiation operator satisfies the

following SBP condition:

Q
g
ξl
+
(

Q
g
ξl

)T

= E
g
ξl
≡






E
(1D)
ξl

E
(1D)
ξl

E
(1D)
ξl




 .

While E
g
ξl

satisfies the polynomial exactness conditions on E, it does not have
an outer product expansion. This can be remedied by using symmetric SATs
to couple the interfaces of the three elements as follows:

H
g
ξl
≡






H
(1D)
ξl

H
(1D)
ξl

H
(1D)
ξl




 ,

Q
g
ξl
≡







(

S
(1D)
ξl

− 1
2tαξ1

tTαξ1

)

− 1
2tβξ1

tTαξ1

1
2tαξ1

tTβξ1
S
(1D)
ξl

− 1
2tβξ1

tTαξ1

1
2 tαξ1

tTβξ1

(

S
(1D)
ξl

+ 1
2tβξ1

tTβξ1

)






,

S
g
ξl
≡







S
(1D)
ξl

− 1
2tβξ1

tTαξ1

1
2tαξ1

tTβξ1
S
(1D)
ξl

− 1
2tβξ1

tTαξ1

1
2tαξ1

tTβξ1
S
(1D)
ξl






,

and E
g
ξl
≡ Eg

αξ1
+ E

g
βξ1

, where

E
g
αξ1

≡ tgαξ1

(

tgαξ1

)T

= −





tαξ1
tTαξ1

0 0

0 0 0

0 0 0



 , E
g
βξ1

≡ t
g
βξ1

(

t
g
βξ1

)T

=





0 0 0

0 0 0

0 0 tβξ1
tTβξ1



 ,

tgαξ1
=
[

tTαξ1
,0T,0T

]T

, t
g
βξ1

=
[

0T,0T, tTβξ1

]T

.

The resulting global SBP operator has the desired property of Qg
ξl
+
(

Q
g
ξl

)T

=

E
g
ξl
.
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The global operator approach allows the standard finite-difference ap-
proach for the approximation of the metric terms to be reused. We note that
the boundary conditions are imposed using SATs. The discretization for the
periodic problem has the form

diag (J )g
dug

dt
+
1

2
H−1

g

3∑

l,m=1

(

Q
g
ξl
diag

(

J
∂ξl
∂xm

)

g

+ diag

(

J
∂ξl
∂xm

)

g

Q
g
ξl

)

ug = 0,

(19)
where Q

g
ξl

has been appropriately constructed to absorb the periodic bound-
ary conditions and is therefore different than in the above example at the
boundaries.

On the κth element, the global SBP operator Dg
ξl
ug ≡ H−1

g Q
g
ξl
ug has the

form

(

D
g
ξl
ug

)

((κ− 1)N + 1 : κN) =

H
−1

(

Qξluκ −
1

2
Eξluκ +

1

2
R
T
βξl

H
⊥
ξl
Rαξl

u2l −
1

2
R
T
αξl

H
⊥
ξl
Rβξl

u(2l−1)

)

,

where Matlab notation has been used and N is the total number of nodes in
the element; thus, on the κth element, the discretization of (6) using the global
SBP operator approach is given as

diag (J )κ
duκ

dt

+
1

2
H−1

3∑

l,m=1

(

Qξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

uκ =

1

4
H−1

3∑

l,m=1

(

diag

(

J
∂ξl
∂xm

)

κ

Eξl + Eξl diag

(

J
∂ξl
∂xm

)

κ

)

uκ

−
1

4
H−1

3∑

l,m=1

(

RT
βξl

H⊥
ξl
Rαξl

diag

(

J
∂ξl
∂xm

)2l

u2l

−RT
αξl

H⊥
ξl
Rβξl

diag

(

J
∂ξl
∂xm

)(2l−1)

u(2l−1)

)

−
1

4
H

−1
3∑

l,m=1

(

diag

(

J
∂ξl
∂xm

)

κ

R
T
βξl

H
⊥
ξl
Rαξl

u2l

− diag

(

J
∂ξl
∂xm

)

κ

R
T
αξl

H
⊥
ξl
Rβξl

u(2l−1)

)

.

(20)

While conceptually we have constructed an SBP operator over the entire mesh,
its use does not require a global mapping. The next theorem proves that the
scheme is design order for general meshes that satisfy Assumption 1.
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Theorem 3 The discretization (20) is design order for general meshes satis-
fying Assumption 20.

Proof The volume terms are design-order for diagonal norms since

1

2
H

−1
3∑

l,m=1

(

Qξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

uκ =

1

2

3∑

l,m=1

(

Dξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

uκ.

Next, we split the SATs into two sets two of terms; the first is given as

SAT1 ≡
1

4
H−1

3∑

l,m=1

(

diag

(

J
∂ξl
∂xm

)

κ

Eξluκ − diag

(

J
∂ξl
∂xm

)

κ

RT
βξl

H⊥
ξl
Rαξl

u2l

+diag

(

J
∂ξl
∂xm

)

κ

RT
αξl

H⊥
ξl
Rβξl

u(2l−1)

)

.

Using the decomposition Eξl = RT
βξl

H⊥
ξl
Rβξl

−RT
αξl

H⊥
ξl
Rαξl

and grouping terms

results in

SAT1 =
1

4
H−1

3∑

l,m=1

{

diag

(

J
∂ξl
∂xm

)

κ

RT
βξl

H⊥
ξl

(

Rβξl
uκ − Rαξl

u2l

)

− diag

(

J
∂ξl
∂xm

)

κ

RT
αξl

H⊥
ξl

(

Rαξl
uκ − Rβξl

u(2l−1)

)}

.

The action of the interpolation/extrapolation operators,R, is to interpolate/extrapolate
quantities to the same nodes on the mortar element and it is clear that the
above is design order close to zero.

The second set of terms in the SAT are given as

SAT2 ≡
1

4
H−1

3∑

l,m=1

(

Eξl diag

(

J
∂ξl
∂xm

)

κ

uκ − RT
βξl

H⊥
ξl
Rαξl

diag

(

J
∂ξl
∂xm

)2l

u2l

+RT
αξl

H⊥
ξl
Rβξl

diag

(

J
∂ξl
∂xm

)(2l−1)

u(2l−1)

)

,

and an identical analysis shows that this too is design order.

Using (19) and the global SBP property it is straightforward to prove
stability:

Theorem 4 Discretization (19) is stable for the periodic problem and there-
fore, with appropriate SATs for the weak imposition of boundary conditions,
stable for the nonperiodic problem.
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Proof Multiplying (19) by uT
g Hg gives

uT
g Hg diag (J )g

dug

dt

+
1

2
uT
g

3∑

l,m=1

(

Q
g
ξl
diag

(

J
∂ξl
∂xm

)

g

+ diag

(

J
∂ξl
∂xm

)

g

Q
g
ξl

)

ug = 0.

Since Q
g
ξl
diag

(

J ∂ξl
∂xm

)

g
+ diag

(

J ∂ξl
∂xm

)

g
Q

g
ξl

is skew symmetric, this implies

that

uT
g Hg diag (J )g

dug

dt
= 0,

which demonstrates that the scheme is stable.

The conditions on freestream preservation and element-wise conservation are
easily derived.

Theorem 5 If the metric terms satisfy the following discrete form of the met-
ric invariants (5):

3∑

l=1

D
g
ξl
diag

(

J
∂ξl
∂xm

)

g

1g = 0, m = 1, 2, 3,

then discretization (19) is freestream preserving, element-wise conservative,
and can be algebraically manipulated into the general telescoping flux form (11),
where

ūκ ≡ 1TH diag (J )κ uκ,

g(2l)κ =

1T

4

3∑

m=1

(

RT
βξl

H⊥
ξl
Rβξl

diag

(

J
∂ξl
∂xm

)

κ

uκ + diag

(

J
∂ξl
∂xm

)

κ

RT
βξl

H⊥
ξl
Rαξl

u2l

+diag

(

J
∂ξl
∂xm

)2l

R
T
αξl

H
⊥
ξl
Rβξl

uκ + R
T
βξl

H
⊥
ξl
Rαξl

diag

(

J
∂ξl
∂xm

)2l

u2l

)

,

g(2l−1)
κ =

−
1T

4

3∑

m=1

(

RT
αξl

H⊥
ξl
Rαξl

diag

(

J
∂ξl
∂xm

)

κ

uκ

+ diag

(

J
∂ξl
∂xm

)

κ

RT
αξl

H⊥
ξl
Rβξl

u(2l−1) + diag

(

J
∂ξl
∂xm

)(2l−1)

RT
βξl

H⊥
ξl
Rαξl

uκ

+R
T
αξl

H
⊥
ξl
Rβξl

diag

(

J
∂ξl
∂xm

)(2l−1)

u(2l−1)

)

.

Proof The steps are similar to those in Refs. [19,18].
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8 Approximation of the metric terms

This section covers how to approximate the metric terms for the mortar el-
ement approach and the global SBP operator approach. In both cases, an
approximation to the metric terms is sought that is accurate and satisfies the
discrete versions of the metric invariants (5), which is necessary for element-
wise conservation (see Theorems 2 and 5).

8.1 Metric terms in the mortar element approach

The solution of (17) is now described; the approach is identical to that in
Crean et al. [16].

Assumption 2 For the mortar-element approach, it is assumed that access
to a polynomial, tensor-product, curvilinear coordinate transformation local
to each element is available. In the numerical examples, this assumption is
satisfied by using B-splines.

The entries of the diagonal matrices diag
(

J ∂ξl
∂xm

)

κ
are determined by solving

a strictly convex quadratic optimization problem:

min
aκ

m

1

2

(
aκ
m − aκ

m,target

)T (
aκ
m − aκ

m,target

)
, subject to Maκ

m = cκm, m = 1, 2, 3,

(21)
where

(aκ
m)

T
≡ 1T

[

diag

(

J
∂ξ1
∂xm

)

κ

, diag

(

J
∂ξ2
∂xm

)

κ

, diag

(

J
∂ξ3
∂xm

)

κ

]

.

The system of equations Maκ
m = cκm is a rearranged version of the discrete

metric invariant conditions which is reproduced here. For (17) the following is
used,

3∑

l=1

QT
ξl
diag

(

J
∂ξl
∂xm

)

κ

1 =

3∑

l=1

(

E
κ,m

2lto(2l−1)1+ E
κ,m

(2l−1)to2l1
)

, m = 1, 2, 3,

(22)

the system matrix, M, is

M ≡
[
Q

T
ξ1
,QT

ξ2
,QT

ξ3

]
,

and (22)

cκm ≡

3∑

l=1

(

E
κ,m

2lto(2l−1)1+ E
κ,m

(2l−1)to2l1
)

.

The target value, aκ
m,target is taken as the analytical metrics.
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An optimal solution in the Cartesian 2-norm is given by (for more details
see Proposition 1 in Crean et al. [16])

aκ
m = aκ

m,target − (M)
† (

Maκ
m,target − cκm

)
.

The Moore-Penrose pseudo inverse of M, (M)
†
, is computed from the singular

value decomposition of M as given by

M = UΣV
T, (M)

†
= VΣ

†
U. (23)

The matrix U is a N × N unitary matrix, the matrix Σ contains the singu-
lar values along its diagonal, and V is a 3N × N matrix with orthonormal
columns. The matrix M has row rank of N − 1 and thus one zero singular
value. Therefore, the Σ† is computed as

Σ†(i, i) =
1

Σ(i, i)
, i = 2, 3, . . . , N.

Furthermore, in order to solve the metric invariant system, cκm must be in
the null space of Uκ. The singular vector that spans this null space is the
constant vector and therefore this means that 1T

κc
κ
m = 0. This is guaranteed

if the metric terms are constructed from degree p tensor-product curvilinear
coordinate transformations, since the E matrices are at least degree 2p− 1. To
see this, consider integrating the metric invariants over the domain

∫

Ω̂κ

3∑

l=1

∂

∂ξl

(

Jκ

∂ξl
∂xm

)

dΩ̂ =

∮

Γ̂κ

3∑

l=1

(

Jκ

∂ξl
∂xm

)

nξldΓ̂ = 0, m = 1, 2, 3,

where the first equality results from integration by parts. The condition 1T
κc

κ
m =

0 is the discrete equivalent to the analytical surface integral condition. Thus,
if the surface integrals in 1T

κc
κ
m are exact, this condition is met. For a degree

p tensor-product curvilinear coordinate transformation, the metric terms are
of degree 2p − 1, and since the surface mass matrix is of degree 2p − 1, the
surface integrations are exact.

The procedure proposed in this section results in metric terms that are as
close as possible to the analytical metric terms while satisfying the discrete
metric invariant conditions. As a result, it can be seen that the LHS of the
discrete metric invariant conditions is a consistent discretization of the con-
tinuous metric invariant conditions (5). Moreover, the RHS term results in a
pointwise difference between the analytical and approximated metrics that is
design order.

Remark 3 For two-dimensional problems with tensor-product degree p curvi-
linear coordinate transformations, the optimization procedure described above
is not necessary because the discrete metric invariants are satisfied by the eval-
uation of the analytical metrics on the mesh. However, for three-dimensional
problems this approach is necessary. If the volume metric terms are approxi-
mated using a standard approach such as that of Thomas and Lombard and
the metrics on the mortar are specified either using a standard approach or
analytical metrics, the resulting discretization will fail to preserve a freestream.
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8.2 Metric terms in the global SBP operator approach

The global SBP operators are used to approximate the metric terms that
arise from the curvilinear coordinate transformation. There are a number of
different ways of approximating the metric terms so that the discrete metric
invariants are satisfied (see Refs. [22,23,47,48]; for example, using the Thomas
and Lombard [47] approach, the metric terms are approximated as

J (ξ1)x ≈ D
g
ξ3

(

diag (x3)D
g
ξ2
x2

)

− D
g
ξ2

(

diag (x3)D
g
ξ3
x2

)

,

J (ξ1)y ≈ D
g
ξ3

(

diag (x1)D
g
ξ2
x3

)

− D
g
ξ2

(

diag (x1)D
g
ξ3
x3

)

,

J (ξ1)z ≈ D
g
ξ3

(

diag (x2)D
g
ξ2
x1

)

− D
g
ξ2

(

diag (x2)D
g
ξ3
x1

)

,

J (ξ2)x ≈ D
g
ξ1

(

diag (x3)D
g
ξ3
x2

)

− D
g
ξ3

(

diag (x3)D
g
ξ1
x2

)

,

J (ξ2)y ≈ D
g
ξ1

(

diag (x1)D
g
ξ3
x3

)

− D
g
ξ3

(

diag (x1)D
g
ξ1
x3

)

,

J (ξ2)z ≈ D
g
ξ1

(

diag (x2)D
g
ξ3
x1

)

− D
g
ξ3

(

diag (x2)D
g
ξ1
x1

)

,

J (ξ3)x ≈ D
g
ξ2

(

diag (x3)D
g
ξ1
x2

)

− D
g
ξ1

(

diag (x3)D
g
ξ2
x2

)

,

J (ξ3)y ≈ D
g
ξ2

(

diag (x1)D
g
ξ1
x3

)

− D
g
ξ1

(

diag (x1)D
g
ξ2
x3

)

,

J (ξ3)z ≈ D
g
ξ2

(

diag (x2)D
g
ξ1
x1

)

− D
g
ξ1

(

diag (x2)D
g
ξ2
x1

)

,

(24)

where the notation, for example J (ξ1)x, is the vector constructed by evalu-

ating J ∂ξ1
∂x

at the mesh nodes.

As long as the approximated metrics satisfy the discrete metric invariants
at the volume nodes of each element individually, then the following result
holds [2]:

Theorem 6 If the metric terms are approximated so that the discrete metric
invariants are satisfied at the volume nodes, for example using (24), and the
outer derivative of the discrete metric invariants is approximated using global

SBP operators (for example, the underlined terms in J (ξ1)x ≈ D
g
ξ3

(

diag (x3)D
g
ξ2
x2

)

−

D
g
ξ2

(

diag (x3)D
g
ξ3
x2

)

), then, the discrete metric invariants are satisfied, i.e.,

3∑

l=1

D
g
ξl
diag

(

J
∂ξl
∂xm

)g

κ

1g = 0.

Proof The proof follows immediately via the form of the approximation to the
metric terms and the commutative property of the global SBP operators.
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Remark 4 While for tensor-product global SBP operators, we can use standard
approaches for the approximation of the metric terms, the extension of these
operators to multidimensional SBP operators requires the metric approxima-
tion approach presented for the mortar-element approach, because the SBP
operators no longer commute.

9 Discretizations with diagonal-norm staggered SBP operators

Instead of collocating the solution and integration nodes (which is what has
been done up to this point), SBP operators can be constructed using two sets
of nodes, as in the work of Parsani et al. [39] and the extension to multi-
dimensional SBP operators in Ref. [19](in fact this idea can be generalized
further to separate out the surface nodes; see the work of Chan [10,11] on
modal decoupled SBP methods). The first is the solution nodes, ξ̃l, l = 1, 2, 3
where the solution is stored and the second, ξl, l = 1, 2, 3 is where derivatives
are computed. The idea is to construct SBP operators from an interpola-
tion/extrapolation to the flux nodes, a computation of the derivative on the
flux nodes, and an interpolation/extrapolation back to the solution nodes; the
operators are referred to as staggered because the solution and flux nodes are

staggered. For this purpose, the interpolation/extrapolation operators, I
(1D)
StoF,ξl

and I
(1D)
F toS,ξl

are introduced, which satisfy the following accuracy properties:

I
(1D)
StoF,ξl

ξ̃kl = ξkl , I
(1D)
F toS,ξl

ξ
j
l = ξ̃

j
l , k = 0, 1, . . . , p, j = 0, 1, . . . , p−1, l = 1, 2, 3.

(25)

Notice that the degree of I
(1D)
F toS,ξl

is one less than that of I
(1D)
StoF,ξl

; this is because
the differentiation operator on the flux nodes reduces the degree of the poly-
nomial space that needs to be interpolated/extrapolated back to the solution
nodes.

Furthermore, to obtain the SBP property, the interpolating/extrapolating

operator I
(1D)
F toS,ξl

must satisfy [39]:

I
(1D)
F toS,ξl

=
(

H̃
(1D)
ξl

)−1 (

I
(1D)
StoF,ξl

)T

H
(1D)
ξl

. (26)

A collocated SBP operator, D̃
(1D)
ξl

, can be recast as

D̃
(1D)
ξl

= I
(1D)
F toS,ξl

Dξl I
(1D)
StoF,ξl

=
(

H̃
(1D)
ξl

)−1 (

I
(1D)
StoF,ξl

)T

Q
(1D)
ξl

I
(1D)
StoF,ξl

, (27)

if a set of flux nodes can be found such that this is possible (see for example
Theorem 7).

To see why the condition (26) is necessary to retain the SBP property,
consider the decomposition (27) and define

Q̃
(1D)
ξl

≡ H̃
(1D)
ξl

D̃
(1D)
ξl

=
(

I
(1D)
StoF,ξl

)T

Q
(1D)
ξl

I
(1D)
StoF,ξl

.
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Furthermore, we have

Q̃
(1D)
ξl

+Q̃
(1D)
ξl

=
(

I
(1D)
StoF,ξl

)T
{

Q
(1D)
ξl

+
(

Q
(1D)
ξl

)T
}

I
(1D)
StoF,ξl

=
(

I
(1D)
StoF,ξl

)T

E
(1D)
ξl

I
(1D)
StoF,ξl

and since the interpolation/extrapolation operator I
(1D)
StoF,ξl

is at least degree p

accurate, Ẽ
(1D)
ξl

≡
(

I
(1D)
StoF,ξl

)T

E
(1D)
ξl

I
(1D)
StoF,ξl

satisfies the requirements of Defini-

tion 2 for an SBP operator.
A number of theorems are now presented regarding the existence of staggered-

grid SBP operators. The theorems here are a natural extension of the staggered
grid work on multidimensional SBP operators of Ref. [19] to tensor-product
operators. The following definition is first introduced

Definition 3 The degree p Vandermonde matrix on set of nodes ξl is the
matrix

V
(1D)
ξl,p

(:, k) = ξkl , k = 0, 1, . . . , p.

The matrix of the derivatives of the monomials evaluated at mesh nodes as-
sociated with the Vandermonde matrix is given as

V
(1D)
∂ξ1,p

(:, k) = kξk−1
1 , V

(1D)
∂ξ2,p

(:, k) = kξk−1
2 , V

(1D)
∂ξ3,p

(:, k) = kξk−1
3 ,

k = 0, 1, 2, . . . , p.

If the collocated SBP/GSBP operator is of maximum degree, i.e., p = N − 1,
then it can always recast as a staggered grid SBP operator.

Theorem 7 All maximum degree (i.e. p = N−1) diagonal-norm GSBP oper-
ators can be decomposed as staggered-grid operators using any set of flux nodes
on which there exists a quadrature rule with positive weights of at least degree
2p− 1.

Proof On the flux nodes it is assumed that there exists a diagonal norm H
(1D)
ξl

that is at least degree 2p− 1; this ensures that there exists at least a degree p

diagonal-norm SBP operator D
(1D)
ξl

≡
(

H
(1D)
ξl

)−1

Q
(1D)
ξl

[17].

The interpolation/extrapolation operators are constructed as

I
(1D)
StoF,ξl

= V
(1D)
ξl,p

(

Ṽ
(1D)
ξl,p

)−1

, I
(1D)
F toS,ξl

=
(

H̃
(1D)
ξl

)−1 (

I
(1D)
StoF,ξl

)T

H
(1D)
ξl

.

The interpolation/extrapolation operator, I
(1D)
StoF,ξl

, automatically satisfies the
accuracy conditions (25), and it is therefore only necessary to demonstrate

that I
(1D)
F toS,ξl

satisfies (25):

I
(1D)
F toS,ξl

ξ
j
l = ξ̃

j
l , j = 1, 2, . . . , p− 1.

Expanding I
(1D)
F toS,ξl

gives

(

H̃
(1D)
ξl

)−1
{

V
(1D)
ξl,p

(

Ṽ
(1D)
ξl,p

)−1
}T

H
(1D)
ξl

ξ
j
l = ξ̃

j
l ;
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multiplying both sides by
(

Ṽ
(1D)
ξl,p

)T

H̃
(1D)
ξl

leads to

(

V
(1D)
ξl,p

)T

H
(1D)
ξl

ξ
j
l =

(

Ṽ
(1D)
ξl,p

)T

H̃
(1D)
ξl

ξ̃
j
l ,

where the final equality holds because both norm matrices are at least degree
2p− 1 approximations to the L2 inner product.

Finally, it is shown that D̃
(1D)
ξl

is recovered. Note that in the maximum

degree case, the derivative operator is uniquely defined and given as D̃
(1D)
ξl

=

Ṽ
(1D)
∂ξl,p

(

Ṽ
(1D)
ξl,p

)−1

.

To show the equivalence, we start by applying I
(1D)
F toS,ξl

D
(1D)
ξl

I
(1D)
StoF,ξl

to the
degree p Vandermonde matrix This is equivalent to showing that the following
equality holds:

I
(1D)
F toS,ξl

D
(1D)
ξl

I
(1D)
StoF,ξl

Ṽ
(1D)
ξl,p

= I
(1D)
F toS,ξl

D
(1D)
ξl

V
(1D)
ξl,p

=I
(1D)
F toS,ξl

V
(1D)
∂ξl,p

=Ṽ
(1D)
∂ξl,p

,

where the polynomial exactness properties of IStoF and IF toS have been em-
ployed. Thus,

I
(1D)
F toS,ξl

D
(1D)
ξl

I
(1D)
StoF,ξl

= Ṽ
(1D)
∂ξl,p

(

Ṽ
(1D)
ξl,p

)−1

= D̃
(1D)
ξl

.

In general, a set of flux nodes may or may not include boundary nodes,
and the various permutations that have been considered can be employed in
combination with staggering. To reduce the complexity, only the case where
the flux node distribution includes boundary nodes is considered and therefore
only one semi-discrete form is analyzed. If GSBP operators are used on the
flux nodes, these are constructed using either the mortar element approach or
the global SBP operator approach. Thus, with decomposition (27), the linear
convection equation (6) is discretized as

diag
(

J̃

)

κ

dũκ

dt

+
1

2
H̃−1ITStoF

3∑

l,m=1

(

Qξl diag

(

J
∂ξl
∂xm

)

κ

+ diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

IStoF ũκ =

1

2
H̃−1ITStoF

3∑

l,m=1

(

Eξl diag

(

J
∂ξl
∂xm

)

κ

IStoF ũκ

+ diag

(

J
∂ξl
∂xm

)

κ

RT
αξl

H⊥
ξl
Rβξl

IStoF ũ(2l−1)

− diag

(

J
∂ξl
∂xm

)

κ

R
T
βξl

H
⊥
ξl
Rαξl

IStoF ũ2l

)

,

(28)
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27

where IStoF ≡ IStoF,ξ1 ⊗ IStoF,ξ2 ⊗ IStoF,ξ3 and the metric terms are computed
in the standard way on the flux nodes, for example the approaches in Refs. [22,
23,47,48]. Moreover, ũκ is the vector containing the numerical solution at the

solution nodes and similarly diag
(

J̃

)

κ
is a diagonal matrix containing the

metric Jacobian at the solution nodes. The following theorems summarize the
stability and element-wise conservation of the staggered scheme:

Theorem 8 The semi-discrete scheme (28) is stable for the periodic problem
and therefore for the nonperiodic problem with appropriate SATs for the weak
imposition of boundary conditions.

Proof For the steps see Ref. [19].

Theorem 9 If the metric terms satisfy the following discrete form of the met-
ric invariants (5):

3∑

l=1

Dξl diag

(

J
∂ξl
∂xm

)

κ

1 = 0, m = 1, 2, 3,

then the semi-discrete scheme (28) is freestream preserving, element-wise con-
servative, and can be algebraically manipulated into the general telescoping flux
form (11), where

ūκ ≡ 1̃TH̃diag
(

J̃

)

κ
uκ,

g(2l)κ ≡
1

2
1T

3∑

l,m=1

diag

(

J
∂ξl
∂xm

)

κ

(

RT
βξl

H⊥
ξl
Rβξl

uκ + RT
βξl

H⊥
ξl
Rαξl

u2l

)

.

g(2l−1)
κ ≡ −

1

2
1T

3∑

l,m=1

diag

(

J
∂ξl
∂xm

)

κ

(

RT
αξl

H⊥
ξl
Rαξl

uκ + RT
αξl

H⊥
ξl
Rβξl

u(2l−1)

)

.

Proof For the steps see Ref. [19].

Remark 5 The discrete metric invariant conditions can be satisfied by using
the approach given in Section 8.2 locally on each element.

10 Stable discretizations with dense-norm SBP operators in
curvilinear coordinates

One of the drawbacks of diagonal-norm SBP operators is that finding 2p− 1
accurate quadrature rules can in general be difficult and represents a restric-
tion on the potential class of SBP operators that can be used. In contrast,
dense-norm SBP operators have no such restriction; they always exist on a
given set of nodes [17], and can be more accurate than mass-lumped oper-
ators [1]. Nevertheless, much of the work on SBP methods has been in the
context of diagonal-norm operators because it was not clear how to construct
linearly stable discretizations with dense-norm operators in curvilinear coor-
dinates [45].
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10.1 Construction of dense-norm operators for curvilinear coordinates

In this section, a theory for dense-norm tensor-product SBP operators is devel-
oped, and special SBP operators that incorporate the grid metric information
directly are constructed. To do so, two sets of nodes are introduced. The so-
lution is stored on the first set of nodes, defined by the vectors ξ̃l, l = 1, 2, 3.
The metrics are evaluated on the second set of nodes, which is defined by the
vectors ξl, l = 1, 2, 3.

The first theorem gives a direct construction of dense-norm SBP opera-
tors from diagonal-norm SBP operators such that linearly stable schemes in
curvilinear coordinates can be constructed.

Theorem 10 Consider two sets of nodes the solution nodes ξ̃l and the flux
nodes ξl, l = 1, 2, 3, of size ñ and n, respectively, where n ≥ ñ. If there exist
degree p diagonal-norm SBP operators on the flux nodes, Dξl , l = 1, 2, 3, then
order p dense-norm tensor-product SBP operators can be constructed as

H̃diag(J )
κ
≡ Ṽ

−T
(ñ−1)V

T
(ñ−1)H diag (J )κ V(ñ−1)Ṽ

−1
(ñ−1),

Q̃ξl,m,κ ≡

Ṽ
−T
(ñ−1)V

T
(ñ−1)

(
1

2
Qξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

V(ñ−1)Ṽ
−1
(ñ−1),

Ẽξl,m,κ ≡

Ṽ
−T
(ñ−1)V(ñ−1)

(
1

2
Eξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag

(

J
∂ξl
∂xm

)

κ

Eξl

)

V(ñ−1)Ṽ
−1
(ñ−1),

(29)

where

Ṽ(ñ−1) = Ṽ
(1D)
ξ1,(ñ−1) ⊗ Ṽ

(1D)
ξ2,(ñ−1) ⊗ Ṽ

(1D)
ξ3,(ñ−1),

V(ñ−1) = V
(1D)
ξ1,(ñ−1) ⊗ V

(1D)
ξ2,(ñ−1) ⊗ V

(1D)
ξ3,(ñ−1).

Proof The first task is to show that the resulting derivative operator, D̃ξl,m,κ ≡

H̃
−1
diag(J )

κ
Q̃ξl,m,κ, is an order p approximation to

J −1

2

∂

∂ξl

(

J
∂ξl
∂xm

U

)

+
1

2

∂ξl
∂xm

∂U

∂ξl
.
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To do so, D̃ξl,m,κ is applied to the degree p Vandermonde matrix, Ṽp, on the

ξ̃l, l = 1, 2, 3 nodes, which gives

D̃ξl,m,κṼp = Ṽ(ñ−1)

(

VT
(ñ−1)H diag (J )κ V(ñ−1)

)−1

ṼT
(ñ−1)H diag (J )κ

(
1

2
diag (J )

−1
κ Dξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag (J )

−1
κ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

Vp,

(30)

where V=V
(1D)
ξ1,p

⊗ V
(1D)
ξ2,p

⊗ V
(1D)
ξ3,p

. The matrix

Ṽ(ñ−1)

(

V
T
(ñ−1)H diag (J )κ V(ñ−1)

)−1

Ṽ(ñ−1)H diag (J )κ

is at least a degree p projection operator from the flux nodes to the solution
nodes, i.e.,

Ṽ(ñ−1)

(

VT
(ñ−1)H diag (J )κ V(ñ−1)

)−1

Ṽ(ñ−1)H diag (J )κ Vp = Ṽp.

Thus, the action of

Ṽ(ñ−1)

(

VT
(ñ−1)H diag (J )κ V(ñ−1)

)−1

Ṽ(ñ−1)H diag (J )κ

on the right-hand side of (30) is to project

(
1

2
diag (J )−1

κ Dξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag (J )−1

κ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

Vp

onto the nodes ξ̃l, l = 1, 2, 3, which shows that D̃ξl,m,κ is an order p approx-
imation. What remains is to show that the proposed construction leads to
an SBP property, which easily follows, as a result of using a skew-symmetric
splitting on the flux nodes.

Remark 6 In Theorem 10, for simplicity, we have used the Vandermonde ma-
trices Ṽ(ñ−1) and V(ñ−1). However, to introduce additional degrees of freedom
and for an easy extension to multidimensional SBP operators, where an invert-
ible Vandermonde matrix may not exist, the theorem extends to decomposing
the norm matrix as

H̃diag(J )
κ
≡ W̃−TWTH diag (J )κ WW̃, W̃ ≡

[

Ṽp, Ỹ
]

, W ≡ [Vp,Y] (31)

where Ỹ and Y are constructed such that W̃ and W have linearly independent
columns (this can always be accomplished) and therefore W̃ is invertible. The
remaining matrices of the SBP operator would be constructed in the same way
as in the theorem, swapping out Ṽ(ñ−1) and V(ñ−1) with W̃ andW, respectively.

Finally, the following existence theorem is presented:
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Theorem 11 Given a set of solution nodes ξ̃l, l = 1, 2, 3, of size ñ, then there
exist degree 1 ≤ p ≤ ñ− 1 dense-norm SBP operators as given in Theorem 10.

Proof The flux mesh can always be constructed, ξl, l = 1, 2, 3, so that appro-
priate H, Qξl and Eξl matrices can be constructed, for example using tensor-
product Gauss-Lobatto nodes.

10.2 Relation to the staggered approach

The class of dense-norm SBP operators considered in the previous section are
those that can be decomposed by introducing a second mesh in an analogous
fashion to the staggered approach. As it turns out, this decomposition can be
viewed in the terminology of the staggered approach. Consider defining

IStoF ≡ V(ñ−1)Ṽ
−1
(ñ−1), (32)

then

H̃diag(J )κ
= I

T
StoFH diag (J )κ IStoF ,

Q̃ξl,m,κ = ITStoF

(
1

2
Qξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

IStoF ,

Ẽξl,m,κ = I
T
StoF

(
1

2
Eξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag

(

J
∂ξl
∂xm

)

κ

Eξl

)

IStoF .

The SBP requirements on IF toS (26) result in

IF toS = H̃
−1
Jκ

ITStoFH diag (J )κ .

It is necessary to show that IF toS is at least a degree p − 1 projection from
the flux nodes to the solution nodes. First applying IF toS to the degree p
Vandermonde matrix on the flux nodes gives

IF toSVp =H̃
−1
Jκ

ITStoFH diag (J )κ Vp,

=Ṽñ

(
VT
ñH diag (J )κ Vñ

)−1
ṼT
ñ Ṽ

−T
ñ VT

ñH diag (J )κ Vp

=Ṽñ

(
VT
ñH diag (J )κ Vñ

)−1
VT
ñH diag (J )κ Vp

=Ṽp,

Thus, IF toS is of degree p.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

31

Finally,

D̃ξl,m,κ = H̃
−1
Jκ

Q̃ξl,m,κ,

= H̃
−1
Jκ

I
T
StoF

(
1

2
Qξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag

(

J
∂ξl
∂xm

)

κ

Qξl

)

IStoF ,

= H̃
−1
Jκ

ITStoFH diag (J )κ

(
1

2
diag (J )

−1
κ Dξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag (J )

−1
κ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

IStoF ,

= IF toS

(
1

2
diag (J )−1

κ Dξl diag

(

J
∂ξl
∂xm

)

κ

+
1

2
diag (J )

−1
κ diag

(

J
∂ξl
∂xm

)

κ

Dξl

)

IStoF ,

and it is clear that the two approaches are very similar, except for the contri-
bution of the metric Jacobian. When viewing the semi-discrete form as an ap-
proximation to the weak form, the dense-norm approach is an over-integration
on both the temporal and volume terms, while the staggered approach using
diagonal-norm SBP operators is only an over-integration on the volume terms.

Remark 7 We note the connection between our construction of H̃−1
Jκ

and the

work of Ranocha et al. [43]: On the solution nodes, we construct, from H̃
−1
Jκ

,

the dense matrix J̃ as

J̃ ≡ H̃−1H̃Jκ
= IF toS diag (J )κ IStoF ,

which satisfies the conditions required by Ranocha et al. [43], i.e.,

H̃J̃ =
(

H̃J̃

)T

, H̃J̃ > 0.

Thus, if we consider a nodal basis based SBP operator on the flux nodes and a
nodal basis on the solution nodes (both having n = p+ 1), then the resultant
J̃ is identical to that of Ranocha et al. [43].

11 Interface dissipation and SATs for boundary conditions

Thus far, the SATs that have been considered lead to neutrally-stable schemes.
In this section, these SATs are augmented by interface dissipation (for linear
problems this is important because upwinding can result in p+1 convergence
rates; in addition, for nonlinear problems upwinding can provide increased
robustness). The discussion will focus on diagonal-norm GSBP operators and
constructing the dissipative terms on the mortar. These ideas can then be
straightforwardly applied to the remaining approaches covered in the paper.
The goal is to construct dissipative terms that result in upwind SATs that
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augment the neutral stability of the symmetric SAT and that locally can be
viewed as weakly imposed well-posed boundary conditions.

The upwind SATs in flux form are constructed as

SATs ≡ H−1
3∑

l=1

{

−RT
αξl

H⊥
ξl

(

f(2l−1) − f I
(2l−1)

)

+ RT
βξl

H⊥
ξl

(
f2l − f I

2l

)}

,

(33)
where the fluxes are given as

f(2l−1) ≡
3∑

m=1

Rαξl
diag

(

J
∂ξl
∂xm

)

κ

uκ, f2l ≡
3∑

m=1

Rβξl
diag

(

J
∂ξl
∂xm

)

κ

uκ,

(34)
and the numerical fluxes are given as

f I
(2l−1) ≡

1

2

(

Λκ
(2l−1)Rβξl

u(2l−1) + Rαξl

3∑

m=1

diag

(

J
∂ξl
∂xm

)

κ

uκ

)

−
1

2

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣

(

Rαξl
uκ − Rβξl

u(2l−1)

)

f I
2l ≡

1

2

(

Rβξl

3∑

m=1

diag

(

J
∂ξl
∂xm

)

κ

uκ + Λκ
2lRαξl

u2l

)

−
1

2
|Λκ

2l|
(

Rαξl
u2l − Rβξl

uκ

)

,

(35)

where

Λκ
(2l−1) ≡

3∑

m=1

diag

(

J
∂ξl
∂xm

)(2l−1)

, Λκ
2l ≡

3∑

m=1

diag

(

J
∂ξl
∂xm

)2l

,

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣ ≡

∣
∣
∣
∣
∣

3∑

m=1

diag

(

J
∂ξl
∂xm

)(2l−1)
∣
∣
∣
∣
∣
, |Λκ

2l| ≡

∣
∣
∣
∣
∣

3∑

m=1

diag

(

J
∂ξl
∂xm

)2l
∣
∣
∣
∣
∣
.

Inserting (34) and (35) into (33) gives, after rearrangement:

SATs =

1

2
H−1

3∑

l,m=1

(

Eξl diag

(

J
∂ξl
∂xm

)

κ

uκ

)

+
1

2
H−1

3∑

l,m=1

(

RT
αξl

H⊥
ξl
diag

(

J
∂ξl
∂xm

)(2l−1)

Rβξl
u(2l−1) − RT

βξl
H⊥

ξl
diag

(

J
∂ξl
∂xm

)2l

Rαξl
u2l

)

+
1

2

3∑

l=1

{

−R
T
αξl

H
⊥
ξl

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣

(

Rαξl
uκ − Rβξl

u(2l−1)

)

+ R
T
βξl

H
⊥
ξl
|Λκ

2l|
(

Rαξl
u2l − Rβξl

uκ

)}

,

where the identity Eξl =
3∑

l=1

(

−RT
αξl

H⊥
ξl
Rαξl

+ RT
βξl

H⊥
ξl
Rβξl

)

has been used.

Thus, the form of the dissipation is
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33

diss ≡
1

2
H

−1
3∑

l=1

{

−R
T
αξl

H
⊥
ξl

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣

(

Rαξl
uκ − Rβξl

u(2l−1)

)

+ R
T
βξl

H
⊥
ξl
|Λκ

2l|
(

Rαξl
u2l − Rβξl

uκ

)}

.

(36)

The next theorem states that the dissipation has the desired properties.

Theorem 12 The dissipation terms (36) are design order and retain the en-
ergy stability and element-wise conservation properties of the base schemes.

Proof Design order follows by inserting the projections of polynomials onto the
mesh into (36). To prove that the additional terms maintain stability, consider
the terms associated with the 2l surface. At this surface, the contribution from
the two abutting elements from the energy analysis is

uT
κHdissκ + u2lH

Tdiss2l =

1

2

3∑

m=1

{

uT
κR

T
αξl

H
⊥
ξl
|Λκ

2l|
(

Rαξl
u2l − Rβξl

uκ

)

− uT
2lR

T
αξl

H
⊥
ξl

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣

(

Rαξl
u2l − Rβξl

uκ

)}

.

Defining ũκ ≡ RT
βξl

uκ, ũ2l ≡ RT
αξl

u2l, and M ≡
3∑

l=1

H⊥
ξl
diag

(∣
∣
∣J ∂ξl

∂xm

∣
∣
∣

)2l

, the

above reduces to

uT
κHdissκ + uT

2lHdiss2l =
1

2

[
ũT
κ ũT

2l

]
M⊗

[
−1 1
1 −1

] [
ũκ

ũ2l

]

≤ 0.

To prove element-wise conservation it is necessary to demonstrate that the
dissipation terms do not destroy the telescoping property of the base scheme.
Again, concentrating on the 2l surface, the contributions from the two abutting
elements to the telescoping analysis are

1THdissκ + 1THdiss2l =

1

2

3∑

m=1

{

1T
R
T
αξl

H
⊥
ξl
|Λκ

2l|
(

Rαξl
u2l − Rβξl

uκ

)

− 1T
R
T
αξl

H
⊥
ξl

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣

(

Rαξl
u2l − Rβξl

uκ

)}

= 0,

where 1TRT
βξl

= 1TRT
αξl

has been used. Consistency follows from the fact that

the dissipation terms are design order and boundedness follows readily (see
Ref. [18]).

The SATs constructed to impose upwinding are based on locally approx-
imating well-posed boundary conditions. Therefore, their structure can be
reused to impose characteristic boundary conditions, where the abutting ele-
ment’s solution is replaced with a known state. Thus, for discretization (15),
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the SAT on the 2l − 1 face takes the form

SAT(2l−1) =

−
1

2
H−1

3∑

m=1

(

RT
αξl

H⊥
ξl
Rαξl

diag

(

J
∂ξl
∂xm

)

κ

uκ −RT
αξl

H⊥
ξl
diag

(

J
∂ξl
∂xm

)(2l−1)

g

)

−
1

2
H−1RT

αξl
H⊥

ξl

∣
∣
∣Λ

κ
(2l−1)

∣
∣
∣

(

Rαξl
uκ − Rβξl

g
)

,

(37)

while the SAT on the 2l face takes the form

SAT2l =

1

2
H

−1
3∑

m=1

(

R
T
βξl

H
⊥
ξl
Rβξl

diag

(

J
∂ξl
∂xm

)

κ

uκ − R
T
βξl

H
⊥
ξl
diag

(

J
∂ξl
∂xm

)2l

g

)

1

2
H

−1
R
T
βξl

H
⊥
ξl
|Λκ

2l|
(

Rαξl
g − Rβξl

uκ

)

,

(38)

where g is a vector constructed from the known state G evaluated at the mortar
nodes.

The final theorem in this section demonstrates that the boundary SATs
lead to energy stability.

Theorem 13 The boundary SATs (37) and (38) result in an energy stable
scheme.

Proof The proof follows standard energy analysis.

12 Numerical examples

Examples based on the three-dimensional linear convection equation (4) are
presented in order to demonstrate the theory introduced above. The initial
condition is

U0(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz)

and boundary conditions are periodic on all faces. The computational domain
is obtained using the transformation (See example in Figure 3):

x = ξ +
1

5
sin(πξ) sin(πη),

y = η +
1

5
exp(1− η) sin(πξ) sin(πη),

z = ζ +
1

20
[sin(2πx) + sin(2πy)].

where the underlying computational space is a unit cube [ξ, η, ζ] ∈ [0, 1]3. This
transformation is a modified version of the one used in [21]. The distribution
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Fig. 3 Example mesh: Eight-element curvilinear mesh using six-node Legendre-Gauss dis-
tribution in each element (left). Interface slope discontinuities across periodic boundaries in
the xy-plane (right)

of elements is constructed by subdividing the unit cube into uniform regular
cubes, and the nodal distribution within each element is consistent with the
chosen operator. The solutions are integrated from t = 0 to t = 1 using the
standard explicit fourth-order Runge-Kutta time-marching method and 3×104

time steps. With this choice, the error from the time-marching method was
found to be negligible relative to the error from the spatial discretization.

The accuracy, stability and conservation of the schemes are evaluated using
the global norm of the discretization, Hg, assembled from the local element
norm matrices scaled by the appropriate transformation Jacobian on each
element. For example, the accuracy of the simulation is computed relative to
the exact solution of the PDE as

||ug − uexact||Hg
=
√

(ug − uexact)THg(ug − uexact),

where uexact is the vector constructed by evaluating the analytical solution at
mesh nodes.

The operators chosen for this validation are based on the Legendre-Gauss
(LG) and Legendre-Gauss-Lobatto (LGL) points. Both degree four and five
operators are included to demonstrate the theory for both even and odd degree
discretizations, as well as operators with an even or odd number of internal
solution points. Results are presented using the semi-discrete equations (15)
with both symmetric and upwind variations of the SATs.

12.1 Baseline

To demonstrate the need for the approaches presented in this article, the stan-
dard method of computing SATs is first employed. The metrics in this case
are computed locally within each element with no knowledge of the element
boundaries or information from adjacent elements. This approach will lead
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LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 5.0905 5.6292 5.1930 5.5308
Upwind 4.6615 5.8696 4.3680 6.3494

Stability - max d
dt
(uT

g Hgug)

Symmetric 1.9984e-15 2.2204e-15 2.2204e-15 1.9984e-15
Upwind -9.1038e-15 0 -2.4306e-09 -9.3789e-11

Conservation - max d
dt
|1THgug |

Symmetric 5.1174e-16 6.5746e-16 4.6197e-10 3.294e-12
Upwind 5.2909e-16 5.9848e-16 4.6119e-10 3.2926e-12

Table 2 Baseline: Convergence rates, as well as stability and conservation analysis for
baseline simulations.

to a conservative scheme for operators whose nodal distribution includes the
boundaries of the reference domain. This is because the metrics at element
interfaces are computed using the same values. For operators with nodal dis-
tributions which do not include the boundaries of the reference domain, the
metric values at an interface must be projected. In general, the values pro-
jected from adjacent elements to their interface will not match. This causes
loss of conservation.

Considering simulations on a grid with 26 elements, the stability and con-
servation of the schemes are analyzed. Table 2 shows the maximum time rate
of change in the integrals of energy and of the solution. For stability the maxi-
mum time rate of change in the integral of energy should be less than or equal
to zero, and for conservation the time rate of change in the integral of the
solution should be machine zero. The data show that operators which include
the boundary points of the reference domain are both stable and conservative,
while those that do not include the boundary points of the reference domain
are stable but not conservative. This highlights the need for the approaches
presented in this article.

The order of convergence of the simulations is also presented in Table 2.
The convergence rates are computed between two grid levels in the asymptotic
region with 26 and 28 elements. In most cases, an order of convergence of about
p+ 1 is recovered, except when using symmetric SATs and operators with an
even number of nodes. In this case, a lower rate of p is expected [15]. The one
noticeable deviation from theory is the p4 LG simulation, which recovers an
order of convergence nearly an order lower than expected. Slightly lower rates
are observed from many of the p4 simulations using upwind SATs. In most
cases, a rate more consistent with theory is observed between other grid levels.

12.2 Low-order meshes

One approach to obtain a conservative scheme using operators which do not
include the boundary points of the reference domain is to lower the order of
the computational mesh. The requirement is that the metrics can be projected
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LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 5.2725 5.0490 5.3664 5.2237
Upwind 4.9965 5.8160 4.7380 5.9115

Stability - max d
dt
(uT

g Hgug)

Symmetric 1.9984e-15 1.9984e-15 1.9984e-15 2.2204e-15
Upwind -2.2204e-16 0 -2.0906e-10 -1.6384e-11

Conservation - max d
dt
|1THgug |

Symmetric 5.048e-16 5.8981e-16 5.1348e-16 5.6552e-16
Upwind 6.297e-16 5.5511e-16 5.8287e-16 6.2103e-16

Table 3 B-splines of degree ⌊ p

2
⌋: Convergence rates, as well as stability and conservation

analysis for B-spline based simulations.

exactly to the interface between adjacent elements or the boundaries of the
physical domain. This implies that the metrics must be of degree less than or
equal to p and the mesh must be of degree ⌊p

2⌋. While this approach leads to a
stable and conservative method, it places a significant restriction of the mesh.
In particular, it limits the accuracy with which boundaries can be represented.

There are numerous ways to construct lower-order computational meshes.
In this paper, lower-order meshes are constructed from fitting a fine mesh
with B-spline volumes of a prescribed polynomial degree [34,38]. The nodal
distribution of elements in the fine mesh must contain the boundary points
of the reference domain. For flexibility, accuracy and simplicity, 15 uniformly
spaced nodes in each direction are used within each element to construct the
fine mesh. Once each element has been fitted with a B-spline volume of a
prescribed degree, the B-spline volume is evaluated at the nodal locations
associated with the desired operator to generate the final mesh.

Tables 3 and 4 show the stability and conservation results using lower-order
meshes constructed from B-spline fits of degree ⌊p

2⌋ and ⌊p
2⌋+ 1, respectively.

The degree of the former falls within the range required for conservation, while
the latter does not. As expected, this is reflected in the data: the results of
the former are both stable and conservative, while the results of the latter are
stable but not conservative. Even though the degree 5 LG operator appears
conservative on the higher-degree mesh, conservation has dropped an order of
magnitude relative to the lower-degree mesh. The loss of conservation is more
apparent with the lower degree LG operator.

The tables also show the computed order of convergence from the simula-
tions. Using the lower order B-spline fitting, the predicted order of convergence
is recovered in all cases. Increasing the order of the B-spline fitting seems to
lower the convergence rate of the p4 simulations using upwind SATs. Similar
to the baseline simulations, more consistent convergence rates are observed
between other grid levels.
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LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 4.9125 5.2357 5.0822 5.2765
Upwind 4.4596 6.3231 4.3603 6.4464

Stability - max d
dt
(uT

g Hgug)

Symmetric 2.2204e-15 1.9984e-15 2.2204e-15 2.2204e-15
Upwind -2.2204e-16 -2.2204e-16 -3.8033e-10 -2.7051e-11

Conservation - max d
dt
|1THgug |

Symmetric 6.3838e-16 6.3144e-16 2.4945e-14 1.1649e-15
Upwind 5.3603e-16 5.5858e-16 4.0634e-14 7.1297e-16

Table 4 B-splines of degree ⌊ p

2
⌋+1: Convergence rates, as well as stability and conservation

analysis for B-spline based simulations.

12.3 Mortar-element approach

The mortar-element approach removes the restriction on the order of the un-
derlying mesh to obtain conservation. However, it does require a preprocessing
step in order to compute the metrics on the interfaces between adjacent el-
ements. This is where the mortar elements are placed. Furthermore, these
metrics must satisfy the condition 1Tcκ = 0 (see Section 6.1). In this paper,
we achieve this by constructing metrics that are exactly integrable by the
quadrature on the mortar element. For discretizations based on LG operators
this requires that the metrics on the interfaces be at most of degree 2p+ 1.

There are several ways to obtain the required metrics at the element in-
terfaces. In this article, the B-spline fitting discussed previously is used to
generate these values by analytically differentiating the equations of the B-
spline volumes. A fit of degree p is used, which is twice the degree required
without the mortar-elements, and equal to the degree of the discretization it-
self. This yields metrics of degree 2p−1, which is lower than the LG quadrature
of degree 2p+ 1 as required.

For the computations themselves, a second mesh is required on which the
solution is obtained. One option is is to create a second distorted mesh built
using elements with the nodal distribution associated with the desired opera-
tor. This is the how the mesh for the baseline approach is generated. Another
option is to reuse the B-spline fit created to compute the metrics at the inter-
faces. This streamlines the workflow, and is therefore adopted in this article.

Table 5 shows the convergence, stability and conservation results of the
mortar-element approach constructed from a B-spline fit of degree p. The re-
sults for the LG based discretization demonstrate that the addition of the
mortar-elements makes the method conservative, while remaining stable. The
approach also maintains these properties for operators which include the bound-
ary points of the reference domain, as shown in the simulation of the LGL
based discretization.

The orders of convergence computed from the p5 simulations using the
mortar-element approach are erratic, as shown in Table 5. Rates both higher
and lower than expected are recovered. Recomputing the orders of convergence
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LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 4.9950 6.5735 (5.1126) 4.9571 7.4370 (4.9701)
Upwind 5.1208 4.7643 (5.6775) 4.7485 5.0888 (5.5070)

Stability - max d
dt
(uT

g Hgug)

Symmetric 2.4425e-15 2.4425e-15 1.9984e-15 1.9984e-15
Upwind -1.7764e-15 -1.3323e-15 -6.0444e-10 -2.724e-10

Conservation - max d
dt
|1THgug |

Symmetric 4.996e-16 5.8981e-16 5.6205e-16 5.5164e-16
Upwind 5.2909e-16 5.794e-16 6.1756e-16 5.794e-16

Table 5 Mortar-element approach: Convergence rates, as well as stability and conservation
analysis for mortar-element approach simulations. Convergence rates shown in parenthesis
are computed from coarser simulations.

between grids with 104 and 106 elements, yields more consistent results. This
is shown in parenthesis within the table. This could be a result of the higher-
order methods not being fully within the asymptotic convergence region. With
the mortar-element approach, the p4 simulations all recover the expected order
of convergence.

12.4 Global SBP operator approach

The global SBP operator approach adds symmetric SATs to the standard
computation of the metrics and Jacobian (See A for the implementation of
periodic SATs). In many ways, the global SBP operator approach is much
simpler than the mortar-element approach. The modifications are only made
in the computation of the metrics and Jacobian and do not change the form of
the semi-discrete equations. It does not require any special knowledge of the
metrics at interfaces nor additional computations to obtain such knowledge,
such as the use of B-spline fitting. Furthermore, there is no optimization step
required to obtain the final metrics on the interior of each element. Despite
the simplicity of the global SBP approach, it is equally effective in achieving
stability and conservation. This is shown in Table 6.

The order of convergence computed from simulations using the global SBP
approach are more-or-less consistent with theory, as shown in Table 6. Again,
similar the the baseline simulations, slightly lower orders of convergence are
recovered from the p4 simulations using upwind SATs.

12.5 Staggered grid approach

The staggered-grid approach requires an externally computed approximation
of the Jacobian at every solution node; however, there is great flexibility in
the method of constructing of the Jacobian. It only requires certain accuracy
conditions in order to maintain the overall convergence rate of the discretiza-
tion. Similar to the mortar-element approach, in this article we make use of
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LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 5.0905 5.6292 5.1853 5.5688
Upwind 4.6615 5.8695 4.5173 5.6237

Stability - max d
dt
(uT

g Hgug)

Symmetric 1.9984e-15 2.2204e-15 1.7764e-15 2.2204e-15
Upwind -1.0436e-14 4.4409e-16 -2.8687e-09 -8.5465e-11

Conservation - max d
dt
|1THgug |

Symmetric 5.5685e-16 6.2103e-16 5.5511e-16 5.5164e-16
Upwind 5.2996e-16 5.7593e-16 5.6552e-16 6.0889e-16

Table 6 Global SBP operator: Convergence rates, as well as stability and conservation
analysis for global SBP operator simulations.

LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 4.4021 7.2839 (4.3507) 4.9539 7.5012 (4.9720)
Upwind 5.1054 4.6859 (5.6683) 5.1206 4.9818 (5.4158)

Stability - max d
dt
(uT

g Hgug)

Symmetric 1.9984e-15 2.2204e-15 1.9984e-15 2.4425e-15
Upwind -1.7764e-15 -6.6613e-16 -5.7916e-10 -2.5407e-10

Conservation - max d
dt
|1THgug |

Symmetric 5.5511e-16 6.2797e-16 6.1236e-16 5.5511e-16
Upwind 5.6725e-16 5.8373e-16 5.6032e-16 5.7593e-16

Table 7 Staggered grid approach: Convergence rates, as well as stability and conservation
analysis for staggered grid approach simulations. Convergence rates shown in parenthesis
are computed from coarser simulations.

B-splines. The value of the Jacobian is computed analytically from the equa-
tions of the B-spline volumes. Furthermore, the B-spline fit is also used to
determine the flux and solution meshes in order to streamline the workflow.

The operators chosen for the flux mesh are LGL operators one degree higher
than the operators applied on the solution nodes. The results of these simu-
lations are found in Table 7. They demonstrate the staggered-grid approach
also leads to stable and conservative discretizations.

The order of convergence computed from the p4 staggered grid simulations
are reasonably consistent with theory, as shown in Table 7. The p5 simulations,
however, show considerable variation with orders of convergence both higher
and lower than predicted by theory. Examining the orders of convergence com-
puted between grids with 104 and 106 elements, yields slightly more consistent
results, which is shown in parenthesis within the table. This is similar to the
results using the mortar-element approach.

12.6 Dense-norm SBP operators

The dense-norm approach is very similar to the staggered-grid approach, ex-
cept for the way the Jacobian is handled. In this case, the Jacobian is computed
using the baseline approach on the flux grid. These values get incorporated
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LGL - p4 LGL - p5 LG - p4 LG - p5
Order of Convergence

Symmetric 4.9492 7.3603 (4.9097) 4.9544 7.4309 (4.9123)
Upwind 5.1559 4.4446 (6.0717) 5.0842 4.9839 (5.3288)

Stability - max d
dt
(uT

g Hgug)

Symmetric 1.9984e-15 2.2204e-15 1.9984e-15 1.9984e-15
Upwind -1.7764e-15 -8.8818e-16 -5.6055e-10 -2.2114e-10

Conservation - max d
dt
|1THgug |

Symmetric 3.2092e-15 6.33e-15 3.4833e-15 5.5962e-15
Upwind 3.2994e-15 6.5677e-15 3.1433e-15 6.1062e-15

Table 8 Dense-norm: Convergence rates, as well as stability and conservation analysis for
dense-norm simulations.

on each element into both the norm matrix and interpolation/extrapolation
operator from the flux mesh to the solution mesh. The results of these sim-
ulations are summarized in Table 8 and show that the dense-norm approach
leads to a stable and conservative method.

The order of convergences from the dense-norm simulations are very similar
to the mortar and staggered grid simulations. The p4 simulations are consistent
with theory, whereas the higher-order p5 simulations show more variation.
However, the order of convergence computed from the coarser meshes show
more consistency with theory. These are shown in parenthesis within Table 8.
The deviation from theory likely indicates that the higher-order simulations
are not yet fully in the asymptotic region of convergence.

13 Conclusions

Approaches are presented that result in provably linearly stable and element-
wise conservative high-order discretizations of PDEs in curvilinear coordinates
for GSBP operators with either diagonal or dense norms.

A number of alternatives are presented for the construction of stable and
element-wise conservative schemes using diagonal-norm GSBP operators, i.e.,

– the mortar-element approach
– the global SBP operator approach
– the staggered grid approach.

Furthermore, the staggered grid approach is extended to allow the construc-
tion of stable dense-norm operators in curvilinear coordinates. Upwind SATs
for inter-element coupling are presented that add interface dissipation while
maintaining the provable stability of the neutrally-stable base SBP scheme.
These same SATs can be reused for the weak imposition of boundary condi-
tions. The approaches presented in this paper can naturally be applied in the
context of multidimensional SBP operators and entropy-stable discretizations
of nonlinear conservation laws. Future work will concentrate on determining
the advantages and disadvantages of each approach.
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Tx− (tαTx+ 1)

)

Fig. 4 Interface SATs used for periodic faces in the computation of metric and Jacobian
for the the global SBP operator approach.

A Periodic boundary conditions for the global SBP operator
approach

The computation of the metrics and Jacobian involve derivatives of the phys-
ical nodal locations. The global SBP operator approach includes the use of
interface SATs to couple the derivative values in adjacent elements. Unfortu-
nately, for problems with periodic boundary conditions, the nodal locations
are not necessarily periodic, even if the solution is. As a result, naively apply-
ing the SBP operator approach will not give the correct solution. In order to
use the global SBP operator approach, the interface SATs for periodic bound-
ary conditions used in the computation of the metrics and Jacobian must be
modified. This requires knowledge of the domain’s geometry.

For the test case used in Section 12, the size of the domain relative to any
point is unity in each direction. In other words, traveling one unit along any
of the coordinate directions in physical space will bring you back to the same
point, even though the domain is not a unit cube. Therefore the interface SATs
involving nodal locations used at periodic faces only require the addition or
subtraction of a unit value. A one-dimensional example is shown in Figure 4.
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