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Abstract. Comparing two items (objects, images) involves a set of rel-
evant attributes whose values are compared. Such a comparison may
be expressed in terms of different modalities such as identity, similarity,
difference, opposition, analogy. Recently J.-Y. Béziau has proposed an
“analogical hexagon” that organizes the relations linking these modal-
ities. The hexagon structure extends the logical square of opposition
invented in Aristotle time (in relation with the theory of syllogisms). The
interest of these structures has been recently advocated in logic and in
artificial intelligence. When non-Boolean attributes are involved, elemen-
tary comparisons may be a matter of degree. Moreover, attributes may
not have the same importance. One might only consider most attributes
rather than all of them, using operators such as ordered weighted min
and max. The paper studies in which ways the logical hexagon structure
may be preserved in such gradual extensions. As an illustration, we start
with the hexagon of equality and inequality due to Blanché and extend
it with fuzzy equality and fuzzy inequality.

Keywords: Square of opposition · Hexagon of opposition
Difference · Similarity · Analogy · Ordered weighted min

1 Introduction

In order to compare two objects, two images, etc. (we shall say items, more 
generally), we use their descriptions. In the sequel, descriptions are understood 
as plain lists of supposedly relevant attribute values. The two items are assumed 
to be described by the same set of attributes and the values of these attributes 
are supposed to be known.

One is then naturally led to state that two items are identical if their respec-
tive values for each relevant attribute coincide. Béziau [3] recently pointed 
out that identity, along with five other modalities pertaining to comparison
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(opposition, similarity, difference, analogy, non-analogy), form a hexagon of
opposition. This notion was introduced by Robert Blanché [1,2] as a completion
of Aristotle square of opposition [14] (originally introduced in connection with
the study of syllogisms). By construction, a hexagon is induced by an abstract
three-partition [9] and contains three squares of opposition. Blanché emphasized
the point that the hexagonal picture can be found in many conceptual structures,
such as arithmetical comparators, or deontic modalities [2].

The logical squares and hexagons are geometrical structures where vertices
are traditionally associated to statements that are true or false, possibly involv-
ing binary modalities. The use of these structures can be extended to statements
for which truth is a matter of degree [5,10]. One may then consider studying
gradual comparison operators in the light of the gradual logical hexagon and the
framework of fuzzy sets. The study of the compatibility between fuzzy extensions
of comparison operations and the logical hexagon is the topic of this paper. In
turn, this hexagon-driven approach yields an organized overview of a family of
logically related operators.

This paper is organized as follows. Section 2 recalls basics of the logical square
and its associated hexagon. Section 3 presents the fuzzy extension of the Blanché
hexagon for inequality and equality operators. It is shown that maintaining three
squares of opposition inside the hexagon induces strong constraints on aggrega-
tion operations involved. We provide two examples of quantitative hexagons for
similarity indices based on cardinalities. Section 4 focuses on logical expressions
agreeing with Béziau’s analogy hexagon, and then on various possible fuzzy
extensions. This provides a structure relating gradual indices of opposition, sim-
ilarity, difference, analogy, and non-analogy. Such gradual extensions take into
account approximate equality, attribute importance, and possibly fuzzy quanti-
fiers such as “most”.

2 The Square and the Hexagon of Opposition

The traditional square of opposition [14] is built with universally and existen-
tially quantified statements in the following way. Consider a statement (A) of
the form “all P ’s are Q’s”, which is negated by the statement (O) “at least one
P is not a Q”, together with the statement (E) “no P is a Q”, which is clearly
in even stronger opposition to the first statement (A). These three statements,
together with the negation of the last statement, namely (I) “at least one P is a
Q” can be displayed on a square whose vertices are traditionally denoted by the
letters A, I (AffIrmative half) and E, O (nEgative half), as pictured in Fig. 1
(where Q stands for “not Q”).

As can be checked, noticeable relations hold in the square:

– (i) A and O (resp. E and I) are the negation of each other;
– (ii) A entails I, and E entails O (it is assumed that there is at least one P

for avoiding existential import problems);
– (iii) A and E cannot be true together, but may be false together;
– (iv) I and O cannot be false together, but may be true together.
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Fig. 1. Square of opposition

Blanché [1,2] noticed that adding two vertices U and Y, respectively defined
as the disjunction of A and E, and the conjunction of I and O, to the square,
a hexagon AUEOYI is obtained that contains 3 squares of opposition, AEOI,
YAUO, and YEUI, each obeying the 4 properties above enumerated for the
square. Such a hexagon exists each time a three-partition of mutually exclusive
situations such as A, E, and Y [9] is considered. Figure 2 represents Blanché’s
hexagon induced by a complete preorder.

A : >

U : �=

E : <

O : ≤

Y : =

I : ≥

Fig. 2. Blanché’s complete preorder hexagon

In the next section, a gradual extension of Blanché’s hexagon with fuzzy
comparison operators such as much greater (resp. smaller) than or approximately
equal to is proposed.

3 The Fuzzy Blanché Hexagon

We first point out logical constraints bearing on the gradual version of the
hexagon, then illustrate them on the case of fuzzy comparison operations.

3.1 Gradual Square and Hexagon

A gradual square of opposition can be defined by attaching variables α, ǫ, o, ι
valued on a totally ordered set V to vertices A,E,O, I respectively, so as to
respect the following constraints [12]:



– α and o (resp. ǫ and ι) are each other’s negation, which requires an involutive
negation n such that o = n(α) and ι = n(ǫ).

– the subaltern relationship between α and ι (resp. ǫ and o) requires a multiple-
valued implication operator I : L × L → L, i.e., decreasing in the first place
and increasing in the second place. We must then assume I(α, ι) = 1 and
I(ǫ, o) = 1.

– there is mutual exclusion between α and ǫ, i.e., they cannot be simultaneously
equal to 1, but can be both 0. We thus need a conjunction operator C :
L × L → L increasing in both places, and we must enforce C(α, ǫ) = 0.

– ι and o must cover all situations but they can be simultaneously 1. So we
need a disjunction operator such that D(ι, o) = 1

A gradual hexagon of opposition [5] is obtained by first assigning variables
ν = D(α, ǫ) and γ = C(ι, o) to new vertices U and Y. Then we must require
additional conditions to ensure that YAUO and YEUI are proper squares
of opposition playing the same role as AEOI. Namely on top of the above
conditions for the square, we must have that [5]

– Y and U are contradictory: C(ι, o) = n(D(α, ǫ));
– Subaltern relations:

I(α,D(α, ǫ)) = I(C(ι, o), o) = I(ǫ,D(α, ǫ)) = I(C(ι, o), ι) = 1;
– Contrariety conditions: C(α,C(ι, o)) = C(C(ι, o), ǫ) = 0
– Subcontrariety conditions: D(D(α, ǫ), o) = D(ι,D(α, ǫ)) = 1
– Conditions for recovering the additional vertices to the two squares YAUO

and YEUI (not mentioned in [5]):
α = C(ι,D(α, ǫ)), ǫ = C(D(α, ǫ), o), ι = D(α,C(ι, o)), o = D(C(ι, o), ǫ).

Note that the conditions in the last item ensure that the three fuzzy sets in the
three-partition induced by (α, ǫ, γ) play the same role. If we drop these conditions
but preserve the mutual exclusion ones, one may still consider that we have a
hexagon of opposition, we call weak. However, so-doing we implicitly admit that
(α, ǫ) are primitive while γ is derivative, and they cannot be exchanged.

Using a conjunction C, its De-Morgan dual D(a, b) = n(C(n(a), n(b))),
and its semi-dual implication I(a, b) = n(C(a, n(b))) then condition C(ι, o) =
n(D(α, ǫ)) is verified, that is γ and ν are contradictories [5]. In the sequel,
we denote by (I, C,D) the triplet associated to the hexagon structure with
a conjunction C, its semi-dual implication I and its De-Morgan dual D. In
that case, the above additional conditions for having a hexagon reduce to
C(α,C(ι, o)) = C(C(ι, o), ǫ) = 0 and ι = D(α,C(ι, o)), o = D(C(ι, o), ǫ).

Choosing a triangular norm for C, one may wonder if we can obtain a hexagon
of opposition. This is the case if α + ǫ + γ = 1 (a fuzzy partition in the sense
of Ruspini), and we choose the usual involutive negation n(·) = 1 − (·), the
�Lukasiewicz t-norm C = max(0, · + · − 1) and the associated co-norm (D =
min(1, · + ·)). In fact we prove the following, completing a proof in [5]:

Proposition 1. If n(a) = 1 − a, and C is the �Lukasiewicz t-norm, then the
hexagon obtained from the triplet (I, C,D) is a hexagon of opposition as soon as
α ≤ ι.



Proof. It is clear that α ≤ ι is equivalent to I(α, ι) = 1. It is also clear that
ǫ ≤ o follows. Moreover, as we use t-norms and co-norms for C and D, we
do have that max(α, ǫ) ≤ D(α, ǫ) and C(ι, o) ≤ min(ι, o). Hence all subaltern
relations hold in the hexagon. Now, consider the condition D(α,C(ι, o)) = ι at
vertex I. It expands in min(α + max(ι + 1 − α − 1, 0), 1) = ι indeed. Moreover
C(α,C(ι, o)) = max(α + ι + 1 − α − 2, 0) = 0. The three other conditions at
vertices A, E, O are obtained likewise. ⊓⊔

In contrast with Proposition 1, consider the Kleene-Dienes triplet (I, C,D),
that is (max(1 − a, b),min(a, b),max(a, b)), it is clear that I(a, b) = 1 means:
if a > 0 then b = 1. The hexagon subaltern conditions for vertex A read: If
α > 0, then ι = 1 and max(α, ǫ) = 1. Assume α > 0, then ǫ = 1 − ι = 0 and
max(α, ǫ) = 1 so that α = 1. We get a Boolea hexagon. It shows that there is
no weak gradual hexagon of opposition using Kleene-Dienes triplet (I, C,D).

If we relax the Kleene-Dienes triplet, by means of any implication function
such that I(a, b) = 1 if and only if a ≤ b, then the subaltern and mutual exclusion
conditions (α ≤ ι and min(α, ǫ) = 0) are compatible with a gradual structure,
where α > 0 enforces ǫ = 0, o = 1 − α, ι = 1. However it is only a weak
hexagon. Indeed, defining vertex I from A and Y reads ι = max(α,min(ι, o)) =
max(α, 1 − α) = 1. It again enforces a Boolea hexagon. So we can state the
following claim

Proposition 2. Consider a triplet (I, C,D), where I(a, b) = 1 if and only
if a ≤ b, C is a triangular norm D its De Morgan dual with respect to an
involutive negation n; then if mutual exclusion conditions hold as C(α, ǫ) =
C(α,C(n(α), n(ǫ))) = C(C(ι, n(α)), ǫ) = 0, and α ≤ ι, we get a weak gradual
hexagon of opposition.

Indeed the subaltern conditions hold in this case. The �Lukasiewicz triplet and the
relaxed Kleene triplet are examples where this proposition applies. However these
conditions do not ensure a full-fledged symmetrical gradual hexagon. Adding
condition C(a, b) = 0 if and only if I(a, n(b)) = 1 seems to be demanding, and
the �Lukasiewicz triplet is the only known solution then.

3.2 Fuzzy Comparison Operations and Their Hexagon of Opposition

It is possible to construct a gradual hexagon of opposition with fuzzy compara-
tors, in such a way as to extend Blanché’s hexagon of Fig. 2. To this end, we
define three fuzzy relations that express notions of approximately equal to, much
greater than, much smaller than as the ones used in the paper [8] for temporal
reasoning.

A fuzzy set F on a universe U is a mapping µF : U → [0, 1] where µF (x) rep-
resents the degree of membership of x to F . We denote by core(F ) = {x|µF (x) =
1} the core of F and supp(F ) = {x|µF (u) > 0} its support. The complement of
F is F such that µF (x) = 1 − µF (x).

Consider for simplicity trapezoidal fuzzy intervals. Such a fuzzy set of the
real line pictured on the figure below is parameterized by the 4-tuple of reals
(a, b, α, β) where core(F ) = [a, b] and supp(F ) =]a − α, b + β[.



U
a − α a b b + β

µF (x)

1

We define a translation operation consisting of adding a constant c to the
4-tuple F = (a, b, α, β):

F + c = (a + c, b + c, α, β).

Besides, given F , its antonym is defined by F ant µF ant(x) = µF (−x).
Let L be a symmetrical fuzzy interval with respect to the vertical coordinate

axis (Lant = L). This fuzzy set L is instrumental to define a fuzzy approximate
equality relation E as E(x, y) = L(x − y). Likewise, let G be a fuzzy relation
representing the concept of much greater than of the form G(x, y) = K(x − y),
where µK is an increasing membership function whose support is in the positive
real line. So, the fuzzy relation P (x, y) = Kant(x− y) captures the idea of much
smaller than. Assume moreover that the three fuzzy sets Kant, L,K form a
fuzzy partition, namely µK(r) + µKant(r) + µL(r) = 1,∀r ∈ R, as per the figure
below for the trapezoidal case. To complete the hexagon, we need the fuzzy
counterparts of comparators ≥, ≤, and 	=. To this end we consider the fuzzy set
union of K and L, K ⊔ L, where ⊔ is defined by �Lukasiewicz disjunction, as the
fuzzy version of ≥ (it is also the convex hull of K∪L where ∪ is modeled by max).
It is easy to see that K ⊔ L = K − 2δ − ρ and Kant ⊔ L = Kant + 2δ + ρ (which
is a fuzzy version of ≤). They do correspond to the concept of approximately
greater or equal and approximately less or equal respectively. Finally, the fuzzy
version of 	= is L = K ⊔ Kant = K ∪ Kant.

x − y

1

Kant

−δ − ρ δ + ρ

L

−δ δ

K

Based on results in [5], and Proposition 1, a gradual hexagon of opposition
is obtained (as in Fig. 3) using negation 1 − (·), and �Lukasiewicz conjunction
(C(a, b) = max(0, a + b − 1). In particular note that K = (Kant ⊔ L) and
L = K ⊔ Kant.



K

K ⊔ Kant

Kant

Kant ⊔ L

L

K ⊔ L

Fig. 3. Fuzzy comparator hexagon

3.3 Hexagons for Quantitative Similarities

Remember that any three-partition gives birth to a hexagon of opposition. Rely-
ing on cardinalities of subsets forming a three-partition, it is always possible to
obtain a gradual hexagon of opposition. This claim will be illustrated on two
cases involving quantitative similarity indices.

Let two items be described by their vectors of Boolean features x =
(x1, ..., xn) and y = (y1, ..., yn) for a set of attributes A = {1, · · · , i, · · · , n}.

A first partition of A is formed by three sets Ag+, Ag−, Dif :

– Ag+(x, y) = {i | xi = yi = 1}
– Ag−(x, y) = {i | xi = yi = 0}
– Dif(x, y) = {i | yi 	= xi}

The three-partition made of “positive identity” (Ag+) “negative identity” (Ag−),
“opposition” (Dif) yields the hexagon of Fig. 4. It groups six indices that are
all easy to interpret in terms of difference and similarity.

Another hexagon (see Fig. 5) is based on a three-partition of X ∪ Y , where
X = {i | xi = 1}, Y = {i | yi = 1} (hence X ∩ Y = Ag+(x, y), and X ∩ Y =
X ∪ Y = Ag−(x, y)). It consists of the three sets X ∩ Y , X ∩ Y and X ∩ Y .

Note that |X∩Y |
|X∪Y | = 1 if and only if X = Y if and only if Ag(x, y) = A

where Ag(x, y) = {i | xi = yi} = Ag+(x, y) ∪ Ag−(x, y). Index |X∩Y |
|X∪Y | is clearly

Jaccard index, i.e., a well-known approximate equality measure, while |X△Y |
|X∪Y | is

a difference index (where X△Y is the symmetric difference). However, |Y |
|X∪Y |

is not really a similarity index as it is not symmetrical; |X∩Y |
|X∪Y | is an opposition

index “inside X”, with respect to Y .
None of these two hexagons exhibit all the modalities of identity, difference,

similarity, opposition and analogy that are supposed to appear in Béziau’s intu-
itive hexagon The latter will be studied in the next section.

It is easy to verify that the two hexagons possess all properties required for
being hexagons of opposition. They could be generalized, replacing relative car-
dinalities by weighted averages, or even Choquet integrals following a suggestion
in [6].



|Ag+|
|A|

|Ag−|
|A|

|Dif |
|A|

|Ag+|
|A|

|Ag−|
|A|

|Ag|
|ahex|

Fig. 4. Hexagon. 3-partition Ag+, Ag−, Dif

|X∩Y |
|X∪Y |

|X|
|X∪Y |

|X∩Y |
|X∪Y |

|X△Y |
|X∪Y |

|X∩Y |
|X∪Y |

|Y |
|X∪Y |

Fig. 5. Jaccard index hexagon

4 Hexagon of Opposition for the Comparison of Items

First, we recall Béziau’s informal analogical hexagon [3,4] which organizes the
comparison modalities between items supposedly described in terms of attribute
values. Then we assume that the equality between attribute values can be
approximate, that the attributes do not have the same importance, and that
universal or existential quantifiers involved in the comparison modalities can
become fuzzy.

4.1 Béziau’s Analogical Hexagon

Consider a framework where items x and y are described by their respective
attribute values xi and yi for attributes i ∈ {1, · · · , n}. At this point attributes
are assumed to be Boolean. So the attribute values are 0 or 1. Six comparison
modalities between x and y can be defined in this framework:

– Identity: ∀i, xi = yi. Opposition: ∀i, xi 	= yi.
– Difference: ∃i, xi 	= yi. Similarity: ∃i, xi = yi.
– Analogy: (∃i, xi 	= yi) ∧ (∃i, xi = yi). Non-analogy: (∀i, xi = yi) ∨ (∀i, xi 	=yi).

This provides a simple reading of the empirical analogical hexagon proposed
by Béziau. Note that analogy involves at the same time ideas of similarity and dif-
ference, which agrees with the modeling proposed in [15]. It is easy to check that
these six modalities are related via logical links requested to realize a hexagon of
opposition, as in the analogical hexagon [3]. In particular, difference is the nega-
tion of identity and the hexagon makes it clear that analogy is the conjunction
between difference and similarity (Fig. 6).

Borrowing from multiple-criteria decision evaluation methods, this hexagon
can be extended to gradual modalities using weighted min and max operators
on vertices, as we shall see in the sequel.

4.2 Approximate Equality and Weighted Attributes

Suppose from now on that item attributes map to a totally ordered value scale
V with least and greatest elements respectively denoted by 0 and 1. The scale



Opposition ∀i, xi �= yi

Non-analogy (∀i, xi = yi) ∨ (∀i, xi �= yi)

Identity ∀i, xi = yi

Similarity ∃i, xi = yi

Analogy (∃i, xi �= yi) ∧ (∃i, xi = yi)

Difference ∃i, xi �= yi

Fig. 6. Analogical hexagon

V is supposed to be equipped with an involutive negation 1 − (.), i.e. order-
reversing on V . On each attribute, equality and difference are evaluated by
means of similarity measures µSi

: V × V → V and dissimilarity measures
µDi

: V × V → V . It is natural to assume that µSi
= 1 − µDi

. The vector of
similarities between x and y is

µS(x, y) = (µS1
(x1, y1), · · · , µSn

(xn, yn))

while for dissimilarity it is µD(x, y) = (µD1
(x1, y1), · · · , µDn

(xn, yn)). For
any two items x and y, it is also supposed that separability holds, namely:
µSi

(xi, yi) = 1 (resp. µDi
(xi, yi) = 1) if and only if xi and yi are perfectly

similar (resp. dissimilar).
Proposition 2 gives conditions under which the following picture is a weak

hexagon of opposition, in particular the conditions of mutual exclusion:
C(Opposition, Identity)=C(Opposition,Analogy)=C(Identity, Analogy)=0.

Opposition mini µDi
(xi, yi)

Non analogy D(mini µSi
(xi, yi), mini µDi

(xi, yi))

Identity mini µSi
(xi, yi)

Similarity maxi µSi
(xi, yi)

Analogy C(maxi µDi
(xi, yi), maxi µSi

(xi, yi))

Difference maxi µDi
(xi, yi)

Under this representation, two items are perfectly opposite (resp. identical) if
they are perfectly dissimilar (resp. similar) on each attribute. They are perfectly



different (resp. similar) if there is at least one attribute for which they are
perfectly dissimilar (resp. similar). For analogy and non-analogy between two
items, the result depends on the conjunction C and the disjunction D involved.

Example 1. Consider �Lukasiewicz triplet (I, C,D). From Proposition 1, a
hexagon of opposition is obtained since mini µDi

(xi, yi) ≤ maxi µDi
(xi, yi) In

this case two items are perfectly analogical if they are perfectly similar and per-
fectly different. They are non-analogical if mini µDi

(xi, yi)+mini µSi
(xi, yi) ≥

1, i.e., mini µDi
(xi, yi) ≥ maxi µDi

(xi, yi). In this case, similarity and dissimi-
larity measures are constant and equal to 1 or 0. Then, the two items are either
perfectly identical or perfectly opposite.

Operations min and max are qualitative elementary operators that can be
extended by means of importance weights or priorities πi assigned to attributes.
The closer πi to 1, the more important the attribute. Such importance weights
may alter local evaluations in various ways [11], leading to operators of the form

MIN→
π (x) =

n

min
i=1

πi → xi, MAX⊗
π (x) =

n
max
i=1

πi ⊗ xi,

where (→,⊗) is a pair of semi-dual implication and conjunction in {(→KD,
⊗KD), (→G,⊗G), (→GC ,⊗GC)}. a ⊗KD b = a ∧ b is Kleene-Dienes conjunction,
and its semi-dual implication is a →KD b = (1 − a) ∨ b. Gödel implication and
conjunction are respectively defined by: a →G b = 1 if a ≤ b and b otherwise,
and a⊗G b = 0 if a ≤ 1−b and b otherwise. The contrapositive Gödel implication
and conjunction are defined by: a →GC b = 1 if a ≤ b and 1 − a otherwise and
a ⊗GC b = 0 if a ≤ 1 − b and a otherwise.

We build the following hexagon where we use shorthand Id., Op., Dif., Sim.,
An. and NonAn. for the vertices of the analogical hexagon.

Proposition 3. If n(a) = 1 − a, and C is the �Lukasiewicz t-norm, then the
fuzzy weighted analogical hexagon of Fig. 7, obtained from the �Lukasiewicz triplet
(I, C,D), is a hexagon of opposition as soon as there is an attribute such that
πi = 1, and implication I =→ is such that (1 − a) → 0 ≤ 1 − (a → 0).

Proof. Based on results from Proposition 17 in [12], the two conditions πi = 1
for some i, and (1−a) → 0 ≤ 1−(a → 0) are sufficient to get MIN→

π (µD(x, y)) ≤
MAX⊗

π µD(x, y), that is α ≤ ι in the hexagon. The rest follows by Proposition 1.
⊓⊔

We give three examples of semi-dual pairs (→,⊗) where this proposition
applies:

1. Kleene-Dienes. Then: MIN→KD

π (x) = minn
i=1 max(1−πi, xi) ≤ MAX⊗KD

π

(x) = maxn
i=1 min(πi, xi) is well-known. When computing the external mini-

mum (resp. maximum), the partial evaluation of attributes of low importance
is increased (resp. decreased). Such attributes will thus have limited influence



on the global rating. Then two items will be perfectly opposite (resp. identi-
cal) if for each attribute either its importance is zero, or dissimilarity (resp.
similarity) between items is perfect. They will be perfectly different (resp.
similar) if there exists at least one attribute with importance 1 for which
there is perfect dissimilarity (resp. similarity) between items.

2. Gödel implication: Since (1 − a) →G 0 = 0, it follows that MIN→G

π

(µD(x, y)) ≤ MAX⊗G

π µD(x, y) if πi = 1 for some i. The weights πi only
play the role of thresholds. Then two items will be perfectly opposite (resp.
identical) if all local dissimilarities (resp. similarities) are above their thresh-
olds. They will be perfectly different (resp. similar) if there exists at least
one attribute with non-zero importance πi and perfect dissimilarity (resp.
similarity) between items.

3. Contrapositive Gödel implication: We can check that (1 − a) →GC 0 =
1 − a = 1 − (a →GC 0). It follows that MIN→GC

π (µD(x, y)) ≤ MAX⊗GC

π

µD(x, y), i.e., mini|πi>µDi
(xi,yi) 1 − πi ≤ maxi|µDi

(xi,yi)>1−πi
πi. Then two

items will be perfectly opposite (resp. identical) if all local dissimilarities (resp.
similarities) are above their thresholds. They will be different (resp. similar)
if there exists at least one attribute with πi = 1 and non-zero dissimilarity
(resp. similarity) between items.

Op. MIN→
π (µD(x, y))

NonAn. D(MIN→
π (µS(x, y)), MIN→

π (µD(x, y)))

Id. MIN→
π (µS(x, y))

Sim. MAX⊗
π (µS(x, y))

An. C(MAX⊗
π (µD(x, y)), MAX⊗

π (µS(x, y)))

Dif. MAX⊗
π (µD(x, y)),

Fig. 7. Fuzzy weighted analogical hexagon

4.3 OWmin and OWmax

With operations MIN→
π and MAX⊗

π the result depends on all local evaluations
for all attributes. One interesting issue is whether the hexagon structure can
survive when the quantifiers involved are weakened using ordered weighted min
and max (shorthand OWmin and OWmax) [7]. In such operations, the quanti-
fier for all i is replaced by for the k best, where the selection of the best ones is
based on local evaluations. For a given vector x ∈ V n, let σ be the permutation
of attributes such that xσ(1) ≥· · ·≥xσ(n).

Define µk : {1, · · · , n} → V by µk(i)=1 if 1≤ i≤k and 0 otherwise. Then,

OWminµk
(x) =

n

min
i=1

max(1 − µk(i), xσ(i))



Op. OWminµk
(µD(x, y))

NonAn. D(OWminµk
(µS(x, y)), OWminµk

(µD(x, y)))

Id. OWmin→
µk

(µS(x, y))

Sim. OWmaxµk
(µS(x, y))

An. C(OWmaxµk
(µD(x, y)), OWmaxµk

(µS(x, y)))

Dif. OWmaxµk
(µD(x, y))

Fig. 8. OWmin-OWmax hexagon

only uses the worst among the k best attributes with respect to their partial
evaluations. Likewise, from De Morgan duality,

OWmaxµk
(x) = 1 − OWminµk

(1 − x) =
n

max
i=1

min(µk(i), xσ(i))

(where σ is now such that xσ(1) ≤ · · · ≤ xσ(n)) only uses the best among the k
worst attributes with respect to their partial evaluations. µk thus represents the
quantifier for at least the k best attributes. Such a quantifier can vary from for
all attributes to for at least the best attribute.

Unfortunately, the inequality OWminµk
(µD(x, y)) ≤ OWmaxµk

(µD(x, y))
generally does not hold. So, the hexagon that could be constructed from these
operations may not always be one of opposition. Recall that OWminµk

and
OWmaxµk

are special cases of a Sugeno integral that can be written in two
ways:

Sγ(x) = max
E⊆{1,...,n}

min(γ(E),min
i∈E

xi) = min
T⊆{1,...,n}

max(1 − γc(T ),max
i∈T

xi).

where γ is a capacity and γc(T ) = 1 − γ(T ) its conjugate. In the special
case considered here, capacities are of the form γk(E) = 1 if |E| ≥ k and
0 otherwise. Then OWmaxµk

= Sγk
. It is easy to check that the conjugate

of γk is γn−k+1. From the above equality, it follows easily that OWminµk
=

OWmaxµn−k+1
. Hence, the inequality OWminµk

≤ OWmaxµk
also reads

OWminµk
≤ OWminµn−k+1

and will hold only when k ≥ (n + 1)/2. In other
words, operator OWminµk

must be sufficiently demanding to match with a
necessity-like modality. Under such conditions the hexagon in Fig. 8 is a hexagon
of opposition. It would be worthwhile comparing this approach with the one
in [13].

5 Conclusion

We have shown that the geometrical structure called hexagon of opposition,
which organizes the relationship between various comparison modalities can sur-
vive under various gradual extensions of such modalities. A study of conditions



needed for the gradual hexagon of opposition (as we did for the cube of opposi-
tion in [12]) in a more general algebraic setting has been carried out, introducing
weak and full-fledged graded versions of the hexagon. Further investigation is
still needed to characterize proper algebraic settings that support the gradual
hexagon. One may also consider the possibility of introducing an inner negation
for defining from the similarity degree µS(x, y) a “remoteness” degree defined
by µS(x, 1 − y) (with the requirement that µS(x, 1 − y) = µS(1 − x, y)) for
x, y ∈ [0, 1]. This might lead to a cube-like structure of opposition.
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2. Blanché, R.: Structures Intellectuelles. Essai sur l’Organisation Systématique des
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