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ABSTRACT: We report investigations of a pendant diluted crude-oil droplet in water that is forced to oscillate at a frequency
ω. The droplet interface contains a significant amount of surface-active agents and displays a marked viscoelastic rheology with
elastic moduli larger than viscous ones. At a low frequency, fluid viscosity and inertia are negligible, which allows a direct
determination of the dilatational interface rheology. At a large frequency, eigenmodes of inertial shape oscillations are excited.
By decomposing the interface shape into spherical harmonics, the resonance curves of the inertial modes of the interface are
determined, as well as the frequency and damping rate of each mode. These two parameters are of major importance for the
prediction of the deformation and breakup of a droplet in any unsteady flow without any prior knowledge of either the chemical
composition or the detailed rheological properties of the interface. Then, interfacial rheology is related to interface dynamics by
solving the coupled dynamic equations for the two fluids and the interface. It turns out that the rheology of the interface is well
described by an equivalent two-dimensional viscoelastic material, the elasticities and viscosities of which depend upon the
frequency. A first significant result is that shear and dilatational elasticities are closely connected, as are shear and dilatational
viscosities. This implies that intrinsic rheology plays a major role and that compositional rheology is either negligible or strongly
coupled to the intrinsic one. A second major result is that, for moderately aged droplets (≤5000 s), the elasticity and viscosity at
a high frequency (10−80 Hz) can be extrapolated from low-frequency measurements (≤1 Hz) by a simple power law of the
frequency, ωz. The exponent z is related to the loss angle θloss by a relation found in many previous low-frequency investigations
of crude-oil interfaces: z = θloss/2π. The present work thus extends classic observations obtained at a low frequency to a higher
frequency range corresponding to the natural frequency of the droplets, where the droplet shape results from the balance
between dynamic pressure and surface stresses and the interface involves simultaneous shear and dilatation. These results bring
about serious constraints regarding the modeling of physicochemical underlying mechanisms and provide some insights for the
understanding of the structure of crude-oil interfaces.

■ INTRODUCTION

The original motivation of this work is to predict how a crude
oil−water interface deforms and eventually ruptures, which is of
special importance for the prediction of droplet size
distributions and the stability of petroleum emulsions.
The deformation of a droplet results from the response of the

interface to the hydrodynamic stress exerted by the surrounding
fluid.1 Provided the fluids are not too viscous, the interface
dynamics is characterized by a series of eigenmodes of

oscillations.2 (Low viscosity means that the Ohnesorge number

should be small: = ≪η
ρ γ

Oh 1
d
i

i
, where ρi and ηi are

respectively the density and the viscosity of the inner fluid, d

is the droplet diameter, and γ is the interfacial tension). Each of
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these modes, defined by its order n ≥ 2, is characterized by a
specific shape, an angular frequency ωn, and a damping rate βn.

3

A droplet that is initially deformed according to mode n and
released in a fluid at rest performs damped oscillations at
frequency ωn with an amplitude that exponentially decays with
time at a rate βn, until it eventually reaches a spherical shape.
These oscillations result from the periodic exchange between the
kinetic energy of the fluids and the potential energy stored in the
deformed interface. Both ωn and βn are increasing functions of n
and decreasing functions of the droplet size, whereas the ratio
βn/ωn is a decreasing function of d. In many situations involving
droplet emulsions, the frequencies are large and the damping
rates are small compared to the frequencies. Let us consider a
droplet of heptane in water: for d = 0.1 mm, Oh = 7 × 10−3, ω2/
2π≈ 7 × 103 Hz, β2≈ 4 × 103 s−1; for d = 5 mm,Oh = 10−3,ω2/
2π ≈ 20 Hz, β2 ≈ 4 s−1. Because they are easier to excite, the
lower-order modes aremost often sufficient to describe themain
deformation of a droplet. In particular, it has been shown that
the breakup of a droplet in a turbulent flow essentially depends
on ω2 and β2 and on the properties of turbulence.4−6 It is
important to stress that these modes involve frequencies of at
least several tens of hertz, which implies that the knowledge of
the response of the interface at such large frequencies is of
primary importance.
In any case, the behavior of a droplet thus crucially depends

on the values of the characteristic frequencies and damping rates
of the interface. In general, ωn and βn are functions of the
mechanical properties of both the fluid and the interface. For
Newtonian fluids, these properties are the densities of the inner
(ρi) and the outer (ρo) fluids, and the viscosities of the inner (ηi)
and the outer (ηo) fluids. For a clean interface between two
immiscible pure fluids, the interface mechanics is fully
characterized by the interfacial tension γ. However, in the
presence of surface-active agents, the mechanical law of the
interface can be much more complex and involve surface
elasticity and viscosity. Ideally, the determination of ωn and βn
for a given fluid system should involves three successive steps:
(1) the chemical characterization of all the species that are
present within bulk fluids as well as adsorbed at the interface; (2)
the determination of the rheological properties of the interface
resulting from the interactions between all these species; (3) the
derivation of the interface-shape eigenmodes resulting from the
specific mechanical laws of the interface under consideration. In
practice, each of these steps is complex and involves a different
scientific field: physico-chemistry, interfacial rheology, and fluid
dynamics. Deriving one step from the preceding is not an easy
task.
Connecting surface rheology (2) to chemical structure (1)

shows the existence of two different origins of elasticity and
viscosity of the interface.7 The first is related to the variations of
the surface energy with the chemical composition of the
interface8 and it can be considered to be of a compositional or a
thermodynamic nature. Neglecting transfers of molecules
between the bulk fluids and the interface, each increase (resp.
decrease) of the interface area is associated with a decrease
(resp. increase) of the interfacial surfactant concentration. This
gives birth to a surface elasticity, which is usually called Gibbs
elasticity. When surface-active molecules have time to adsorb or
desorb during the duration of the process of interface dilatation
(or compression), the Gibbs elastic modulus depends on the
rate of molecule transfer. Moreover, this mass transfer causes
fluid flows in the vicinity of the interface which generates viscous
dissipation. Even if this dissipation is not located within the

interface, it gives rise to an apparent viscosity of the interface,
which must not be confused with a true surface viscosity in the
interpretation of experimental results. It is worth noting that
compositional surface rheology is of an extrinsic nature as it
depends not only on the interface properties but also on the
physical properties and dynamics of the fluids that surround the
interface. In addition, the corresponding elasticity and viscosity
are only related to surface dilatation. The second origin of
interfacial rheology is associated with interactions between
adsorbed molecules. As the interface is deformed, the work of
intermolecular forces under the change of the distance between
molecules gives rise to a surface elasticity, whereas the motion of
the molecules through the solvent and a possible irreversible
reconfiguration of their relative positions and orientations can
generate a surface viscosity. As these mechanisms take place
within the interface and do not depend on bulk-fluid properties,
they are considered to be of an intrinsic or a rheological nature. At
variance with compositional rheology, intrinsic rheology is
involved in both surface deformation at a constant area and area
variation. It thus requires the introduction of a dilatation elastic
modulus and a shear elastic modulus, as well as a dilatation
viscosity and a shear viscosity.
Given a surface rheology (2), it is in principle possible to

determine the interface dynamics (3). This requires to consider
a coupled system of partial differential equations involving
Navier−Stokes equations describing the dynamics of both bulk
fluids, transport of species through the fluids, molecules transfers
between the bulk fluids and the interface, and mechanical
constitutional law of the interface. The interface-shape
eigenmodes are found by solving this system after linearization
under the assumption of small amplitude oscillations.
Expressions for the frequency ωn and the damping rate βn are
in general not explicit but under the form of the cancellation of a
matrix determinant. Such solutions have been obtained for
droplets constituted of twoNewtonian fluids separated by a pure
interface (γ = cte),3,9,10 an interface with intrinsic elasticity and
viscosity,3 and an interface with Gibbs elasticity and intrinsic
viscosity.11,12

Various experimental methods have been developed to
determine the rheological properties of interfaces: oscillating
pendant drop,13−15 biconical disk interfacial rheometer,16,17

Langmuir trough with oscillating barriers,18 capillary pressure
tensiometer,19,20 double wall-ring interfacial rheometer,21,22 and
magnetic rod interfacial stress rheometer.23 In general, the
measured values of elasticity and viscosity are observed to
depend upon the time scale at which the surface deformation
occurs. Most of the time, these devices are operated at low
frequency (ω/2π≲ 1Hz), in order to facilitate the accounting of
bulk hydrodynamic effects in the determination of interfacial
properties. Oscillations of a hemispherical bubble were used to
investigate rheological interface properties in the range of 1−500
Hz.24−28 Despite the high-frequency range considered, because
of the small size of the bubble (d ≈ 0.5 mm), the forcing
frequency was negligible compared to those of the shape
eigenmode (ω2/2π ≈ 103 Hz). The shape thus remained
hemispherical, the interface experienced a uniform dilation, and
inertia was considered to be negligible. Therefore, these
measurements do not provide a characterization of the interface
that is relevant for the study of droplet-shape eigenmodes. As far
as we know, ref 29 is the only investigation of the rheological
interface properties at a frequency matching that of droplet-
shape eigenmodes. A droplet was suspended in air by acoustic
levitation and forced to periodically oscillate in eigenmode 2.



Oscillation frequencies and damping rates were measured for
droplets of various solutions of surfactant in water with
concentrations below the critical micelle concentration.
Rheological properties were determined by fitting the measured
values of ω2 and β2 with the theoretical values based on Gibbs
elasticity and dilatational viscosity, but without considering
intrinsic elasticity.
Crude oil contains many components that can influence the

rheology of the oil−water interface of droplets, such as
asphaltenes, resins, solid particles, and acids.30 Among them,
asphaltenes play a major role because of their ability to form an
irreversible network at the interface.31 An extensive literature has
been devoted to low-frequency rheological characterization of
the oil−water interface by considering either model fluids
containing asphaltenes30,32−35 or crude oil.30,31,36,37,37−41 Most
investigations made use of the oscillating pendant drop
method,30−33,36−41 which gave access to the dilatational
rheological properties, whereas a few works also used a double
wall-ring interfacial rheometer, which measured shear proper-
ties.34,35 It turns out that oil−water interfaces display viscoelastic
properties that depend on many parameters such as oil
composition, chemical structure of asphaltenes, temperature,
acidity, surface coverage (related to surface aging), and time
scale (or frequency) of the interface deformation. Young
interfaces with low surface coverage are expected to be
dominated by compositional rheology as oscillating drop
measurements are found31 in agreement with the Lucassen−
van den Tempel (LVDT)42 model. Aged interfaces rather imply
intrinsic elasticity.
Regarding low-frequency dilatational rheology based on

oscillating drop experiments, as ref 32, numerous studies37−41

showed that the conservation modulus E′ and the loss modulus
E″ of the interface are in agreement with the behavior of a 2D gel
near the gelation point43,44

ω′ ∝ ″ ∝E E z (1)

where ω is the angular frequency of the oscillation and the
exponent z is given by

π
= ″

′
− i
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E
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This behavior is generally attributed to the presence at the
interface of asphaltene clusters of different sizes that result from
the aggregation of nanoclusters. The corresponding interface
rheology is therefore of an intrinsic nature. Recently, this
mechanism was questioned in ref 45, where a model was
proposed based on a compositional rheology. In this approach,
the measured elastic moduli are predicted by an extension of the
LVDT approach, which considers two surfactants having
different diffusion and adsorption dynamics. This alternative
interpretation gave rise to a vigorous debate.46

Regarding low-frequency shear rheology, the conservation
and loss moduli, G′ and G″, of oil−water interfaces with
asphaltenes have been found to follow scaling law 1−2 as
well.34,35 However, the given interpretation is different from that
of a critical-gel behavior. Instead of cross-linking between
asphaltenes, a mechanism of jamming is considered, which is
described by a two-dimensional version of the soft-glassy
rheology model (SGR) developed in refs.47,48 This model was
first applied to interfacial shear rheology to describe micron-
sized spheres,49 Langmuir monolayers of polymers,50 and
carbon nanoparticles51 at fluid interfaces. The SGR model was
then applied to asphaltenes in refs,34,35 with a noise temperature

x = z + 1 in the range between 1 and 2, which ensures thatG′ and
G″ follows relations 1−2. Thus, although dilatational and shear
moduli were found to exhibit the same scaling law, the critical-
gel approach and the SGRmodel proposed to interpret them are
based on different types of physicochemical interactions. It is
however worth mentioning that both of them describe an
intrinsic rheology.
With regard to high frequencies, we are not aware of any

experimental studies of the rheology of crude oil−water
interfaces. Determination of surface moduli at frequencies up
to 100 Hz has been attempted by shifting the rheological curves
obtained at low frequency for various temperatures32 by
assuming a gel-type behavior, or for various surface pressures/
aging times34,51 in the framework of the SGR model. However,
no direct measurements at high frequencies were achieved so far.
The present work reports direct measurements of the shape-

oscillation modes of a droplet of crude oil diluted in heptane
immersed in water. The oscillating pendant drop method has
been adapted to deal with high frequencies.52 A droplet of a few
millimeters is attached to the tip of a capillary and forced to
oscillate at a frequency up to 200 Hz by a periodic injection of a
small amount of oil. The drop response is recorded by a high-
speed video camera and the time-evolution of its shape is
obtained by digital video processing. Eigenfrequencies and
damping rates of modes 2−4 are then determined from the
evolution of their amplitudes as a function of the forcing
frequency. Compared to a droplet of pure heptane, both the
frequencies and the damping rates are increased. This dynamic
characterization is an important result that opens the way to the
prediction of a droplet deformation in a turbulent flow6

involving complex interfaces. Furthermore, it also allows us to
discuss the underlying rheology from theories relating surface
viscosity and elasticity (2) to eigenfrequencies and damping rate
(3). The results exhibit two regimes according to the age of the
interface. The rheology of a moderately aged interface is similar
at high and low frequencies, whereas that of an aged interface
exhibits a different behavior. However, in both cases, intrinsic
rheology plays a major role.
The article is organized as follows. We first present the fluid

system under consideration and a characterization of the
interface dilatational rheology at low frequency. Then, we
describe the experimental determination of shape eigenmodes
and draw conclusions about the influence of surface-active
agents on the interfacial dynamics. Finally, we discuss the
underlying rheology according to the interface age from the
theory of eigenmodes.

■ MATERIALS AND LOW-FREQUENCY
DILATATIONAL RHEOLOGY

Demineralized (Milli-Q) water is used as the outer phase. The inner
phase is a mixture of light crude oil and n-heptane (p.a. grade, Sigma-
Aldrich, used as purchased). The crude-oil concentration in the mixture
was 10% (w/w). The physical properties of the crude oil used in this
study are reported in Table 1, alongside with the saturate, aromatic,
resin and asphaltene (SARA) analysis results of the 344+ fraction.

Using diluted crude oil as the drop phase is a deliberate choice. First,
compared to undiluted oil, diluted crude oil has a viscosity low enough
for the viscous stress not to screen the interfacial dynamics. The
viscosity and the density of the diluted oil are substantially the same as
those of n-heptane (ηi = 0.4 mPa s, ρi = 680 kg/m

3 at 25 °C), allowing a
direct comparison between the behaviors of diluted crude oil−water
and heptane−water interfaces. Second, diluted crude oil is preferred to
model fluids, such as asphaltene and resin solutions. This is motivated
by the fact that crude oil is a very complex mixture, where thousands of



components coexist and interact. The diluted crude oil−water
interfacial rheology reflects this complexity.
The crude oil−water interface rheology has been characterized by

the classic low-frequency oscillating pendant drop method,13 using a
Tracker dynamic drop tensiometer from Teclis Scientific. Different
interface ages have been considered, each of them corresponding to a
quasistatic interfacial tension γe. Small sinusoidal volume oscillations
(δϑ cos(ωt)) are imposed to a droplet that is attached to a capillary
tube. At low frequency, the interface shape is controlled by a quasistatic
balance between capillary and gravity forces, from which the dynamic
interfacial tension γd(t) can be determined. Denoting A the interface
area, the surface elastic modulus E is obtained from

γ
ω ϕ= +

A
E t

d

dln
cos( )d

(3)

The conservation modulus, E′ = E cos(ϕ), is associated to potential
forces, whereas the loss modulus, E″ = E sin(ϕ), is related to dissipative
ones. As the oscillations correspond to a global inflation/deflation of
the droplet, the interface experiences an almost uniform dilatation. In
the case where the interface behavior is due to intrinsic rheology, Ed = E′
should therefore be interpreted as a surface dilation elasticity and ηd =
E″/ω as a surface dilatation viscosity.
Experiments have been carried out at 25 °C. The amplitude of area

variations was set to 5% and oscillation frequencies range between 0.1
and 1 Hz. This ensures linearity between droplet volume and area
variations, as well as negligible inertial and viscous effects within bulk
fluids. Figure 1a presents the evolution with the interface age of the
static interfacial tension γe as well as the conservation and the loss
moduli. The origin of age is taken at the end of the process of droplet
formation at the tip of the capillary. As surface-active molecules can
adsorb at the interface during droplet formation, the origin of age thus
does not correspond to a heptane−water interface. Indeed, the first
measurement performed at 114 s gives a value of γe equal to 27.6 mN/
m, which is much lower than that measured with heptane alone (γe = 47
mN/m). Therefore, none of the present data corresponds to a young
interface with a small surface coverage, and it is worth noting that in any
case the conservation modulus E′ is more than twice larger than the loss
modulus E″.
Figure 1 displays the existence of two distinct regimes of aging. The

first regime starts a few hundred seconds after droplet formation until
approximately five thousand seconds. It is characterized by a very slow
decrease of γe from 27.6 to 24 mN/m and an increase of both E′ and E″
as the power 0.25 of the interface age, their ratio remaining constant
(E″/E′ ≈ 0.41). Beyond 5000 s, a second regime develops where the
decrease of γe becomes steeper whereas the increase of E′ is accelerated
and E″ starts decreasing. From that point, the ratio E″/E′ continuously
decreases, becoming smaller than 1/3 for a time larger than 5.5 × 104 s.
As many previous studies32,34,35,37−41 have found that elastic moduli

of oil−water interfaces containing asphaltenes did follow scaling law 1−
2, this law has been evaluated on the present data. Figure 1b shows the
evolution with age of the exponent z computed from the experimental
values of E″/E′ by eq 2. During the first regime, z is found constant and
equal to 0.25, whereas during the second regime (≳5000 s) it decreases
exponentially with age. Figure 2 shows the evolution of E′ and E″ with
frequency for two different ages within the first regime. In agreement

with eq 1, both moduli increase asωzwith the value z = 0.25 given by eq
2.

This good agreement with scaling law 1−2 cannot, however, lead us
to conclude about the underlying physicochemical mechanism. Let us
discuss the interpretation in terms of critical-gel or SGR models by
considering the features of the aging process. Describing the interface as
a 2D-gel near its gelation point was proposed by ref 32 and considered
in subsequent studies37−41 for the interpretation of dilatational
interface elastic moduli of crude oil−water interfaces that were aged
enough, typically for more than 14 hours, such as to be in
thermodynamic equilibrium with the bulk phases. In the present
study, as in ref 39, scaling law 1−2 is observed for moderately aged

Table 1. SARA Analysis and Physical Properties of the Crude
Oil

SARA analysis of the 344+ fraction

saturates (% w/w) 47.5
aromatics (% w/w) 39.1
resins 12.6
asphaltenes 0.1
mass yield of the fraction (% w/w) 50.76
physical properties of the crude oil

density at 15 °C (kg/m3) 850
viscosity at 20 °C (Pa s) 9 × 10−3

Figure 1. Evolution of interface properties with age measured by the
oscillating dropmethod at a frequencyω/2π = 0.2 Hz. (a) Static surface
tension γe, conservation modulus E′, and loss modulus E″. (b)
Estimation of the exponent of the evolution of E′ and E″ as a function of
the frequency ω from eq 2.

Figure 2. Evolution of interface moduli E′ and E″ as a function of the
frequency ω/2π for two different ages within the first regime (900 and
1800 s).



droplets for which the aging process is not achieved yet, as γe is still
slightly decreasing and especially both E′ and E″ are significantly
increasing. It is however not clear for us how the aging process, either by
a continuous adsorption of asphaltenes at the interface or by an
unceased structuration of asphaltenes clusters, is consistent with the
assumption of a 2D critical gel. The compatibility of the observed aging
process with the SGR model is even more questionable. Assuming a
constant composition of the interface, the SGR model only predicts47

an evolution of the rheology for a noise temperature x lower than unity
and, in this case, the loss modulus should decrease whereas the
conservation modulus should remain constant. On the other hand,
considering a continuous arrival of asphaltenes should increase the
crowding and cause a decrease of x. However, during the first regime of
aging, the exponent z characterizing the ratio E″/E′ remains constant
and corresponds to a noise temperature greater than unity x = z + 1 =
1.25. The SGR model seems therefore not consistent with the first
regime of aging, whereas it is not in direct contradiction with the second
regime where z tends toward zero.
At this stage, it is difficult to conclude about the nature of the aging

process, which can be associated with either an evolution of the surface
coverage governed by diffusion or a reorganization of the adsorbed
molecules on the interface, or with both of them. Furthermore, the
mechanisms causing the interface elastic moduli to follow scaling law
1−2, especially for a system which is still experiencing such an aging
process, are still unknown. However, this scaling law seems to be a
characteristic feature of the low-frequency rheology of crude oil−water
interfaces. An important question is thus whether these dependences of
the interfacial properties with the frequency is still valid in free droplet
oscillations, which involve high frequencies and interface deformation
implying both area dilation and shear. The next section will present
investigations of the dynamics of a diluted crude-oil droplet oscillating
at a high frequency in water.

■ HIGH-FREQUENCY DYNAMICS OF AN
OSCILLATING DROPLET

Experimental Method. A pendant drop dynamic tensi-
ometer is used to generate high-frequency droplet oscillations. It
is a DSA 100 from Krüss equipped with an oscillating drop
module (ODM) able to generate oscillations up to 200 Hz.
Figure 3 shows a schematic of the setup. A syringe (1) is used to
form an oil droplet at the end of a capillary immersed in water
(4). A piezoelectric membrane (2″) mounted on a wall of the
oil-storing cell (2) generates small droplet-volume oscillations at
a given frequency ω. The droplet is illuminated by a light-
emitting diode (LED) backlight panel (3) and recorded by a
Photron APX high-speed camera (5) operated at a frame rate
ranging between 60 and 2000 Hz, depending on ω. Then, the
droplet shape is obtained at each instant by digital video
processing of the images. Full details on the experimental
technique are given in ref 52 where the method has been tested
and validated for heptane droplets in water. Two conclusions of
this previous work deserve to be mentioned. First, the limits of
the linear regime of oscillations have been determined. Second,
the roles of both gravity and attachment of the droplet to the
capillary tip upon the eigenmodes of shape-oscillations have
been shown to be negligible, provided the droplet size is large
enough. The linear theory of a droplet oscillating around a
spherical shape in the absence of gravity is thus relevant to
interpret the results of the present study.
Small droplet-volume oscillations drive interface-shape

oscillations. In order to be analyzed, shape oscillations need to
be decomposed into spherical harmonics, which correspond to
the eigenmodes of oscillations. As the droplet remains
axisymmetric, its shape at each instant is fully characterized by
the local radial position r of the interface as a function of polar

angle θ (see Figure 3). The local radius of the interface is thus
written as

∑ θ= +
=

i
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jjjjjj
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{
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n n0
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where a is the radius of the sphere of same volume ϑ = 4/3πa3 as
that of the droplet, A0(t) stands for the volume variation, and
An(t) is the instantaneous dimensionless amplitude of spherical
harmonic n, which is defined by Legendre polynomial Pn.
Rigorously, the summation should expand to infinity. However,
it turns out that it is sufficient to stop to harmonic 10 to
accurately describe the experimental shapes. At each instant, the
An are determined by fitting the experimental droplet contours
using eq 4 withN = 10. As the equilibrium shape of the droplet is
not spherical, the time average is subtracted from each An(t)
signal, so that only the fluctuating part ΔAn(t) is kept. In the
following, we present results concerning the three first modes of
shape oscillations, which correspond to n = 2, 3, and 4. Figure 4
illustrates the time evolution of ΔAn(t). As oscillations lie in the
linear regime, we observe perfect sinusoidal functions ΔAn(t) =
δAn cos(ωt + ϕ), from which we can determine the peak
amplitude δAn within an accuracy of 5%. This procedure is
repeated for various forcing frequencies ω in order to obtain a
resonance curve δAn(ω) for each mode. Owing to the design of
the ODM, the amplitude of the oscillating forcing volume δϑ
cannot be maintained constant as ω is varied. Therefore, each
δAn(ω) needs to be divided by the relative amplitude of volume
variations: Ãn(ω) = δAn(ω)/(δϑ(ω)/ϑ).

Various Types of Interfaces Considered. Three types of
interfaces are considered, which differ by their state of aging (see
Table 2). Type T0 is the reference case of a droplet of heptane.
Type T1 corresponds to a diluted crude-oil droplet of age 1200
s, which therefore belongs to the first aging regime displayed in
Figure 1. Considering older interfaces belonging to the second

Figure 3. Experimental setup: (1) feeding syringe, (2) drop phase
storing cell, (2′) glass window, (2″) piezoelectric membrane, (3) LED
backlight panel, (4) droplet formed at the tip of capillary tube immersed
in water stored in a parallelepipedic optical-grade glass cell, (5) high-
speed camera; (6) T2B interface before compression (a) after shrinkage
(b) and just before oscillations (c). (7) Visualization of wrinkles on a
shrunk interface.



regime of aging was more problematic. Because of a lack of a
regulation system of the volume, the DAS 100 tensiometer did
not allow one to maintain a pendant droplet for 5000 s or more.
To overcome this limitation, type T2 has been obtained by
provoking an artificial aging of the interface (pictures 6a−c in
Figure 3), based on the idea that reducing the interface area
increases the concentration of adsorbed molecules in a similar
way as aging. A droplet is formed at the capillary tip and let in
contact with water during initial aging time Δt1. Then, the
droplet is shrunk by sucking a given amount of oil until wrinkles
appear (picture 7 in Figure 3). Then, the droplet volume is
slightly increased back, just enough for the wrinkles to disappear.
Finally, the droplet is let to relax for a duration Δt2 before
starting oscillations. Moderate initial aging time and relaxation
time are applied to type T2A (Δt1 = 1200 s, Δt2 = 300 s),
whereas longer ones are applied to type T2B (Δt1 = 3600 s,Δt2 =
1200 s). It is important to stress that, if reducing the interface
area is very likely to increase surface coverage, we ignore if it
causes a reorganization of surfactants at the interface which is
similar to aging. For that reason, we will not claim that interfaces
T2 really correspond to the second regime of aging identified in
Figure 1. Type T2will be used to probe whether results obtained
with type T1 still hold for interfaces having experienced a more
complex history. In the following, type T2 will be referred as to
“artificially aged interfaces”.
Resonance Curves of Shape Oscillations. Figures 5−8

display the response in amplitude of modes 2−4 as a function of
the forcing frequency ω for the various types of interfaces under
consideration. Symbols correspond to experimental data.

Continuous lines show the theoretical resonance curve Ãn(ω)
of a linear harmonic oscillator
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Figure 4. Time evolution of the amplitudes of spherical harmonics
characterizing interface-shape oscillation (example for T1 interface).

Table 2. Various Types of Interfaces Considered in High-Frequency Experiments

interface type T0 T1 T2A T2B

inner fluid heptane diluted crude diluted crude diluted crude
oil + heptane oil + heptane oil + heptane

outer fluid water water water water
droplet diameter (mm) 4.48 3.73 3.06 3.27
aging time Δt1 (s) 1200 1200 3600
contraction/expansion cycle no no yes yes
relaxation time after expansion Δt2 (s) 300 1200
static interfacial tension γe (mN/m) 47 25 20 20

Figure 5. Amplitudes Ãn of interface modes 2−4 as a function of the
forcing frequency for a drop of heptane in water (type T0). Symbols:
measurements. Lines: best fit of each peak by a harmonic oscillator (eq
5).

Figure 6. Amplitudes Ãn of interface modes 2−4 as a function of the
forcing frequency for a moderately aged diluted crude-oil droplet in
water (type T1). Symbols: experimental data. Continuous lines: best fit
of each peak by a harmonic oscillator (eq 5). Dashed lines: prediction
from theory by using values of interface rheological properties
extrapolated from low-frequency characterization: Es = 2Ed =
2E′extra(ω) and ηs = 2ηd = 2E″extra(ω)/ω.



where the angular frequencyωn
exp, the damping rate βn

exp, and the
maximum at resonance Ãn

max have been adjusted to provide the
best fit of the peak of eachmode n. Experimental frequencies and
damping rates are reported in Tables 3−6, together with the

theoretical valuesωn
ref and βn

ref obtained by assuming an interface
described by a constant interfacial tension.3 The considered
values of γe are given in Table 2 and correspond to the static
interfacial tension measured for each interface type. These
reference frequencies and damping rates thus only account for
the presence of surface-active agents through the values of the
interfacial tension but ignore the complex rheology of the
interface.
The case of the heptane droplet (T0) is used to determine to

which extent the theory of a free droplet in the absence of gravity
is relevant to interpret the present experiments. As expected, it is
in fairly good agreement with the theory of a pure interface. The
resonance curve of each mode (Figure 5) shows a narrow peak.
The experimental values of the frequencies are within 2% of the
theoretical values for mode 2 and 4% for mode 4, whereas the
discrepancy on the damping rate is about 20% (Table 3). As
discussed in ref 52, the larger discrepancy in βn can be attributed
to the effect of the attachment of the droplet to the capillary. In
the following, these discrepancies will be considered as
reasonable estimates of overall uncertainties made in the
determination of ωn and βn for interfaces of types T1 and T2.
Let us now consider a moderately aged interface (T1). The

resonance curves (Figure 6) are shifted toward higher
frequencies whereas the peaks are much broader. Table 4
shows that experimental frequencies are larger than reference
ones by 57% for mode 2, 25% for mode 3, and 8.1% for mode 4.
Moreover, experimental damping rates are larger than reference
ones: six times larger for mode 2, four times for mode 3, and
three times for mode 4.
The effect of surface-active agents is even more stronger for

artificially aged interfaces. Interfaces T2A (Figure 7) and T2B
(Figure 8) show very similar resonance curves. The peaks
strongly moved toward high frequencies and are very much
wider so that they partly overlap. For mode 2, the experimental
eigenfrequencies are about three times larger than the reference
frequency, whereas the experimental damping rates are more
than 12 times larger than the reference value (Tables 5 and 6).
We can therefore conclude that surface-active agents that are

present in crude oil significantly change the mechanical behavior
of the interface at frequencies around 100 Hz. As well-defined
resonance peaks are detected for crude oil−water interfaces of
any age, the present method is able to characterize the dynamics
of shape oscillations of droplets having a complex interface. The
eigenfrequencies and damping rates of shape eigenmodes can
therefore be directly measured. Moreover, as eigenfrequencies

Figure 7. Amplitudes Ãn of interface modes 2−4 as a function of the
forcing frequency for an artificially aged crude-oil droplet in water (type
T2A). Symbols: measurements. Continuous lines: best fit of each peak
by a harmonic oscillator (eq 5).

Figure 8. Amplitudes of interface modes 2−4 as a function of the
forcing frequency for an artificially aged crude-oil droplet in water (type
T2B). Symbols: measurements. Continuous lines: best fit of each peak
by a harmonic oscillator (eq 5).

Table 3. Frequencies and Damping Rates of Eigenmodes of a
4.48 mm Heptane Drop in Water (Type T0)

mode ωexp (rad/s) ωref (rad/s) βexp (s−1) βref (s−1)

2 151 154 5.85 4.67
3 279 289 11.61 8.82
4 423 440 15.81 13.90

Table 4. Frequencies andDamping Rates of Eigenmodes for a
Moderately Aged Diluted Crude-Oil Droplet in Water (Type
T1)

mode ωexp (rad/s) ωref (rad/s) βexp (s−1) βref (s−1)

2 230 146 34 5.62
3 345 275 48 10.62
4 453 419 52 16.75

Table 5. Frequencies and Damping Rates of Eigenmodes for
an Artificially Aged Diluted Crude-Oil Droplet in Water
(T2A)

mode ωexp (rad/s) ωref (rad/s) βexp (s−1) βref (s−1)

2 490 175 110 7.60
3 580 328 95 14.35
4 735 500 95 22.64

Table 6. Frequencies and Damping Rates of Eigenmodes for
an Artificially Aged Diluted Crude-Oil Droplet in Water
(T2B)

mode ωexp (rad/s) ωref (rad/s) βexp (s−1) βref (s−1)

2 540 158 86 6.76
3 628 297 84 12.75
4 795 452 105 20.11



are in general more sensitive to surface elasticity, whereas
damping rates are more influenced by surface viscosity, the
present results suggest that the diluted crude oil−water interface
features significant viscoelastic properties, which depend on the
aging process. In the next section, we attempt to infer the surface
elasticities and viscosities from the resonance curves and discuss
the relation between low- and high-frequency interfacial
rheology.

■ DISCUSSION ON INTERFACIAL RHEOLOGY
Theoretical Background.Our objective is to determine the

elasticity and the viscosity of the interface from the measured
eigenfrequencies and damping rates. This can be done by solving
the coupled dynamic equations for the fluids and the interface.
However, it requires first to assume a model that describes the
interfacial rheology. Let us start by reviewing the various
possible origins of the viscoelastic properties of the interface.
The first cause of complex interfacial rheology is of a

compositional nature and only concerns dilatation. It arises from
the fact that surface energy γ depends upon the surface
concentration of surface-active agents and gives birth to Gibbs
elasticity. For a single surfactant at surface concentration Γ, it
writes: EGibbs = −dγ/dln Γ. (For multiple surfactants we have to
consider the sum of all contributions to the Gibbs elasticity.) For
an insoluble surfactant, the number of molecules adsorbed on
the surface is constant and the variations of concentration are
simply related to the interface area A by dln Γ = −dln A. In this
case, the conservation modulus E′ measured in low-frequency
oscillating pendant drop experiments is thus equal to EGibbs.
When molecule transfer occurs between the interface and the
droplet bulk, E′ is in general lower than EGibbs. It decreases when
transfer becomes faster as the magnitude of concentration
variations during an oscillating period is attenuated. The time
scale of transport of surfactant molecules through the bulk is
controlled by diffusion in the vicinity of the interface and writes:

τ = ∂Γ
∂( )D Cdiff

1 2
, where C and D are respectively the surfactant

concentration and diffusion coefficient in the droplet fluid. The
dimensionless group λ = (ωτdiff)

−1/2 is then introduced11 to
compare the time scale of diffusion to the oscillating period, the
case λ = 0 corresponding to negligible molecule transfer. The
effective compositional elasticity is thus controlled by both EGibbs
and λ. As molecule transfers are associated with a dissipative
motion in the fluid, a loss modulus is also measured in low-
frequency oscillating pendant drop experiments when λ ≠ 0,
even in the absence of any real interface viscosity. The same
mechanism can be responsible for an increase of the damping
rate of droplet shape eigenmodes at a high frequency.
The second cause of interfacial viscoelasticity is related to

interactions between adsorbed molecules, which give rise to
intrinsic surface elasticity and viscosity. The interface should
thus be considered as a two-dimensional viscoelastic material,
which is characterized by four physical parameters: a dilatational
elasticity Ed, a shear elasticity Es, a dilatational viscosity ηd, and a
shear viscosity ηs.
Assuming small amplitude oscillations, the dynamic equations

describing the droplet oscillations can be linearized. The
eigenfrequency and the damping rate of each mode are then
determined by cancelling the determinant of a matrix, which
leads to solve a transcendental equation. This equation was first
derived in two seminal works. First, ref 3 considered the case of
an elastic interface involving interfacial tension (γe), dilatational
and shear elasticities (Ed, Es), as well as dilatational and shear

viscosities (ηd, ηs). Then, ref 12 addressed the case of viscoelastic
interface involving compositional rheology (EGibbs, λ) and
intrinsic viscosity (ηd, ηs). By completing the determinant of
ref 12 by the terms corresponding to intrinsic elasticity derived
by ref 3, the general equation for an interface including
compositional rheology as well as both intrinsic elasticity and
viscosity is obtained (see Appendix I for details). In what
follows, this equation is solved numerically to determine the
values of ωn and βn.

Moderately Aged Interface (T1). We start by analyzing
moderately aged interface T1, which belongs to the first regime
of aging identified from low-frequency dilatational rheology. In
this regime, interfaces are still aging but yet show a significant
viscoelastic rheology with E′ > E″. For oscillating frequencies ω
in the range from 0.63 to 6.3 rad/s, bothmoduli have been found
to evolve as ω0.25. In order to assess whether this behavior still
holds at high frequency, the functions E′(ω) and E″(ω)
determined at low frequency (Figure 2) have been extrapolated
to higher frequencies by assuming that the ω0.25 law is still valid.
Extrapolated values evaluated at the peak frequency of the
resonance curves, E′extra(ωn

exp) and E″extra(ωn
exp), are reported in

Table 7, where E″extra has been divided by ωn
exp to allow its

interpretation as a surface viscosity. Values of E′extra(ωn
exp) are

found to be of the order of 0.05 N/m whereas those of
E″extra(ωn

exp)/ωn
exp are of the order of 10−4 N·s/m.

The model of the interface described above involves six a
priori unknown parameters (EGibbs, λ, Ed, Es, ηd, ηs). It is too
much to attempt a brute-force determination of the parameters
by searching for the values that provide the best fit of the
experimental values of ωn and βn. We thus adopt a step-by-step
approach.
Considering only static interfacial tension, the eigenfrequency

of mode 2 should be ω2
ref = 146.5 rad/s, whereas the measured

value is ω2
exp = 230 rad/s. Such an important increase in the

frequency is expected to be the signature of a surface elasticity.
Let us first assess whether it can be due to a compositional
elasticity. Figure 9 shows the theoretical value ofω2 as a function
of EGibbs for various values of λ. It turns out that ω2 is not a
monotonic function of EGibbs and its value never exceeds ω2

ref by
more than 3%. In the absence of molecule transfer between the
bulk and the interface (λ = 0), ω2 first increases from the initial
value 146.5 rad/s up to reach a maximum at 149.8 rad/s for
EGibbs = 1.2 × 10−3 N/m; then it continuously decreases as EGibbs
further increases. Accounting for molecule transfer (λ > 0)
simply moves the maximum to the right and reduces its
magnitude. It is worth mentioning that, in the absence of
molecule transfer, the effect of the Gibbs elasticity EGibbs is
exactly the same as that of an intrinsic dilatational elasticity Ed. In
other words, the function ω2(EGibbs) for λ = 0 is the same as the
function ω2(Ed), which does not depend on λ. This leads to an
important conclusion. The strong increase in ω2 cannot be the
result of only a compositional rheology. More generally, it can

Table 7. Conservative and Loss Interface Moduli
Extrapolated from Low-Frequency Dilatational Rheology
Measurements for a Moderately Aged Diluted Crude Oil−
Water Interface (T1)

mode ωexp (rad/s) E′extra (N/m) E″extra/ωexp (N·s/m)

2 230 0.053 9.5 × 10−5

3 345 0.059 7.0 × 10−5

4 453 0.063 5.7 × 10−5



neither be explained by only considering any kind of dilatational
elasticity. Because we are dealing with high frequencies, we will
set λ = 0 in what follows. This implies that there will be no more
distinction between EGibbs and Ed regarding the comparison
between the prediction of the model and experimental resonant
curves.
Figure 10 shows ω2 as a function of the shear elasticity Es for

various dilatational elasticities Ed. The functionω2(Es) for Ed = 0

is flat. Taken together, results of Figures 9 and 10 show that
increasing either the dilatational or the shear elasticity while the
other one is set to zero does not lead to a significant increase of
ω2. However, when neither of the moduli is negligible, ω2 turns
out to be an increasing function of both Ed and Es. Moreover,
when Ed and Es are of the same order of magnitude, the value
ω2

exp = 230 rad/s can be reached for an elasticity of the order of
the extrapolated conservation modulus E′extra(ω2

exp) = 0.053 N/
m.
Figure 11 shows the theoretical damping rate β2 of mode 2 as a

function of the dilatational viscosity ηd for various shear
viscosities ηs and Es = Ed = 0.053 N/m. The value of β2 are
increasing functions of both ηd and ηs. Similar to what was
observed for the effect of elasticity upon frequency, it is possible
to retrieve the experimental damping rate, β2

exp = 34 s−1, with

values of both viscosities that are close to the extrapolated value
E″extra(ω2

exp)/ω2
exp = 9.5 × 10−5 N·s/m.

Assuming a viscoelastic interface with both (1) an elastic
dilatational elasticity and a shear elasticity of the same order and
(2) a dilatational viscosity and a shear viscosity of the same order
is therefore compatible with the observed shape-oscillation
dynamics. Moreover, the measured eigenfrequency and damp-
ing rate of mode 2 can be recovered with values of elasticities and
viscosities close to the values obtained by extrapolating the
conservation and loss modulus measured at a low frequency by
assuming that the ω0.25 law is still valid at a high frequency.
Unfortunately, there is no unique set of parameters (Ed, Es, ηd,
ηs) that leads to the experimental values ω2

exp and β2
exp. For

example, Figure 10 shows that ω2
exp can be reached for two

different values of Es depending on whether Ed is assumed to be
equal to Es or twice as large. If we consider that the functions
E′(ω2) and E″(ω) obtained from low-frequency dilatational
rheology are valid in the whole range of frequency investigated in
this work, the dilatational elasticity and viscosity should be given
by

ω ω ω= ′ ∝E E( ) ( )d
extra 0.25

(6)

η ω ω ω ω= ″ ∝ −E( ) ( )/d
extra 0.75

(7)

However, if the ratios Es/Ed and ηs/ηd are known to be of
order 1, their exact values remain undetermined. To go further,
the resonance curves Ãn(ω) of modes 2−4 have been computed
by the following method. First of all, the ratios Es/Ed and ηs/ηd
are set to a given value. For a given forcing frequency ω, the
values of Ed and ηd are determined by eqs 6 and 7, whereas those
of Es and ηs are given by the prescribed ratios. The dynamic
parameters ωn and βn are computed by solving the tran-
scendental equation which describes the dynamics for that given
set of surface viscosity and elasticity. Then, the mode amplitude
Ãn is calculated by using eq 5. Finally, the resonance curves
Ãn(ω) are obtained by doing the same calculation for all ω.
The best results, obtained for Es/Ed = 2 and ηs/ηd = 2, are

reported in Figure 6 (dashed lines). (Other examples of
theoretical resonant curves are shown in Figure 14 of Appendix
II.) Regarding that the only adjustable parameters are the ratios
Es/Ed and ηd/ηd, the agreement with the experimental curves is
remarkable. Only a slight discrepancy on the peak frequency of
mode 4 is to be noted. Except from that, the peak frequency and

Figure 9. Mode-2 frequency as a function of the Gibbs (or intrinsic
dilatational) surface elasticity (physical parameters of case T1 and Es =
ηd = ηs = 0).

Figure 10.Mode-2 frequency as a function of the shear surface elasticity
for various dilatational surface elasticities (physical parameters of case
T1 and EGibbs = λ = ηd = ηs = 0).

Figure 11.Mode-2 damping rate as a function of the dilatational surface
elasticity for various shear surface viscosities (physical parameters of
case T1 and EGibbs = λ = 0, Es = Ed = 0.053 N/m).



the peak width of all three modes are very well reproduced. We
can therefore conclude that the evolutions of the surface
elasticity as ω0.25 and of the surface viscosity as ω−0.75 are valid
for the frequency range of the three modes.
Regarding moderately aged interface T1, the results thus

indicate that the rheology of the crude oil−water interface,
which controls droplet-shape oscillations in the range of
frequencies between 10 and 80 Hz, is not different from that
governing quasistatic oscillations at frequencies smaller than 1
Hz. The interface behaves as a 2D viscoelastic material with
shear elasticity and viscosity that are of the same order of
magnitude as their dilatational counterparts and are in
agreement with scaling law 1−2.
The fact that the best fit of the experimental resonant curves is

obtained for Es > Ed deserves discussion. If we interpret the
observed rheological behavior as the existence of real 2D
membrane, its material would be auxetic, which would be hardly
believable and in conflict with our assumption of 2D isotropy.
However, even if we consider that there exists a membrane of
constant composition, its structure is three-dimensional at the
molecular level and there is no reason to extend the isotropy
property of the interface plane in the normal direction.When the
in-plane area increases, its thickness may decrease because of
rearrangement or rotation of asphaltenes clusters: we can
therefore conclude nothing about the volume variation of this
material. That being said, it is also possible that the composition
of the interface changes as its area varies. When oscillations are
rapid (λ = 0), the number of surface-active molecules at the
interface remains constant but more or less water or oil
molecules can occupy the spaces between them. Thus, because
either the organization of the surfactant in the direction normal
to the interface or composition may change during the
oscillations, the interface is not a real 2D material and there is,
in principle, no reason to reject a description involving an
effective 2D rheology with Es > Ed. However, even if the best fit is
obtainedwith Es > Ed, the discrepancy with Es = Ed is not so large.
It is therefore reasonable to limit our conclusion to the fact that
Es and Ed are of the same order.
Once an effective rheology has been inferred from the

dynamics, the underlying physicochemical mechanisms can be
discussed. Regarding shear elasticity and viscosity, there is no
doubt that they are of an intrinsic nature and imply interactions
between adsorbed molecules or molecules clusters. However, it
is difficult to conclude whether these interactions imply
molecular bounds, like in a gel, or steric effects, like in a soft
glassy material. Regarding dilatational rheology, the question of
its compositional or intrinsic nature is more complex and
requires to distinguish between elasticity and viscosity. As
already mentioned, the results of the present model do not make
any difference between an intrinsic dilatational elasticity and a
compositional Gibbs elasticity. There is no reason to think that
Gibbs elasticity is null, especially at a high frequency for which
variations of surface concentration are expected to be directly
related to area variations. The observed value of Ed could thus a
priori be due to any combination of compositional and intrinsic
contributions. Furthermore, as we have considered that
oscillations are rapid compared to diffusion time (λ = 0) and
thus assumed insoluble surfactant, all damping effects modeled
by intrinsic viscosities ηs and ηd do not include any effect because
of changes in interface composition. However, if there existed a
dissipation related to an irreversible process associated to
periodic changes in interface composition, this effect would be
imbedded in the observed value of ηd. Because values of

dilatational elasticity and viscosity are found to be strongly
correlated to their shear counterparts, we are prone to think that
dilatational rheology is predominantly of an intrinsic nature.
Having no certainty about the physicochemical structure of the
interface, we cannot preclude a coupling between compositional
and intrinsic mechanisms that would lead to correlate the values
of elasticity and viscosity.

Artificially Aged Interface (T2). As indicated by the large
peak frequencies of the resonance curves plotted in Figures 7
and 8, T2 interfaces exhibit a large elasticity. According to the
way they are produced, it is reasonable to think that their
coverage rate is close to the interface saturation. We a priori
expect them to be representative of ages far beyond the first
regime of aging, which ends at 5000 s. However, because of their
complex history a direct comparison between low- and high-
frequency rheological characterization is therefore not possible
for them. As a consequence, we have no clue to estimate either
the values of elasticity and viscosity at high frequency or their
possible dependence on frequency. Therefore, we cannot use
the same method as for T1 interfaces where the resonance
curves have been computed by using expected values of Ed and
ηd. We shall thus attempt to infer rheological properties from
measured values of ωn

exp and βn
exp.

On the basis of what we learnt from the T1 interface, we
attempt to describe T2 interfaces by a two-dimensional
viscoelastic rheology. Here, we present results obtained by
keeping the aspect ratios that gave the best fit for interface T1:
Es/Ed = 2 and ηs/ηd = 2. Note that similar conclusions are
obtained for other ratios of order 1. (In particular, the results
obtained for Es/Ed = 1 and ηs/ηd = 1 are provided in Figures 15
and 16 of Appendix II.) The two remaining free rheological
parameters, Ed and ηd, are then adjusted so that the values of ωn
and βn obtained by solving the dynamic equations match the
experimental values ωn

exp and βn
exp reported in Tables 5 and 6.

The determination of Ed and ηd is carried out independently for
each mode of interfaces T2A and T2B. Figure 12 shows the
moduli E′ = Ed and E″ = ωnηd obtained by this method as a
function of the frequency. As three eigenmodes have been
investigated, three measurements points are available for each
modulus and each interface type. The moduli E′ and E″ of mode
2 of T2A and T2B interfaces (first points from the left in Figure

Figure 12. Conservation (E′ = Ed) and loss (E″ = ωnηd) moduli
determined by matching the frequency and damping predicted by
oscillation theory to measured values for interfaces of types T2A and
T2B, assuming Es = 2Ed and ηs = 2ηd.



12) are found to be 5−10 times larger than those of T1 interface.
However, the range of frequencies available for T2 interface
spreads from 490 rad/s (ω2

exp of T2A) to 795 rad/s (ω4
exp of

T2B), above the range of the T1 interface (230 ≤ ωn
exp ≤ 453

rad/s). We must keep in mind that the investigation of T2
interfaces thus differs from that of the T1 interface by both the
aging and the frequency range.
The conservation modulus of T2B interface, which is older, is

about twice as large as that of the T2A interface. However, the
evolution of elasticity with frequency is similar for the two types
of interfaces. We observe a significant decrease between 500 and
600 rad/s and then a plateau between 600 and 800 rad/s. On the
other hand, the loss moduli of T2A and T2B interfaces have
similar values and do not display any significant evolution with
ωn. These trends are clearly not in agreement with the ω0.25

increase of both moduli observed for the T1 interface. The
disparity of behavior with the T1 interface is confirmed by
Figure 13, which shows the modulus ratio E″/E′ as a function of

frequency. Regarding T2A, the ratio starts from a value (E″/E′ =
0.42 atωn = 490 rad/s) close to that of T1 (E″/E′ = 0.41), but it
then decreases strongly to reach E″/E′ = 0.32 at ωn = 735 rad/s.
Regarding T2B, E″/E′ is approximately constant and equal to
0.24 throughout the available frequency range (540 ≤ ω ≤ 795
rad/s).
The major discrepancy between the interfacial rheology of T1

and T2 interfaces lies in the different evolution of the moduli
with the frequency. T2 interfaces are not compatible with scaling
law 1−2 for frequencies larger than 500 rad/s. Results obtained
with the T2A interface show that this might result from only the
difference in the considered range of frequency, as the results are
compatible with the ω0.25 power law and a constant modulus
ratio (E″/E′ ≈ 0.4) for ω below 500 rad/s and a decrease of
elasticity beyond. This interpretation cannot be confirmed by
high-frequency T2B-interface results, which start at 540 rad/s,
where the modulus ratio is already as small as 0.26. We can thus
not definitively conclude whether the differences in the
viscoelastic properties of T1 and T2 should be ascribed to
either the frequency range or the aging process, or to both of
them.

■ CONCLUSIONS
The dynamic response to periodic forced oscillations of a diluted
crude-oil droplet in water has been investigated at a low

frequency by classical dilatation experiments and, for the first
time, at a high frequency by exciting inertial modes of shape
oscillations.
For frequencies ω/2π lower than 1 Hz, the droplet shape is

controlled by a simple quasistatic balance between buoyancy
and surface tension, providing a direct characterization of the
dilatational rheology of the interface by the determination of the
conservation modulus E′ and the loss modulus E″. Because of
the process of formation, the coverage rate of the droplet by
surfactants is significant and its interface shows from the
beginning a substantial viscoelastic behavior with E′ > E″.
However, the interface is not at equilibrium and an aging process
is observed, which displays two successive stages. A first regime
is observed for aging times between a few hundred and 5000 s,
where both moduli increase with time but their ratio remains
constant. In addition, E′ and E″ both increase with the forcing

frequency as ωz, with = =
π

− ″
′( )z tan 0.25E

E
2 1 . Such a scaling

law has been reported in many previous works involving crude
oil either for surface dilatational moduli32,37−41 and interpreted
as a 2D critical gel, or for shear moduli34,35 and interpreted as a
2D soft glass material in the framework of the SGRmodel. In the
present case, because of the aging process that is taking place, it
is not clear whether any of these interpretations can apply.
However, this scaling law seems to be a characteristic of crude oil
or model fluids involving asphaltenes and resins. A second
regime of aging occurs at a larger time where the conservation
modulus increases faster with age, whereas the loss modulus
decreases, indicating that surface elasticity becomes more and
more predominant.
For frequencies between 10 and 200 Hz, inertial modes of

droplet shape oscillations are excited. The interface thus
undergoes oscillations which result from the interplay between
inertial stresses within the fluids and dynamic stresses within the
interface, and are damped by viscous stresses. During these
oscillations, the interface experiences both nonuniform
dilatation and shear. By projecting the instant local radius of
the interface into the basis of spherical harmonics, the
amplitudes of the shape eigenmodes are determined and
resonance curves are obtained, allowing the identification of
the eigenfrequency ωn and damping rate βn of modes of order n
from 2 to 4. The knowledge of ωn and βn is necessary and
sufficient to predict the deformation of a droplet in an unsteady
flow. This direct characterization of the interface dynamics
makes possible, for fluid systems as complex as crude oil, the
prediction of the breakup of a droplet immersed in a turbulent
flow, without the need for the exact chemical composition of the
fluid system or a description of the interface rheology.
Solving the coupled dynamic equations for the fluids and the

interface in the linear regime of oscillation leads to the following
conclusions regarding the interface rheology at a high frequency.
Two types of interfaces have been considered. Type T1
corresponds to moderately aged interfaces that belong to the
first aging regime. Type T2 consists of artificially aged interfaces
with a higher coverage rate, which are obtained from a T1
droplet that has been shrunk until the interface displays wrinkles
and slightly re-expanded so as wrinkles disappear. In all cases, it
is found that the interface rheology is well described by an
equivalent two-dimensional isotropic viscoelastic material
characterized by dilatational (Ed) and shear (Es) elasticities,
and dilatational (ηd) and shear (ηs) viscosities, which are
functions of the frequency ω. A first major result is that the
experimental resonance frequencies, which are very large

Figure 13. Ratio of loss modulus to conservation modulus from values
presented in Figure 12 for interfaces of types T2A and T2B.



compared to those of a surfactant-free interface, can only be
reproduced by considering shear and dilatation properties of the
same order of magnitude: Es(ω) ≈ Ed(ω), ηs(ω) ≈ ηs(ω). As Es
and ηs are necessarily of an intrinsic nature, we can conclude that
intrinsic rheology plays a major role for such interfaces. The
question of the contribution of compositional rheology to Ed and
ηd remains an open question. However, the fact that Ed and ηd
closely behave as Es and ηs leaves only two options. Either the
compositional contribution to Ed and ηd is negligible compared
to that of the intrinsic one, or there exists a strong coupling
between compositional and intrinsic mechanisms that explains
the similitude between Ed and Es on one side and ηd and ηs on the
other side. For a moderately aged interface T1, a second major
result is found. The resonant curves obtained at a high frequency
are well reproduced by extrapolating the low-frequency power
law at higher frequencies. Surprisingly, this indicates that the
interface rheology does not change between 0.1 and 80 Hz and
therefore that low-frequency tensiometry is relevant throughout
this range of frequency. For interfaces T2 that have been
artificially aged, the elasticity is significantly larger, which causes
a lower value of the ratio between the loss and the conservation
moduli. In addition, elasticity is observed to decrease with the
frequency in between 80 and 100 Hz, and keeps a constant value
between 100 and 130 Hz. This behavior is no longer in
agreement with the scaling law observed for a moderately aged
interface in the range 0.1−80 Hz. This difference can either be
due to a transition of rheological properties at larger frequencies
or a change in the structure of the network of adsorbed species at
a higher coverage rate. In order to answer this question, future
work should explore the dynamics of the T1 interface at higher
frequencies and of T2 at lower frequencies. The resonant
frequencies of the shape eigenmodes depending on the droplet
size, this could be done by changing the droplet volume.
However, because of technical limitation of the present setup,
this will require building a new apparatus.
In summary, the rheology of a crude oil−water interface over a

large range of frequencies is well described by considering an
equivalent two-dimensional viscoelastic material, the elasticities
and viscosities of which vary as a weak power law of the
frequency. This does not imply that there really exists a 2D
membrane of constant structure and composition at the
interface. First, it means that such a model can be used to
predict the deformation of a droplet of diluted crude oil in water.
Second, it provides serious constraints on the modeling of
physicochemical underlying mechanismsas the irrelevance of
considering a pure compositional interpretationand hopefully
gives some hints for further understanding of the structure of
crude oil−water interfaces.

■ APPENDIX I

Transcendental Equation for Eigenmode Determination
Problem Statement. This appendix presents the tran-

scendental equation that is solved to compute the frequencies
and the damping rates of the eigenmodes of oscillations of a
droplet with a complex interface. This derivation is closely
inspired from the seminal works of refs,3,12 to which the reader is
referred for further details.
We consider a spherical droplet of radius a at equilibrium. The

inner and the outer fluids are Newtonian. The density and the
viscosity of the inner fluid are respectively ρi and ηi, whereas
those of the outer fluid are ρo and ηo. The interface is modeled as
a two-dimensional medium characterized by an equilibrium

interfacial tension γe, a Gibbs elasticity EGibbs, and intrinsic
viscoelastic properties: dilatational elasticity Ed, shear elasticity
Es, dilatational surface viscosity ηd, and shear surface viscosity ηs.
We consider a surfactant that is soluble in the outer phase and
can be adsorbed on the interface. The diffusivity of the surfactant
in the bulk fluid isD, whereas its diffusivity on the interface isDS.
Finally, the surface concentration Γ of the surfactant on the
interface is considered to be at equilibrium with its volume
concentration C in the fluid at the interface. This thermody-
namic equilibrium is characterized by the length scale

Λ = ∂Γ
∂( )CC . It is worth noting that all these quantities are

taken constant and equal to their equilibrium value for a
spherical droplet at rest.
The linear oscillations of the droplet at mode n involve 13

physical parameters mentioned above and therefore depend on
10 independent dimensionless groups: the inner Reynolds
numbers, Rei = ρia

2ωL/ηi (or the outer one, Reo = ρoa
2ωL/ηo);

the bulk Pećlet number, Pe = a2ωL/D; the surface Pećlet
number, PeS = a

2ωL/DS; the density ratio, ρ̂ = ρo/ρi; the viscosity
ratio, η̂ = ηo/ηi; the three normalized elasticities, EGibbs* = EGibbs/
γe, Ed* = Ed/γe, and Es* = Es/γe; the two normalized surface
viscosities, ηd* = ηd/aηi and ηs* = ηs/aηi; the dimensional group
that compares the diffusion time scale to the oscillation period, λ
=D1/2/ΛCωL

1/2. In these expressions,ωL is the Lamb frequency,
which corresponds to the frequency of oscillation under the
assumption of potential flow and pure interface
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In spherical coordinates, the location of the droplet interface
is defined by its complex local radius r ̃as a function of polar angle
θ and the azimuthal angle ϕ. The local radius r ̃ is written, for
mode (n,m), as

θ ϕ θ ϕ= ̃ − + ϵ =α ω−F r a Y( , ) (1 ( , )e ) 0n m n m
t

, ,
2

L (9)

where F is the surface equation, Yn,m are the spherical harmonics,
ϵn,m is the normalized mode amplitude, and α2 = iωn/ωL + βn/ωL
is the normalized complex frequency. Modes of the same n but
different m are degenerated, which means that they have the
same α2. For that reason, we will further consider only
axisymmetric modes, which correspond to m = 0 (i.e., with a
normalized amplitude ϵn = ϵn,0) and which do not depend on the
azimuthal coordinate ϕ.
We now present the problem equations, which have been

linearized by assuming small amplitude oscillations (ϵn ≪ 1). In
the following, all variables are made dimensionless: lengths are
normalized by a, times by ωL

−1, surfactant surface concen-
trations by Γ0, surfactant volume concentrations by Γ0/ΛC (the
problem being linear in Γ0, we can set Γ0 = 1 without loss of
generality).

Dynamic Equations for the Fluids. The dynamics of each of
the two fluids is driven by the continuity and the Navier−Stokes
equations. In the following, subscripts i and o denote the inner
and the outer phases, respectively. The continuity equation is

∇· =v 0 (10)

where v is the velocity. The linearized Navier−Stokes equation
is

∂
∂
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t
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v
v1 2
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where p is the pressure and the subscript χ stands for either i or o.
The solution of these equations is
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where er and eθ are the unit vectors; θ=
π
+Y P (cos )n

n
n

2 1
4

is the

spherical harmonic of order n, with Pn the Legendre polynomial
of order n; ai, qi, ao, qo are integration constants that are fixed by
thematching conditions at the interface; jn is the spherical Bessel
function of order n, and hn

(1) the spherical Hankel function of the
first kind of order n.
Equations for Surfactant Transport. The transport equation

of the surfactant concentration through the fluid is

∂
∂

= ∇−C
t

Pe C1 2
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The transport equation of the surface concentration of
surfactant on the interface is
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where the subscript S denotes that bulk quantities are taken at
the interface, and the surface gradient operator can be written as
∇S = ∇ − er(er·∇).
Matching Conditions at the Interface.The equations for the

dynamics of the two fluids and for the surfactant transport are
coupled by the matching conditions of the various variables at
the interface, which are presented below.

• Kinematic condition that implies that the interface
remains in contact with the bulk phases
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• Continuity of the radial component of the velocity
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• Continuity of the polar component of the velocity
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• Stress balance at the interface

+ + + =γF F F F 0P bv sve

FP and Fbv are the pressure and bulk viscous stress jumps
through the interface. Fsve is the stress generated by surface
intrinsic viscosity and elasticity. Fγ is the stress resulting from
dynamic surface tension, which includes equilibrium interfacial
tension, Gibbs elasticity, and Marangoni effect.
The normal and polar projections of this equation are written,

respectively, as
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with Hn(αPe
1/2) = hn+1

(1) (αPe1/2)/hn
(1)(αPe1/2).

It is worth mentioning that, for a low diffusion surfactant (Pes
≫ 1, Pe ≫ 1), G becomes independent of the Pećlet numbers
but can still depend on λ.

System to Be Solved. The system of five eqs 21−25 can be
recast as a linear system of the form
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where αS( ) is a 5 × 5 matrix. Non-trivial solutions only exist if
the determinant of this matrix is zero

̲ =Sdet( ) 0 (28)



Solving eq 28 leads to the value of α. The frequency ωn and
damping rate βn of mode n are then obtained as the imaginary
and real part of α2, respectively.

■ APPENDIX II

Theoretical Results for Various Modulus Ratios
Additional theoretical results are in Figures 14−16.
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