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a b s t r a c t

Small-scale, deformable riblets, embedded within the viscous sublayer of a turbulent
boundary layer and capable to adapt to the overlying motion, are studied. The wall
micro-grooves are made of a linearly elastic material and can undergo small deforma-
tions; their collective behavior is assumed to occur over a large, elastic wavelength.
The presence of two length scales allows for the use of a multiscale homogenization
approach yielding microscopic problems for convolution kernels and parameters, which
must then be employed in macroscopic boundary conditions to be enforced at a virtual
wall through the riblets. The results found suggest that, in analogy to the case of rigid
riblets, compliant, blade-like wall corrugations are more effective than triangular riblets
in reducing skin friction drag, provided the spanwise periodicity of the indentations is
sufficiently small for the creeping flow approximation to be tenable.

1. Introduction

Riblets are elongated micro-grooves at the wall, aligned with the direction of the main flow. They represent a mature
passive control technology aimed at reducing skin friction drag in turbulent flow, which has been successfully tested both
in the laboratory and in aeronautical/marine applications.

Apart from a general agreement that riblets can reduce the frictional drag in a turbulent boundary layer by as much
as 7% − 8% (Walsh and Lindemann, 1984), the manner by which a turbulent near-wall flow reacts to the presence of
riblets was not fully understood in early research. A possible physical mechanism for drag reduction was reported by
Chu and Karniadakis (1993) as being related to the limited interaction between near-wall quasi-streamwise vortices
and the surface with micro-grooves. This seemed to balance the fact that the wetted area in the case of a ribbed wall
increased when compared to the smooth-wall case. Complementary experimental and numerical work on triangular
riblets in the laminar regime was conducted by Djenidi et al. (1994). Since these authors found that skin friction drag
was not increased with respect to the flat-wall case, under the same working conditions, the importance of the flow
viscous response was highlighted. Subsequent research focussed on the viscous near-wall flow, to extract salient features
of microstructured surfaces. Today, the mechanism by which riblets operate is believed to be related to the creation of
an offset between the virtual origin of the longitudinal mean flow and that of the transverse turbulent eddies. Provided
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Fig. 1. Experimental drag reduction data (symbols) for triangular and blade riblets. The straight dashed lines correspond to the linear regime for
the two wall corrugations considered, as by Eq. (1).
Source: Adapted from Bechert et al. (1997).

that the riblets are embedded in the viscous sublayer, their effect can be modeled by the Stokes equation to yield two
distinct protrusion heights, or Navier’s slip lengths, longitudinal, λ1, and transverse, λ2, which are the distances from the
rim of the riblets to the position where, respectively, streamwise and cross-stream flows originate. These concepts have
been introduced by Bechert and Bartenwerfer (1989) and Luchini et al. (1991), and tested experimentally by Bechert et al.
(1997), among others. The results show that riblets remain in the linear (Stokes) regime as long as their dimensionless
spanwise periodicity, s+, measured in viscous wall units, remains below a value close to 10 (cf. Fig. 1). The optimal riblet
spacing is about 15 for a variety of riblet shapes, and skin friction drag can be reduced by at most 10% in the case of thin,
blade-like riblets (Bechert et al., 1997). Above s+ ≈ 15, drag starts increasing again and, for s+ ≳ 30, the skin friction
coefficient exceeds the value of the corresponding smooth wall because of the appearance of a Kelvin–Helmholtz-like
instability of the mean flow which increases the spanwise coherence of the turbulent structures, therefore disintegrating
the longitudinal streaks, via the creation of spanwise rollers (García-Mayoral and Jiménez, 2011).

For drag to decrease, for any kind of wall indentation fully immersed in the viscous sublayer, the origin of the secondary
flow must be farther away from the base of the indentation than the origin of the mean streamwise motion or, in other
words, ∆λ = λ1 − λ2 must be positive. When this occurs, crossflow is impeded (more than the longitudinal flow) and
high velocity bursts from the surface are mitigated, resulting in smaller drag. The amount by which drag reduction is
achieved is given to leading order in ∆λ by

∆Cf

Cf0
= −

∆λ+

(2 Cf0 )−1/2 + (2κ)−1 , (1)

as first shown by Luchini (1996). In Eq. (1), Cf is the skin friction coefficient, Cf0 its value for the case of a smooth surface
under the same outer flow conditions, and κ = 4.48 is von Kármán’s constant (Luchini, 2018). Despite the fact that the
equation above holds only in the initial part of the drag curve, the agreement of this theoretical estimate with experiments
is satisfactory and strongly endorses the idea of maximizing ∆λ when drag reduction is sought for. Fig. 1 demonstrates
the advantage of using blade riblets (of thickness t equal to 0.02 s in the case of the figure) as compared, for example, to
triangular riblets with a top opening angle of 90o. It is also interesting to observe that the theoretical results embodied
by Eq. (1) (and shown with dashed lines in the figure) are in excellent agreement with the experimental data for blade
riblets almost until the point of maximal drag reduction (close to s+ = 15), whereas for the triangular wall corrugations
the range of validity of the theoretical result is smaller and extends to s+ ≈ 5.

Another aspect of the near-wall indentations which deserves attention is the possibility for the solid material at the
fluid–solid interface to deform under the action of the fluid. Research on elastic and viscoelastic interfaces has enjoyed
waves of renewed attention in the past fifty years, coinciding with the growing or diminishing interest of funding agencies.
The initial stimulus to the idea of using compliant surfaces for drag reduction came from Kramer (1957, 1961), who
ascribed the extraordinary swimming ability of dolphins to the pliability of their skin. Kramer’s argument was that
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shear layer fluctuations were damped near the dolphin’s compliant dermis, thus leading to extended regions of laminar
flow on the body. This, is turn, was assumed to be the cause of drag reduction. Much research ensued, particularly on
the onset of transition to turbulence for the flow over compliant walls, culminating with the modeling efforts of Peter
W. Carpenter and collaborators (Carpenter and Garrad, 1985, 1986; Dixon et al., 1994; Carpenter et al., 2000). On the
experimental side, Gad-el-Hak et al. (1984) performed several experiments in a water channel with a flat plate coated
with a compliant material, under laminar, transitional and turbulent conditions, highlighting the presence of hydroelastic
instabilities capable to lead to early transition and rise in drag. Turbulent drag increase was typically associated to the
appearance of a large-amplitude deformation of the compliant surface, resulting from a static-divergence instability.
Conversely, when the surface deformation of the wall was maintained significantly within the viscous sublayer (for the
wall to remain hydrodynamically smooth), some success in reducing skin friction drag by the use of compliant viscoelastic
panels was reported (Lee et al., 1993; Choi et al., 1997). Drag reduction was accompanied by reduction of the turbulent
intensity across the boundary layer.

When the wall is rough, little attention has been paid to the dynamic role of deformable roughness elements, aside,
possibly, for the case of terrestrial and aquatic canopies (De Langre, 2008; Nepf, 2012). In these configurations, however,
the vegetation extends beyond the viscous sublayer and its effect differs from that found in canonical rough turbulent
boundary layers. Significant studies on the interaction between near-wall turbulence and flexible micro-protrusions are
very recent and the picture which emerges is not yet complete. The experimental work by Toloui et al. (2019) considered
a regular pattern of cylindrical micro-elements, orthogonal to the wall of a water channel and embedded within the
boundary layer. They used holographic particle tracking velocimetry to find that the Reynolds stress over the flexible
roughness elements was smaller than that over their rigid counterpart; this reduction was accompanied by a decrease of
coherence of the roughness-induced flow structures. In the numerical study by Sundin and Bagheri (2019) a similar set-up
was considered and a systematic analysis was conducted by varying the relative magnitude of the natural frequency of the
cylindrical fibers to the characteristic frequency of cyclic events of near-wall coherent structures; this could be achieved
simply by changing the density of the wall protuberances, compared to that of the fluid, for a fixed modulus of elasticity
of the solid. The fibrous bed was found to rapidly react to the turbulence when the fibers had a density comparable to
that of the fluid (i.e. when the fibers’ natural frequency was much larger than the frequency of turbulent events), resulting
in destruction of the streaks and significant drag increase. Conversely, when the fibers had a density much larger than
the fluid density, the fibrous bed reacted slowly to the flow and the turbulent coherent structures were not very different
from the smooth-wall case.

The idea of combining the presence of regular micro-grooves with the fact of rendering them elastic stems from the
realization that frictional drag in turbulent flows decreases when the spanwise motion of the streaks is hampered (Choi,
1989; Lee and Choi, 2008). This effect is possibly achieved by combining the properties of a compliant material with
the design of appropriate micro-indentations. It is thus aimed for compliance to impair the lateral movement of the
streaks, reducing violent ejections and bursts, with a positive effect on skin friction resistance. A further consideration
applies: the optimal geometrical characteristics of riblets depend on the outer flow conditions, and what is optimal for
one condition (say, level flight of an aircraft at cruise speed) may not be optimal any more under different conditions.
Suitably designed microstructures capable to deform elastically and adapt to the outer flow conditions might provide an
answer to this practical shortcoming. Recently, a patent has been submitted describing the manufacturing of elastomeric
riblets (Rawlings and Burg, 2016), with the claim that their optimized structural design provides the capability for riblets
to be ‘‘thinner, lower weight and more aerodynamically efficient’’.

The arguments given above justify the interest in examining the interaction between elastic, streamwise-elongated
wall corrugations and the overlying fluid. We call these indentations compliant riblets. The goal of this study is to develop
the mathematical tools to describe compliant riblets, to set the framework in order to optimize their geometrical and
structural properties, for drag reduction purposes. The present contribution is thus dedicated to the study of the interface
problems, in both the fluid and the solid domains, for prototypical triangular and blade riblets such as those shown in
Fig. 1, made of a linearly elastic material. The main outcome of the work will be the macroscopic equations ruling the
fluid–solid interactions, plus the effective coefficients (or convolution kernels, by virtue of the time dependent nature
of the fluid–solid coupling) required to close the macroscopic problem. Clearly this work is but the first step of a more
comprehensive examination on the effect and design of compliant riblets; the considerations made possible by the analysis
reported herein represent a promising path for future investigations.

2. Model development

An incompressible Newtonian fluid of density ρf and viscosity µ is assumed to flow over a micro-patterned surface
made of a linearly elastic material of density ρs, Poisson’s ratio νP and Young’s modulus E. A sketch of the surface being
considered is represented in Fig. 2. The objective of this model is to simulate the fluid flow and solid structure deformation
without the need of large computational efforts to describe the details of the solid surface and solve the small-scale
fluid–solid interactions. The procedure shown in the present section gives rise to equivalent boundary conditions for the
macroscopic fields associated with the solid displacement and fluid flow. These boundary conditions must be imposed on
an equivalent smooth surface (denoted with E in Fig. 2) which is located at a certain (small) distance from the tip of the
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Fig. 2. Sketch of a deformable, regularly micro-structured surface. Right frame: a periodic unit cell is identified to apply the homogenization technique.

small-scale protrusions. To proceed with the development of these conditions, we introduce the fluid domain, denoted
by F in Fig. 2, in which the incompressible Navier–Stokes equations are valid and write in dimensional form

ρf

(
∂ ûi

∂ t̂
+ ûj

∂ ûi

∂ x̂j

)
=

∂Σ̂ij

∂ x̂j
, (2)

∂ ûi

∂ x̂i
= 0 , (3)

where Σ̂ij is the canonical fluid stress tensor of a Newtonian fluid

Σ̂ij = −p̂δij + 2µε̂ij(û) , (4)

and ε̂ij(û) is the strain-rate tensor, formally defined as

ε̂ij(û) =
1
2

(
∂ ûi

∂ x̂j
+

∂ ûj

∂ x̂i

)
. (5)

In the domain S occupied by the linearly elastic solid, the governing equations read

ρs
∂2v̂i

∂ t̂2
=

∂σ̂ij

∂ x̂j
, (6)

where v̂i denote the components of the displacement vector, v̂, and σ̂ij is the generic component of the stress tensor.
Under the assumption that the structure is elastic, the stress and strain tensors are linearly related through the relation

σ̂ij = Ĉijklε̂kl(v̂) =
1
2
Ĉijkl

(
∂v̂k

∂ x̂l
+

∂v̂l

∂ x̂k

)
, (7)

where Ĉijkl = λ̂δijδkl + Ĝ(δikδjl + δilδjk) are the components of the stiffness tensor, and λ̂ and Ĝ are the two Lamé

coefficients. These coefficients are related to the Young modulus, E, and Poisson’s ratio, νp, by λ̂ =
νpE

(1 + νp)(1 − 2νp)

and Ĝ =
E

2(1 + νp)
. The fluid and solid equations are coupled through the matching of velocities and tractions across the

microscopic fluid–solid interface denoted with ∂|FS, viz.

ûi =
∂v̂i

∂ t̂
, (8)

and

Σ̂ijnj = σ̂ijnj , (9)

with n = {nj} the unit vector normal to the considered surface, always taken to point into the fluid cell. We also need to
specify the boundary conditions at the bottom B, and top T of the unit cell sketched in Fig. 2. Continuity of fluid tractions
and velocity is imposed on T, i.e.

Σ̂ijnj = Σ̂out
ij nj and ûi = ûout

i , (10)
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where the superscript out denotes the variables on the external side of the cell, cf. Zampogna et al. (2019). On B we impose
that

v̂i = 0 , (11)

which is equivalent to assuming that the elastic layer is anchored to a rigid, undeformable substrate.

2.1. Scaling relations

We start by assuming that the continuum layer made up by fluid and solid is characterized by a frequency, f, sufficiently
large for dynamic effects to be felt at leading order. Then, it can be argued that in the fluid domain

ρfU f ∼
P
l

∼ µ
U
l2

, (12)

with U the velocity scale, P the pressure scale, and l the microscopic length scale. From the above, we can choose the
velocity scale to normalize the governing equations, i.e.

U =
P l
µ

. (13)

We further have a relation between the microscale l and the frequency f, which states that, for viscous effects to balance
inertia, l must be of the order of the Stokes layer thickness, i.e.

l ∼
√

µ

ρf f
. (14)

The small displacement of the elastic riblets is assumed to occur coherently over a macroscopic length L. This is the case,
for instance, of honami waves of canopy flows (Dupont et al., 2010). By equilibrating inertia and diffusion in Cauchy’s
equation for the solid, we have

ρsV f2 ∼ E
V
L2

, (15)

so that the macroscale L can be taken to coincide with the elastic wavelength, i.e.

L =
1
f

√
E
ρs

. (16)

The interface condition (8) is useful since it permits to relate the displacement and the velocity scales through

U = fV. (17)

We are now ready to introduce the relations between the dimensional and dimensionless variables (the latter without
hat), setting

t̂ =
t
f
, x̂ = l x, p̂ = Pp, û =

P l
µ

u, v̂ =
P l
µ f

v . (18)

Substituting these definitions in the continuity and momentum equations for the fluid phase, we obtain
∂ui

∂xi
= 0 ;

∂ui

∂t
+ Re uj

∂ui

∂xj
= −

∂p
∂xi

+ 2
∂εij(u)

∂xj
in F , (19)

where εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
and Re =

ρfUl
µ

= ϵ R, with R =
ρfUL
µ

, assuming the microscale Reynolds number Re to

be of order ϵ (or possibly smaller). Applying the same procedure to the Cauchy’s equation in the solid, we obtain

ϵ2 ∂2vi

∂t2
=

∂σij

∂xj
in S , (20)

with σij = Cijklεkl(v) and Cijkl = Ĉijkl/E. The continuity of tractions on ∂|FS becomes

− p ni + 2εij(u) nj = ϵ−2 ρs

ρf
Cijkl εkl(v) nj , (21)

and the kinematic condition reads

ui =
∂vi

∂t
. (22)

The periodicity condition along x1 and x2 in the unit cell (Fig. 2, right frame) must also be enforced, together with vi = 0
at B and Σij nj = Σout

ij nj at T.
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2.2. Multiple scale expansion

Within the micro-patterned elastic layer, we can use the multiscale homogenization approach described by Mei and
Vernescu (2010). We introduce the fast (microscopic) and slow (macroscopic) variables, x = (x1, x2, x3) and x′

= ϵ(x1, x2),
and the expansions

F =

∞∑
i=0

ϵ i F (i) , (23)

where F (i)
= (u(i), v(i), p(i)) is a function of (x, x′, t). The spatial derivatives become

∂

∂xi
→

∂

∂xi
+ ϵ

∂

∂x′

i
for i = 1, 2 , (24)

so that

εij(u) → εij(u) + ϵ ε′

ij(u) , (25)

with ε′

ij(u) =
1
2

(
∂ui

∂x′

j
+

∂uj

∂x′

i

)
. The slow variable has a missing third entry because the micro-structured layer does not

extend macroscopically along the normal-to-the-surface direction, x3 (cf. Fig. 2). For simplicity, we maintain the notation
x′

i , with the understanding that i can only be equal to 1 or 2. The fluid equations at order ϵ0 and ϵ1 in F then read

∂u(0)
i

∂xi
= 0 , (26)

∂u(1)
i

∂xi
+

∂u(0)
i

∂x′

i
= 0 , (27)

∂u(0)
i

∂t
=

∂Σ
(0)
ij

∂xj
= −

∂p(0)

∂xi
+

∂2u(0)
i

∂x2k
, (28)

∂u(1)
i

∂t
+ R u(0)

j
∂u(0)

i

∂xj
=

∂Σ
(0)
ij

∂x′

j
+

∂Σ
(1)
ij

∂xj
. (29)

In (28) and (29) we have used the definition

Σ
(n)
ij = −p(n)δij + 2

[
εij(u(n)) + ε′

ij(u
(n−1))

]
, (30)

for each n ≥ 0, with u(−1)
= 0 for consistency. Similarly, the equations describing the motion of the solid structure at

order ϵ−2, ϵ−1 and ϵ0 in the S domain are

∂σ
(0)
ij

∂xj
= 0 , (31)

0 =
∂σ

(1)
ij

∂xj
+

∂σ
(0)
ij

∂x′

j
, (32)

∂2v
(0)
i

∂t2
=

∂σ
(2)
ij

∂xj
+

∂σ
(1)
ij

∂x′

j
. (33)

In (32) and (33) the stress tensor at each order, σ (n)
ij , is defined as

σ
(n)
ij = Cijkl

[
εkl(v(n)) + ε′

kl(v
(n−1))

]
, (34)

for each n ≥ 0, with v(−1)
= 0 for consistency. On ∂|FS the interface conditions read

u(0)
i =

∂v
(0)
i

∂t
, (35)

u(1)
i =

∂v
(1)
i

∂t
, (36)

σ
(0)
ij nj = 0 , (37)

σ
(1)
ij nj = 0, (38)
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ρs

ρf
σ

(2)
ij nj = Σ

(0)
ij nj = −p(0)ni + 2εij(u(0)) nj . (39)

To manage the stress boundary condition in Eq. (10) on the top side of the cell, T, we follow the same procedure as
in Zampogna et al. (2019), by truncating the continuity of tractions at order ϵ, which in the present case yields

Σ
(0)
ij nj + ϵΣ

(1)
ij nj = Σout

ij nj on T . (40)

The outer stress tensor depends on the outer quantities defined in Zampogna et al. (2019) (i.e. xout = (x′

1, x
′

2, x
out
3 ) with

xout3 = ϵx3) and is assumed not to be influenced by small-scale effects (this assumption applies if T is sufficiently far from
the elastic, micro-structured wall). Collecting terms at each order in (40), we obtain

Σ
(0)
ij nj = Σout

ij nj on T , (41)

and

Σ
(1)
ij nj = 0 on T . (42)

Using arguments similar to those employed in Zampogna et al. (2019), one also has ϵu(0)
i = uout

i on the upper boundary.
Finally, the boundary condition (11) on B is merely a homogeneous Dirichlet condition for the displacement at each order.
Other boundary conditions can be used on B, such as prescribed shear or normal stress to impose a specific time-varying
deformation of the elastic layer.

2.3. The macroscopic model

Eq. (31) and the homogeneous boundary condition (37) imply that v(0) does not depend on the microscopic variable,
i.e. v(0)

= v(0)(x′, t), so that σ
(0)
ij = 0. Eqs. (26) and (28) can then be written in terms of the velocity of the fluid relative

to that of the solid, as
∂

∂xi
(u(0)

i − v̇
(0)
i ) = 0 , (43)

∂

∂t
(u(0)

i − v̇
(0)
i ) = −v̈

(0)
i −

∂p(0)

∂xi
+

∂2

∂x2k
(u(0)

i − v̇
(0)
i ) . (44)

Because of linearity, the solution of (43) and (44) with boundary conditions (35) and (41) can be expressed with four
convolution kernels, Lijk(x, t), Hij(x, t), Bjk(x, t) and Aj(x, t), as:

u(0)
i − v̇

(0)
i =

∫ t

0
Lijk(x, t − t ′) ε′

jk(u
out

; t ′) dt ′ +
∫ t

0
Hij(x, t − t ′) v̈(0)

j (x′, t ′) dt ′ , (45)

p(0) = p̄(0)(x′, t) +

∫ t

0
Bjk(x, t − t ′) ε′

jk(u
out

; t ′) dt ′ +

∫ t

0
Aj(x, t − t ′) v̈(0)

j (x′, t ′) dt ′ , (46)

where p̄(0) is the macroscopic reference pressure which can be set thanks to the third component of (41). By substituting
(45) and (46) into (43), (44), (35) and (41), the tensors Lijk, Hij, Bjk and Aj are found to satisfy the following microscopic
problems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Lijk
∂t

= −
∂Bjk

∂xi
+ ∇

2 Lijk in F ,

∂Lijk
∂xi

= 0 in F ,

Lijk = 0 on ∂|FS ,

U(t ′)U(t − t ′) εij (L·pq(t − t ′)) nj = δ(t ′ − t) δip δjq nj on T ,

Lijk, Bjk periodic along the tangential directions 1 and 2 ,

(47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Hij

∂t
= −

∂Aj

∂xi
+ ∇

2 Hij in F ,

∂Hij

∂xi
= 0 in F ,

Hij = 0 on ∂|FS ,

εij (H·p) nj = 0 on T ,

Hij, Aj periodic along the tangential directions 1 and 2,

(48)

mverza
Zone de texte 
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subject to the initial condition Lijk(x, 0) = 0 and Hij(x, 0) = −δij. In the boundary condition at the top of the domain, T, for
system (47), U(t) is the unit step function and δ(t) is the Dirac delta function. The solutions of interest are transients. In
particular, since L solves the problem (47) for each t ′ greater than 0, it is univocally defined up to a temporal translation
in t ′. To obtain a numerical solution we set t ′ = 0.

At this point we introduce the spatial average over a unit cell to deduce macroscopic equations valid over the
homogenized domain. This average is defined using an integral over either the fluid, F, or the solid, S, domain as:

⟨f ⟩ :=
1

|F ∪ S|

∫
F|S

f dV , (49)

where |·| denotes the volume of the corresponding domain. It could be alternatively defined with an integral over the
total volume of the unit cell, introducing a filter function to discern whether the integrand refers to the fluid or the solid.
After (49) is applied, the microscopic three-dimensional cell reduces to a single macroscopic point lying on a 2-manifold
located at a constant distance, d, from a reference (x1, x2) plane through the micro-patterned surface. Macroscopically
speaking, since d is of order ϵ and spatial variations smaller than ϵ cannot be measured by the slow variable x′, we are
allowed to take d = 0. As shown in Zampogna et al. (2019), the present theory is not able to estimate the value of d better
than d = 0, since we are approximating the physical phenomenon at leading order in ϵ. Directly linked to this fact is also
the choice of ĥ, the normal-to-the-surface height of the unit cell over which the variables must be averaged. Since ĥ must
be of order l = ϵ L in the present theory, we do not introduce any error by taking h = 2 to include a balanced fraction of
solid and fluid in the cell. Other definitions of averages can be used in order to deduce effective properties starting from
the microscopic tensors.

The macroscopic equations for the fluid quantities are found by applying the spatial average over the fluid domain F
to (45) and (46), leading to

⟨u(0)
i ⟩ − θ

∂v
(0)
i

∂t
=

∫ t

0
Lijk ε′

jk(u
out

; t ′) + Hij v̈
(0)
j (x′, t ′) dt ′ , (50)

⟨p(0)⟩ = ⟨p̄(0)(x′, t)⟩ +

∫ t

0
Bjk ε′

jk(u
out

; t ′) + Aj v̈
(0)
j (x′, t ′) dt ′ , (51)

with θ =
|F|

|F ∪ S|
. The quantities Lijk, Hij, Bjk and Aj are defined as

Lijk = ⟨Lijk⟩, Hij = ⟨Hij⟩, Bjk = ⟨Bjk⟩ and Aj = ⟨Aj⟩ , (52)

where Lijk is the dynamic slip tensor. To ensure uniqueness of the solution of problems (47) and (48), we also take ⟨Bjk⟩ = 0
and ⟨Aj⟩ = 0, so that Eq. (51) simplifies to ⟨p(0)⟩ = ⟨p̄(0)(x′, t)⟩ .

We now consider the linearly elastic solid. Eq. (32) reduces to
∂

∂xj
Cijklεkl(v(1)) = 0 , (53)

and the interface condition (38) valid on ∂|FS becomes

Cijklεkl(v(1))nj = −Cijklε
′

kl(v
(0))nj . (54)

The solution of (53) and (54) can formally be written as

vi
(1)(x, x′, t) = χ

pq
i (x) ε′

pq(v
(0))(x′, t) . (55)

Replacing (55) into (53) and (54), χpq is found to satisfy the microscopic problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂xj

{
Cijkl

[
εkl(χpq)

]}
= 0 in S ,{

Cijkl
[
εkl(χpq) + δkpδlq

]}
nj = 0 on ∂|FS ,

χ
pq
i periodic along tangential directions 1 and 2,

χ
pq
i = 0 on B .

(56)

Summing the dimensionless momentum equations of fluid and solid at the various orders, and retaining terms up to order
ϵ0 we have:

ϵ−1

[
Ξ

(
ρs

ρf

∂σ
(1)
ij

∂xj

)]
+ ϵ0

[
(1 − Ξ )

(
−

∂u(0)
i

∂t
+

∂Σ
(0)
ij

∂xj

)
+ Ξ

(
−

ρs

ρf

∂2v
(0)
i

∂t2
+

∂σ
(2)
ij

∂xj
+

∂σ
(1)
ij

∂x′

j

)]
= 0 , (57)
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Fig. 3. Typical computational grid within the F (left) and S (right) domains for triangular riblets. In the present set-up, θ = 0.625. When blade
riblets are considered it is θ = 0.745.

with Ξ a filter function, equal to 1 (or 0) when at each instant in time there is solid (or fluid) matter at any position
x. We can now average over the total volume of the unit cell and, making use of Gauss’ theorem and of the boundary
conditions, obtain the macroscopic momentum equation for the fluid–solid composite in the form:{[

ρs

ρf
+ θ

(
1 −

ρs

ρf

)]
δij + Hij

}
v̈
(0)
j + Lijk ε′

jk(u
out ) =

ρs

ρf

∂

∂x′

j
Cijkl ε

′

kl(v
(0)) −

1
|F ∪ S|

∫
T
Σout

ij nj dA , (58)

with the components of the effective stiffness tensor C given by

Cijkl = Cijpq⟨εpq(χkl)⟩ + ⟨Cijpqδpkδql⟩. (59)

Finally, we need a third equation to formally close the macroscopic problem. This is linked to the mass balance of the
composite medium and is found by taking the average of (27) over F, yielding

∂⟨u(0)
i ⟩

∂x′

i
= Dpq ε′

pq(v̇
(0)) , (60)

with the components of the compression/dilatation tensor D given by

Dpq =
1

|F ∪ S|

∫
∂|FS

χ
pq
i (x) ni dA. (61)

Eq. (50) represents a modified boundary condition for the velocity field in the outer fluid and requires the knowledge of
the solid displacement field at leading order. Thus, at each time step, the solutions of (50), (58) and (60) must be pursued
to yield the unknowns ⟨u(0)

⟩, ⟨p(0)⟩ and v(0). Before being able to do this it is, however, necessary to evaluate the effective
tensors Lijk, Hij, Cijkl and Dpq for given shapes and properties of the periodic surface micro-structure.

3. Solution of the microscopic problem and effective macroscopic parameters

In order to apply the equivalent boundary condition (50), the microscopic problems (47), (48) and (56) have to be
solved. Once their solution is computed, the averaged values over a unit cell (the so-called effective coefficients of the
micro-structured elastic surface) are available. The computational microscopic domain used to find the solution of (47),
(48) and (56) extends, along x3, from −1 up to 5 (normalizing distances with l), and the near-interface solution does not
change when the upper boundary is moved farther from the interface. For the purpose of volume averaging (definition
(49)) the unit cell goes from −1 to +1 along x3 (cf. Fig. 3 where a typical grid is also shown), so that the total dimensionless
volume in the denominator of Eq. (49) is 1 × 1 × 2. The results discussed below correspond to both a triangular riblet-like
surface with an opening angle of 90◦ (see Fig. 3) and to blade riblets. The surface over which the riblets are positioned
is a plane with tangent vectors ê1 and ê2 and normal vector ê3. The elastic solid forming the rough layer is assumed to
be made of an isotropic material, the Poisson’s ratio of which, νP , is taken, by way of illustration, equal to 0.330. Hence
the first and the second Lamé coefficients, λ̂ and Ĝ, are 0.730 E and 0.376 E, respectively. The resulting dimensionless
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Fig. 4. Isosurfaces of L113 (top row) and L223 (bottom row) at two instants in time (t = 1 and t = 20), for triangular and blade riblets.

fourth-order isotropic stiffness tensor C of the material forming the wall indentations has components Cijkl which read,
in Voigt’s notation (Voigt, 1889):

C =

⎛⎜⎜⎜⎜⎜⎝
C1111 C1122 C1133 C1123 C1113 C1112
C2211 C2222 C2233 C2223 C2213 C2212
C3311 C3322 C3333 C3323 C3313 C3312
C2311 C2322 C2333 C2323 C2313 C2312
C1311 C1322 C1333 C1323 C1313 C1312
C1211 C1222 C1233 C1223 C1213 C1212

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1.482 0.730 0.730 0 0 0
0.730 1.482 0.730 0 0 0
0.730 0.730 1.482 0 0 0

0 0 0 0.376 0 0
0 0 0 0 0.376 0
0 0 0 0 0 0.376

⎞⎟⎟⎟⎟⎟⎠ . (62)

The independent entries of this matrix are at the most 21, instead of 36, for the most general anisotropic linear elastic
material, because of the symmetry properties Cijkl = Cjikl = Cijlk = Cklij. In the present case of isotropic material the
independent entries reduce to two, C1111 = C2222 = C3333 and C1122 = C1133 = C2233, with C1212 = C1313 = C2323 =

(C1111 − C1122)/2. We will see, however, that the effective stiffness is anisotropic.
We have used the academic version of the software COMSOL Multiphysics R⃝ v. 5.3 (www.comsol.com) to obtain the

numerical solution of the various closure problems; numerically converged results are shown below. Convergence has
been checked with respect to the computational grid and also with respect to the basis functions used in the finite
elements discretization implemented in Comsol (employing up to cubic polynomials for the Stokes problems in F and
up to quintic polynomials for the solid problem in S).

3.1. The convolution kernels in the fluid domain

In this section we analyze the solution of problems (47) and (48). These are time-dependent linear Stokes problems
valid over the F domain, with a inhomogeneous initial condition (problem (48)) or inhomogeneous boundary conditions
imposed on T (problem (47)). The boundary condition on T for problem (47) involves a Dirac distribution which has

been regularized numerically as a Gaussian impulse, Gδ =
1

√
2πδ

e
−t2
2δ . The convergence of the results by decreasing δ to

zero has been checked. The fact that the micro-patterned elastic layer is placed over a planar surface with tangent and
normal vectors that do not vary in space implies that only Li13 and Li23 differ from zero (this was shown in Zampogna
et al., 2019 in the case of rigid micro-structures). In Fig. 4, the relevant components of L are shown for two successive
instants of time. The volume average of L plays a central role in the macroscopic model developed in the previous section,
as its components represent the instantaneous slip lengths associated with the relative fluid–solid tangential velocity.
In contrast, B is identically zero within the microscopic domain. After volume averaging L over F, the only nonzero
components are ⟨L113⟩ and ⟨L223⟩; their behavior in time is shown in Fig. 5, and displays an initial increase followed by
an exponential decrease at the same rate for the two components when t exceeds 10, for both riblets’ shapes considered.
The two components L113 and L223 are, respectively, the analogous of the longitudinal and transverse slip lengths, λ1 and
λ2, the definition of which can be found in Luchini et al. (1991). Similar to the conclusions of Luchini et al. (1991), they do
not vary with the height of the computational cell (provided the average is always taken over the same volume, i.e. over a
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Fig. 7. Time evolution of the nonzero components of H.

Fig. 8. Relevant components of χ on the domain S.

The spatial distribution of some components of χ may be observed in Fig. 8 for triangular and blade riblets; for both
geometries it is found that χ13

1 = χ23
2 = χ33

3 , which is the reason why only the latter component is shown in the figure.
Other components not shown vanish after volume averaging, owing to their antisymmetry with respect to a vertical
mid-line. All nonzero volume-averaged components are listed in Table 1.

Once the tensor χ is available, the components Cijkl of the effective stiffness tensor (cf. Eq. (59)) can be computed, and
the result, in Voigt’s notation, is:

C =

⎛⎜⎜⎜⎜⎜⎜⎝

0.693 0.432 0.547 0 0 0
0.432 0.779 0.547 0 0 0
0.547 0.547 1.111 0 0 0

0 0 0 0.282 0 0
0 0 0 0 0.282 0
0 0 0 0 0 0.162

⎞⎟⎟⎟⎟⎟⎟⎠ , (63)
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Table 1
Nonzero volume-averaged entries of the microscopic solid tensor.
Riblets’ type ⟨χ11

3 ⟩ ⟨χ22
3 ⟩ ⟨χ13

1 ⟩ = ⟨χ23
2 ⟩ = ⟨χ33

3 ⟩

Triangular 0.070 0.072 0.146
Blade 0.033 0.032 0.066

C =

⎛⎜⎜⎜⎜⎜⎝
0.470 0.279 0.373 0 0 0
0.279 0.475 0.373 0 0 0
0.373 0.373 0.756 0 0 0

0 0 0 0.192 0 0
0 0 0 0 0.192 0
0 0 0 0 0 0.098

⎞⎟⎟⎟⎟⎟⎠ , (64)

for, respectively, triangular and blade-like riblets. The volume of the solid portion for the triangular wall corrugations is
0.75; that for the blade riblets is 0.51 (against a total volume, fluid plus solid, used in Eq. (49) equal to 2). The values of
the entries in (63) and (64) would change by changing the microscopic volume over which Eq. (58) is applied; however,
the structure of the effective elasticity matrix would not change, and is the same in the two geometries considered. The
effective stiffness tensor is orthotropic (Cowin, 2013), with three mutually orthogonal planes of reflection symmetry;
however, only seven independent components are present (instead of nine) since C1133 = C2233 and C2323 = C1313 and
this stems from geometrical invariance in x1 and periodicity in x2. Finally, the compression/dilatation tensor of use in the
mass conservation equation of the composite turns out to be diagonal, i.e.

D =

(0.188 0 0
0 0.218 0
0 0 0.265

)
, (65)

D =

(0.125 0 0
0 0.123 0
0 0 0.255

)
, (66)

for triangular and blade-like indentations, respectively. This tensor measures the compressibility of the elastic substrate
and is the main responsible of a non-zero normal velocity, ⟨u(0)

3 ⟩, which, in the case of rigid protrusions, has previously
been set to zero at leading order (Zampogna et al., 2019).

4. Conclusions

A general framework aimed at analyzing micro-structured, elastic coatings anchored onto a rigid, solid substrate has
been developed. The lack of geometrical limitations for both the macroscopic surface and the microscopic structure makes
this model suitable to explore, at a reasonable computational cost, a large number of situations involving interactions
between a viscous fluid and a linearly elastic, micro-patterned surface.

Eq. (50) represents a generalization of the Navier slip boundary condition for the case of deformable surfaces, expressed
here through a time convolution between the slip and strain tensors. In this equation, the components of the tensor L are
the slip lengths allowing for the non-zero relative fluid–solid velocity at the equivalent surface E to be expressed in terms
of the shear exerted by the outer flow. Such components of the slip tensor have been examined here for a specific texture
of the wall, together with other components of relevant tensors, H , C and D, which hold a role when the wall is elastic.
Clearly, we need to examine other surface micro-patterns and other properties of the solid material, before a thorough
understanding of the fluid–solid interaction can be gained. The results shown here, in particular Fig. 5, constitute already
sufficient evidence to argue on the effectiveness of flexible micro-grooves in reducing skin friction drag. In future work
macroscopic simulations of turbulence with conditions at the fictitious wall which employ the derived effective parameters
will be carried out.
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