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Abstract— The use of real prototyping systems allows 

implementing real-world deployments which permit evaluating 

new protocols, algorithms and network solutions. This study 

investigates the problem of 3D indoor redeployment of connected 

objects in IoT collection networks. The objective is to choose the 

right positions in which connected objects are added to an initial 

configuration, while optimizing a set of objectives. To solve this 

problem, a novel bird’s dialect-based particle swarm 

optimization algorithm (named acMaPSO) is introduced. The 

new concept of bird’s dialect is based on a set of birds which are 

separated into different dialect groups by their regional 

habitation and are classified into groups according to their 

common manner of singing. The obtained numerical results and 

the real experiments on our testbed prove the effectiveness of the 

two proposed variants compared with the standard PSO 

algorithm and a recent state of art of many-objective 
evolutionary algorithms: the NSGA-III. 

Keywords—3D indoor deployment, DL-IoT, experimental 
validation, dialect based PSO, many-objective optimization.  

I.  INTRODUCTION

Node deployment defines how to position a set of nodes 
and the topology of the network used to deploy these nodes. In 
this paper, we are interested in the three-dimensional 
deployment that reflects the topology of the RoI (region of 
interest) better than the two-dimensional deployment. 
Specifically, our aim is to resolve the issue of redeployment 
where the initial indoor 3D deployment is improved by adding 
new nodes to optimize various objectives such as network 
lifetime, coverage, energy consumption and localization. 

The DL-IoT (Device Layer - Internet of Things) is the 
evolution of WSN (Wireless Sensor Networks) to IoT 
networks. DL-IoT are collection networks relying on nodes 
called connected objects used for the collection of information. 
In this study, we aim to deploy a 3D indoor DL-IoT network. It 
is a scenario in which autonomous entities (devices, robots, or 
people with sensors) with unique identifiers can interact 
together using network protocols such as Bluetooth or 
802.15.4. WSN and IoT are complementary: the WSN is 
responsible for the hardware communication and the 
transmission of the physical values detected by the sensors. 
While the IoT provides the decision making after manipulating 

the collected data. Our approach is applicable in both contexts 
(IoT and WSN). 

Recently, there is a growing trend to evaluate the 
performance of new network platforms and solutions via real 
prototyping testbeds. The advantage of real experiments 
compared to simulations is manifested in the simplicity of 
prototyping communication devices and in the realism of the 
equipment and the obtained results. To this is added the 
advantage of the human experience feedback. As examples of 
these real prototyping platforms having thousands of nodes, 
FIT/IoT-LAB [1] (formerly called SensLab) and 
SmartSantander platform [2] for smart cities. Other platforms 
like INDRIYA [3] and TWIST [4] allow deploying, on several 
levels, about 200 nodes. The mentioned testbeds share a 
physical layer relying on protocols standardized by the IEEE 
802.15.4-2006 with a frequency of 868 MHz or 2.4 GHz. 
Contrary to classical works based on theoretical hypotheses, 
simulations and formal calculations, we aim to finely 
characterize the real world with physical nodes of our 
prototyping platform. This platform is presented in the 
Experiments section. 

To identify the best positions of the connected objects, 
while optimizing a set of opposed objectives and constraints, a 
modified PSO (Particle Swing Optimization) algorithm based 
on a new concept of bird’s dialects is used. 

The major contributions of this study are as follows: 

- The proposal of the acMaPSO which is a modified MaOPSO

(many-objective PSO) algorithm that proposes a new concept
of bird’s dialects on the PSO. Indeed, it is a specific concept

that reflects the particle experience to evaluate the experience

of each particle in the swarm.
- We propose a real experimental validation of the indoor 3D
deployment using a real testbed. The proposed algorithm
(acMaPSO) is compared with MaOPSO and NSGA-III.
Another comparison is also made between the results of the
simulations and the real experiments. The interpretation of the
obtained results is also provided.

Next, the following sections will be detailed: Section II 
discusses and interprets a set of related works. Section III 
presents the concept of bird dialects on the particle swarm 
algorithm. Section IV illustrates the numerical results. Section 



V details a set of experiments on testbeds and compares them 
with simulations. Section VI shows a conclusion and different 
possible perspectives. 

II. RELATED WORKS ON THE 2D-3D DEPLOYMENT PROBLEM

This section presents recent works proposing optimization
algorithms for efficient node deployment. Banimelhem et al. 
[5] introduced a genetic algorithm (GA) to find the
deterministic 2D deployment in WSN with consideration of
coverage holes while minimizing the number of used mobile
nodes. However, this study lacks a mathematical modeling that
explains the details of the problem. Unaldi et al. [6] propose a
GA based on a guided wavelet transform and a random
mutation for the probabilistic deployment of WSN nodes in the
context of 3D terrains. This study aims to minimize the number
of sensors and maximize the quality of coverage. On the other
hand, the proposed algorithm is evaluated only with stationary
sensors, without empirical scenarios on a real-world problem.
Danping et al. [7] propose a low-cost heuristic combined with
an evolving multi-objective algorithm for solving the 3D
deployment problem taking into account the propagation of the
radio signal in indoor. The goal is to simultaneously improve
the network life, the hardware cost, the coverage, and the link
quality. Although, the authors have not demonstrated the
scalability of the proposed approach with a high number of
nodes. Ko et al. [8] resolve the deployment in irregular 3D
terrains using an analysis crossover GA to simultaneously
maximize the global coverage and probabilistic point coverage.
Yet, no evidence is given regarding the effectiveness of the
proposed crossover strategy compared to the original genetic
approach. In [9], an algorithm based on a harmony search is
proposed for the optimization of the coverage and the number
of deployed sensors. The limits of this work lie in the proposed
network model which is simplistic. Besides, in the
consideration of only two objectives and in the validation of
the approach based only on Matlab tests without real
simulation or experimentation scenarios. The authors in [10]
suggest a hybrid algorithm called AcNSGA-III that hybridizes
the Ant Colony Optimization with the NSGA-III to solve the
problem of 3D indoor deployment. They proved the
effectiveness of the proposed algorithm compared to the
standard ACO and NSGA-III algorithms. However, the
applicability of this algorithm in dense networks is not proven
and the used energy model is simplistic.

III. THE PROPOSED ACMAPSO ALGORITHM: INCLUDING THE

CONCEPT OF BIRD’S DIALECT ON THE MAOPSO 

The suggested modifications on the standard multi-
objective PSO aim to avoid the difficulties encountered by this 
algorithm when solving real-world problems that are generally 
complex and have several local optima. These modifications 
rely on introducing changes in the topology of the swarm. 
Indeed, to avoid the premature character of convergence of the 
standard PSO [11], in addition to the two positions used in this 
algorithm (the best overall position (gbest) and the best 
personal position of the particle (pbest)), we proposed the best 
position of the local area around the particle, called: best 
cluster (cbest). 

Recent research in biology [12] affirmed that songbirds 

have regional dialects such as humans. In fact, birds inherit 

from their parents the ability to sing and create a complete 

song. These biological studies have shown that if birds are bred 

in silence, they do not acquire this ability to sing and can only 

shout. Even more, birds from different regions develop distinct 
dialects. Following this biological finding, we propose an 

algorithm (called acMaPSO) which consists in a PSO relying 

on a topology of different categories of songbird dialects. 

Indeed, each dialect group has different convergence 

acceleration parameters, which contributes to the prevention of 

local optima. Moreover, the introduced concept of dialects 

helps to assess the particle search capabilities in their local 

areas where particles belong to different communities (groups 

or swarms). Fig. 1 shows a set of particles separated into 

groups according to their dialects during the process of 

searching for solutions. In order to keep the diversity of the 

population, particles in each dialect category can select their 
neighbors only from the least experienced particles of their 

own group or from other groups.  
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Fig. 1 The Neighborhood of a particle Pa 

The acMaPSO algorithm is shown in algorithm1. 



 

IV. NUMERICAL RESULTS 

This section presents the used parameters of the algorithms 

and the obtained numerical results. The HV (Hypervolume) 

[13] is used as a metric to evaluate the quality of the results. 

Despite its high computing cost, the HV is ideal for real-world 
problems having generally a true unknown Pareto front. To 

have an idea about the influence of nomad node positions on 

network performance, acMaPSO is compared to the NSGA-III 

[14] which is another recent multi-objective optimization 

algorithm. The PlatEMO platform [15] is used for the 

implementation of NSGA-III, MaOPSO and acMaPSO. The 

details of the parameters of these algorithms are shown in 

Table I. 

TABLE I.  PARAMETERS SETTING OF THE USED ALGORITHMS 

Parameter Value 

Number of objectives Variable, see 

Table II 

Number of independent runs 25, on different 

initial populations 

Number of constraints 7 

Population size 300 

Maximum number of generations Variable, see 

Table II 

 

 

NSGA-III 

parameters 

Recombination  Operator  SBX 

probability  0.8 

distribution 

index  

45 

Mutation Operator  Bit-flip 

probability  1/400 

Operator  SBX 

 

 

 

 

PSO 

parameters 

Inertial weight  0.95 to 0.4 

Cognitive components (C1) 2.8 to 2.2 

Social components(C2) 1.2 to 1.8 

Number of particles per swarm 10-50 

Initial minimum number of clusters  4 

Initial swarm particle velocity distributed in 

 [-4, 4] randomly 

To obtain a statistically reliable comparison of results, the 

optimization algorithms must be run several times for each test 

because of the random behaviors of these algorithms. In our 

tests, an average of 25 executions are achieved for each value. 

Table II illustrates the average HV for different number of 

generations and objectives. Higher HV have better 

performance. 

TABLE II.  BEST, AVERAGE AND WORST HYPERVOLUME VALUES 

Obj 

Nbr 

Max nbr of 

generations 

MaOPSO NSGA-III  acMaPSO 

 

3 

 

 

1300 

0.903458 

0.902896 

0.898023 

0.902231 

0.901658 

0.898235 

0.903631 

0.903036 

0.902563 

 

4 

 

1800 

0.976985 

0.976833 

0.975612 

0.974892 

0.974743 

0.973897 

0.977331 

0.977098 

0.976892 

 

5 

 

2600 

0.972892 

0.972116 

0.971084 

0.972983 

0.972563 

0.972126 

0.972985 

0.972728 

0.972436 

The results in Table II affirm that, for different numbers of 

objectives, acMaPSO is often the most efficient algorithm. 

MaOPSO is more efficient than NSGA-III, but it has a higher 

relative degradation compared to other algorithms when 

increasing the number of objectives. 

V. SIMULATION AND EXPERIMENTAL RESULTS  

In what follows, a comparison is made between two 

scenarios: one is for simulations and the other is for 

experimental tests. The behavior and performance of the 
proposed acMaPSO are compared to those of NSGA-III and 

MaOPSO. Nowadays, there is a tendency to propose and test 

algorithms and protocols with real environments since 

simulators and theoretical analysis do not perfectly reproduce 

the physical and technical characteristics of the real 

environment. Hence, with our prototyping testbed, we aim to 

reduce discrepancies between practice and theory in IoT and 

WSN deployment. The use of a personal testbeds (such as 

ours: Ophelia) gives several advantages such as the ease of 

use, the reproducibility of results, the human feedback, the 

realism of conditions and the heterogeneity of nodes. This 
makes such testbeds ideal for IoT components. 

A. Description of the testbed  

1) TeensyWiNo deployed nodes: In our tests, we used 

TeensyWiNo based-on WiNoRF22 nodes. Since they are 

integrated into the Arduino system, these nodes allow 

researchers to easily incorporate software and hardware 

modules such as interaction devices, actuators, sensors, 

processing algorithms or prototyping solutions supporting 

users feedback. The technical characteristics of the deployed 

TeensyWiNo nodes are detailed in Table III. 

TABLE III.  TECHNICAL CHARACTERISTICS OF TEENSYWINO 

Use IoT, WSN 

Transceiver 

(Arduino libraries) 

HopeRF-RFM22b 200-900 MHz; 1-125kbps; 

GFSK/FSK/OOK; +20dBm Radio-Head 

CPU/RAM/Flash ARM-Cortex-M4 [32bit]-72MHz; 64kB-RAM, 

256kB; Flash (PJRC-Teensy-3.1) 

  

The components and an example of the deployed 

TeensyWiNo nodes are shown in Fig. 2. 
 

 
 

Fig. 2 The deployed Teensy WiNo nodes 



2) OpenWino [16] (Open Wireless Node): is a free

development environment for DL-IoT collection networks and 

WSN protocol engineering. It helps achieve rapid prototyping 

of MAC, NWK or other layer protocols. It also allows to 

evaluate the performances of these protocols. The simplicity 

of OpenWiNo is one of its advantages: indeed, the change of 

the physical layer of a WiNo node for example, is done by 

simply changing the transceiver (and its associated driver). An 

open hardware environment requires this ease of use. Among 

the transceivers that have been successfully tested on 

OpenWiNo: Proprietary 433MHz FSK/GFSK (HopeRF 

RFM22b), IEEE 802.15.4-2011 UWB (DecaWave DW1000), 

Classical IEEE 802.15.4 2.4GHz DSSS (Freescale), LoRa 

mode 868MHz (HopeRF RFM95). 

3) Ophelia: it is our testbed based on a web interface,

Openwino, Arduino and Teensywino installed nodes. The web 

interface allows to remote access the Ophelia testbed, the 

programming of experimental sketches (in python) and their 

execution on the nodes.  

Fig. 3 illustrates the indoor deployment of nodes in one of the 

six used sites.  

. .

Fig. 3 The 3D deployment in one of the six sites 

The simulations are performed using OMNeT ++, a platform 

for developing and simulating network protocols. Fig. 4 
illustrates the interface of our OMNeT++ simulation scenario 

showing the distribution of the nodes. 

Fig. 4 The distribution of nodes in the simulation scenario 

B. Simulation and experimental parameters

A 3.5 Ghz i5-6600K Core computer is used to test the 

algorithms. The implemented physical layer is 433 MHz, with 

an uncoordinated CSMA/CA (IEEE 802.15.4) access method 

and an AODV (ad hoc distance vector on demand) routing 

protocol. Table IV details the parameters used in our 

simulations and experiments.

TABLE IV. PARAMETERS USED ON SIMULATIONS AND EXPERIMENTS 

Repartition of nodes 6 sites on 200 * 200 m² 

Number of nodes 36 (1 mobile, 6 nomad, 29 fixed) 

Average of runs 25 experiments 

Simulation period 10800 seconds 

Transmission power 100 mW 

Bit rate 256 kbps 

Indoor sensing range 8m 

Modulation model 125 kbit/s GFSK 

Message-length 16 

Message-number 1000 

Message-wait 5 

Frequency 434.79 MHz 

Operating temperature 25°c 

Tx power 7 (the max of RFM22) 

FER (Frame Error Rate) 0.01 (initially) 

RSSI 100 (initially) 

Reception gain 50 mA 

Indoor transmission range 7m 

Antenna model transceiver RFM22 

Modem configuration 12 # GFSK_Rb2Fd5 

C. Comparing the experimental results to the simulations

1) Simulation scenario: The simulation scenario is as

follows: A trigger node (the mobile node) sends an initial 

message to a random destination d. when this node d is found 

by the AODV routing protocol, it becomes the source node 

and selects a new destination node. This process is repeated 

until the maximum simulation time is reached. To be able to 

compare experiments to simulations, we use the same scenario 

and architecture (type and number of nodes) in both cases. The 

initial distribution of the fixed nodes is chosen according to 

the distribution law of OMNeT++. This law evenly distributes 

the nodes from the center of the RoI. The connectivity matrix 

is based on empirical experiments by establishing the initial 

connectivity links between the nodes based on experiments. 

To ensure dynamism and new connectivity relationships 

between nodes during simulations, we introduce disruptions to 

the RSSI connectivity links. Indeed, a perturbation (+/-30 for 

each value) is performed on the RSSI matrix. 

2) Experimental scenario: In the Ophelia testbed, 30 fixed

nodes are used which are initially deployed and having known 

positions. These positions are determined according to the 

application needs of the users. We aim to add six nodes called 

nomad nodes. The positions of these last nodes are determined 

using the tested optimization algorithms. Only one mobile 

node is used. The execution of the experimental scenario will 

be as follows: initially, the nodes are flashed. Then, the initial 

configuration parameters (transmission power, etc.) are sent to 

the nodes. Afterads, we choose a node to send a first broadcast 

to all other nodes. The measures of the RSSI and FER are 

taken in two directions: the sending node records its FER and 

RSSI rates with each receiving node which also returns these 

same measurements. After a predetermined wait time, this 



sending node terminates the process. Subsequently, the sender 

is changed and other nodes become receivers. We repeat the 

same process for all nodes (36 experiments), to obtain two 

connectivity matrices of the FER and RSSI values between all 

the nodes. From these two matrices, we can deduce the 

neighbors of each node. We consider a node i to be the 

neighbor of another node j if the average of the RSSI emitted 

between these two nodes (from i to j and and from j to i) 

exceeds a threshold set at 100; and the average FER is also 

below a threshold set at 0.1. Given the need for a statistical 

test to compare two algorithms and taking into account the 

stochastic nature of evolutionary algorithms, the average 

values taken in this experimental scenario are the result of 25 

execution time for each value. 
3) Compaison of the RSSI rates : To evaluate the

localization and the cost of deployment, the RSSI metric is 

used because the localization is based on the Distance-

VectorHop protocol, to which the RSSI information is added. 

Indeed, the localization is proportional to the RSSI rate. Fig. 5 

shows the average rates of the RSSI of the nodes in connection 
with the mobile node, for different number of objectives. 

These objectives are to be satisfied by the tested algorithms. 

This average RSSI is a value (convertible in dBm) between 0 

and 256. 
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Fig. 5 Average RSSI rates of nodes connected to the mobile node 

4) Comparison of the FER rates : FER is used as a metric

to assess coverage and link quality between nodes. Indeed, the 

FER is inversely proportional to the coverage. Fig. 6 shows 

the average values of the FER of the nodes in connection with 

the mobile node, for a variable number of objectives. 
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acMaPSO
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Fig. 6 FER average rates of nodes connected to the mobile node 

5) Comparison of the number of neighbors : The average

number of neighbors of nodes in connection with the mobile 

node is used as the metric to evaluate the network utilization 

rate and the network connectivity. We use the same notion of 

neighborhood that was previously explained in the 

experimental section. Fig. 7 shows the average number of 

neighbors of the nodes in connection with the mobile node, for 

a variable number of objectives. 
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Fig. 7 Average of neighbors of the nodes connected to the mobile node 

6) Comparison of the network lifetime and the energy

consumption: Fig. 8 illustrates the changes in the energy 

consumption (as a function of time). Indeed, we measure the 

average of the indicator of energy of the nodes after the 

addition of the nomad nodes. 
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Fig. 8 Comparaison of the average levels of energy consumption 

The averages of network lifetimes (calculated for different 

algorithms and objectives) are shown in Table V. The lifetime 
metric used is measured by the time (in seconds) after which 

the first node goes out of service. 

TABLE V. COMPARING THE AVERAGE LIFETIME

     Nbr of objectives 

 Algorithm 

  2 5 

MaOPSO Simulations 3546 3478 

Experiments 3502 3469 

NSGA-III Simulations 3485 3528 

Experiments 3487 3546 

acMaPSO Simulations 3543 3540 

Experiments 3549 3553 

D. Discussion and interpretations

After the evaluation of the experiments, several interpretations 

can be deduced, among others: 

- Unlike RSSI, FER rates are lower in simulations than in

experiments.

- Unlike other algorithms, the NSGA-III in the experiments

has lower RSSI values than simulations.

- FER values are lower during night than day. This is due to

human activities within the building during the day (opening

and closing doors for example). These activities cause the
signal disruption.

Number 

of Objectives

Average number  

of neighbors

Number  

of objectives 

Number 

of objectives

          FER  

average  values 

 RSSI average 

 values

Time (x320s) 

Energy indicator 



- Contrary to what is assumed, FER and RSSI values  are not

always inversely proportional. Indeed, a connection of two

nodes may have, at the same time, a high FER and an

excellent RSSI.

- The NSGA-III is evaluated by their authors only on instances

of theoretical test problems. Our experiment is proof of the
advantage of applying the NSGA-III in real-world contexts.

- Several studies such as [17], prove that MaOPSO is better

than NSGA-III. In keeping with this, our numerical results

(based on the HV metric) state that MaOPSO is not surpassed

by the NSGA-III. Moreover, the carried out experimental

results show that the proposed acMaPSO algorithm is

generally better than the NSGA-III on the FER and RSSI rates

(therefore, acMaPSO is more effective than NSGA-III in

optimizing the localization, the quality of links and the

coverage). While the NSGA-III is generally more efficient

than the acMaPSO in satisfying the number of neighbors of

nodes (consequently, it is more efficient in satisfying the
network utilization). The experimental results are not in

contradiction with the numerical results but this is explained

by the fact that the 3D indoor deployment is a real problem

which is different from the theoretical test problems used to

evaluate the algorithms.

VI. CONCLUSION

In this paper, we proposed a real world deployment 

experiment based on prototyping on real nodes of an 

OpenWiNo-based testbed (Ophelia) to solve the problem of 

3D indoor deployment of a DL-IoT. The proposed resolution 

approach is based on a new variant of the PSO algorithm: the 
acMaPSO which includes a new concept of dialect to avoid 

local optima. The proposed algorithm achieves (and surpasses 

for certain evaluation metrics such as the number of 

neighbors), the performance of the standard PSO and NSGA-

III algorithms. Nevertheless, different improvements can be 

proposed for this study. Among others, supporting some other 

technologies and protocols of transmission by implementing 

them on OpenWiNo which has the shortcoming of lack of 

libraries implementing the standard protocols. Moreover, 

although Ophelia testbed is more realistic than a platform with 

a large number of uniform nodes such as IoTLab [1], 

SmartSantander [2] or INDRIYA [3], these latter platforms 
allow scaling up and testing our approach with a greater 

number of nodes (up to 1024 nodes). Since the IoTLab allows 

to test the same metrics of our experiments (RSSI, link 

quality...), tests on this latter platform are envisaged in future 

works to prove the scalability of our approach and compare its 

results with Ophelia ones.  
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