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The analytical development of Kullback-Leibler Divergence
(KLD) or relative entropy, is used to measure the discrep-
ancy between probability density functions (PDF), specifi-
cally among the PDFs of the generalized Gaussian distribu-
tions for Seizure/Non-Seizure signals. See [9–11] for some
works on this topic in epilepsy and [12–14] for some appli-
cations in EEG signals. The remainder of this paper is struc-
tured as follows. Section 2 presents the proposed methodol-
ogy and details the generalized Gaussian model and the ana-
lytical development of Kullback-Leibler divergence. Section
3 describes the experimentation on real EEG signals and the
presents results obtained. Section 4 discusses the findings and
provides perspectives for future work.

II METHODOLOGY
The methodology used to analyze the EEG signals has

three stages. The first stage is to represent the signals using
a time-frequency Dauchebies wavelet decomposition [15,16]
with 6 scales, this gives the bands delta (0.5-4Hz), theta (4-
8Hz), alpha (8-13Hz), beta (13-30Hz) and gamma (>30Hz).
The aim of this stage is to assess the distribution of the en-
ergy throughout the frequency spectrum. The second stage
consists in summarizing the information contained in each
group (band and scale) of wavelet coefficients. The approach
adopted consists in fitting the generalized Gaussian distribu-
tion statistical model to each group. The parameters α and β
are estimated for each PDF using (3) giving a parameter vec-
tor that represents each group [17]. The third stage consists
in measuring the difference between Seizure/Non-Seizure in
epileptic signals by calculating the Kullback-Leibler Diver-
gence (7) between generalized Gaussian distribution PDFs
obtained for each patient.
We now introduce the generalized Gaussian distribution and
Kullback-Leibler Divergence.

A Generalized Gaussian distribution
The univariate generalized Gaussian distribution (GGD)

is a flexible statistical model for one-dimensional signals that
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Abstract— This paper presents a statistical signal processing 
method for the characterization of EEG of patients suffering 
from epilepsy. A statistical model is proposed for the signals and 
the Kullback-Leibler divergence is used to study the differences 
between Seizure/Non-Seizure in patients suffering from epilepsy. 
Precisely, EEG signals are transformed into multivariate coef-

ficients through multilevel 1D wavelet decomposition of differ-

ent brain frequencies. The generalized Gaussian distribution 
(GGD) is shown to model precisely these coefficients. Patients 
are compared based on the analytical development of Kullback-

Leibler divergence (KLD) of their corresponding GGD distribu-

tions. The method has been applied to a dataset of 18 epileptic 
signals of 9 patients. Results show a clear discrepancy between 
Seizure/Non-Seizure in epileptic signals, which helps in deter-

mining the onset of the seizure.

Keywords— Kullback-Leibler divergence, Epilepsy, 
Seizure/Non-Seizure, Multivariate wavelet decomposition, 
Generalized Gaussian distribution.

I INTRODUCTION
The International League Against Epilepsy (ILAE) [1] de-

fines an epileptic seizure as a transient occurrence of signs 
and/or symptoms due to abnormal excessive or synchronous 
neuronal activity in the brain. The different types of seizures 
depend on the location in the brain where it originated and 
on how far and fast it spreads. The correct identification of 
this onset location is key to a proper treatment. Electroen-
cephalography (EEG) is a non-invasive and widely avail-
able biomedical modality that is used to diagnose epilepsy 
and plan treatment; neurologists trained in EEG are able to 
identify visually the onset and subsequent seizure through 
analysis of characteristic waveforms associated with seizures. 
This problem has been addressed in various research works 
such as [2–8], but remains an open issue. In this work, 
we adopt a statistical approach to distinguish Seizure/Non-
Seizure in epileptic signals. The data is represented using 
the generalized Gaussian distribution in the wavelet domain.
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has found numerous applications in science and engineering.
Its application to epilepsy signal has been studied in [18–20].
Since the wavelet detail coefficients arise from high-pass fil-
tering a zero-mean EEG signal matrix, it can be safely as-
sumed that they also have mean value of zero [21]. Conse-
quently, the wavelet coefficients can be modeled through the
parameters of the GGD [22] whose probability density func-
tion (PDF) is given by

f (x; μ,σ ,β ) =
β

2α(σ)Γ( 1
β )

exp

(
−|(x−μ)|β

2σ2

)
(1)

α(σ) = σ

√√√√Γ( 1
β )

Γ( 3
β )

, Γ(z) =
∫ +∞

0
tz−1e−tdt,z > 0 (2)

where μ ∈ R is a location parameter, α ∈ R
+ is a scale pa-

rameter and β ∈ R
+ is a shape parameter that controls the

shape of the density tail. In the case of a zero-mean GGD, (1)
can be written as

fGGD(x;α,β ) =
β

2αΓ(β−1)
exp

(
−
∣∣∣ x
α

∣∣∣β) (3)

where α replaces the scale parameter σ .
It should be noted that the GGD parametric distribution

family includes many popular distributions that are com-
monly used in biomedical signal processing. For example,
setting β = 1 leads to a Laplacian or double-exponential dis-
tribution, β = 2 leads to Gaussian or normal distribution, and
β → ∞ leads to a uniform distribution.

The GGD was fitted using a window shift of two seconds
with overlapping of one second in 18 epileptic signals, for
each signal obtained 205 fits on average for each epoch and
calculated the parameters related to the scale (α) and shape
(β ) for each rhythm band. We refer the reader to [23] for a
comprehensive treatment of the mathematical properties of
the GGD model and [17,22] for a detailed explanation on the
estimation of the GGD parameters.

B Kullback-Leibler Divergence
Let p and q two PDFs, then a Kullback-Leibler Divergence

(KLD) [24] is given by

DKL(p||q) =
∫ ∞

−∞
log

(
px(x)
qx(x)

)
px(x)dx (4)

DKL(p||q) =−
∫ ∞

−∞
log(qx(x))px(x)dx +∫ ∞

−∞
log(px(x))px(x)dx = Hc(p,q)−H(x)

(5)

Notice that in general DKL(p||q) �= DKL(q||p), and that
DKL(p,q) = 0 if and only if p = q [25].
Rewriting the equation (3), the probability density function

of GGD is given by

p(x,α,β ) =
e−| x

α |β

2αΓ[1+β−1]
(6)

Here we consider the divergence between two generalized
Gaussian models with parameters (α1,β1,μ1) and (α2,β2,μ2)
subject to the constraint μ1 = μ2 = 0 because our signals have
zero mean. This divergence is given by

KLDpd f (p||q) =
∫ ∞

−∞
p(x,α1,β1)log

(
p(x,α1,β1)

p(x,α2,β2)

)
dx (7)

=
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−∞
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We compare the PDFs obtained 18 epileptic signals, using
the scales and the shapes of the GGD using (6), in two stages
in steps of one second without overlapping for each rhythms
brain bands

1. Between sliding window and the seizure onset

KLDpd f (p(i)||qonset) =W
(i)KLDpd f (p||q)

2. Between continuous PDFs coupled with a 7-order
one-dimensional median filter [26]

KLDpd f (p(i)||q(i+1)) =W
(i)
F
(i)KLDpd f (p||q)

with

W
(i) =

[
0L×iL, IL×L,0L×N−iL−L

]
F
(i) = medianFilter(KLDpd f (p(i)||q(i)))

where 0N×M ∈ R
N×M is the null matrix, IN×N ∈ R

N×N is the
identity matrix and L is the number of measurement obtained
in one second. We refer the reader to [25, 27–29] for a com-
prehensive treatment of the mathematical properties of the
KLD statistical theory.

III RESULTS AND DISCUSSION
The performance of the proposed statistical method was

evaluated using the Children’s Hospital Boston database
[30, 31], which consists of 36 EEG recordings from pedi-
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Fig. 1: KLD illustration between sliding window and the Seizure onset of
the epileptic signal, showing a clear discrepancy between

Seizure/Non-Seizure. In this example the Seizure onset begin at minute 2,
and its duration is 40 seconds.

IV CONCLUSIONS
The preliminary results reported in this work in 18 epilep-

tic signals suggest that the proposed method, is poten-
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Fig. 2: KLD illustration between continuous PDFs coupled with a 7-order
one-dimensional median filter, showing clearly the discrepancy given by the
highest peak which emerges from background of EEG. In this example the

Seizure onset begin at minute 2, and its duration is 40 seconds.

tially useful for differentiating Seizure/Non-Seizure signals in
epileptic signals and for onset detection.

V FUTURE WORK
Perspective for future work include an extensive evalu-

ation of the proposed methodology, as well as performing
comparisons with other methods from the state of the art, and
the development of fusion techniques to combine detections
from several algorithms to increase robustness to noise and to
artifacts.

It is also interesting to investigate how implement this
method in real time for Seizure/Non-Seizure EEG classifica-
tion using shift windows with different filters, optimizing dis-
play scales and calculating the onset delay by comparing the
average amplitude with the background, similar to [19, 32].
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atric subjects with intractable seizures. In this work we used 
18 seizures from 9 subjects. Datasets including two to five 
bipolar EEG recordings sampled at 256Hz were available for 
each subject. Each recording contained a seizure event with 
a labeled onset that was detected by an experienced neurolo-
gist, who worked backward from the observed clinical onset 
to find the epilepsy seizure onset. The signals used have one 
epoch focused on Seizure/Non-Seizure where the onset of the 
Seizure begins at two minutes.

We obtained a good performance of the KLD method via 
visual inspection in all 18 epileptic signals by an experi-
enced neurologist. For illustration, Figures (1) and (2) de-
picts the different brain rhythms: delta, theta, alpha, beta and 
gamma, where the Seizure is 40 seconds of duration, we can 
see increase in activity between 2 minutes and 2.4 minutes 
in all brain rhythms. In Figure (1) we can notice how the 
signal have the Seizure onset begins at minute two; we can 
see clearly the discrepancy between Seizure/Non-Seizure in 
epileptic signals; while in Figure (2) the Seizure onset is 
detected clearly given by the highest peak which emerges 
from background of EEG showing a discrepancy between 
Seizure/Non-Seizure. Once the Seizure finished, there are sev-
eral medical pathological factors that causes the signal takes 
a time in stabilize it again, this is the reason why the Seizure 
does not have an instantaneous change after the 2 minutes 40 
seconds, however, is clear the discrepancy after the Seizure.
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